InlineFunction.cpp 103 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using ProfileCount = Function::ProfileCount;

static cl::opt<bool>
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
  cl::Hidden,
  cl::desc("Convert noalias attributes to metadata during inlining."));

// Disabled by default, because the added alignment assumptions may increase
// compile-time and block optimizations. This option is not suitable for use
// with frontends that emit comprehensive parameter alignment annotations.
static cl::opt<bool>
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
  cl::init(false), cl::Hidden,
  cl::desc("Convert align attributes to assumptions during inlining."));

static cl::opt<bool> UpdateReturnAttributes(
        "update-return-attrs", cl::init(true), cl::Hidden,
            cl::desc("Update return attributes on calls within inlined body"));

static cl::opt<unsigned> InlinerAttributeWindow(
    "max-inst-checked-for-throw-during-inlining", cl::Hidden,
    cl::desc("the maximum number of instructions analyzed for may throw during "
             "attribute inference in inlined body"),
    cl::init(4));

namespace {

  /// A class for recording information about inlining a landing pad.
  class LandingPadInliningInfo {
    /// Destination of the invoke's unwind.
    BasicBlock *OuterResumeDest;

    /// Destination for the callee's resume.
    BasicBlock *InnerResumeDest = nullptr;

    /// LandingPadInst associated with the invoke.
    LandingPadInst *CallerLPad = nullptr;

    /// PHI for EH values from landingpad insts.
    PHINode *InnerEHValuesPHI = nullptr;

    SmallVector<Value*, 8> UnwindDestPHIValues;

  public:
    LandingPadInliningInfo(InvokeInst *II)
        : OuterResumeDest(II->getUnwindDest()) {
      // If there are PHI nodes in the unwind destination block, we need to keep
      // track of which values came into them from the invoke before removing
      // the edge from this block.
      BasicBlock *InvokeBB = II->getParent();
      BasicBlock::iterator I = OuterResumeDest->begin();
      for (; isa<PHINode>(I); ++I) {
        // Save the value to use for this edge.
        PHINode *PHI = cast<PHINode>(I);
        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
      }

      CallerLPad = cast<LandingPadInst>(I);
    }

    /// The outer unwind destination is the target of
    /// unwind edges introduced for calls within the inlined function.
    BasicBlock *getOuterResumeDest() const {
      return OuterResumeDest;
    }

    BasicBlock *getInnerResumeDest();

    LandingPadInst *getLandingPadInst() const { return CallerLPad; }

    /// Forward the 'resume' instruction to the caller's landing pad block.
    /// When the landing pad block has only one predecessor, this is
    /// a simple branch. When there is more than one predecessor, we need to
    /// split the landing pad block after the landingpad instruction and jump
    /// to there.
    void forwardResume(ResumeInst *RI,
                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);

    /// Add incoming-PHI values to the unwind destination block for the given
    /// basic block, using the values for the original invoke's source block.
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
      addIncomingPHIValuesForInto(BB, OuterResumeDest);
    }

    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
      BasicBlock::iterator I = dest->begin();
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
        PHINode *phi = cast<PHINode>(I);
        phi->addIncoming(UnwindDestPHIValues[i], src);
      }
    }
  };

} // end anonymous namespace

/// Get or create a target for the branch from ResumeInsts.
BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
  if (InnerResumeDest) return InnerResumeDest;

  // Split the landing pad.
  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
  InnerResumeDest =
    OuterResumeDest->splitBasicBlock(SplitPoint,
                                     OuterResumeDest->getName() + ".body");

  // The number of incoming edges we expect to the inner landing pad.
  const unsigned PHICapacity = 2;

  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
  Instruction *InsertPoint = &InnerResumeDest->front();
  BasicBlock::iterator I = OuterResumeDest->begin();
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    PHINode *OuterPHI = cast<PHINode>(I);
    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
                                        OuterPHI->getName() + ".lpad-body",
                                        InsertPoint);
    OuterPHI->replaceAllUsesWith(InnerPHI);
    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
  }

  // Create a PHI for the exception values.
  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
                                     "eh.lpad-body", InsertPoint);
  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);

  // All done.
  return InnerResumeDest;
}

/// Forward the 'resume' instruction to the caller's landing pad block.
/// When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void LandingPadInliningInfo::forwardResume(
    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
  BasicBlock *Dest = getInnerResumeDest();
  BasicBlock *Src = RI->getParent();

  BranchInst::Create(Dest, Src);

  // Update the PHIs in the destination. They were inserted in an order which
  // makes this work.
  addIncomingPHIValuesForInto(Src, Dest);

  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
  RI->eraseFromParent();
}

/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
static Value *getParentPad(Value *EHPad) {
  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
    return FPI->getParentPad();
  return cast<CatchSwitchInst>(EHPad)->getParentPad();
}

using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;

/// Helper for getUnwindDestToken that does the descendant-ward part of
/// the search.
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
                                       UnwindDestMemoTy &MemoMap) {
  SmallVector<Instruction *, 8> Worklist(1, EHPad);

  while (!Worklist.empty()) {
    Instruction *CurrentPad = Worklist.pop_back_val();
    // We only put pads on the worklist that aren't in the MemoMap.  When
    // we find an unwind dest for a pad we may update its ancestors, but
    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
    // so they should never get updated while queued on the worklist.
    assert(!MemoMap.count(CurrentPad));
    Value *UnwindDestToken = nullptr;
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
      if (CatchSwitch->hasUnwindDest()) {
        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
      } else {
        // Catchswitch doesn't have a 'nounwind' variant, and one might be
        // annotated as "unwinds to caller" when really it's nounwind (see
        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
        // parent's unwind dest from this.  We can check its catchpads'
        // descendants, since they might include a cleanuppad with an
        // "unwinds to caller" cleanupret, which can be trusted.
        for (auto HI = CatchSwitch->handler_begin(),
                  HE = CatchSwitch->handler_end();
             HI != HE && !UnwindDestToken; ++HI) {
          BasicBlock *HandlerBlock = *HI;
          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
          for (User *Child : CatchPad->users()) {
            // Intentionally ignore invokes here -- since the catchswitch is
            // marked "unwind to caller", it would be a verifier error if it
            // contained an invoke which unwinds out of it, so any invoke we'd
            // encounter must unwind to some child of the catch.
            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
              continue;

            Instruction *ChildPad = cast<Instruction>(Child);
            auto Memo = MemoMap.find(ChildPad);
            if (Memo == MemoMap.end()) {
              // Haven't figured out this child pad yet; queue it.
              Worklist.push_back(ChildPad);
              continue;
            }
            // We've already checked this child, but might have found that
            // it offers no proof either way.
            Value *ChildUnwindDestToken = Memo->second;
            if (!ChildUnwindDestToken)
              continue;
            // We already know the child's unwind dest, which can either
            // be ConstantTokenNone to indicate unwind to caller, or can
            // be another child of the catchpad.  Only the former indicates
            // the unwind dest of the catchswitch.
            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
              UnwindDestToken = ChildUnwindDestToken;
              break;
            }
            assert(getParentPad(ChildUnwindDestToken) == CatchPad);
          }
        }
      }
    } else {
      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
      for (User *U : CleanupPad->users()) {
        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
            UnwindDestToken = RetUnwindDest->getFirstNonPHI();
          else
            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
          break;
        }
        Value *ChildUnwindDestToken;
        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
          Instruction *ChildPad = cast<Instruction>(U);
          auto Memo = MemoMap.find(ChildPad);
          if (Memo == MemoMap.end()) {
            // Haven't resolved this child yet; queue it and keep searching.
            Worklist.push_back(ChildPad);
            continue;
          }
          // We've checked this child, but still need to ignore it if it
          // had no proof either way.
          ChildUnwindDestToken = Memo->second;
          if (!ChildUnwindDestToken)
            continue;
        } else {
          // Not a relevant user of the cleanuppad
          continue;
        }
        // In a well-formed program, the child/invoke must either unwind to
        // an(other) child of the cleanup, or exit the cleanup.  In the
        // first case, continue searching.
        if (isa<Instruction>(ChildUnwindDestToken) &&
            getParentPad(ChildUnwindDestToken) == CleanupPad)
          continue;
        UnwindDestToken = ChildUnwindDestToken;
        break;
      }
    }
    // If we haven't found an unwind dest for CurrentPad, we may have queued its
    // children, so move on to the next in the worklist.
    if (!UnwindDestToken)
      continue;

    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
    // any ancestors of CurrentPad up to but not including UnwindDestToken's
    // parent pad.  Record this in the memo map, and check to see if the
    // original EHPad being queried is one of the ones exited.
    Value *UnwindParent;
    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
      UnwindParent = getParentPad(UnwindPad);
    else
      UnwindParent = nullptr;
    bool ExitedOriginalPad = false;
    for (Instruction *ExitedPad = CurrentPad;
         ExitedPad && ExitedPad != UnwindParent;
         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
      // Skip over catchpads since they just follow their catchswitches.
      if (isa<CatchPadInst>(ExitedPad))
        continue;
      MemoMap[ExitedPad] = UnwindDestToken;
      ExitedOriginalPad |= (ExitedPad == EHPad);
    }

    if (ExitedOriginalPad)
      return UnwindDestToken;

