SCCP.cpp 76.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   * Proves conditional branches to be unconditional
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "sccp"

STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
STATISTIC(NumInstReplaced,
          "Number of instructions replaced with (simpler) instruction");

STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
STATISTIC(
    IPNumInstReplaced,
    "Number of instructions replaced with (simpler) instruction by IPSCCP");

// The maximum number of range extensions allowed for operations requiring
// widening.
static const unsigned MaxNumRangeExtensions = 10;

/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
  return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
      MaxNumRangeExtensions);
}
namespace {

// Helper to check if \p LV is either a constant or a constant
// range with a single element. This should cover exactly the same cases as the
// old ValueLatticeElement::isConstant() and is intended to be used in the
// transition to ValueLatticeElement.
bool isConstant(const ValueLatticeElement &LV) {
  return LV.isConstant() ||
         (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
}

// Helper to check if \p LV is either overdefined or a constant range with more
// than a single element. This should cover exactly the same cases as the old
// ValueLatticeElement::isOverdefined() and is intended to be used in the
// transition to ValueLatticeElement.
bool isOverdefined(const ValueLatticeElement &LV) {
  return LV.isOverdefined() ||
         (LV.isConstantRange() && !LV.getConstantRange().isSingleElement());
}

//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
  const DataLayout &DL;
  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
  DenseMap<Value *, ValueLatticeElement>
      ValueState; // The state each value is in.

  /// StructValueState - This maintains ValueState for values that have
  /// StructType, for example for formal arguments, calls, insertelement, etc.
  DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;

  /// GlobalValue - If we are tracking any values for the contents of a global
  /// variable, we keep a mapping from the constant accessor to the element of
  /// the global, to the currently known value.  If the value becomes
  /// overdefined, it's entry is simply removed from this map.
  DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;

  /// TrackedRetVals - If we are tracking arguments into and the return
  /// value out of a function, it will have an entry in this map, indicating
  /// what the known return value for the function is.
  MapVector<Function *, ValueLatticeElement> TrackedRetVals;

  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
  /// that return multiple values.
  MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
      TrackedMultipleRetVals;

  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
  /// represented here for efficient lookup.
  SmallPtrSet<Function *, 16> MRVFunctionsTracked;

  /// MustTailFunctions - Each function here is a callee of non-removable
  /// musttail call site.
  SmallPtrSet<Function *, 16> MustTailCallees;

  /// TrackingIncomingArguments - This is the set of functions for whose
  /// arguments we make optimistic assumptions about and try to prove as
  /// constants.
  SmallPtrSet<Function *, 16> TrackingIncomingArguments;

  /// The reason for two worklists is that overdefined is the lowest state
  /// on the lattice, and moving things to overdefined as fast as possible
  /// makes SCCP converge much faster.
  ///
  /// By having a separate worklist, we accomplish this because everything
  /// possibly overdefined will become overdefined at the soonest possible
  /// point.
  SmallVector<Value *, 64> OverdefinedInstWorkList;
  SmallVector<Value *, 64> InstWorkList;

  // The BasicBlock work list
  SmallVector<BasicBlock *, 64>  BBWorkList;

  /// KnownFeasibleEdges - Entries in this set are edges which have already had
  /// PHI nodes retriggered.
  using Edge = std::pair<BasicBlock *, BasicBlock *>;
  DenseSet<Edge> KnownFeasibleEdges;

  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;

  LLVMContext &Ctx;

public:
  void addAnalysis(Function &F, AnalysisResultsForFn A) {
    AnalysisResults.insert({&F, std::move(A)});
  }

  const PredicateBase *getPredicateInfoFor(Instruction *I) {
    auto A = AnalysisResults.find(I->getParent()->getParent());
    if (A == AnalysisResults.end())
      return nullptr;
    return A->second.PredInfo->getPredicateInfoFor(I);
  }

  DomTreeUpdater getDTU(Function &F) {
    auto A = AnalysisResults.find(&F);
    assert(A != AnalysisResults.end() && "Need analysis results for function.");
    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
  }

  SCCPSolver(const DataLayout &DL,
             std::function<const TargetLibraryInfo &(Function &)> GetTLI,
             LLVMContext &Ctx)
      : DL(DL), GetTLI(std::move(GetTLI)), Ctx(Ctx) {}

  /// MarkBlockExecutable - This method can be used by clients to mark all of
  /// the blocks that are known to be intrinsically live in the processed unit.
  ///
  /// This returns true if the block was not considered live before.
  bool MarkBlockExecutable(BasicBlock *BB) {
    if (!BBExecutable.insert(BB).second)
      return false;
    LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    BBWorkList.push_back(BB);  // Add the block to the work list!
    return true;
  }

  /// TrackValueOfGlobalVariable - Clients can use this method to
  /// inform the SCCPSolver that it should track loads and stores to the
  /// specified global variable if it can.  This is only legal to call if
  /// performing Interprocedural SCCP.
  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    // We only track the contents of scalar globals.
    if (GV->getValueType()->isSingleValueType()) {
      ValueLatticeElement &IV = TrackedGlobals[GV];
      if (!isa<UndefValue>(GV->getInitializer()))
        IV.markConstant(GV->getInitializer());
    }
  }

  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
  /// and out of the specified function (which cannot have its address taken),
  /// this method must be called.
  void AddTrackedFunction(Function *F) {
    // Add an entry, F -> undef.
    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
      MRVFunctionsTracked.insert(F);
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        TrackedMultipleRetVals.insert(
            std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
    } else
      TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
  }

