CloneFunction.cpp 34.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
//===- CloneFunction.cpp - Clone a function into another function ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CloneFunctionInto interface, which is used as the
// low-level function cloner.  This is used by the CloneFunction and function
// inliner to do the dirty work of copying the body of a function around.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <map>
using namespace llvm;

/// See comments in Cloning.h.
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
                                  const Twine &NameSuffix, Function *F,
                                  ClonedCodeInfo *CodeInfo,
                                  DebugInfoFinder *DIFinder) {
  DenseMap<const MDNode *, MDNode *> Cache;
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
  if (BB->hasName())
    NewBB->setName(BB->getName() + NameSuffix);

  bool hasCalls = false, hasDynamicAllocas = false;
  Module *TheModule = F ? F->getParent() : nullptr;

  // Loop over all instructions, and copy them over.
  for (const Instruction &I : *BB) {
    if (DIFinder && TheModule)
      DIFinder->processInstruction(*TheModule, I);

    Instruction *NewInst = I.clone();
    if (I.hasName())
      NewInst->setName(I.getName() + NameSuffix);
    NewBB->getInstList().push_back(NewInst);
    VMap[&I] = NewInst; // Add instruction map to value.

    hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
      if (!AI->isStaticAlloca()) {
        hasDynamicAllocas = true;
      }
    }
  }

  if (CodeInfo) {
    CodeInfo->ContainsCalls          |= hasCalls;
    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
  }
  return NewBB;
}

// Clone OldFunc into NewFunc, transforming the old arguments into references to
// VMap values.
//
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
                             ValueToValueMapTy &VMap,
                             bool ModuleLevelChanges,
                             SmallVectorImpl<ReturnInst*> &Returns,
                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
                             ValueMapTypeRemapper *TypeMapper,
                             ValueMaterializer *Materializer) {
  assert(NameSuffix && "NameSuffix cannot be null!");

#ifndef NDEBUG
  for (const Argument &I : OldFunc->args())
    assert(VMap.count(&I) && "No mapping from source argument specified!");
#endif

  // Copy all attributes other than those stored in the AttributeList.  We need
  // to remap the parameter indices of the AttributeList.
  AttributeList NewAttrs = NewFunc->getAttributes();
  NewFunc->copyAttributesFrom(OldFunc);
  NewFunc->setAttributes(NewAttrs);

  // Fix up the personality function that got copied over.
  if (OldFunc->hasPersonalityFn())
    NewFunc->setPersonalityFn(
        MapValue(OldFunc->getPersonalityFn(), VMap,
                 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
                 TypeMapper, Materializer));

  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
  AttributeList OldAttrs = OldFunc->getAttributes();

  // Clone any argument attributes that are present in the VMap.
  for (const Argument &OldArg : OldFunc->args()) {
    if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
      NewArgAttrs[NewArg->getArgNo()] =
          OldAttrs.getParamAttributes(OldArg.getArgNo());
    }
  }

  NewFunc->setAttributes(
      AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
                         OldAttrs.getRetAttributes(), NewArgAttrs));

  bool MustCloneSP =
      OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
  DISubprogram *SP = OldFunc->getSubprogram();
  if (SP) {
    assert(!MustCloneSP || ModuleLevelChanges);
    // Add mappings for some DebugInfo nodes that we don't want duplicated
    // even if they're distinct.
    auto &MD = VMap.MD();
    MD[SP->getUnit()].reset(SP->getUnit());
    MD[SP->getType()].reset(SP->getType());
    MD[SP->getFile()].reset(SP->getFile());
    // If we're not cloning into the same module, no need to clone the
    // subprogram
    if (!MustCloneSP)
      MD[SP].reset(SP);
  }

  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
  OldFunc->getAllMetadata(MDs);
  for (auto MD : MDs) {
    NewFunc->addMetadata(
        MD.first,
        *MapMetadata(MD.second, VMap,
                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
                     TypeMapper, Materializer));
  }