    // Continue the search.
  }

  // No definitive information is contained within this funclet.
  return nullptr;
}

/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
/// return that pad instruction.  If it unwinds to caller, return
/// ConstantTokenNone.  If it does not have a definitive unwind destination,
/// return nullptr.
///
/// This routine gets invoked for calls in funclets in inlinees when inlining
/// an invoke.  Since many funclets don't have calls inside them, it's queried
/// on-demand rather than building a map of pads to unwind dests up front.
/// Determining a funclet's unwind dest may require recursively searching its
/// descendants, and also ancestors and cousins if the descendants don't provide
/// an answer.  Since most funclets will have their unwind dest immediately
/// available as the unwind dest of a catchswitch or cleanupret, this routine
/// searches top-down from the given pad and then up. To avoid worst-case
/// quadratic run-time given that approach, it uses a memo map to avoid
/// re-processing funclet trees.  The callers that rewrite the IR as they go
/// take advantage of this, for correctness, by checking/forcing rewritten
/// pads' entries to match the original callee view.
static Value *getUnwindDestToken(Instruction *EHPad,
                                 UnwindDestMemoTy &MemoMap) {
  // Catchpads unwind to the same place as their catchswitch;
  // redirct any queries on catchpads so the code below can
  // deal with just catchswitches and cleanuppads.
  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
    EHPad = CPI->getCatchSwitch();

  // Check if we've already determined the unwind dest for this pad.
  auto Memo = MemoMap.find(EHPad);
  if (Memo != MemoMap.end())
    return Memo->second;

  // Search EHPad and, if necessary, its descendants.
  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
  if (UnwindDestToken)
    return UnwindDestToken;

  // No information is available for this EHPad from itself or any of its
  // descendants.  An unwind all the way out to a pad in the caller would
  // need also to agree with the unwind dest of the parent funclet, so
  // search up the chain to try to find a funclet with information.  Put
  // null entries in the memo map to avoid re-processing as we go up.
  MemoMap[EHPad] = nullptr;
#ifndef NDEBUG
  SmallPtrSet<Instruction *, 4> TempMemos;
  TempMemos.insert(EHPad);
#endif
  Instruction *LastUselessPad = EHPad;
  Value *AncestorToken;
  for (AncestorToken = getParentPad(EHPad);
       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
       AncestorToken = getParentPad(AncestorToken)) {
    // Skip over catchpads since they just follow their catchswitches.
    if (isa<CatchPadInst>(AncestorPad))
      continue;
    // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
    // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
    // call to getUnwindDestToken, that would mean that AncestorPad had no
    // information in itself, its descendants, or its ancestors.  If that
    // were the case, then we should also have recorded the lack of information
    // for the descendant that we're coming from.  So assert that we don't
    // find a null entry in the MemoMap for AncestorPad.
    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
    auto AncestorMemo = MemoMap.find(AncestorPad);
    if (AncestorMemo == MemoMap.end()) {
      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
    } else {
      UnwindDestToken = AncestorMemo->second;
    }
    if (UnwindDestToken)
      break;
    LastUselessPad = AncestorPad;
    MemoMap[LastUselessPad] = nullptr;
#ifndef NDEBUG
    TempMemos.insert(LastUselessPad);
#endif
  }

  // We know that getUnwindDestTokenHelper was called on LastUselessPad and
  // returned nullptr (and likewise for EHPad and any of its ancestors up to
  // LastUselessPad), so LastUselessPad has no information from below.  Since
  // getUnwindDestTokenHelper must investigate all downward paths through
  // no-information nodes to prove that a node has no information like this,
  // and since any time it finds information it records it in the MemoMap for
  // not just the immediately-containing funclet but also any ancestors also
  // exited, it must be the case that, walking downward from LastUselessPad,
  // visiting just those nodes which have not been mapped to an unwind dest
  // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
  // they are just used to keep getUnwindDestTokenHelper from repeating work),
  // any node visited must have been exhaustively searched with no information
  // for it found.
  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
  while (!Worklist.empty()) {
    Instruction *UselessPad = Worklist.pop_back_val();
    auto Memo = MemoMap.find(UselessPad);
    if (Memo != MemoMap.end() && Memo->second) {
      // Here the name 'UselessPad' is a bit of a misnomer, because we've found
      // that it is a funclet that does have information about unwinding to
      // a particular destination; its parent was a useless pad.
      // Since its parent has no information, the unwind edge must not escape
      // the parent, and must target a sibling of this pad.  This local unwind
      // gives us no information about EHPad.  Leave it and the subtree rooted
      // at it alone.
      assert(getParentPad(Memo->second) == getParentPad(UselessPad));
      continue;
    }
    // We know we don't have information for UselesPad.  If it has an entry in
    // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
    // added on this invocation of getUnwindDestToken; if a previous invocation
    // recorded nullptr, it would have had to prove that the ancestors of
    // UselessPad, which include LastUselessPad, had no information, and that
    // in turn would have required proving that the descendants of
    // LastUselesPad, which include EHPad, have no information about
    // LastUselessPad, which would imply that EHPad was mapped to nullptr in
    // the MemoMap on that invocation, which isn't the case if we got here.
    assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
    // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
    // information that we'd be contradicting by making a map entry for it
    // (which is something that getUnwindDestTokenHelper must have proved for
    // us to get here).  Just assert on is direct users here; the checks in
    // this downward walk at its descendants will verify that they don't have
    // any unwind edges that exit 'UselessPad' either (i.e. they either have no
    // unwind edges or unwind to a sibling).
    MemoMap[UselessPad] = UnwindDestToken;
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
      assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
      for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
        auto *CatchPad = HandlerBlock->getFirstNonPHI();
        for (User *U : CatchPad->users()) {
          assert(
              (!isa<InvokeInst>(U) ||
               (getParentPad(
                    cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
                CatchPad)) &&
              "Expected useless pad");
          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
            Worklist.push_back(cast<Instruction>(U));
        }
      }
    } else {
      assert(isa<CleanupPadInst>(UselessPad));
      for (User *U : UselessPad->users()) {
        assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
        assert((!isa<InvokeInst>(U) ||
                (getParentPad(
                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
                 UselessPad)) &&
               "Expected useless pad");
        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
          Worklist.push_back(cast<Instruction>(U));
      }
    }
  }

  return UnwindDestToken;
}

/// When we inline a basic block into an invoke,
/// we have to turn all of the calls that can throw into invokes.
/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
    BasicBlock *BB, BasicBlock *UnwindEdge,
    UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = &*BBI++;

    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);

    if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
      continue;

    // We do not need to (and in fact, cannot) convert possibly throwing calls
    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
    // invokes.  The caller's "segment" of the deoptimization continuation
    // attached to the newly inlined @llvm.experimental_deoptimize
    // (resp. @llvm.experimental.guard) call should contain the exception
    // handling logic, if any.
    if (auto *F = CI->getCalledFunction())
      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
          F->getIntrinsicID() == Intrinsic::experimental_guard)
        continue;

    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
      // This call is nested inside a funclet.  If that funclet has an unwind
      // destination within the inlinee, then unwinding out of this call would
      // be UB.  Rewriting this call to an invoke which targets the inlined
      // invoke's unwind dest would give the call's parent funclet multiple
      // unwind destinations, which is something that subsequent EH table
      // generation can't handle and that the veirifer rejects.  So when we
      // see such a call, leave it as a call.
      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
      Value *UnwindDestToken =
          getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
        continue;
#ifndef NDEBUG
      Instruction *MemoKey;
      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
        MemoKey = CatchPad->getCatchSwitch();
      else
        MemoKey = FuncletPad;
      assert(FuncletUnwindMap->count(MemoKey) &&
             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
             "must get memoized to avoid confusing later searches");
#endif // NDEBUG
    }

    changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
    return BB;
  }
  return nullptr;
}

/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
                                    ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *InvokeDest = II->getUnwindDest();

  Function *Caller = FirstNewBlock->getParent();

  // The inlined code is currently at the end of the function, scan from the
  // start of the inlined code to its end, checking for stuff we need to
  // rewrite.
  LandingPadInliningInfo Invoke(II);

  // Get all of the inlined landing pad instructions.
  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
       I != E; ++I)
    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
      InlinedLPads.insert(II->getLandingPadInst());

  // Append the clauses from the outer landing pad instruction into the inlined
  // landing pad instructions.
  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
  for (LandingPadInst *InlinedLPad : InlinedLPads) {
    unsigned OuterNum = OuterLPad->getNumClauses();
    InlinedLPad->reserveClauses(OuterNum);
    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
    if (OuterLPad->isCleanup())
      InlinedLPad->setCleanup(true);
  }

