FunctionComparator.cpp
34.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
//===- FunctionComparator.h - Function Comparator -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the FunctionComparator and GlobalNumberState classes
// which are used by the MergeFunctions pass for comparing functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/FunctionComparator.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "functioncomparator"
int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
if (L < R)
return -1;
if (L > R)
return 1;
return 0;
}
int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
if ((int)L < (int)R)
return -1;
if ((int)L > (int)R)
return 1;
return 0;
}
int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
return Res;
if (L.ugt(R))
return 1;
if (R.ugt(L))
return -1;
return 0;
}
int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
// Floats are ordered first by semantics (i.e. float, double, half, etc.),
// then by value interpreted as a bitstring (aka APInt).
const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
APFloat::semanticsPrecision(SR)))
return Res;
if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
APFloat::semanticsMaxExponent(SR)))
return Res;
if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
APFloat::semanticsMinExponent(SR)))
return Res;
if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
APFloat::semanticsSizeInBits(SR)))
return Res;
return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
}
int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
// Prevent heavy comparison, compare sizes first.
if (int Res = cmpNumbers(L.size(), R.size()))
return Res;
// Compare strings lexicographically only when it is necessary: only when
// strings are equal in size.
return L.compare(R);
}
int FunctionComparator::cmpAttrs(const AttributeList L,
const AttributeList R) const {
if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
return Res;
for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
AttributeSet LAS = L.getAttributes(i);
AttributeSet RAS = R.getAttributes(i);
AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
for (; LI != LE && RI != RE; ++LI, ++RI) {
Attribute LA = *LI;
Attribute RA = *RI;
if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
if (LA.getKindAsEnum() != RA.getKindAsEnum())
return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
Type *TyL = LA.getValueAsType();
Type *TyR = RA.getValueAsType();
if (TyL && TyR)
return cmpTypes(TyL, TyR);
// Two pointers, at least one null, so the comparison result is
// independent of the value of a real pointer.
return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
}
if (LA < RA)
return -1;
if (RA < LA)
return 1;
}
if (LI != LE)
return 1;
if (RI != RE)
return -1;
}
return 0;
}
int FunctionComparator::cmpRangeMetadata(const MDNode *L,
const MDNode *R) const {
if (L == R)
return 0;
if (!L)
return -1;
if (!R)
return 1;
// Range metadata is a sequence of numbers. Make sure they are the same
// sequence.
// TODO: Note that as this is metadata, it is possible to drop and/or merge
// this data when considering functions to merge. Thus this comparison would
// return 0 (i.e. equivalent), but merging would become more complicated
// because the ranges would need to be unioned. It is not likely that
// functions differ ONLY in this metadata if they are actually the same
// function semantically.
if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
return Res;
for (size_t I = 0; I < L->getNumOperands(); ++I) {
ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
return Res;
}
return 0;
}
int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
const CallBase &RCS) const {
assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
if (int Res =
cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
return Res;
for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
auto OBL = LCS.getOperandBundleAt(I);
auto OBR = RCS.getOperandBundleAt(I);
if (int Res = OBL.getTagName().compare(OBR.getTagName()))
return Res;
if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
return Res;
}
return 0;
}
/// Constants comparison:
/// 1. Check whether type of L constant could be losslessly bitcasted to R
/// type.
/// 2. Compare constant contents.
/// For more details see declaration comments.
int FunctionComparator::cmpConstants(const Constant *L,
const Constant *R) const {
Type *TyL = L->getType();
Type *TyR = R->getType();
// Check whether types are bitcastable. This part is just re-factored
// Type::canLosslesslyBitCastTo method, but instead of returning true/false,
// we also pack into result which type is "less" for us.
int TypesRes = cmpTypes(TyL, TyR);
if (TypesRes != 0) {
// Types are different, but check whether we can bitcast them.
if (!TyL->isFirstClassType()) {
if (TyR->isFirstClassType())
return -1;
// Neither TyL nor TyR are values of first class type. Return the result
// of comparing the types
return TypesRes;
}
if (!TyR->isFirstClassType()) {
if (TyL->isFirstClassType())
return 1;
return TypesRes;
}
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not.
unsigned TyLWidth = 0;
unsigned TyRWidth = 0;
if (auto *VecTyL = dyn_cast<VectorType>(TyL))
TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize();
if (auto *VecTyR = dyn_cast<VectorType>(TyR))
TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize();
if (TyLWidth != TyRWidth)
return cmpNumbers(TyLWidth, TyRWidth);
// Zero bit-width means neither TyL nor TyR are vectors.
