CodeMoverUtils.cpp 15.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
//===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform movements on basic blocks, and instructions
// contained within a function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CodeMoverUtils.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"

using namespace llvm;

#define DEBUG_TYPE "codemover-utils"

STATISTIC(HasDependences,
          "Cannot move across instructions that has memory dependences");
STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
STATISTIC(NotControlFlowEquivalent,
          "Instructions are not control flow equivalent");
STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");

namespace {
/// Represent a control condition. A control condition is a condition of a
/// terminator to decide which successors to execute. The pointer field
/// represents the address of the condition of the terminator. The integer field
/// is a bool, it is true when the basic block is executed when V is true. For
/// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
/// integer field equals to true, while %cond is a control condition of bb1 with
/// the integer field equals to false.
using ControlCondition = PointerIntPair<Value *, 1, bool>;
#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
  OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
     << "]";
  return OS;
}
#endif

/// Represent a set of control conditions required to execute ToBB from FromBB.
class ControlConditions {
  using ConditionVectorTy = SmallVector<ControlCondition, 6>;

  /// A SmallVector of control conditions.
  ConditionVectorTy Conditions;

public:
  /// Return a ControlConditions which stores all conditions required to execute
  /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
  /// number of conditions to collect. Return None if not all conditions are
  /// collected successfully, or we hit the limit.
  static const Optional<ControlConditions>
  collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
                           const DominatorTree &DT,
                           const PostDominatorTree &PDT,
                           unsigned MaxLookup = 6);

  /// Return true if there exists no control conditions required to execute ToBB
  /// from FromBB.
  bool isUnconditional() const { return Conditions.empty(); }

  /// Return a constant reference of Conditions.
  const ConditionVectorTy &getControlConditions() const { return Conditions; }

  /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
  /// equals to \p True. Return true if inserted successfully.
  bool addControlCondition(ControlCondition C);

  /// Return true if for all control conditions in Conditions, there exists an
  /// equivalent control condition in \p Other.Conditions.
  bool isEquivalent(const ControlConditions &Other) const;

  /// Return true if \p C1 and \p C2 are equivalent.
  static bool isEquivalent(const ControlCondition &C1,
                           const ControlCondition &C2);

private:
  ControlConditions() = default;

  static bool isEquivalent(const Value &V1, const Value &V2);
  static bool isInverse(const Value &V1, const Value &V2);
};
} // namespace

static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
                               const Instruction *InstB) {
  // Use ordered basic block in case the 2 instructions are in the same
  // block.
  if (InstA->getParent() == InstB->getParent())
    return InstA->comesBefore(InstB);

  DomTreeNode *DA = DT->getNode(InstA->getParent());
  DomTreeNode *DB = DT->getNode(InstB->getParent());
  return DA->getLevel() < DB->getLevel();
}

const Optional<ControlConditions> ControlConditions::collectControlConditions(
    const BasicBlock &BB, const BasicBlock &Dominator, const DominatorTree &DT,
    const PostDominatorTree &PDT, unsigned MaxLookup) {
  assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");

  ControlConditions Conditions;
  unsigned NumConditions = 0;

  // BB is executed unconditional from itself.
  if (&Dominator == &BB)
    return Conditions;

  const BasicBlock *CurBlock = &BB;
  // Walk up the dominator tree from the associated DT node for BB to the
  // associated DT node for Dominator.
  do {
    assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
    BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
    assert(DT.dominates(&Dominator, IDom) &&
           "Expecting Dominator to dominate IDom");

    // Limitation: can only handle branch instruction currently.
    const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
    if (!BI)
      return None;

    bool Inserted = false;
    if (PDT.dominates(CurBlock, IDom)) {
      LLVM_DEBUG(dbgs() << CurBlock->getName()
                        << " is executed unconditionally from "
                        << IDom->getName() << "\n");
    } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
      LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
                        << *BI->getCondition() << "\" is true from "
                        << IDom->getName() << "\n");
      Inserted = Conditions.addControlCondition(
          ControlCondition(BI->getCondition(), true));
    } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
      LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
                        << *BI->getCondition() << "\" is false from "
                        << IDom->getName() << "\n");
      Inserted = Conditions.addControlCondition(
          ControlCondition(BI->getCondition(), false));
    } else
      return None;

    if (Inserted)
      ++NumConditions;

    if (MaxLookup != 0 && NumConditions > MaxLookup)
      return None;

    CurBlock = IDom;
  } while (CurBlock != &Dominator);

  return Conditions;
}

bool ControlConditions::addControlCondition(ControlCondition C) {
  bool Inserted = false;
  if (none_of(Conditions, [&](ControlCondition &Exists) {
        return ControlConditions::isEquivalent(C, Exists);
      })) {
    Conditions.push_back(C);
    Inserted = true;
  }

  LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
  return Inserted;
}

bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
  if (Conditions.empty() && Other.Conditions.empty())
    return true;

  if (Conditions.size() != Other.Conditions.size())
    return false;

  return all_of(Conditions, [&](const ControlCondition &C) {
    return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
      return ControlConditions::isEquivalent(C, OtherC);
    });
  });
}

bool ControlConditions::isEquivalent(const ControlCondition &C1,
                                     const ControlCondition &C2) {
  if (C1.getInt() == C2.getInt()) {
    if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
      return true;
  } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
    return true;

  return false;
}

// FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
// Values.
// Currently, isEquivalent rely on other passes to ensure equivalent conditions
// have the same value, e.g. GVN.
bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
  return &V1 == &V2;
}

bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
  if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
    if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
      if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
          Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
          Cmp1->getOperand(1) == Cmp2->getOperand(1))
        return true;

      if (Cmp1->getPredicate() ==
              CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
          Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
          Cmp1->getOperand(1) == Cmp2->getOperand(0))
        return true;
    }
  return false;
}

bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
                                   const DominatorTree &DT,
                                   const PostDominatorTree &PDT) {
  return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
}

bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
                                   const DominatorTree &DT,
                                   const PostDominatorTree &PDT) {
  if (&BB0 == &BB1)
    return true;

  if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
      (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
    return true;