  // When we remap instructions, we want to avoid duplicating inlined
  // DISubprograms, so record all subprograms we find as we duplicate
  // instructions and then freeze them in the MD map.
  // We also record information about dbg.value and dbg.declare to avoid
  // duplicating the types.
  DebugInfoFinder DIFinder;

  // Loop over all of the basic blocks in the function, cloning them as
  // appropriate.  Note that we save BE this way in order to handle cloning of
  // recursive functions into themselves.
  //
  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
       BI != BE; ++BI) {
    const BasicBlock &BB = *BI;

    // Create a new basic block and copy instructions into it!
    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
                                      ModuleLevelChanges ? &DIFinder : nullptr);

    // Add basic block mapping.
    VMap[&BB] = CBB;

    // It is only legal to clone a function if a block address within that
    // function is never referenced outside of the function.  Given that, we
    // want to map block addresses from the old function to block addresses in
    // the clone. (This is different from the generic ValueMapper
    // implementation, which generates an invalid blockaddress when
    // cloning a function.)
    if (BB.hasAddressTaken()) {
      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
                                              const_cast<BasicBlock*>(&BB));
      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    }

    // Note return instructions for the caller.
    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
      Returns.push_back(RI);
  }

  for (DISubprogram *ISP : DIFinder.subprograms())
    if (ISP != SP)
      VMap.MD()[ISP].reset(ISP);

  for (DICompileUnit *CU : DIFinder.compile_units())
    VMap.MD()[CU].reset(CU);

  for (DIType *Type : DIFinder.types())
    VMap.MD()[Type].reset(Type);

  // Loop over all of the instructions in the function, fixing up operand
  // references as we go.  This uses VMap to do all the hard work.
  for (Function::iterator BB =
           cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
                          BE = NewFunc->end();
       BB != BE; ++BB)
    // Loop over all instructions, fixing each one as we find it...
    for (Instruction &II : *BB)
      RemapInstruction(&II, VMap,
                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
                       TypeMapper, Materializer);

  // Register all DICompileUnits of the old parent module in the new parent module
  auto* OldModule = OldFunc->getParent();
  auto* NewModule = NewFunc->getParent();
  if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
    auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
    // Avoid multiple insertions of the same DICompileUnit to NMD.
    SmallPtrSet<const void*, 8> Visited;
    for (auto* Operand : NMD->operands())
      Visited.insert(Operand);
    for (auto* Unit : DIFinder.compile_units())
      // VMap.MD()[Unit] == Unit
      if (Visited.insert(Unit).second)
        NMD->addOperand(Unit);
  }
}

/// Return a copy of the specified function and add it to that function's
/// module.  Also, any references specified in the VMap are changed to refer to
/// their mapped value instead of the original one.  If any of the arguments to
/// the function are in the VMap, the arguments are deleted from the resultant
/// function.  The VMap is updated to include mappings from all of the
/// instructions and basicblocks in the function from their old to new values.
///
Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
                              ClonedCodeInfo *CodeInfo) {
  std::vector<Type*> ArgTypes;

  // The user might be deleting arguments to the function by specifying them in
  // the VMap.  If so, we need to not add the arguments to the arg ty vector
  //
  for (const Argument &I : F->args())
    if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
      ArgTypes.push_back(I.getType());

  // Create a new function type...
  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
                                    ArgTypes, F->getFunctionType()->isVarArg());

  // Create the new function...
  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
                                    F->getName(), F->getParent());

  // Loop over the arguments, copying the names of the mapped arguments over...
  Function::arg_iterator DestI = NewF->arg_begin();
  for (const Argument & I : F->args())
    if (VMap.count(&I) == 0) {     // Is this argument preserved?
      DestI->setName(I.getName()); // Copy the name over...
      VMap[&I] = &*DestI++;        // Add mapping to VMap
    }