if (!TyLWidth) {
PointerType *PTyL = dyn_cast<PointerType>(TyL);
PointerType *PTyR = dyn_cast<PointerType>(TyR);
if (PTyL && PTyR) {
unsigned AddrSpaceL = PTyL->getAddressSpace();
unsigned AddrSpaceR = PTyR->getAddressSpace();
if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
return Res;
}
if (PTyL)
return 1;
if (PTyR)
return -1;
// TyL and TyR aren't vectors, nor pointers. We don't know how to
// bitcast them.
return TypesRes;
}
}
// OK, types are bitcastable, now check constant contents.
if (L->isNullValue() && R->isNullValue())
return TypesRes;
if (L->isNullValue() && !R->isNullValue())
return 1;
if (!L->isNullValue() && R->isNullValue())
return -1;
auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
if (GlobalValueL && GlobalValueR) {
return cmpGlobalValues(GlobalValueL, GlobalValueR);
}
if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
return Res;
if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
const auto *SeqR = cast<ConstantDataSequential>(R);
// This handles ConstantDataArray and ConstantDataVector. Note that we
// compare the two raw data arrays, which might differ depending on the host
// endianness. This isn't a problem though, because the endiness of a module
// will affect the order of the constants, but this order is the same
// for a given input module and host platform.
return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
}
switch (L->getValueID()) {
case Value::UndefValueVal:
case Value::ConstantTokenNoneVal:
return TypesRes;
case Value::ConstantIntVal: {
const APInt &LInt = cast<ConstantInt>(L)->getValue();
const APInt &RInt = cast<ConstantInt>(R)->getValue();
return cmpAPInts(LInt, RInt);
}
case Value::ConstantFPVal: {
const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
return cmpAPFloats(LAPF, RAPF);
}
case Value::ConstantArrayVal: {
const ConstantArray *LA = cast<ConstantArray>(L);
const ConstantArray *RA = cast<ConstantArray>(R);
uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
if (int Res = cmpNumbers(NumElementsL, NumElementsR))
return Res;
for (uint64_t i = 0; i < NumElementsL; ++i) {
if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
cast<Constant>(RA->getOperand(i))))
return Res;
}
return 0;
}
case Value::ConstantStructVal: {
const ConstantStruct *LS = cast<ConstantStruct>(L);
const ConstantStruct *RS = cast<ConstantStruct>(R);
unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
if (int Res = cmpNumbers(NumElementsL, NumElementsR))
return Res;
for (unsigned i = 0; i != NumElementsL; ++i) {
if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
cast<Constant>(RS->getOperand(i))))
return Res;
}
return 0;
}
case Value::ConstantVectorVal: {
const ConstantVector *LV = cast<ConstantVector>(L);
const ConstantVector *RV = cast<ConstantVector>(R);
unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
if (int Res = cmpNumbers(NumElementsL, NumElementsR))
return Res;
for (uint64_t i = 0; i < NumElementsL; ++i) {
if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
cast<Constant>(RV->getOperand(i))))
return Res;
}
return 0;
}
case Value::ConstantExprVal: {
const ConstantExpr *LE = cast<ConstantExpr>(L);
const ConstantExpr *RE = cast<ConstantExpr>(R);
unsigned NumOperandsL = LE->getNumOperands();
unsigned NumOperandsR = RE->getNumOperands();
if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
return Res;
for (unsigned i = 0; i < NumOperandsL; ++i) {
if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
cast<Constant>(RE->getOperand(i))))
return Res;
}
return 0;
}
case Value::BlockAddressVal: {
const BlockAddress *LBA = cast<BlockAddress>(L);
const BlockAddress *RBA = cast<BlockAddress>(R);
if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
return Res;
if (LBA->getFunction() == RBA->getFunction()) {
// They are BBs in the same function. Order by which comes first in the
// BB order of the function. This order is deterministic.
Function *F = LBA->getFunction();
BasicBlock *LBB = LBA->getBasicBlock();
BasicBlock *RBB = RBA->getBasicBlock();
if (LBB == RBB)
return 0;
for (BasicBlock &BB : F->getBasicBlockList()) {
if (&BB == LBB) {
assert(&BB != RBB);
return -1;
}
if (&BB == RBB)
return 1;
}
llvm_unreachable("Basic Block Address does not point to a basic block in "
"its function.");
return -1;
} else {
// cmpValues said the functions are the same. So because they aren't
// literally the same pointer, they must respectively be the left and
// right functions.
assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
// cmpValues will tell us if these are equivalent BasicBlocks, in the
// context of their respective functions.
return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
}
}
default: // Unknown constant, abort.
LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
llvm_unreachable("Constant ValueID not recognized.");
return -1;
}
}
int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
uint64_t LNumber = GlobalNumbers->getNumber(L);
uint64_t RNumber = GlobalNumbers->getNumber(R);
return cmpNumbers(LNumber, RNumber);
}
/// cmpType - compares two types,
/// defines total ordering among the types set.
/// See method declaration comments for more details.
int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
PointerType *PTyL = dyn_cast<PointerType>(TyL);
PointerType *PTyR = dyn_cast<PointerType>(TyR);
const DataLayout &DL = FnL->getParent()->getDataLayout();
if (PTyL && PTyL->getAddressSpace() == 0)
TyL = DL.getIntPtrType(TyL);
if (PTyR && PTyR->getAddressSpace() == 0)
TyR = DL.getIntPtrType(TyR);
if (TyL == TyR)
return 0;
if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
return Res;
switch (TyL->getTypeID()) {
default:
llvm_unreachable("Unknown type!");
case Type::IntegerTyID:
return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
cast<IntegerType>(TyR)->getBitWidth());
// TyL == TyR would have returned true earlier, because types are uniqued.
case Type::VoidTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
case Type::LabelTyID:
case Type::MetadataTyID:
case Type::TokenTyID:
return 0;
case Type::PointerTyID:
assert(PTyL && PTyR && "Both types must be pointers here.");
return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
case Type::StructTyID: {
StructType *STyL = cast<StructType>(TyL);
StructType *STyR = cast<StructType>(TyR);
if (STyL->getNumElements() != STyR->getNumElements())
return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
if (STyL->isPacked() != STyR->isPacked())
return cmpNumbers(STyL->isPacked(), STyR->isPacked());
for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
return Res;
}
return 0;
}
case Type::FunctionTyID: {
FunctionType *FTyL = cast<FunctionType>(TyL);
FunctionType *FTyR = cast<FunctionType>(TyR);
if (FTyL->getNumParams() != FTyR->getNumParams())
return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
if (FTyL->isVarArg() != FTyR->isVarArg())
return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
return Res;
for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
return Res;
}
return 0;
}
case Type::ArrayTyID: {
auto *STyL = cast<ArrayType>(TyL);
auto *STyR = cast<ArrayType>(TyR);
if (STyL->getNumElements() != STyR->getNumElements())
return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
return cmpTypes(STyL->getElementType(), STyR->getElementType());
}
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID: {
auto *STyL = cast<VectorType>(TyL);
auto *STyR = cast<VectorType>(TyR);
if (STyL->getElementCount().Scalable != STyR->getElementCount().Scalable)
return cmpNumbers(STyL->getElementCount().Scalable,
STyR->getElementCount().Scalable);
if (STyL->getElementCount().Min != STyR->getElementCount().Min)
return cmpNumbers(STyL->getElementCount().Min,
STyR->getElementCount().Min);
return cmpTypes(STyL->getElementType(), STyR->getElementType());
}
}
}
// Determine whether the two operations are the same except that pointer-to-A
// and pointer-to-B are equivalent. This should be kept in sync with
// Instruction::isSameOperationAs.
// Read method declaration comments for more details.
int FunctionComparator::cmpOperations(const Instruction *L,
const Instruction *R,
bool &needToCmpOperands) const {
needToCmpOperands = true;
if (int Res = cmpValues(L, R))
return Res;
// Differences from Instruction::isSameOperationAs:
// * replace type comparison with calls to cmpTypes.
// * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
// * because of the above, we don't test for the tail bit on calls later on.
if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
return Res;
if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
needToCmpOperands = false;
const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
if (int Res =
cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
return Res;
return cmpGEPs(GEPL, GEPR);
}
if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
return Res;
if (int Res = cmpTypes(L->getType(), R->getType()))
return Res;
if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
R->getRawSubclassOptionalData()))
return Res;
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same type
for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
if (int Res =
cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
return Res;
}
// Check special state that is a part of some instructions.
