StraightLineStrengthReduce.cpp 28.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
//===- StraightLineStrengthReduce.cpp - -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements straight-line strength reduction (SLSR). Unlike loop
// strength reduction, this algorithm is designed to reduce arithmetic
// redundancy in straight-line code instead of loops. It has proven to be
// effective in simplifying arithmetic statements derived from an unrolled loop.
// It can also simplify the logic of SeparateConstOffsetFromGEP.
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
// reduction candidates in the following forms:
//
// Form 1: B + i * S
// Form 2: (B + i) * S
// Form 3: &B[i * S]
//
// where S is an integer variable, and i is a constant integer. If we found two
// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
// in a simpler way with respect to S1. For example,
//
// S1: X = B + i * S
// S2: Y = B + i' * S   => X + (i' - i) * S
//
// S1: X = (B + i) * S
// S2: Y = (B + i') * S => X + (i' - i) * S
//
// S1: X = &B[i * S]
// S2: Y = &B[i' * S]   => &X[(i' - i) * S]
//
// Note: (i' - i) * S is folded to the extent possible.
//
// This rewriting is in general a good idea. The code patterns we focus on
// usually come from loop unrolling, so (i' - i) * S is likely the same
// across iterations and can be reused. When that happens, the optimized form
// takes only one add starting from the second iteration.
//
// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
// multiple bases, we choose to rewrite S2 with respect to its "immediate"
// basis, the basis that is the closest ancestor in the dominator tree.
//
// TODO:
//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
//   left as future work.
//
// - When (i' - i) is constant but i and i' are not, we could still perform
//   SLSR.

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <limits>
#include <list>
#include <vector>

using namespace llvm;
using namespace PatternMatch;

static const unsigned UnknownAddressSpace =
    std::numeric_limits<unsigned>::max();

namespace {

class StraightLineStrengthReduce : public FunctionPass {
public:
  // SLSR candidate. Such a candidate must be in one of the forms described in
  // the header comments.
  struct Candidate {
    enum Kind {
      Invalid, // reserved for the default constructor
      Add,     // B + i * S
      Mul,     // (B + i) * S
      GEP,     // &B[..][i * S][..]
    };

    Candidate() = default;
    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
              Instruction *I)
        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}

    Kind CandidateKind = Invalid;

    const SCEV *Base = nullptr;

    // Note that Index and Stride of a GEP candidate do not necessarily have the
    // same integer type. In that case, during rewriting, Stride will be
    // sign-extended or truncated to Index's type.
    ConstantInt *Index = nullptr;

    Value *Stride = nullptr;

    // The instruction this candidate corresponds to. It helps us to rewrite a
    // candidate with respect to its immediate basis. Note that one instruction
    // can correspond to multiple candidates depending on how you associate the
    // expression. For instance,
    //
    // (a + 1) * (b + 2)
    //
    // can be treated as
    //
    // <Base: a, Index: 1, Stride: b + 2>
    //
    // or
    //
    // <Base: b, Index: 2, Stride: a + 1>
    Instruction *Ins = nullptr;

    // Points to the immediate basis of this candidate, or nullptr if we cannot
    // find any basis for this candidate.
    Candidate *Basis = nullptr;
  };

  static char ID;

  StraightLineStrengthReduce() : FunctionPass(ID) {
    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    // We do not modify the shape of the CFG.
    AU.setPreservesCFG();
  }

  bool doInitialization(Module &M) override {
    DL = &M.getDataLayout();
    return false;
  }

  bool runOnFunction(Function &F) override;

private:
  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
  // share the same base and stride.
  bool isBasisFor(const Candidate &Basis, const Candidate &C);

  // Returns whether the candidate can be folded into an addressing mode.
  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
                  const DataLayout *DL);

  // Returns true if C is already in a simplest form and not worth being
  // rewritten.
  bool isSimplestForm(const Candidate &C);

  // Checks whether I is in a candidate form. If so, adds all the matching forms
  // to Candidates, and tries to find the immediate basis for each of them.
  void allocateCandidatesAndFindBasis(Instruction *I);

  // Allocate candidates and find bases for Add instructions.
  void allocateCandidatesAndFindBasisForAdd(Instruction *I);