  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
                    CodeInfo);

  return NewF;
}



namespace {
  /// This is a private class used to implement CloneAndPruneFunctionInto.
  struct PruningFunctionCloner {
    Function *NewFunc;
    const Function *OldFunc;
    ValueToValueMapTy &VMap;
    bool ModuleLevelChanges;
    const char *NameSuffix;
    ClonedCodeInfo *CodeInfo;

  public:
    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
                          ValueToValueMapTy &valueMap, bool moduleLevelChanges,
                          const char *nameSuffix, ClonedCodeInfo *codeInfo)
        : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
          ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
          CodeInfo(codeInfo) {}

    /// The specified block is found to be reachable, clone it and
    /// anything that it can reach.
    void CloneBlock(const BasicBlock *BB,
                    BasicBlock::const_iterator StartingInst,
                    std::vector<const BasicBlock*> &ToClone);
  };
}

/// The specified block is found to be reachable, clone it and
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
                                       BasicBlock::const_iterator StartingInst,
                                       std::vector<const BasicBlock*> &ToClone){
  WeakTrackingVH &BBEntry = VMap[BB];

  // Have we already cloned this block?
  if (BBEntry) return;

  // Nope, clone it now.
  BasicBlock *NewBB;
  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);

  // It is only legal to clone a function if a block address within that
  // function is never referenced outside of the function.  Given that, we
  // want to map block addresses from the old function to block addresses in
  // the clone. (This is different from the generic ValueMapper
  // implementation, which generates an invalid blockaddress when
  // cloning a function.)
  //
  // Note that we don't need to fix the mapping for unreachable blocks;
  // the default mapping there is safe.
  if (BB->hasAddressTaken()) {
    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
                                            const_cast<BasicBlock*>(BB));
    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
  }

  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;

  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
  // loop doesn't include the terminator.
  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
       II != IE; ++II) {

    Instruction *NewInst = II->clone();

    // Eagerly remap operands to the newly cloned instruction, except for PHI
    // nodes for which we defer processing until we update the CFG.
    if (!isa<PHINode>(NewInst)) {
      RemapInstruction(NewInst, VMap,
                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);

      // If we can simplify this instruction to some other value, simply add
      // a mapping to that value rather than inserting a new instruction into
      // the basic block.
      if (Value *V =
              SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
        // On the off-chance that this simplifies to an instruction in the old
        // function, map it back into the new function.
        if (NewFunc != OldFunc)
          if (Value *MappedV = VMap.lookup(V))
            V = MappedV;

        if (!NewInst->mayHaveSideEffects()) {
          VMap[&*II] = V;
          NewInst->deleteValue();
          continue;
        }
      }
    }

    if (II->hasName())
      NewInst->setName(II->getName()+NameSuffix);
    VMap[&*II] = NewInst; // Add instruction map to value.
    NewBB->getInstList().push_back(NewInst);
    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));

    if (CodeInfo)
      if (auto *CB = dyn_cast<CallBase>(&*II))
        if (CB->hasOperandBundles())
          CodeInfo->OperandBundleCallSites.push_back(NewInst);

    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
      if (isa<ConstantInt>(AI->getArraySize()))
        hasStaticAllocas = true;
      else
        hasDynamicAllocas = true;
    }
  }

  // Finally, clone over the terminator.
  const Instruction *OldTI = BB->getTerminator();
  bool TerminatorDone = false;
  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    if (BI->isConditional()) {
      // If the condition was a known constant in the callee...
      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
      // Or is a known constant in the caller...
      if (!Cond) {
        Value *V = VMap.lookup(BI->getCondition());
        Cond = dyn_cast_or_null<ConstantInt>(V);
      }