if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
if (int Res = cmpTypes(AI->getAllocatedType(),
cast<AllocaInst>(R)->getAllocatedType()))
return Res;
return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
}
if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
return Res;
if (int Res =
cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
return Res;
if (int Res =
cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
return Res;
if (int Res = cmpNumbers(LI->getSyncScopeID(),
cast<LoadInst>(R)->getSyncScopeID()))
return Res;
return cmpRangeMetadata(
LI->getMetadata(LLVMContext::MD_range),
cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
}
if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
if (int Res =
cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
return Res;
if (int Res =
cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
return Res;
if (int Res =
cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
return Res;
return cmpNumbers(SI->getSyncScopeID(),
cast<StoreInst>(R)->getSyncScopeID());
}
if (const CmpInst *CI = dyn_cast<CmpInst>(L))
return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
if (auto *CBL = dyn_cast<CallBase>(L)) {
auto *CBR = cast<CallBase>(R);
if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
return Res;
if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
return Res;
if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
return Res;
if (const CallInst *CI = dyn_cast<CallInst>(L))
if (int Res = cmpNumbers(CI->getTailCallKind(),
cast<CallInst>(R)->getTailCallKind()))
return Res;
return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
R->getMetadata(LLVMContext::MD_range));
}
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
ArrayRef<unsigned> LIndices = IVI->getIndices();
ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
return Res;
for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
return Res;
}
return 0;
}
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
ArrayRef<unsigned> LIndices = EVI->getIndices();
ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
return Res;
for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
return Res;
}
}
if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
if (int Res =
cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
return Res;
return cmpNumbers(FI->getSyncScopeID(),
cast<FenceInst>(R)->getSyncScopeID());
}
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
if (int Res = cmpNumbers(CXI->isVolatile(),
cast<AtomicCmpXchgInst>(R)->isVolatile()))
return Res;
if (int Res =
cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
return Res;
if (int Res =
cmpOrderings(CXI->getSuccessOrdering(),
cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
return Res;
if (int Res =
cmpOrderings(CXI->getFailureOrdering(),
cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
return Res;
return cmpNumbers(CXI->getSyncScopeID(),
cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
}
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
if (int Res = cmpNumbers(RMWI->getOperation(),
cast<AtomicRMWInst>(R)->getOperation()))
return Res;
if (int Res = cmpNumbers(RMWI->isVolatile(),
cast<AtomicRMWInst>(R)->isVolatile()))
return Res;
if (int Res = cmpOrderings(RMWI->getOrdering(),
cast<AtomicRMWInst>(R)->getOrdering()))
return Res;
return cmpNumbers(RMWI->getSyncScopeID(),
cast<AtomicRMWInst>(R)->getSyncScopeID());
}
if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
ArrayRef<int> LMask = SVI->getShuffleMask();
ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
if (int Res = cmpNumbers(LMask.size(), RMask.size()))
return Res;
for (size_t i = 0, e = LMask.size(); i != e; ++i) {
if (int Res = cmpNumbers(LMask[i], RMask[i]))
return Res;
}
}
if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
const PHINode *PNR = cast<PHINode>(R);
// Ensure that in addition to the incoming values being identical
// (checked by the caller of this function), the incoming blocks
// are also identical.
for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
if (int Res =
cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
return Res;
}
}
return 0;
}
// Determine whether two GEP operations perform the same underlying arithmetic.
// Read method declaration comments for more details.
int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
const GEPOperator *GEPR) const {
unsigned int ASL = GEPL->getPointerAddressSpace();
unsigned int ASR = GEPR->getPointerAddressSpace();
if (int Res = cmpNumbers(ASL, ASR))
return Res;
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
const DataLayout &DL = FnL->getParent()->getDataLayout();
unsigned BitWidth = DL.getPointerSizeInBits(ASL);
APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
GEPR->accumulateConstantOffset(DL, OffsetR))
return cmpAPInts(OffsetL, OffsetR);
if (int Res =
cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
return Res;
if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
return Res;
for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
return Res;
}
return 0;
}
int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
const InlineAsm *R) const {
// InlineAsm's are uniqued. If they are the same pointer, obviously they are
// the same, otherwise compare the fields.
if (L == R)
return 0;
if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
return Res;
if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
return Res;
if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
return Res;
if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
return Res;
if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
return Res;
if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
return Res;
assert(L->getFunctionType() != R->getFunctionType());
return 0;
}
/// Compare two values used by the two functions under pair-wise comparison. If
/// this is the first time the values are seen, they're added to the mapping so
/// that we will detect mismatches on next use.
/// See comments in declaration for more details.
int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
// Catch self-reference case.
if (L == FnL) {
if (R == FnR)
return 0;
return -1;
}
if (R == FnR) {
if (L == FnL)
return 0;
return 1;
}
const Constant *ConstL = dyn_cast<Constant>(L);
const Constant *ConstR = dyn_cast<Constant>(R);
if (ConstL && ConstR) {
if (L == R)
return 0;
return cmpConstants(ConstL, ConstR);
}
if (ConstL)
return 1;
if (ConstR)
return -1;
const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
if (InlineAsmL && InlineAsmR)
return cmpInlineAsm(InlineAsmL, InlineAsmR);
if (InlineAsmL)
return 1;
if (InlineAsmR)
return -1;
auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
return cmpNumbers(LeftSN.first->second, RightSN.first->second);
}
// Test whether two basic blocks have equivalent behaviour.