  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
       BB != E; ++BB) {
    if (InlinedCodeInfo.ContainsCalls)
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
              &*BB, Invoke.getOuterResumeDest()))
        // Update any PHI nodes in the exceptional block to indicate that there
        // is now a new entry in them.
        Invoke.addIncomingPHIValuesFor(NewBB);

    // Forward any resumes that are remaining here.
    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
      Invoke.forwardResume(RI, InlinedLPads);
  }

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction. Eliminate these entries (which might even delete the
  // PHI node) now.
  InvokeDest->removePredecessor(II->getParent());
}

/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
                               ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *UnwindDest = II->getUnwindDest();
  Function *Caller = FirstNewBlock->getParent();

  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");

  // If there are PHI nodes in the unwind destination block, we need to keep
  // track of which values came into them from the invoke before removing the
  // edge from this block.
  SmallVector<Value *, 8> UnwindDestPHIValues;
  BasicBlock *InvokeBB = II->getParent();
  for (Instruction &I : *UnwindDest) {
    // Save the value to use for this edge.
    PHINode *PHI = dyn_cast<PHINode>(&I);
    if (!PHI)
      break;
    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
  }

  // Add incoming-PHI values to the unwind destination block for the given basic
  // block, using the values for the original invoke's source block.
  auto UpdatePHINodes = [&](BasicBlock *Src) {
    BasicBlock::iterator I = UnwindDest->begin();
    for (Value *V : UnwindDestPHIValues) {
      PHINode *PHI = cast<PHINode>(I);
      PHI->addIncoming(V, Src);
      ++I;
    }
  };

  // This connects all the instructions which 'unwind to caller' to the invoke
  // destination.
  UnwindDestMemoTy FuncletUnwindMap;
  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
       BB != E; ++BB) {
    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
      if (CRI->unwindsToCaller()) {
        auto *CleanupPad = CRI->getCleanupPad();
        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
        CRI->eraseFromParent();
        UpdatePHINodes(&*BB);
        // Finding a cleanupret with an unwind destination would confuse
        // subsequent calls to getUnwindDestToken, so map the cleanuppad
        // to short-circuit any such calls and recognize this as an "unwind
        // to caller" cleanup.
        assert(!FuncletUnwindMap.count(CleanupPad) ||
               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
        FuncletUnwindMap[CleanupPad] =
            ConstantTokenNone::get(Caller->getContext());
      }
    }

    Instruction *I = BB->getFirstNonPHI();
    if (!I->isEHPad())
      continue;

    Instruction *Replacement = nullptr;
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
      if (CatchSwitch->unwindsToCaller()) {
        Value *UnwindDestToken;
        if (auto *ParentPad =
                dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
          // This catchswitch is nested inside another funclet.  If that
          // funclet has an unwind destination within the inlinee, then
          // unwinding out of this catchswitch would be UB.  Rewriting this
          // catchswitch to unwind to the inlined invoke's unwind dest would
          // give the parent funclet multiple unwind destinations, which is
          // something that subsequent EH table generation can't handle and
          // that the veirifer rejects.  So when we see such a call, leave it
          // as "unwind to caller".
          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
            continue;
        } else {
          // This catchswitch has no parent to inherit constraints from, and
          // none of its descendants can have an unwind edge that exits it and
          // targets another funclet in the inlinee.  It may or may not have a
          // descendant that definitively has an unwind to caller.  In either
          // case, we'll have to assume that any unwinds out of it may need to
          // be routed to the caller, so treat it as though it has a definitive
          // unwind to caller.
          UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
        }
        auto *NewCatchSwitch = CatchSwitchInst::Create(
            CatchSwitch->getParentPad(), UnwindDest,
            CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
            CatchSwitch);
        for (BasicBlock *PadBB : CatchSwitch->handlers())
          NewCatchSwitch->addHandler(PadBB);
        // Propagate info for the old catchswitch over to the new one in
        // the unwind map.  This also serves to short-circuit any subsequent
        // checks for the unwind dest of this catchswitch, which would get
        // confused if they found the outer handler in the callee.
        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
        Replacement = NewCatchSwitch;
      }
    } else if (!isa<FuncletPadInst>(I)) {
      llvm_unreachable("unexpected EHPad!");
    }

    if (Replacement) {
      Replacement->takeName(I);
      I->replaceAllUsesWith(Replacement);
      I->eraseFromParent();
      UpdatePHINodes(&*BB);
    }
  }

  if (InlinedCodeInfo.ContainsCalls)
    for (Function::iterator BB = FirstNewBlock->getIterator(),
                            E = Caller->end();
         BB != E; ++BB)
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
              &*BB, UnwindDest, &FuncletUnwindMap))
        // Update any PHI nodes in the exceptional block to indicate that there
        // is now a new entry in them.
        UpdatePHINodes(NewBB);

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction. Eliminate these entries (which might even delete the
  // PHI node) now.
  UnwindDest->removePredecessor(InvokeBB);
}

/// When inlining a call site that has !llvm.mem.parallel_loop_access or
/// llvm.access.group metadata, that metadata should be propagated to all
/// memory-accessing cloned instructions.
static void PropagateParallelLoopAccessMetadata(CallBase &CB,
                                                ValueToValueMapTy &VMap) {
  MDNode *M = CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
  MDNode *CallAccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
  if (!M && !CallAccessGroup)
    return;

  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (!VMI->second)
      continue;

    Instruction *NI = dyn_cast<Instruction>(VMI->second);
    if (!NI)
      continue;

    if (M) {
      if (MDNode *PM =
              NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
        M = MDNode::concatenate(PM, M);
      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
      } else if (NI->mayReadOrWriteMemory()) {
        NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
      }
    }

    if (NI->mayReadOrWriteMemory()) {
      MDNode *UnitedAccGroups = uniteAccessGroups(
          NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
      NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
    }
  }
}

/// When inlining a function that contains noalias scope metadata,
/// this metadata needs to be cloned so that the inlined blocks
/// have different "unique scopes" at every call site. Were this not done, then
/// aliasing scopes from a function inlined into a caller multiple times could
/// not be differentiated (and this would lead to miscompiles because the
/// non-aliasing property communicated by the metadata could have
/// call-site-specific control dependencies).
static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) {
  const Function *CalledFunc = CB.getCalledFunction();
  SetVector<const MDNode *> MD;

  // Note: We could only clone the metadata if it is already used in the
  // caller. I'm omitting that check here because it might confuse
  // inter-procedural alias analysis passes. We can revisit this if it becomes
  // an efficiency or overhead problem.

  for (const BasicBlock &I : *CalledFunc)
    for (const Instruction &J : I) {
      if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
        MD.insert(M);
      if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
        MD.insert(M);
    }

  if (MD.empty())
    return;

  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
  // the set.
  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
  while (!Queue.empty()) {
    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
        if (MD.insert(M1))
          Queue.push_back(M1);
  }

  // Now we have a complete set of all metadata in the chains used to specify
  // the noalias scopes and the lists of those scopes.
  SmallVector<TempMDTuple, 16> DummyNodes;
  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
  for (const MDNode *I : MD) {
    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
    MDMap[I].reset(DummyNodes.back().get());
  }

  // Create new metadata nodes to replace the dummy nodes, replacing old
  // metadata references with either a dummy node or an already-created new
  // node.
  for (const MDNode *I : MD) {
    SmallVector<Metadata *, 4> NewOps;
    for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
      const Metadata *V = I->getOperand(i);
      if (const MDNode *M = dyn_cast<MDNode>(V))
        NewOps.push_back(MDMap[M]);
      else
        NewOps.push_back(const_cast<Metadata *>(V));
    }

    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
    MDTuple *TempM = cast<MDTuple>(MDMap[I]);
    assert(TempM->isTemporary() && "Expected temporary node");

    TempM->replaceAllUsesWith(NewM);
  }

  // Now replace the metadata in the new inlined instructions with the
  // repacements from the map.
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (!VMI->second)
      continue;

    Instruction *NI = dyn_cast<Instruction>(VMI->second);
    if (!NI)
      continue;

    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
      MDNode *NewMD = MDMap[M];
      // If the call site also had alias scope metadata (a list of scopes to
      // which instructions inside it might belong), propagate those scopes to
      // the inlined instructions.
      if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_alias_scope))
        NewMD = MDNode::concatenate(NewMD, CSM);
      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
    } else if (NI->mayReadOrWriteMemory()) {
      if (MDNode *M = CB.getMetadata(LLVMContext::MD_alias_scope))
        NI->setMetadata(LLVMContext::MD_alias_scope, M);
    }

    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
      MDNode *NewMD = MDMap[M];
      // If the call site also had noalias metadata (a list of scopes with
      // which instructions inside it don't alias), propagate those scopes to
      // the inlined instructions.
      if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_noalias))
        NewMD = MDNode::concatenate(NewMD, CSM);
      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
    } else if (NI->mayReadOrWriteMemory()) {
      if (MDNode *M = CB.getMetadata(LLVMContext::MD_noalias))
        NI->setMetadata(LLVMContext::MD_noalias, M);
    }
  }
}

/// If the inlined function has noalias arguments,
/// then add new alias scopes for each noalias argument, tag the mapped noalias
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
                                  const DataLayout &DL, AAResults *CalleeAAR) {
  if (!EnableNoAliasConversion)
    return;

  const Function *CalledFunc = CB.getCalledFunction();
  SmallVector<const Argument *, 4> NoAliasArgs;

  for (const Argument &Arg : CalledFunc->args())
    if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
      NoAliasArgs.push_back(&Arg);

  if (NoAliasArgs.empty())
    return;

  // To do a good job, if a noalias variable is captured, we need to know if
  // the capture point dominates the particular use we're considering.
  DominatorTree DT;
  DT.recalculate(const_cast<Function&>(*CalledFunc));

  // noalias indicates that pointer values based on the argument do not alias
  // pointer values which are not based on it. So we add a new "scope" for each
  // noalias function argument. Accesses using pointers based on that argument
  // become part of that alias scope, accesses using pointers not based on that
  // argument are tagged as noalias with that scope.