      // Constant fold to uncond branch!
      if (Cond) {
        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
        ToClone.push_back(Dest);
        TerminatorDone = true;
      }
    }
  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    // If switching on a value known constant in the caller.
    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    if (!Cond) { // Or known constant after constant prop in the callee...
      Value *V = VMap.lookup(SI->getCondition());
      Cond = dyn_cast_or_null<ConstantInt>(V);
    }
    if (Cond) {     // Constant fold to uncond branch!
      SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
      ToClone.push_back(Dest);
      TerminatorDone = true;
    }
  }

  if (!TerminatorDone) {
    Instruction *NewInst = OldTI->clone();
    if (OldTI->hasName())
      NewInst->setName(OldTI->getName()+NameSuffix);
    NewBB->getInstList().push_back(NewInst);
    VMap[OldTI] = NewInst;             // Add instruction map to value.

    if (CodeInfo)
      if (auto *CB = dyn_cast<CallBase>(OldTI))
        if (CB->hasOperandBundles())
          CodeInfo->OperandBundleCallSites.push_back(NewInst);

    // Recursively clone any reachable successor blocks.
    const Instruction *TI = BB->getTerminator();
    for (const BasicBlock *Succ : successors(TI))
      ToClone.push_back(Succ);
  }

  if (CodeInfo) {
    CodeInfo->ContainsCalls          |= hasCalls;
    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
      BB != &BB->getParent()->front();
  }
}

/// This works like CloneAndPruneFunctionInto, except that it does not clone the
/// entire function. Instead it starts at an instruction provided by the caller
/// and copies (and prunes) only the code reachable from that instruction.
void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
                                     const Instruction *StartingInst,
                                     ValueToValueMapTy &VMap,
                                     bool ModuleLevelChanges,
                                     SmallVectorImpl<ReturnInst *> &Returns,
                                     const char *NameSuffix,
                                     ClonedCodeInfo *CodeInfo) {
  assert(NameSuffix && "NameSuffix cannot be null!");

  ValueMapTypeRemapper *TypeMapper = nullptr;
  ValueMaterializer *Materializer = nullptr;

#ifndef NDEBUG
  // If the cloning starts at the beginning of the function, verify that
  // the function arguments are mapped.
  if (!StartingInst)
    for (const Argument &II : OldFunc->args())
      assert(VMap.count(&II) && "No mapping from source argument specified!");
#endif

  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
                            NameSuffix, CodeInfo);
  const BasicBlock *StartingBB;
  if (StartingInst)
    StartingBB = StartingInst->getParent();
  else {
    StartingBB = &OldFunc->getEntryBlock();
    StartingInst = &StartingBB->front();
  }

  // Clone the entry block, and anything recursively reachable from it.
  std::vector<const BasicBlock*> CloneWorklist;
  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
  while (!CloneWorklist.empty()) {
    const BasicBlock *BB = CloneWorklist.back();
    CloneWorklist.pop_back();
    PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
  }

  // Loop over all of the basic blocks in the old function.  If the block was
  // reachable, we have cloned it and the old block is now in the value map:
  // insert it into the new function in the right order.  If not, ignore it.
  //
  // Defer PHI resolution until rest of function is resolved.
  SmallVector<const PHINode*, 16> PHIToResolve;
  for (const BasicBlock &BI : *OldFunc) {
    Value *V = VMap.lookup(&BI);
    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    if (!NewBB) continue;  // Dead block.

    // Add the new block to the new function.
    NewFunc->getBasicBlockList().push_back(NewBB);

    // Handle PHI nodes specially, as we have to remove references to dead
    // blocks.
    for (const PHINode &PN : BI.phis()) {
      // PHI nodes may have been remapped to non-PHI nodes by the caller or
      // during the cloning process.
      if (isa<PHINode>(VMap[&PN]))
        PHIToResolve.push_back(&PN);
      else
        break;
    }

    // Finally, remap the terminator instructions, as those can't be remapped
    // until all BBs are mapped.
    RemapInstruction(NewBB->getTerminator(), VMap,
                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
                     TypeMapper, Materializer);
  }