  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
  // candidate.
  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
                                            Instruction *I);
  // Allocate candidates and find bases for Mul instructions.
  void allocateCandidatesAndFindBasisForMul(Instruction *I);

  // Splits LHS into Base + Index and, if succeeds, calls
  // allocateCandidatesAndFindBasis.
  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
                                            Instruction *I);

  // Allocate candidates and find bases for GetElementPtr instructions.
  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);

  // A helper function that scales Idx with ElementSize before invoking
  // allocateCandidatesAndFindBasis.
  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
                                            Value *S, uint64_t ElementSize,
                                            Instruction *I);

  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
  // basis.
  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
                                      ConstantInt *Idx, Value *S,
                                      Instruction *I);

  // Rewrites candidate C with respect to Basis.
  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);

  // A helper function that factors ArrayIdx to a product of a stride and a
  // constant index, and invokes allocateCandidatesAndFindBasis with the
  // factorings.
  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
                        GetElementPtrInst *GEP);

  // Emit code that computes the "bump" from Basis to C. If the candidate is a
  // GEP and the bump is not divisible by the element size of the GEP, this
  // function sets the BumpWithUglyGEP flag to notify its caller to bump the
  // basis using an ugly GEP.
  static Value *emitBump(const Candidate &Basis, const Candidate &C,
                         IRBuilder<> &Builder, const DataLayout *DL,
                         bool &BumpWithUglyGEP);

  const DataLayout *DL = nullptr;
  DominatorTree *DT = nullptr;
  ScalarEvolution *SE;
  TargetTransformInfo *TTI = nullptr;
  std::list<Candidate> Candidates;

  // Temporarily holds all instructions that are unlinked (but not deleted) by
  // rewriteCandidateWithBasis. These instructions will be actually removed
  // after all rewriting finishes.
  std::vector<Instruction *> UnlinkedInstructions;
};

} // end anonymous namespace

char StraightLineStrengthReduce::ID = 0;

INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
                      "Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
                    "Straight line strength reduction", false, false)

FunctionPass *llvm::createStraightLineStrengthReducePass() {
  return new StraightLineStrengthReduce();
}

bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
                                            const Candidate &C) {
  return (Basis.Ins != C.Ins && // skip the same instruction
          // They must have the same type too. Basis.Base == C.Base doesn't
          // guarantee their types are the same (PR23975).
          Basis.Ins->getType() == C.Ins->getType() &&
          // Basis must dominate C in order to rewrite C with respect to Basis.
          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
          // They share the same base, stride, and candidate kind.
          Basis.Base == C.Base && Basis.Stride == C.Stride &&
          Basis.CandidateKind == C.CandidateKind);
}

static bool isGEPFoldable(GetElementPtrInst *GEP,
                          const TargetTransformInfo *TTI) {
  SmallVector<const Value*, 4> Indices;
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
    Indices.push_back(*I);
  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
                         Indices) == TargetTransformInfo::TCC_Free;
}

// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
                          TargetTransformInfo *TTI) {
  // Index->getSExtValue() may crash if Index is wider than 64-bit.
  return Index->getBitWidth() <= 64 &&
         TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
                                    Index->getSExtValue(), UnknownAddressSpace);
}

bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
                                            TargetTransformInfo *TTI,
                                            const DataLayout *DL) {
  if (C.CandidateKind == Candidate::Add)
    return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
  if (C.CandidateKind == Candidate::GEP)
    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
  return false;
}

// Returns true if GEP has zero or one non-zero index.
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
  unsigned NumNonZeroIndices = 0;
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
    if (ConstIdx == nullptr || !ConstIdx->isZero())
      ++NumNonZeroIndices;
  }
  return NumNonZeroIndices <= 1;
}

bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
  if (C.CandidateKind == Candidate::Add) {
    // B + 1 * S or B + (-1) * S
    return C.Index->isOne() || C.Index->isMinusOne();
  }
  if (C.CandidateKind == Candidate::Mul) {
    // (B + 0) * S
    return C.Index->isZero();
  }
  if (C.CandidateKind == Candidate::GEP) {
    // (char*)B + S or (char*)B - S
    return ((C.Index->isOne() || C.Index->isMinusOne()) &&
            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
  }
  return false;
}