  DenseMap<const Argument *, MDNode *> NewScopes;
  MDBuilder MDB(CalledFunc->getContext());

  // Create a new scope domain for this function.
  MDNode *NewDomain =
    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
    const Argument *A = NoAliasArgs[i];

    std::string Name = std::string(CalledFunc->getName());
    if (A->hasName()) {
      Name += ": %";
      Name += A->getName();
    } else {
      Name += ": argument ";
      Name += utostr(i);
    }

    // Note: We always create a new anonymous root here. This is true regardless
    // of the linkage of the callee because the aliasing "scope" is not just a
    // property of the callee, but also all control dependencies in the caller.
    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
    NewScopes.insert(std::make_pair(A, NewScope));
  }

  // Iterate over all new instructions in the map; for all memory-access
  // instructions, add the alias scope metadata.
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
      if (!VMI->second)
        continue;

      Instruction *NI = dyn_cast<Instruction>(VMI->second);
      if (!NI)
        continue;

      bool IsArgMemOnlyCall = false, IsFuncCall = false;
      SmallVector<const Value *, 2> PtrArgs;

      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
        PtrArgs.push_back(LI->getPointerOperand());
      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
        PtrArgs.push_back(SI->getPointerOperand());
      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
        PtrArgs.push_back(VAAI->getPointerOperand());
      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
        PtrArgs.push_back(CXI->getPointerOperand());
      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
        PtrArgs.push_back(RMWI->getPointerOperand());
      else if (const auto *Call = dyn_cast<CallBase>(I)) {
        // If we know that the call does not access memory, then we'll still
        // know that about the inlined clone of this call site, and we don't
        // need to add metadata.
        if (Call->doesNotAccessMemory())
          continue;

        IsFuncCall = true;
        if (CalleeAAR) {
          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
          if (AAResults::onlyAccessesArgPointees(MRB))
            IsArgMemOnlyCall = true;
        }

        for (Value *Arg : Call->args()) {
          // We need to check the underlying objects of all arguments, not just
          // the pointer arguments, because we might be passing pointers as
          // integers, etc.
          // However, if we know that the call only accesses pointer arguments,
          // then we only need to check the pointer arguments.
          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
            continue;

          PtrArgs.push_back(Arg);
        }
      }

      // If we found no pointers, then this instruction is not suitable for
      // pairing with an instruction to receive aliasing metadata.
      // However, if this is a call, this we might just alias with none of the
      // noalias arguments.
      if (PtrArgs.empty() && !IsFuncCall)
        continue;

      // It is possible that there is only one underlying object, but you
      // need to go through several PHIs to see it, and thus could be
      // repeated in the Objects list.
      SmallPtrSet<const Value *, 4> ObjSet;
      SmallVector<Metadata *, 4> Scopes, NoAliases;

      SmallSetVector<const Argument *, 4> NAPtrArgs;
      for (const Value *V : PtrArgs) {
        SmallVector<const Value *, 4> Objects;
        GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);

        for (const Value *O : Objects)
          ObjSet.insert(O);
      }

      // Figure out if we're derived from anything that is not a noalias
      // argument.
      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
      for (const Value *V : ObjSet) {
        // Is this value a constant that cannot be derived from any pointer
        // value (we need to exclude constant expressions, for example, that
        // are formed from arithmetic on global symbols).
        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
                             isa<ConstantPointerNull>(V) ||
                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
        if (IsNonPtrConst)
          continue;

        // If this is anything other than a noalias argument, then we cannot
        // completely describe the aliasing properties using alias.scope
        // metadata (and, thus, won't add any).
        if (const Argument *A = dyn_cast<Argument>(V)) {
          if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
            UsesAliasingPtr = true;
        } else {
          UsesAliasingPtr = true;
        }

        // If this is not some identified function-local object (which cannot
        // directly alias a noalias argument), or some other argument (which,
        // by definition, also cannot alias a noalias argument), then we could
        // alias a noalias argument that has been captured).
        if (!isa<Argument>(V) &&
            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
          CanDeriveViaCapture = true;
      }

      // A function call can always get captured noalias pointers (via other
      // parameters, globals, etc.).
      if (IsFuncCall && !IsArgMemOnlyCall)
        CanDeriveViaCapture = true;

      // First, we want to figure out all of the sets with which we definitely
      // don't alias. Iterate over all noalias set, and add those for which:
      //   1. The noalias argument is not in the set of objects from which we
      //      definitely derive.
      //   2. The noalias argument has not yet been captured.
      // An arbitrary function that might load pointers could see captured
      // noalias arguments via other noalias arguments or globals, and so we
      // must always check for prior capture.
      for (const Argument *A : NoAliasArgs) {
        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
                                 // It might be tempting to skip the
                                 // PointerMayBeCapturedBefore check if
                                 // A->hasNoCaptureAttr() is true, but this is
                                 // incorrect because nocapture only guarantees
                                 // that no copies outlive the function, not
                                 // that the value cannot be locally captured.
                                 !PointerMayBeCapturedBefore(A,
                                   /* ReturnCaptures */ false,
                                   /* StoreCaptures */ false, I, &DT)))
          NoAliases.push_back(NewScopes[A]);
      }

      if (!NoAliases.empty())
        NI->setMetadata(LLVMContext::MD_noalias,
                        MDNode::concatenate(
                            NI->getMetadata(LLVMContext::MD_noalias),
                            MDNode::get(CalledFunc->getContext(), NoAliases)));

      // Next, we want to figure out all of the sets to which we might belong.
      // We might belong to a set if the noalias argument is in the set of
      // underlying objects. If there is some non-noalias argument in our list
      // of underlying objects, then we cannot add a scope because the fact
      // that some access does not alias with any set of our noalias arguments
      // cannot itself guarantee that it does not alias with this access
      // (because there is some pointer of unknown origin involved and the
      // other access might also depend on this pointer). We also cannot add
      // scopes to arbitrary functions unless we know they don't access any
      // non-parameter pointer-values.
      bool CanAddScopes = !UsesAliasingPtr;
      if (CanAddScopes && IsFuncCall)
        CanAddScopes = IsArgMemOnlyCall;

      if (CanAddScopes)
        for (const Argument *A : NoAliasArgs) {
          if (ObjSet.count(A))
            Scopes.push_back(NewScopes[A]);
        }

      if (!Scopes.empty())
        NI->setMetadata(
            LLVMContext::MD_alias_scope,
            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
                                MDNode::get(CalledFunc->getContext(), Scopes)));
    }
  }
}

static bool MayContainThrowingOrExitingCall(Instruction *Begin,
                                            Instruction *End) {

  assert(Begin->getParent() == End->getParent() &&
         "Expected to be in same basic block!");
  unsigned NumInstChecked = 0;
  // Check that all instructions in the range [Begin, End) are guaranteed to
  // transfer execution to successor.
  for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
    if (NumInstChecked++ > InlinerAttributeWindow ||
        !isGuaranteedToTransferExecutionToSuccessor(&I))
      return true;
  return false;
}

static AttrBuilder IdentifyValidAttributes(CallBase &CB) {

  AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
  if (AB.empty())
    return AB;
  AttrBuilder Valid;
  // Only allow these white listed attributes to be propagated back to the
  // callee. This is because other attributes may only be valid on the call
  // itself, i.e. attributes such as signext and zeroext.
  if (auto DerefBytes = AB.getDereferenceableBytes())
    Valid.addDereferenceableAttr(DerefBytes);
  if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
    Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
  if (AB.contains(Attribute::NoAlias))
    Valid.addAttribute(Attribute::NoAlias);
  if (AB.contains(Attribute::NonNull))
    Valid.addAttribute(Attribute::NonNull);
  return Valid;
}

static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
  if (!UpdateReturnAttributes)
    return;