  // Defer PHI resolution until rest of function is resolved, PHI resolution
  // requires the CFG to be up-to-date.
  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    const PHINode *OPN = PHIToResolve[phino];
    unsigned NumPreds = OPN->getNumIncomingValues();
    const BasicBlock *OldBB = OPN->getParent();
    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);

    // Map operands for blocks that are live and remove operands for blocks
    // that are dead.
    for (; phino != PHIToResolve.size() &&
         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
      OPN = PHIToResolve[phino];
      PHINode *PN = cast<PHINode>(VMap[OPN]);
      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
        Value *V = VMap.lookup(PN->getIncomingBlock(pred));
        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
          Value *InVal = MapValue(PN->getIncomingValue(pred),
                                  VMap,
                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
          assert(InVal && "Unknown input value?");
          PN->setIncomingValue(pred, InVal);
          PN->setIncomingBlock(pred, MappedBlock);
        } else {
          PN->removeIncomingValue(pred, false);
          --pred;  // Revisit the next entry.
          --e;
        }
      }
    }

    // The loop above has removed PHI entries for those blocks that are dead
    // and has updated others.  However, if a block is live (i.e. copied over)
    // but its terminator has been changed to not go to this block, then our
    // phi nodes will have invalid entries.  Update the PHI nodes in this
    // case.
    PHINode *PN = cast<PHINode>(NewBB->begin());
    NumPreds = pred_size(NewBB);
    if (NumPreds != PN->getNumIncomingValues()) {
      assert(NumPreds < PN->getNumIncomingValues());
      // Count how many times each predecessor comes to this block.
      std::map<BasicBlock*, unsigned> PredCount;
      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
           PI != E; ++PI)
        --PredCount[*PI];

      // Figure out how many entries to remove from each PHI.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        ++PredCount[PN->getIncomingBlock(i)];

      // At this point, the excess predecessor entries are positive in the
      // map.  Loop over all of the PHIs and remove excess predecessor
      // entries.
      BasicBlock::iterator I = NewBB->begin();
      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
        for (const auto &PCI : PredCount) {
          BasicBlock *Pred = PCI.first;
          for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
            PN->removeIncomingValue(Pred, false);
        }
      }
    }

    // If the loops above have made these phi nodes have 0 or 1 operand,
    // replace them with undef or the input value.  We must do this for
    // correctness, because 0-operand phis are not valid.
    PN = cast<PHINode>(NewBB->begin());
    if (PN->getNumIncomingValues() == 0) {
      BasicBlock::iterator I = NewBB->begin();
      BasicBlock::const_iterator OldI = OldBB->begin();
      while ((PN = dyn_cast<PHINode>(I++))) {
        Value *NV = UndefValue::get(PN->getType());
        PN->replaceAllUsesWith(NV);
        assert(VMap[&*OldI] == PN && "VMap mismatch");
        VMap[&*OldI] = NV;
        PN->eraseFromParent();
        ++OldI;
      }
    }
  }

  // Make a second pass over the PHINodes now that all of them have been
  // remapped into the new function, simplifying the PHINode and performing any
  // recursive simplifications exposed. This will transparently update the
  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
  // two PHINodes, the iteration over the old PHIs remains valid, and the
  // mapping will just map us to the new node (which may not even be a PHI
  // node).
  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
  SmallSetVector<const Value *, 8> Worklist;
  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
      Worklist.insert(PHIToResolve[Idx]);

  // Note that we must test the size on each iteration, the worklist can grow.
  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    const Value *OrigV = Worklist[Idx];
    auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
    if (!I)
      continue;

    // Skip over non-intrinsic callsites, we don't want to remove any nodes from
    // the CGSCC.
    CallBase *CB = dyn_cast<CallBase>(I);
    if (CB && CB->getCalledFunction() &&
        !CB->getCalledFunction()->isIntrinsic())
      continue;

    // See if this instruction simplifies.
    Value *SimpleV = SimplifyInstruction(I, DL);
    if (!SimpleV)
      continue;