// TODO: We currently implement an algorithm whose time complexity is linear in
// the number of existing candidates. However, we could do better by using
// ScopedHashTable. Specifically, while traversing the dominator tree, we could
// maintain all the candidates that dominate the basic block being traversed in
// a ScopedHashTable. This hash table is indexed by the base and the stride of
// a candidate. Therefore, finding the immediate basis of a candidate boils down
// to one hash-table look up.
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
    Instruction *I) {
  Candidate C(CT, B, Idx, S, I);
  // SLSR can complicate an instruction in two cases:
  //
  // 1. If we can fold I into an addressing mode, computing I is likely free or
  // takes only one instruction.
  //
  // 2. I is already in a simplest form. For example, when
  //      X = B + 8 * S
  //      Y = B + S,
  //    rewriting Y to X - 7 * S is probably a bad idea.
  //
  // In the above cases, we still add I to the candidate list so that I can be
  // the basis of other candidates, but we leave I's basis blank so that I
  // won't be rewritten.
  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
    // Try to compute the immediate basis of C.
    unsigned NumIterations = 0;
    // Limit the scan radius to avoid running in quadratice time.
    static const unsigned MaxNumIterations = 50;
    for (auto Basis = Candidates.rbegin();
         Basis != Candidates.rend() && NumIterations < MaxNumIterations;
         ++Basis, ++NumIterations) {
      if (isBasisFor(*Basis, C)) {
        C.Basis = &(*Basis);
        break;
      }
    }
  }
  // Regardless of whether we find a basis for C, we need to push C to the
  // candidate list so that it can be the basis of other candidates.
  Candidates.push_back(C);
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
    Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
    allocateCandidatesAndFindBasisForAdd(I);
    break;
  case Instruction::Mul:
    allocateCandidatesAndFindBasisForMul(I);
    break;
  case Instruction::GetElementPtr:
    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
    break;
  }
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
    Instruction *I) {
  // Try matching B + i * S.
  if (!isa<IntegerType>(I->getType()))
    return;

  assert(I->getNumOperands() == 2 && "isn't I an add?");
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
  if (LHS != RHS)
    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
    Value *LHS, Value *RHS, Instruction *I) {
  Value *S = nullptr;
  ConstantInt *Idx = nullptr;
  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
    // I = LHS + RHS = LHS + Idx * S
    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
    APInt One(Idx->getBitWidth(), 1);
    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
  } else {
    // At least, I = LHS + 1 * RHS
    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
                                   I);
  }
}

// Returns true if A matches B + C where C is constant.
static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
  return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
          match(A, m_Add(m_ConstantInt(C), m_Value(B))));
}

// Returns true if A matches B | C where C is constant.
static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
  return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
          match(A, m_Or(m_ConstantInt(C), m_Value(B))));
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
    Value *LHS, Value *RHS, Instruction *I) {
  Value *B = nullptr;
  ConstantInt *Idx = nullptr;
  if (matchesAdd(LHS, B, Idx)) {
    // If LHS is in the form of "Base + Index", then I is in the form of
    // "(Base + Index) * RHS".
    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
  } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
    // If LHS is in the form of "Base | Index" and Base and Index have no common
    // bits set, then
    //   Base | Index = Base + Index
    // and I is thus in the form of "(Base + Index) * RHS".
    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
  } else {
    // Otherwise, at least try the form (LHS + 0) * RHS.
    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
                                   I);
  }
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
    Instruction *I) {
  // Try matching (B + i) * S.
  // TODO: we could extend SLSR to float and vector types.
  if (!isa<IntegerType>(I->getType()))
    return;

  assert(I->getNumOperands() == 2 && "isn't I a mul?");
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
  if (LHS != RHS) {
    // Symmetrically, try to split RHS to Base + Index.
    allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
  }
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
    Instruction *I) {
  // I = B + sext(Idx *nsw S) * ElementSize
  //   = B + (sext(Idx) * sext(S)) * ElementSize
  //   = B + (sext(Idx) * ElementSize) * sext(S)
  // Casting to IntegerType is safe because we skipped vector GEPs.
  IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
  ConstantInt *ScaledIdx = ConstantInt::get(
      IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
}