  AttrBuilder Valid = IdentifyValidAttributes(CB);
  if (Valid.empty())
    return;
  auto *CalledFunction = CB.getCalledFunction();
  auto &Context = CalledFunction->getContext();

  for (auto &BB : *CalledFunction) {
    auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
    if (!RI || !isa<CallBase>(RI->getOperand(0)))
      continue;
    auto *RetVal = cast<CallBase>(RI->getOperand(0));
    // Sanity check that the cloned RetVal exists and is a call, otherwise we
    // cannot add the attributes on the cloned RetVal.
    // Simplification during inlining could have transformed the cloned
    // instruction.
    auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
    if (!NewRetVal)
      continue;
    // Backward propagation of attributes to the returned value may be incorrect
    // if it is control flow dependent.
    // Consider:
    // @callee {
    //  %rv = call @foo()
    //  %rv2 = call @bar()
    //  if (%rv2 != null)
    //    return %rv2
    //  if (%rv == null)
    //    exit()
    //  return %rv
    // }
    // caller() {
    //   %val = call nonnull @callee()
    // }
    // Here we cannot add the nonnull attribute on either foo or bar. So, we
    // limit the check to both RetVal and RI are in the same basic block and
    // there are no throwing/exiting instructions between these instructions.
    if (RI->getParent() != RetVal->getParent() ||
        MayContainThrowingOrExitingCall(RetVal, RI))
      continue;
    // Add to the existing attributes of NewRetVal, i.e. the cloned call
    // instruction.
    // NB! When we have the same attribute already existing on NewRetVal, but
    // with a differing value, the AttributeList's merge API honours the already
    // existing attribute value (i.e. attributes such as dereferenceable,
    // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
    AttributeList AL = NewRetVal->getAttributes();
    AttributeList NewAL =
        AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
    NewRetVal->setAttributes(NewAL);
  }
}

/// If the inlined function has non-byval align arguments, then
/// add @llvm.assume-based alignment assumptions to preserve this information.
static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
  if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
    return;

  AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
  auto &DL = CB.getCaller()->getParent()->getDataLayout();

  // To avoid inserting redundant assumptions, we should check for assumptions
  // already in the caller. To do this, we might need a DT of the caller.
  DominatorTree DT;
  bool DTCalculated = false;

  Function *CalledFunc = CB.getCalledFunction();
  for (Argument &Arg : CalledFunc->args()) {
    unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
    if (Align && !Arg.hasPassPointeeByValueAttr() && !Arg.hasNUses(0)) {
      if (!DTCalculated) {
        DT.recalculate(*CB.getCaller());
        DTCalculated = true;
      }

      // If we can already prove the asserted alignment in the context of the
      // caller, then don't bother inserting the assumption.
      Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
      if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
        continue;

      CallInst *NewAsmp =
          IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
      AC->registerAssumption(NewAsmp);
    }
  }
}

/// Once we have cloned code over from a callee into the caller,
/// update the specified callgraph to reflect the changes we made.
/// Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallBase &CB,
                                         Function::iterator FirstNewBlock,
                                         ValueToValueMapTy &VMap,
                                         InlineFunctionInfo &IFI) {
  CallGraph &CG = *IFI.CG;
  const Function *Caller = CB.getCaller();
  const Function *Callee = CB.getCalledFunction();
  CallGraphNode *CalleeNode = CG[Callee];
  CallGraphNode *CallerNode = CG[Caller];

  // Since we inlined some uninlined call sites in the callee into the caller,
  // add edges from the caller to all of the callees of the callee.
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();

  // Consider the case where CalleeNode == CallerNode.
  CallGraphNode::CalledFunctionsVector CallCache;
  if (CalleeNode == CallerNode) {
    CallCache.assign(I, E);
    I = CallCache.begin();
    E = CallCache.end();
  }

  for (; I != E; ++I) {
    // Skip 'refererence' call records.
    if (!I->first)
      continue;

    const Value *OrigCall = *I->first;

    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    // Only copy the edge if the call was inlined!
    if (VMI == VMap.end() || VMI->second == nullptr)
      continue;

    // If the call was inlined, but then constant folded, there is no edge to
    // add.  Check for this case.
    auto *NewCall = dyn_cast<CallBase>(VMI->second);
    if (!NewCall)
      continue;

    // We do not treat intrinsic calls like real function calls because we
    // expect them to become inline code; do not add an edge for an intrinsic.
    if (NewCall->getCalledFunction() &&
        NewCall->getCalledFunction()->isIntrinsic())
      continue;

    // Remember that this call site got inlined for the client of
    // InlineFunction.
    IFI.InlinedCalls.push_back(NewCall);

    // It's possible that inlining the callsite will cause it to go from an
    // indirect to a direct call by resolving a function pointer.  If this
    // happens, set the callee of the new call site to a more precise
    // destination.  This can also happen if the call graph node of the caller
    // was just unnecessarily imprecise.
    if (!I->second->getFunction())
      if (Function *F = NewCall->getCalledFunction()) {
        // Indirect call site resolved to direct call.
        CallerNode->addCalledFunction(NewCall, CG[F]);

        continue;
      }

    CallerNode->addCalledFunction(NewCall, I->second);
  }

  // Update the call graph by deleting the edge from Callee to Caller.  We must
  // do this after the loop above in case Caller and Callee are the same.
  CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
}

static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
                                    BasicBlock *InsertBlock,
                                    InlineFunctionInfo &IFI) {
  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());

  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));

  // Always generate a memcpy of alignment 1 here because we don't know
  // the alignment of the src pointer.  Other optimizations can infer
  // better alignment.
  Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
                       /*SrcAlign*/ Align(1), Size);
}

/// When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
                                  const Function *CalledFunc,
                                  InlineFunctionInfo &IFI,
                                  unsigned ByValAlignment) {
  PointerType *ArgTy = cast<PointerType>(Arg->getType());
  Type *AggTy = ArgTy->getElementType();

  Function *Caller = TheCall->getFunction();
  const DataLayout &DL = Caller->getParent()->getDataLayout();

  // If the called function is readonly, then it could not mutate the caller's
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
  // temporary.
  if (CalledFunc->onlyReadsMemory()) {
    // If the byval argument has a specified alignment that is greater than the
    // passed in pointer, then we either have to round up the input pointer or
    // give up on this transformation.
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
      return Arg;

    AssumptionCache *AC =
        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;

    // If the pointer is already known to be sufficiently aligned, or if we can
    // round it up to a larger alignment, then we don't need a temporary.
    if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
                                   AC) >= ByValAlignment)
      return Arg;

    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    // for code quality, but rarely happens and is required for correctness.
  }

  // Create the alloca.  If we have DataLayout, use nice alignment.
  Align Alignment(DL.getPrefTypeAlignment(AggTy));

  // If the byval had an alignment specified, we *must* use at least that
  // alignment, as it is required by the byval argument (and uses of the
  // pointer inside the callee).
  Alignment = max(Alignment, MaybeAlign(ByValAlignment));

  Value *NewAlloca =
      new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
                     Arg->getName(), &*Caller->begin()->begin());
  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));

  // Uses of the argument in the function should use our new alloca
  // instead.
  return NewAlloca;
}

// Check whether this Value is used by a lifetime intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
  for (User *U : V->users())
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
      if (II->isLifetimeStartOrEnd())
        return true;
  return false;
}

// Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
  Type *Ty = AI->getType();
  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
                                       Ty->getPointerAddressSpace());
  if (Ty == Int8PtrTy)
    return isUsedByLifetimeMarker(AI);

  // Do a scan to find all the casts to i8*.
  for (User *U : AI->users()) {
    if (U->getType() != Int8PtrTy) continue;
    if (U->stripPointerCasts() != AI) continue;
    if (isUsedByLifetimeMarker(U))
      return true;
  }
  return false;
}

/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
/// block. Allocas used in inalloca calls and allocas of dynamic array size
/// cannot be static.
static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
  return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
}

/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
                               LLVMContext &Ctx,
                               DenseMap<const MDNode *, MDNode *> &IANodes) {
  auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
  return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
                       IA);
}

/// Update inlined instructions' line numbers to
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
                             Instruction *TheCall, bool CalleeHasDebugInfo) {
  const DebugLoc &TheCallDL = TheCall->getDebugLoc();
  if (!TheCallDL)
    return;

  auto &Ctx = Fn->getContext();
  DILocation *InlinedAtNode = TheCallDL;

  // Create a unique call site, not to be confused with any other call from the
  // same location.
  InlinedAtNode = DILocation::getDistinct(
      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());

  // Cache the inlined-at nodes as they're built so they are reused, without
  // this every instruction's inlined-at chain would become distinct from each
  // other.
  DenseMap<const MDNode *, MDNode *> IANodes;

  // Check if we are not generating inline line tables and want to use
  // the call site location instead.
  bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");

  for (; FI != Fn->end(); ++FI) {
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
         BI != BE; ++BI) {
      // Loop metadata needs to be updated so that the start and end locs
      // reference inlined-at locations.
      auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
                                   const DILocation &Loc) -> DILocation * {
        return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
      };
      updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);

      if (!NoInlineLineTables)
        if (DebugLoc DL = BI->getDebugLoc()) {
          DebugLoc IDL =
              inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
          BI->setDebugLoc(IDL);
          continue;
        }

      if (CalleeHasDebugInfo && !NoInlineLineTables)
        continue;

      // If the inlined instruction has no line number, or if inline info
      // is not being generated, make it look as if it originates from the call
      // location. This is important for ((__always_inline, __nodebug__))
      // functions which must use caller location for all instructions in their
      // function body.