    // Stash away all the uses of the old instruction so we can check them for
    // recursive simplifications after a RAUW. This is cheaper than checking all
    // uses of To on the recursive step in most cases.
    for (const User *U : OrigV->users())
      Worklist.insert(cast<Instruction>(U));

    // Replace the instruction with its simplified value.
    I->replaceAllUsesWith(SimpleV);

    // If the original instruction had no side effects, remove it.
    if (isInstructionTriviallyDead(I))
      I->eraseFromParent();
    else
      VMap[OrigV] = I;
  }

  // Now that the inlined function body has been fully constructed, go through
  // and zap unconditional fall-through branches. This happens all the time when
  // specializing code: code specialization turns conditional branches into
  // uncond branches, and this code folds them.
  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
  Function::iterator I = Begin;
  while (I != NewFunc->end()) {
    // We need to simplify conditional branches and switches with a constant
    // operand. We try to prune these out when cloning, but if the
    // simplification required looking through PHI nodes, those are only
    // available after forming the full basic block. That may leave some here,
    // and we still want to prune the dead code as early as possible.
    //
    // Do the folding before we check if the block is dead since we want code
    // like
    //  bb:
    //    br i1 undef, label %bb, label %bb
    // to be simplified to
    //  bb:
    //    br label %bb
    // before we call I->getSinglePredecessor().
    ConstantFoldTerminator(&*I);

    // Check if this block has become dead during inlining or other
    // simplifications. Note that the first block will appear dead, as it has
    // not yet been wired up properly.
    if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
                       I->getSinglePredecessor() == &*I)) {
      BasicBlock *DeadBB = &*I++;
      DeleteDeadBlock(DeadBB);
      continue;
    }

    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    if (!BI || BI->isConditional()) { ++I; continue; }

    BasicBlock *Dest = BI->getSuccessor(0);
    if (!Dest->getSinglePredecessor()) {
      ++I; continue;
    }

    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    // above should have zapped all of them..
    assert(!isa<PHINode>(Dest->begin()));

    // We know all single-entry PHI nodes in the inlined function have been
    // removed, so we just need to splice the blocks.
    BI->eraseFromParent();

    // Make all PHI nodes that referred to Dest now refer to I as their source.
    Dest->replaceAllUsesWith(&*I);

    // Move all the instructions in the succ to the pred.
    I->getInstList().splice(I->end(), Dest->getInstList());

    // Remove the dest block.
    Dest->eraseFromParent();

    // Do not increment I, iteratively merge all things this block branches to.
  }

  // Make a final pass over the basic blocks from the old function to gather
  // any return instructions which survived folding. We have to do this here
  // because we can iteratively remove and merge returns above.
  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
                          E = NewFunc->end();
       I != E; ++I)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
      Returns.push_back(RI);
}


/// This works exactly like CloneFunctionInto,
/// except that it does some simple constant prop and DCE on the fly.  The
/// effect of this is to copy significantly less code in cases where (for
/// example) a function call with constant arguments is inlined, and those
/// constant arguments cause a significant amount of code in the callee to be
/// dead.  Since this doesn't produce an exact copy of the input, it can't be
/// used for things like CloneFunction or CloneModule.
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
                                     ValueToValueMapTy &VMap,
                                     bool ModuleLevelChanges,
                                     SmallVectorImpl<ReturnInst*> &Returns,
                                     const char *NameSuffix,
                                     ClonedCodeInfo *CodeInfo,
                                     Instruction *TheCall) {
  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
                            ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
}

/// Remaps instructions in \p Blocks using the mapping in \p VMap.
void llvm::remapInstructionsInBlocks(
    const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
  // Rewrite the code to refer to itself.
  for (auto *BB : Blocks)
    for (auto &Inst : *BB)
      RemapInstruction(&Inst, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
}