void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
                                                  const SCEV *Base,
                                                  uint64_t ElementSize,
                                                  GetElementPtrInst *GEP) {
  // At least, ArrayIdx = ArrayIdx *nsw 1.
  allocateCandidatesAndFindBasisForGEP(
      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
      ArrayIdx, ElementSize, GEP);
  Value *LHS = nullptr;
  ConstantInt *RHS = nullptr;
  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
  // itself. This would allow us to handle the shl case for free. However,
  // matching SCEVs has two issues:
  //
  // 1. this would complicate rewriting because the rewriting procedure
  // would have to translate SCEVs back to IR instructions. This translation
  // is difficult when LHS is further evaluated to a composite SCEV.
  //
  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
  // to strip nsw/nuw flags which are critical for SLSR to trace into
  // sext'ed multiplication.
  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
    // SLSR is currently unsafe if i * S may overflow.
    // GEP = Base + sext(LHS *nsw RHS) * ElementSize
    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
    APInt One(RHS->getBitWidth(), 1);
    ConstantInt *PowerOf2 =
        ConstantInt::get(RHS->getContext(), One << RHS->getValue());
    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
  }
}

void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
    GetElementPtrInst *GEP) {
  // TODO: handle vector GEPs
  if (GEP->getType()->isVectorTy())
    return;

  SmallVector<const SCEV *, 4> IndexExprs;
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
    IndexExprs.push_back(SE->getSCEV(*I));

  gep_type_iterator GTI = gep_type_begin(GEP);
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isStruct())
      continue;

    const SCEV *OrigIndexExpr = IndexExprs[I - 1];
    IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());

    // The base of this candidate is GEP's base plus the offsets of all
    // indices except this current one.
    const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
    Value *ArrayIdx = GEP->getOperand(I);
    uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
    if (ArrayIdx->getType()->getIntegerBitWidth() <=
        DL->getPointerSizeInBits(GEP->getAddressSpace())) {
      // Skip factoring if ArrayIdx is wider than the pointer size, because
      // ArrayIdx is implicitly truncated to the pointer size.
      factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
    }
    // When ArrayIdx is the sext of a value, we try to factor that value as
    // well.  Handling this case is important because array indices are
    // typically sign-extended to the pointer size.
    Value *TruncatedArrayIdx = nullptr;
    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
        TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
            DL->getPointerSizeInBits(GEP->getAddressSpace())) {
      // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
      // because TruncatedArrayIdx is implicitly truncated to the pointer size.
      factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
    }

    IndexExprs[I - 1] = OrigIndexExpr;
  }
}

// A helper function that unifies the bitwidth of A and B.
static void unifyBitWidth(APInt &A, APInt &B) {
  if (A.getBitWidth() < B.getBitWidth())
    A = A.sext(B.getBitWidth());
  else if (A.getBitWidth() > B.getBitWidth())
    B = B.sext(A.getBitWidth());
}

Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
                                            const Candidate &C,
                                            IRBuilder<> &Builder,
                                            const DataLayout *DL,
                                            bool &BumpWithUglyGEP) {
  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
  unifyBitWidth(Idx, BasisIdx);
  APInt IndexOffset = Idx - BasisIdx;

  BumpWithUglyGEP = false;
  if (Basis.CandidateKind == Candidate::GEP) {
    APInt ElementSize(
        IndexOffset.getBitWidth(),
        DL->getTypeAllocSize(
            cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
    APInt Q, R;
    APInt::sdivrem(IndexOffset, ElementSize, Q, R);
    if (R == 0)
      IndexOffset = Q;
    else
      BumpWithUglyGEP = true;
  }

  // Compute Bump = C - Basis = (i' - i) * S.
  // Common case 1: if (i' - i) is 1, Bump = S.
  if (IndexOffset == 1)
    return C.Stride;
  // Common case 2: if (i' - i) is -1, Bump = -S.
  if (IndexOffset.isAllOnesValue())
    return Builder.CreateNeg(C.Stride);