      // Don't update static allocas, as they may get moved later.
      if (auto *AI = dyn_cast<AllocaInst>(BI))
        if (allocaWouldBeStaticInEntry(AI))
          continue;

      BI->setDebugLoc(TheCallDL);
    }

    // Remove debug info intrinsics if we're not keeping inline info.
    if (NoInlineLineTables) {
      BasicBlock::iterator BI = FI->begin();
      while (BI != FI->end()) {
        if (isa<DbgInfoIntrinsic>(BI)) {
          BI = BI->eraseFromParent();
          continue;
        }
        ++BI;
      }
    }

  }
}

/// Update the block frequencies of the caller after a callee has been inlined.
///
/// Each block cloned into the caller has its block frequency scaled by the
/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
/// callee's entry block gets the same frequency as the callsite block and the
/// relative frequencies of all cloned blocks remain the same after cloning.
static void updateCallerBFI(BasicBlock *CallSiteBlock,
                            const ValueToValueMapTy &VMap,
                            BlockFrequencyInfo *CallerBFI,
                            BlockFrequencyInfo *CalleeBFI,
                            const BasicBlock &CalleeEntryBlock) {
  SmallPtrSet<BasicBlock *, 16> ClonedBBs;
  for (auto Entry : VMap) {
    if (!isa<BasicBlock>(Entry.first) || !Entry.second)
      continue;
    auto *OrigBB = cast<BasicBlock>(Entry.first);
    auto *ClonedBB = cast<BasicBlock>(Entry.second);
    uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
    if (!ClonedBBs.insert(ClonedBB).second) {
      // Multiple blocks in the callee might get mapped to one cloned block in
      // the caller since we prune the callee as we clone it. When that happens,
      // we want to use the maximum among the original blocks' frequencies.
      uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
      if (NewFreq > Freq)
        Freq = NewFreq;
    }
    CallerBFI->setBlockFreq(ClonedBB, Freq);
  }
  BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
  CallerBFI->setBlockFreqAndScale(
      EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
      ClonedBBs);
}

/// Update the branch metadata for cloned call instructions.
static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
                              const ProfileCount &CalleeEntryCount,
                              const CallBase &TheCall, ProfileSummaryInfo *PSI,
                              BlockFrequencyInfo *CallerBFI) {
  if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
      CalleeEntryCount.getCount() < 1)
    return;
  auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
  int64_t CallCount =
      std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
               CalleeEntryCount.getCount());
  updateProfileCallee(Callee, -CallCount, &VMap);
}

void llvm::updateProfileCallee(
    Function *Callee, int64_t entryDelta,
    const ValueMap<const Value *, WeakTrackingVH> *VMap) {
  auto CalleeCount = Callee->getEntryCount();
  if (!CalleeCount.hasValue())
    return;

  uint64_t priorEntryCount = CalleeCount.getCount();
  uint64_t newEntryCount;

  // Since CallSiteCount is an estimate, it could exceed the original callee
  // count and has to be set to 0 so guard against underflow.
  if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
    newEntryCount = 0;
  else
    newEntryCount = priorEntryCount + entryDelta;

  // During inlining ?
  if (VMap) {
    uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
    for (auto Entry : *VMap)
      if (isa<CallInst>(Entry.first))
        if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
          CI->updateProfWeight(cloneEntryCount, priorEntryCount);
  }

  if (entryDelta) {
    Callee->setEntryCount(newEntryCount);

    for (BasicBlock &BB : *Callee)
      // No need to update the callsite if it is pruned during inlining.
      if (!VMap || VMap->count(&BB))
        for (Instruction &I : BB)
          if (CallInst *CI = dyn_cast<CallInst>(&I))
            CI->updateProfWeight(newEntryCount, priorEntryCount);
  }
}

/// This function inlines the called function into the basic block of the
/// caller. This returns false if it is not possible to inline this call.
/// The program is still in a well defined state if this occurs though.
///
/// Note that this only does one level of inlining.  For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
/// exists in the instruction stream.  Similarly this will inline a recursive
/// function by one level.
llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
                                        AAResults *CalleeAAR,
                                        bool InsertLifetime,
                                        Function *ForwardVarArgsTo) {
  assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");

  // FIXME: we don't inline callbr yet.
  if (isa<CallBrInst>(CB))
    return InlineResult::failure("We don't inline callbr yet.");

  // If IFI has any state in it, zap it before we fill it in.
  IFI.reset();

  Function *CalledFunc = CB.getCalledFunction();
  if (!CalledFunc ||               // Can't inline external function or indirect
      CalledFunc->isDeclaration()) // call!
    return InlineResult::failure("external or indirect");

  // The inliner does not know how to inline through calls with operand bundles
  // in general ...
  if (CB.hasOperandBundles()) {
    for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
      uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
      // ... but it knows how to inline through "deopt" operand bundles ...
      if (Tag == LLVMContext::OB_deopt)
        continue;
      // ... and "funclet" operand bundles.
      if (Tag == LLVMContext::OB_funclet)
        continue;

      return InlineResult::failure("unsupported operand bundle");
    }
  }

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CB.doesNotThrow();

  BasicBlock *OrigBB = CB.getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return InlineResult::failure("incompatible GC");
  }

  // Get the personality function from the callee if it contains a landing pad.
  Constant *CalledPersonality =
      CalledFunc->hasPersonalityFn()
          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
          : nullptr;

  // Find the personality function used by the landing pads of the caller. If it
  // exists, then check to see that it matches the personality function used in
  // the callee.
  Constant *CallerPersonality =
      Caller->hasPersonalityFn()
          ? Caller->getPersonalityFn()->stripPointerCasts()
          : nullptr;
  if (CalledPersonality) {
    if (!CallerPersonality)
      Caller->setPersonalityFn(CalledPersonality);
    // If the personality functions match, then we can perform the
    // inlining. Otherwise, we can't inline.
    // TODO: This isn't 100% true. Some personality functions are proper
    //       supersets of others and can be used in place of the other.
    else if (CalledPersonality != CallerPersonality)
      return InlineResult::failure("incompatible personality");
  }

  // We need to figure out which funclet the callsite was in so that we may
  // properly nest the callee.
  Instruction *CallSiteEHPad = nullptr;
  if (CallerPersonality) {
    EHPersonality Personality = classifyEHPersonality(CallerPersonality);
    if (isScopedEHPersonality(Personality)) {
      Optional<OperandBundleUse> ParentFunclet =
          CB.getOperandBundle(LLVMContext::OB_funclet);
      if (ParentFunclet)
        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());

      // OK, the inlining site is legal.  What about the target function?

      if (CallSiteEHPad) {
        if (Personality == EHPersonality::MSVC_CXX) {
          // The MSVC personality cannot tolerate catches getting inlined into
          // cleanup funclets.
          if (isa<CleanupPadInst>(CallSiteEHPad)) {
            // Ok, the call site is within a cleanuppad.  Let's check the callee
            // for catchpads.
            for (const BasicBlock &CalledBB : *CalledFunc) {
              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
                return InlineResult::failure("catch in cleanup funclet");
            }
          }
        } else if (isAsynchronousEHPersonality(Personality)) {
          // SEH is even less tolerant, there may not be any sort of exceptional
          // funclet in the callee.
          for (const BasicBlock &CalledBB : *CalledFunc) {
            if (CalledBB.isEHPad())
              return InlineResult::failure("SEH in cleanup funclet");
          }
        }
      }
    }
  }

  // Determine if we are dealing with a call in an EHPad which does not unwind
  // to caller.
  bool EHPadForCallUnwindsLocally = false;
  if (CallSiteEHPad && isa<CallInst>(CB)) {
    UnwindDestMemoTy FuncletUnwindMap;
    Value *CallSiteUnwindDestToken =
        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);

    EHPadForCallUnwindsLocally =
        CallSiteUnwindDestToken &&
        !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  Function::iterator LastBlock = --Caller->end();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  SmallVector<ReturnInst*, 8> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy VMap after cloning.
    ValueToValueMapTy VMap;
    // Keep a list of pair (dst, src) to emit byval initializations.
    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;

    auto &DL = Caller->getParent()->getDataLayout();

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    auto AI = CB.arg_begin();
    unsigned ArgNo = 0;
    for (Function::arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CB.isByValArgument(ArgNo)) {
        ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
                                        CalledFunc->getParamAlignment(ArgNo));
        if (ActualArg != *AI)
          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
      }