/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
/// Blocks.
///
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
                                   Loop *OrigLoop, ValueToValueMapTy &VMap,
                                   const Twine &NameSuffix, LoopInfo *LI,
                                   DominatorTree *DT,
                                   SmallVectorImpl<BasicBlock *> &Blocks) {
  Function *F = OrigLoop->getHeader()->getParent();
  Loop *ParentLoop = OrigLoop->getParentLoop();
  DenseMap<Loop *, Loop *> LMap;

  Loop *NewLoop = LI->AllocateLoop();
  LMap[OrigLoop] = NewLoop;
  if (ParentLoop)
    ParentLoop->addChildLoop(NewLoop);
  else
    LI->addTopLevelLoop(NewLoop);

  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
  assert(OrigPH && "No preheader");
  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
  // To rename the loop PHIs.
  VMap[OrigPH] = NewPH;
  Blocks.push_back(NewPH);

  // Update LoopInfo.
  if (ParentLoop)
    ParentLoop->addBasicBlockToLoop(NewPH, *LI);

  // Update DominatorTree.
  DT->addNewBlock(NewPH, LoopDomBB);

  for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
    Loop *&NewLoop = LMap[CurLoop];
    if (!NewLoop) {
      NewLoop = LI->AllocateLoop();

      // Establish the parent/child relationship.
      Loop *OrigParent = CurLoop->getParentLoop();
      assert(OrigParent && "Could not find the original parent loop");
      Loop *NewParentLoop = LMap[OrigParent];
      assert(NewParentLoop && "Could not find the new parent loop");

      NewParentLoop->addChildLoop(NewLoop);
    }
  }

  for (BasicBlock *BB : OrigLoop->getBlocks()) {
    Loop *CurLoop = LI->getLoopFor(BB);
    Loop *&NewLoop = LMap[CurLoop];
    assert(NewLoop && "Expecting new loop to be allocated");

    BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
    VMap[BB] = NewBB;

    // Update LoopInfo.
    NewLoop->addBasicBlockToLoop(NewBB, *LI);

    // Add DominatorTree node. After seeing all blocks, update to correct
    // IDom.
    DT->addNewBlock(NewBB, NewPH);

    Blocks.push_back(NewBB);
  }

  for (BasicBlock *BB : OrigLoop->getBlocks()) {
    // Update loop headers.
    Loop *CurLoop = LI->getLoopFor(BB);
    if (BB == CurLoop->getHeader())
      LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));

    // Update DominatorTree.
    BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
    DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
                                 cast<BasicBlock>(VMap[IDomBB]));
  }

  // Move them physically from the end of the block list.
  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
                                NewPH);
  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
                                NewLoop->getHeader()->getIterator(), F->end());

  return NewLoop;
}

/// Duplicate non-Phi instructions from the beginning of block up to
/// StopAt instruction into a split block between BB and its predecessor.
BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
    BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
    ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {

  assert(count(successors(PredBB), BB) == 1 &&
         "There must be a single edge between PredBB and BB!");
  // We are going to have to map operands from the original BB block to the new
  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
  // account for entry from PredBB.
  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);

  BasicBlock *NewBB = SplitEdge(PredBB, BB);
  NewBB->setName(PredBB->getName() + ".split");
  Instruction *NewTerm = NewBB->getTerminator();

  // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
  //        in the update set here.
  DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
                    {DominatorTree::Insert, PredBB, NewBB},
                    {DominatorTree::Insert, NewBB, BB}});

  // Clone the non-phi instructions of BB into NewBB, keeping track of the
  // mapping and using it to remap operands in the cloned instructions.
  // Stop once we see the terminator too. This covers the case where BB's
  // terminator gets replaced and StopAt == BB's terminator.
  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
    Instruction *New = BI->clone();
    New->setName(BI->getName());
    New->insertBefore(NewTerm);
    ValueMapping[&*BI] = New;

    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        auto I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }
  }

  return NewBB;
}