  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
  // have different bit widths.
  IntegerType *DeltaType =
      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
  if (IndexOffset.isPowerOf2()) {
    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
    return Builder.CreateShl(ExtendedStride, Exponent);
  }
  if ((-IndexOffset).isPowerOf2()) {
    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
    ConstantInt *Exponent =
        ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
  }
  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
  return Builder.CreateMul(ExtendedStride, Delta);
}

void StraightLineStrengthReduce::rewriteCandidateWithBasis(
    const Candidate &C, const Candidate &Basis) {
  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
         C.Stride == Basis.Stride);
  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
  // basis of a candidate cannot be unlinked before the candidate.
  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");

  // An instruction can correspond to multiple candidates. Therefore, instead of
  // simply deleting an instruction when we rewrite it, we mark its parent as
  // nullptr (i.e. unlink it) so that we can skip the candidates whose
  // instruction is already rewritten.
  if (!C.Ins->getParent())
    return;

  IRBuilder<> Builder(C.Ins);
  bool BumpWithUglyGEP;
  Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
  switch (C.CandidateKind) {
  case Candidate::Add:
  case Candidate::Mul: {
    // C = Basis + Bump
    Value *NegBump;
    if (match(Bump, m_Neg(m_Value(NegBump)))) {
      // If Bump is a neg instruction, emit C = Basis - (-Bump).
      Reduced = Builder.CreateSub(Basis.Ins, NegBump);
      // We only use the negative argument of Bump, and Bump itself may be
      // trivially dead.
      RecursivelyDeleteTriviallyDeadInstructions(Bump);
    } else {
      // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
      // usually unsound, e.g.,
      //
      // X = (-2 +nsw 1) *nsw INT_MAX
      // Y = (-2 +nsw 3) *nsw INT_MAX
      //   =>
      // Y = X + 2 * INT_MAX
      //
      // Neither + and * in the resultant expression are nsw.
      Reduced = Builder.CreateAdd(Basis.Ins, Bump);
    }
    break;
  }
  case Candidate::GEP:
    {
      Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
      bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
      if (BumpWithUglyGEP) {
        // C = (char *)Basis + Bump
        unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
        Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
        Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
        if (InBounds)
          Reduced =
              Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
        else
          Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
        Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
      } else {
        // C = gep Basis, Bump
        // Canonicalize bump to pointer size.
        Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
        if (InBounds)
          Reduced = Builder.CreateInBoundsGEP(
              cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
              Basis.Ins, Bump);
        else
          Reduced = Builder.CreateGEP(
              cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
              Basis.Ins, Bump);
      }
      break;
    }
  default:
    llvm_unreachable("C.CandidateKind is invalid");
  };
  Reduced->takeName(C.Ins);
  C.Ins->replaceAllUsesWith(Reduced);
  // Unlink C.Ins so that we can skip other candidates also corresponding to
  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
  C.Ins->removeFromParent();
  UnlinkedInstructions.push_back(C.Ins);
}

bool StraightLineStrengthReduce::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  // Traverse the dominator tree in the depth-first order. This order makes sure
  // all bases of a candidate are in Candidates when we process it.
  for (const auto Node : depth_first(DT))
    for (auto &I : *(Node->getBlock()))
      allocateCandidatesAndFindBasis(&I);

  // Rewrite candidates in the reverse depth-first order. This order makes sure
  // a candidate being rewritten is not a basis for any other candidate.
  while (!Candidates.empty()) {
    const Candidate &C = Candidates.back();
    if (C.Basis != nullptr) {
      rewriteCandidateWithBasis(C, *C.Basis);
    }
    Candidates.pop_back();
  }

  // Delete all unlink instructions.
  for (auto *UnlinkedInst : UnlinkedInstructions) {
    for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
      Value *Op = UnlinkedInst->getOperand(I);
      UnlinkedInst->setOperand(I, nullptr);
      RecursivelyDeleteTriviallyDeadInstructions(Op);
    }
    UnlinkedInst->deleteValue();
  }
  bool Ret = !UnlinkedInstructions.empty();
  UnlinkedInstructions.clear();
  return Ret;
}