      VMap[&*I] = ActualArg;
    }

    // TODO: Remove this when users have been updated to the assume bundles.
    // Add alignment assumptions if necessary. We do this before the inlined
    // instructions are actually cloned into the caller so that we can easily
    // check what will be known at the start of the inlined code.
    AddAlignmentAssumptions(CB, IFI);

    AssumptionCache *AC =
        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;

    /// Preserve all attributes on of the call and its parameters.
    salvageKnowledge(&CB, AC);

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
                              /*ModuleLevelChanges=*/false, Returns, ".i",
                              &InlinedFunctionInfo, &CB);
    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
      // Update the BFI of blocks cloned into the caller.
      updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
                      CalledFunc->front());

    updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
                      IFI.PSI, IFI.CallerBFI);

    // Inject byval arguments initialization.
    for (std::pair<Value*, Value*> &Init : ByValInit)
      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
                              &*FirstNewBlock, IFI);

    Optional<OperandBundleUse> ParentDeopt =
        CB.getOperandBundle(LLVMContext::OB_deopt);
    if (ParentDeopt) {
      SmallVector<OperandBundleDef, 2> OpDefs;

      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
        CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
        if (!ICS)
          continue; // instruction was DCE'd or RAUW'ed to undef

        OpDefs.clear();

        OpDefs.reserve(ICS->getNumOperandBundles());

        for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
             ++COBi) {
          auto ChildOB = ICS->getOperandBundleAt(COBi);
          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
            // If the inlined call has other operand bundles, let them be
            OpDefs.emplace_back(ChildOB);
            continue;
          }

          // It may be useful to separate this logic (of handling operand
          // bundles) out to a separate "policy" component if this gets crowded.
          // Prepend the parent's deoptimization continuation to the newly
          // inlined call's deoptimization continuation.
          std::vector<Value *> MergedDeoptArgs;
          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
                                  ChildOB.Inputs.size());

          MergedDeoptArgs.insert(MergedDeoptArgs.end(),
                                 ParentDeopt->Inputs.begin(),
                                 ParentDeopt->Inputs.end());
          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
                                 ChildOB.Inputs.end());

          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
        }

        Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);

        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
        // this even if the call returns void.
        ICS->replaceAllUsesWith(NewI);

        VH = nullptr;
        ICS->eraseFromParent();
      }
    }

    // Update the callgraph if requested.
    if (IFI.CG)
      UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);

    // For 'nodebug' functions, the associated DISubprogram is always null.
    // Conservatively avoid propagating the callsite debug location to
    // instructions inlined from a function whose DISubprogram is not null.
    fixupLineNumbers(Caller, FirstNewBlock, &CB,
                     CalledFunc->getSubprogram() != nullptr);

    // Clone existing noalias metadata if necessary.
    CloneAliasScopeMetadata(CB, VMap);

    // Add noalias metadata if necessary.
    AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);

    // Clone return attributes on the callsite into the calls within the inlined
    // function which feed into its return value.
    AddReturnAttributes(CB, VMap);

    // Propagate llvm.mem.parallel_loop_access if necessary.
    PropagateParallelLoopAccessMetadata(CB, VMap);

    // Register any cloned assumptions.
    if (IFI.GetAssumptionCache)
      for (BasicBlock &NewBlock :
           make_range(FirstNewBlock->getIterator(), Caller->end()))
        for (Instruction &I : NewBlock)
          if (auto *II = dyn_cast<IntrinsicInst>(&I))
            if (II->getIntrinsicID() == Intrinsic::assume)
              IFI.GetAssumptionCache(*Caller).registerAssumption(II);
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
         E = FirstNewBlock->end(); I != E; ) {
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
      if (!AI) continue;

      // If the alloca is now dead, remove it.  This often occurs due to code
      // specialization.
      if (AI->use_empty()) {
        AI->eraseFromParent();
        continue;
      }

      if (!allocaWouldBeStaticInEntry(AI))
        continue;

      // Keep track of the static allocas that we inline into the caller.
      IFI.StaticAllocas.push_back(AI);

      // Scan for the block of allocas that we can move over, and move them
      // all at once.
      while (isa<AllocaInst>(I) &&
             !cast<AllocaInst>(I)->use_empty() &&
             allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
        ++I;
      }

      // Transfer all of the allocas over in a block.  Using splice means
      // that the instructions aren't removed from the symbol table, then
      // reinserted.
      Caller->getEntryBlock().getInstList().splice(
          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
    }
  }

  SmallVector<Value*,4> VarArgsToForward;
  SmallVector<AttributeSet, 4> VarArgsAttrs;
  for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
       i < CB.getNumArgOperands(); i++) {
    VarArgsToForward.push_back(CB.getArgOperand(i));
    VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
  }

  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
  if (InlinedFunctionInfo.ContainsCalls) {
    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
    if (CallInst *CI = dyn_cast<CallInst>(&CB))
      CallSiteTailKind = CI->getTailCallKind();

    // For inlining purposes, the "notail" marker is the same as no marker.
    if (CallSiteTailKind == CallInst::TCK_NoTail)
      CallSiteTailKind = CallInst::TCK_None;

    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
         ++BB) {
      for (auto II = BB->begin(); II != BB->end();) {
        Instruction &I = *II++;
        CallInst *CI = dyn_cast<CallInst>(&I);
        if (!CI)
          continue;

        // Forward varargs from inlined call site to calls to the
        // ForwardVarArgsTo function, if requested, and to musttail calls.
        if (!VarArgsToForward.empty() &&
            ((ForwardVarArgsTo &&
              CI->getCalledFunction() == ForwardVarArgsTo) ||
             CI->isMustTailCall())) {
          // Collect attributes for non-vararg parameters.
          AttributeList Attrs = CI->getAttributes();
          SmallVector<AttributeSet, 8> ArgAttrs;
          if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
            for (unsigned ArgNo = 0;
                 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
              ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
          }

          // Add VarArg attributes.
          ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
          Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
                                     Attrs.getRetAttributes(), ArgAttrs);
          // Add VarArgs to existing parameters.
          SmallVector<Value *, 6> Params(CI->arg_operands());
          Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
          CallInst *NewCI = CallInst::Create(
              CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
          NewCI->setDebugLoc(CI->getDebugLoc());
          NewCI->setAttributes(Attrs);
          NewCI->setCallingConv(CI->getCallingConv());
          CI->replaceAllUsesWith(NewCI);
          CI->eraseFromParent();
          CI = NewCI;
        }

        if (Function *F = CI->getCalledFunction())
          InlinedDeoptimizeCalls |=
              F->getIntrinsicID() == Intrinsic::experimental_deoptimize;

        // We need to reduce the strength of any inlined tail calls.  For
        // musttail, we have to avoid introducing potential unbounded stack
        // growth.  For example, if functions 'f' and 'g' are mutually recursive
        // with musttail, we can inline 'g' into 'f' so long as we preserve
        // musttail on the cloned call to 'f'.  If either the inlined call site
        // or the cloned call site is *not* musttail, the program already has
        // one frame of stack growth, so it's safe to remove musttail.  Here is
        // a table of example transformations:
        //
        //    f -> musttail g -> musttail f  ==>  f -> musttail f
        //    f -> musttail g ->     tail f  ==>  f ->     tail f
        //    f ->          g -> musttail f  ==>  f ->          f
        //    f ->          g ->     tail f  ==>  f ->          f
        //
        // Inlined notail calls should remain notail calls.
        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
        if (ChildTCK != CallInst::TCK_NoTail)
          ChildTCK = std::min(CallSiteTailKind, ChildTCK);
        CI->setTailCallKind(ChildTCK);
        InlinedMustTailCalls |= CI->isMustTailCall();

        // Calls inlined through a 'nounwind' call site should be marked
        // 'nounwind'.
        if (MarkNoUnwind)
          CI->setDoesNotThrow();
      }
    }
  }

  // Leave lifetime markers for the static alloca's, scoping them to the
  // function we just inlined.
  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
    IRBuilder<> builder(&FirstNewBlock->front());
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
      AllocaInst *AI = IFI.StaticAllocas[ai];
      // Don't mark swifterror allocas. They can't have bitcast uses.
      if (AI->isSwiftError())
        continue;

      // If the alloca is already scoped to something smaller than the whole
      // function then there's no need to add redundant, less accurate markers.
      if (hasLifetimeMarkers(AI))
        continue;

      // Try to determine the size of the allocation.
      ConstantInt *AllocaSize = nullptr;
      if (ConstantInt *AIArraySize =
          dyn_cast<ConstantInt>(AI->getArraySize())) {
        auto &DL = Caller->getParent()->getDataLayout();
        Type *AllocaType = AI->getAllocatedType();
        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();

        // Don't add markers for zero-sized allocas.
        if (AllocaArraySize == 0)
          continue;