  // If the set of conditions required to execute BB0 and BB1 from their common
  // dominator are the same, then BB0 and BB1 are control flow equivalent.
  const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
  LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
                    << " and " << BB1.getName() << " is "
                    << CommonDominator->getName() << "\n");

  const Optional<ControlConditions> BB0Conditions =
      ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
                                                  PDT);
  if (BB0Conditions == None)
    return false;

  const Optional<ControlConditions> BB1Conditions =
      ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
                                                  PDT);
  if (BB1Conditions == None)
    return false;

  return BB0Conditions->isEquivalent(*BB1Conditions);
}

static bool reportInvalidCandidate(const Instruction &I,
                                   llvm::Statistic &Stat) {
  ++Stat;
  LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
                    << Stat.getDesc());
  return false;
}

/// Collect all instructions in between \p StartInst and \p EndInst, and store
/// them in \p InBetweenInsts.
static void
collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
                             SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
  assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");

  /// Get the next instructions of \p I, and push them to \p WorkList.
  auto getNextInsts = [](Instruction &I,
                         SmallPtrSetImpl<Instruction *> &WorkList) {
    if (Instruction *NextInst = I.getNextNode())
      WorkList.insert(NextInst);
    else {
      assert(I.isTerminator() && "Expecting a terminator instruction");
      for (BasicBlock *Succ : successors(&I))
        WorkList.insert(&Succ->front());
    }
  };

  SmallPtrSet<Instruction *, 10> WorkList;
  getNextInsts(StartInst, WorkList);
  while (!WorkList.empty()) {
    Instruction *CurInst = *WorkList.begin();
    WorkList.erase(CurInst);

    if (CurInst == &EndInst)
      continue;

    if (!InBetweenInsts.insert(CurInst).second)
      continue;

    getNextInsts(*CurInst, WorkList);
  }
}

bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
                              DominatorTree &DT, const PostDominatorTree *PDT,
                              DependenceInfo *DI) {
  // Skip tests when we don't have PDT or DI
  if (!PDT || !DI)
    return false;

  // Cannot move itself before itself.
  if (&I == &InsertPoint)
    return false;

  // Not moved.
  if (I.getNextNode() == &InsertPoint)
    return true;

  if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
    return reportInvalidCandidate(I, NotMovedPHINode);

  if (I.isTerminator())
    return reportInvalidCandidate(I, NotMovedTerminator);

  // TODO remove this limitation.
  if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
    return reportInvalidCandidate(I, NotControlFlowEquivalent);

  if (!DT.dominates(&InsertPoint, &I))
    for (const Use &U : I.uses())
      if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
        if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
          return false;
  if (!DT.dominates(&I, &InsertPoint))
    for (const Value *Op : I.operands())
      if (auto *OpInst = dyn_cast<Instruction>(Op))
        if (&InsertPoint == OpInst || !DT.dominates(OpInst, &InsertPoint))
          return false;

  DT.updateDFSNumbers();
  const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
  Instruction &StartInst = (MoveForward ? I : InsertPoint);
  Instruction &EndInst = (MoveForward ? InsertPoint : I);
  SmallPtrSet<Instruction *, 10> InstsToCheck;
  collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
  if (!MoveForward)
    InstsToCheck.insert(&InsertPoint);

  // Check if there exists instructions which may throw, may synchonize, or may
  // never return, from I to InsertPoint.
  if (!isSafeToSpeculativelyExecute(&I))
    if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
                    [](Instruction *I) {
                      if (I->mayThrow())
                        return true;

                      const CallBase *CB = dyn_cast<CallBase>(I);
                      if (!CB)
                        return false;
                      if (!CB->hasFnAttr(Attribute::WillReturn))
                        return true;
                      if (!CB->hasFnAttr(Attribute::NoSync))
                        return true;

                      return false;
                    })) {
      return reportInvalidCandidate(I, MayThrowException);
    }

  // Check if I has any output/flow/anti dependences with instructions from \p
  // StartInst to \p EndInst.
  if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
                  [&DI, &I](Instruction *CurInst) {
                    auto DepResult = DI->depends(&I, CurInst, true);
                    if (DepResult &&
                        (DepResult->isOutput() || DepResult->isFlow() ||
                         DepResult->isAnti()))
                      return true;
                    return false;
                  }))
    return reportInvalidCandidate(I, HasDependences);

  return true;
}

bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
                              DominatorTree &DT, const PostDominatorTree *PDT,
                              DependenceInfo *DI) {
  return llvm::all_of(BB, [&](Instruction &I) {
    if (BB.getTerminator() == &I)
      return true;

    return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI);
  });
}

void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
                                          DominatorTree &DT,
                                          const PostDominatorTree &PDT,
                                          DependenceInfo &DI) {
  for (auto It = ++FromBB.rbegin(); It != FromBB.rend();) {
    Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
    Instruction &I = *It;
    // Increment the iterator before modifying FromBB.
    ++It;

    if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
      I.moveBefore(MovePos);
  }
}

void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
                                    DominatorTree &DT,
                                    const PostDominatorTree &PDT,
                                    DependenceInfo &DI) {
  Instruction *MovePos = ToBB.getTerminator();
  while (FromBB.size() > 1) {
    Instruction &I = FromBB.front();
    if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
      I.moveBefore(MovePos);
  }
}