int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
const BasicBlock *BBR) const {
BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
do {
bool needToCmpOperands = true;
if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
return Res;
if (needToCmpOperands) {
assert(InstL->getNumOperands() == InstR->getNumOperands());
for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
Value *OpL = InstL->getOperand(i);
Value *OpR = InstR->getOperand(i);
if (int Res = cmpValues(OpL, OpR))
return Res;
// cmpValues should ensure this is true.
assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
}
}
++InstL;
++InstR;
} while (InstL != InstLE && InstR != InstRE);
if (InstL != InstLE && InstR == InstRE)
return 1;
if (InstL == InstLE && InstR != InstRE)
return -1;
return 0;
}
int FunctionComparator::compareSignature() const {
if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
return Res;
if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
return Res;
if (FnL->hasGC()) {
if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
return Res;
}
if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
return Res;
if (FnL->hasSection()) {
if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
return Res;
}
if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
return Res;
// TODO: if it's internal and only used in direct calls, we could handle this
// case too.
if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
return Res;
if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
return Res;
assert(FnL->arg_size() == FnR->arg_size() &&
"Identically typed functions have different numbers of args!");
// Visit the arguments so that they get enumerated in the order they're
// passed in.
for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
ArgRI = FnR->arg_begin(),
ArgLE = FnL->arg_end();
ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
if (cmpValues(&*ArgLI, &*ArgRI) != 0)
llvm_unreachable("Arguments repeat!");
}
return 0;
}
// Test whether the two functions have equivalent behaviour.
int FunctionComparator::compare() {
beginCompare();
if (int Res = compareSignature())
return Res;
// We do a CFG-ordered walk since the actual ordering of the blocks in the
// linked list is immaterial. Our walk starts at the entry block for both
// functions, then takes each block from each terminator in order. As an
// artifact, this also means that unreachable blocks are ignored.
SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
FnLBBs.push_back(&FnL->getEntryBlock());
FnRBBs.push_back(&FnR->getEntryBlock());
VisitedBBs.insert(FnLBBs[0]);
while (!FnLBBs.empty()) {
const BasicBlock *BBL = FnLBBs.pop_back_val();
const BasicBlock *BBR = FnRBBs.pop_back_val();
if (int Res = cmpValues(BBL, BBR))
return Res;
if (int Res = cmpBasicBlocks(BBL, BBR))
return Res;
const Instruction *TermL = BBL->getTerminator();
const Instruction *TermR = BBR->getTerminator();
assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
continue;
FnLBBs.push_back(TermL->getSuccessor(i));
FnRBBs.push_back(TermR->getSuccessor(i));
}
}
return 0;
}
namespace {
// Accumulate the hash of a sequence of 64-bit integers. This is similar to a
// hash of a sequence of 64bit ints, but the entire input does not need to be
// available at once. This interface is necessary for functionHash because it
// needs to accumulate the hash as the structure of the function is traversed
// without saving these values to an intermediate buffer. This form of hashing
// is not often needed, as usually the object to hash is just read from a
// buffer.
class HashAccumulator64 {
uint64_t Hash;
public:
// Initialize to random constant, so the state isn't zero.
HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
// No finishing is required, because the entire hash value is used.
uint64_t getHash() { return Hash; }
};
} // end anonymous namespace
// A function hash is calculated by considering only the number of arguments and
// whether a function is varargs, the order of basic blocks (given by the
// successors of each basic block in depth first order), and the order of
// opcodes of each instruction within each of these basic blocks. This mirrors
// the strategy compare() uses to compare functions by walking the BBs in depth
// first order and comparing each instruction in sequence. Because this hash
// does not look at the operands, it is insensitive to things such as the
// target of calls and the constants used in the function, which makes it useful
// when possibly merging functions which are the same modulo constants and call
// targets.
FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
HashAccumulator64 H;
H.add(F.isVarArg());
H.add(F.arg_size());
SmallVector<const BasicBlock *, 8> BBs;
SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
// Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
// accumulating the hash of the function "structure." (BB and opcode sequence)
BBs.push_back(&F.getEntryBlock());
VisitedBBs.insert(BBs[0]);
while (!BBs.empty()) {
const BasicBlock *BB = BBs.pop_back_val();
// This random value acts as a block header, as otherwise the partition of
// opcodes into BBs wouldn't affect the hash, only the order of the opcodes
H.add(45798);
for (auto &Inst : *BB) {
H.add(Inst.getOpcode());
}
const Instruction *Term = BB->getTerminator();
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
continue;
BBs.push_back(Term->getSuccessor(i));
}
}
return H.getHash();
}