        // Check that array size doesn't saturate uint64_t and doesn't
        // overflow when it's multiplied by type size.
        if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
            std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
                AllocaTypeSize) {
          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
                                        AllocaArraySize * AllocaTypeSize);
        }
      }

      builder.CreateLifetimeStart(AI, AllocaSize);
      for (ReturnInst *RI : Returns) {
        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
        // call and a return.  The return kills all local allocas.
        if (InlinedMustTailCalls &&
            RI->getParent()->getTerminatingMustTailCall())
          continue;
        if (InlinedDeoptimizeCalls &&
            RI->getParent()->getTerminatingDeoptimizeCall())
          continue;
        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
      }
    }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
                             .CreateCall(StackSave, {}, "savedstack");

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (ReturnInst *RI : Returns) {
      // Don't insert llvm.stackrestore calls between a musttail or deoptimize
      // call and a return.  The return will restore the stack pointer.
      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
        continue;
      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
        continue;
      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
    }
  }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any call instructions into invoke instructions.  This is sensitive to which
  // funclet pads were top-level in the inlinee, so must be done before
  // rewriting the "parent pad" links.
  if (auto *II = dyn_cast<InvokeInst>(&CB)) {
    BasicBlock *UnwindDest = II->getUnwindDest();
    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
    if (isa<LandingPadInst>(FirstNonPHI)) {
      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
    } else {
      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
    }
  }

  // Update the lexical scopes of the new funclets and callsites.
  // Anything that had 'none' as its parent is now nested inside the callsite's
  // EHPad.

  if (CallSiteEHPad) {
    for (Function::iterator BB = FirstNewBlock->getIterator(),
                            E = Caller->end();
         BB != E; ++BB) {
      // Add bundle operands to any top-level call sites.
      SmallVector<OperandBundleDef, 1> OpBundles;
      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
        CallBase *I = dyn_cast<CallBase>(&*BBI++);
        if (!I)
          continue;

        // Skip call sites which are nounwind intrinsics.
        auto *CalledFn =
            dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
        if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
          continue;

        // Skip call sites which already have a "funclet" bundle.
        if (I->getOperandBundle(LLVMContext::OB_funclet))
          continue;

        I->getOperandBundlesAsDefs(OpBundles);
        OpBundles.emplace_back("funclet", CallSiteEHPad);

        Instruction *NewInst = CallBase::Create(I, OpBundles, I);
        NewInst->takeName(I);
        I->replaceAllUsesWith(NewInst);
        I->eraseFromParent();

        OpBundles.clear();
      }

      // It is problematic if the inlinee has a cleanupret which unwinds to
      // caller and we inline it into a call site which doesn't unwind but into
      // an EH pad that does.  Such an edge must be dynamically unreachable.
      // As such, we replace the cleanupret with unreachable.
      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);

      Instruction *I = BB->getFirstNonPHI();
      if (!I->isEHPad())
        continue;

      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
          CatchSwitch->setParentPad(CallSiteEHPad);
      } else {
        auto *FPI = cast<FuncletPadInst>(I);
        if (isa<ConstantTokenNone>(FPI->getParentPad()))
          FPI->setParentPad(CallSiteEHPad);
      }
    }
  }

  if (InlinedDeoptimizeCalls) {
    // We need to at least remove the deoptimizing returns from the Return set,
    // so that the control flow from those returns does not get merged into the
    // caller (but terminate it instead).  If the caller's return type does not
    // match the callee's return type, we also need to change the return type of
    // the intrinsic.
    if (Caller->getReturnType() == CB.getType()) {
      auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
      });
      Returns.erase(NewEnd, Returns.end());
    } else {
      SmallVector<ReturnInst *, 8> NormalReturns;
      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
          Caller->getParent(), Intrinsic::experimental_deoptimize,
          {Caller->getReturnType()});

      for (ReturnInst *RI : Returns) {
        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
        if (!DeoptCall) {
          NormalReturns.push_back(RI);
          continue;
        }

        // The calling convention on the deoptimize call itself may be bogus,
        // since the code we're inlining may have undefined behavior (and may
        // never actually execute at runtime); but all
        // @llvm.experimental.deoptimize declarations have to have the same
        // calling convention in a well-formed module.
        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
        NewDeoptIntrinsic->setCallingConv(CallingConv);
        auto *CurBB = RI->getParent();
        RI->eraseFromParent();

        SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
                                         DeoptCall->arg_end());

        SmallVector<OperandBundleDef, 1> OpBundles;
        DeoptCall->getOperandBundlesAsDefs(OpBundles);
        DeoptCall->eraseFromParent();
        assert(!OpBundles.empty() &&
               "Expected at least the deopt operand bundle");

        IRBuilder<> Builder(CurBB);
        CallInst *NewDeoptCall =
            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
        NewDeoptCall->setCallingConv(CallingConv);
        if (NewDeoptCall->getType()->isVoidTy())
          Builder.CreateRetVoid();
        else
          Builder.CreateRet(NewDeoptCall);
      }

      // Leave behind the normal returns so we can merge control flow.
      std::swap(Returns, NormalReturns);
    }
  }

  // Handle any inlined musttail call sites.  In order for a new call site to be
  // musttail, the source of the clone and the inlined call site must have been
  // musttail.  Therefore it's safe to return without merging control into the
  // phi below.
  if (InlinedMustTailCalls) {
    // Check if we need to bitcast the result of any musttail calls.
    Type *NewRetTy = Caller->getReturnType();
    bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;

    // Handle the returns preceded by musttail calls separately.
    SmallVector<ReturnInst *, 8> NormalReturns;
    for (ReturnInst *RI : Returns) {
      CallInst *ReturnedMustTail =
          RI->getParent()->getTerminatingMustTailCall();
      if (!ReturnedMustTail) {
        NormalReturns.push_back(RI);
        continue;
      }
      if (!NeedBitCast)
        continue;

      // Delete the old return and any preceding bitcast.
      BasicBlock *CurBB = RI->getParent();
      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
      RI->eraseFromParent();
      if (OldCast)
        OldCast->eraseFromParent();

      // Insert a new bitcast and return with the right type.
      IRBuilder<> Builder(CurBB);
      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
    }

    // Leave behind the normal returns so we can merge control flow.
    std::swap(Returns, NormalReturns);
  }

  // Now that all of the transforms on the inlined code have taken place but
  // before we splice the inlined code into the CFG and lose track of which
  // blocks were actually inlined, collect the call sites. We only do this if
  // call graph updates weren't requested, as those provide value handle based
  // tracking of inlined call sites instead.
  if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
    // Otherwise just collect the raw call sites that were inlined.
    for (BasicBlock &NewBB :
         make_range(FirstNewBlock->getIterator(), Caller->end()))
      for (Instruction &I : NewBB)
        if (auto *CB = dyn_cast<CallBase>(&I))
          IFI.InlinedCallSites.push_back(CB);
  }

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
    }

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!CB.use_empty()) {
      ReturnInst *R = Returns[0];
      if (&CB == R->getReturnValue())
        CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
      else
        CB.replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    CB.eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return InlineResult::success();
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  BranchInst *CreatedBranchToNormalDest = nullptr;
  if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {

    // Add an unconditional branch to make this look like the CallInst case...
    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB =
        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
                                CalledFunc->getName() + ".exit");

  } else { // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
                                          CalledFunc->getName() + ".exit");
  }

  if (IFI.CallerBFI) {
    // Copy original BB's block frequency to AfterCallBB
    IFI.CallerBFI->setBlockFreq(
        AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  Instruction *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, &*FirstNewBlock);

  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
                                     Caller->getBasicBlockList(), FirstNewBlock,
                                     Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  Type *RTy = CalledFunc->getReturnType();

  PHINode *PHI = nullptr;
  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    if (!CB.use_empty()) {
      PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
                            &AfterCallBB->front());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      CB.replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }

    // Add a branch to the merge points and remove return instructions.
    DebugLoc Loc;
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
      Loc = RI->getDebugLoc();
      BI->setDebugLoc(Loc);
      RI->eraseFromParent();
    }
    // We need to set the debug location to *somewhere* inside the
    // inlined function. The line number may be nonsensical, but the
    // instruction will at least be associated with the right
    // function.
    if (CreatedBranchToNormalDest)
      CreatedBranchToNormalDest->setDebugLoc(Loc);
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!CB.use_empty()) {
      if (&CB == Returns[0]->getReturnValue())
        CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
      else
        CB.replaceAllUsesWith(Returns[0]->getReturnValue());
    }

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    if (CreatedBranchToNormalDest)
      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!CB.use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  CB.eraseFromParent();

  // If we inlined any musttail calls and the original return is now
  // unreachable, delete it.  It can only contain a bitcast and ret.
  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
    AfterCallBB->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  // If we inserted a phi node, check to see if it has a single value (e.g. all
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
  // block other optimizations.
  if (PHI) {
    AssumptionCache *AC =
        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
    auto &DL = Caller->getParent()->getDataLayout();
    if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
      PHI->replaceAllUsesWith(V);
      PHI->eraseFromParent();
    }
  }

  return InlineResult::success();
}