  /// AddMustTailCallee - If the SCCP solver finds that this function is called
  /// from non-removable musttail call site.
  void AddMustTailCallee(Function *F) {
    MustTailCallees.insert(F);
  }

  /// Returns true if the given function is called from non-removable musttail
  /// call site.
  bool isMustTailCallee(Function *F) {
    return MustTailCallees.count(F);
  }

  void AddArgumentTrackedFunction(Function *F) {
    TrackingIncomingArguments.insert(F);
  }

  /// Returns true if the given function is in the solver's set of
  /// argument-tracked functions.
  bool isArgumentTrackedFunction(Function *F) {
    return TrackingIncomingArguments.count(F);
  }

  /// Solve - Solve for constants and executable blocks.
  void Solve();

  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
  /// that branches on undef values cannot reach any of their successors.
  /// However, this is not a safe assumption.  After we solve dataflow, this
  /// method should be use to handle this.  If this returns true, the solver
  /// should be rerun.
  bool ResolvedUndefsIn(Function &F);

  bool isBlockExecutable(BasicBlock *BB) const {
    return BBExecutable.count(BB);
  }

  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
  // block to the 'To' basic block is currently feasible.
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);

  std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
    std::vector<ValueLatticeElement> StructValues;
    auto *STy = dyn_cast<StructType>(V->getType());
    assert(STy && "getStructLatticeValueFor() can be called only on structs");
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      auto I = StructValueState.find(std::make_pair(V, i));
      assert(I != StructValueState.end() && "Value not in valuemap!");
      StructValues.push_back(I->second);
    }
    return StructValues;
  }

  void removeLatticeValueFor(Value *V) { ValueState.erase(V); }

  const ValueLatticeElement &getLatticeValueFor(Value *V) const {
    assert(!V->getType()->isStructTy() &&
           "Should use getStructLatticeValueFor");
    DenseMap<Value *, ValueLatticeElement>::const_iterator I =
        ValueState.find(V);
    assert(I != ValueState.end() &&
           "V not found in ValueState nor Paramstate map!");
    return I->second;
  }

  /// getTrackedRetVals - Get the inferred return value map.
  const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
    return TrackedRetVals;
  }

  /// getTrackedGlobals - Get and return the set of inferred initializers for
  /// global variables.
  const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
    return TrackedGlobals;
  }

  /// getMRVFunctionsTracked - Get the set of functions which return multiple
  /// values tracked by the pass.
  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
    return MRVFunctionsTracked;
  }

  /// getMustTailCallees - Get the set of functions which are called
  /// from non-removable musttail call sites.
  const SmallPtrSet<Function *, 16> getMustTailCallees() {
    return MustTailCallees;
  }

  /// markOverdefined - Mark the specified value overdefined.  This
  /// works with both scalars and structs.
  void markOverdefined(Value *V) {
    if (auto *STy = dyn_cast<StructType>(V->getType()))
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        markOverdefined(getStructValueState(V, i), V);
    else
      markOverdefined(ValueState[V], V);
  }

  // isStructLatticeConstant - Return true if all the lattice values
  // corresponding to elements of the structure are constants,
  // false otherwise.
  bool isStructLatticeConstant(Function *F, StructType *STy) {
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
      assert(It != TrackedMultipleRetVals.end());
      ValueLatticeElement LV = It->second;
      if (!isConstant(LV))
        return false;
    }
    return true;
  }

  /// Helper to return a Constant if \p LV is either a constant or a constant
  /// range with a single element.
  Constant *getConstant(const ValueLatticeElement &LV) const {
    if (LV.isConstant())
      return LV.getConstant();

    if (LV.isConstantRange()) {
      auto &CR = LV.getConstantRange();
      if (CR.getSingleElement())
        return ConstantInt::get(Ctx, *CR.getSingleElement());
    }
    return nullptr;
  }

private:
  ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
    return dyn_cast_or_null<ConstantInt>(getConstant(IV));
  }

  // pushToWorkList - Helper for markConstant/markOverdefined
  void pushToWorkList(ValueLatticeElement &IV, Value *V) {
    if (IV.isOverdefined())
      return OverdefinedInstWorkList.push_back(V);
    InstWorkList.push_back(V);
  }

  // Helper to push \p V to the worklist, after updating it to \p IV. Also
  // prints a debug message with the updated value.
  void pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
    LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
    pushToWorkList(IV, V);
  }

  // markConstant - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that
  // the users of the instruction are updated later.
  bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
                    bool MayIncludeUndef = false) {
    if (!IV.markConstant(C, MayIncludeUndef))
      return false;
    LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    pushToWorkList(IV, V);
    return true;
  }

  bool markConstant(Value *V, Constant *C) {
    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
    return markConstant(ValueState[V], V, C);
  }

  // markOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the overdefined instruction
  // work list so that the users of the instruction are updated later.
  bool markOverdefined(ValueLatticeElement &IV, Value *V) {
    if (!IV.markOverdefined()) return false;

    LLVM_DEBUG(dbgs() << "markOverdefined: ";
               if (auto *F = dyn_cast<Function>(V)) dbgs()
               << "Function '" << F->getName() << "'\n";
               else dbgs() << *V << '\n');
    // Only instructions go on the work list
    pushToWorkList(IV, V);
    return true;
  }

  /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
  /// changes.
  bool mergeInValue(ValueLatticeElement &IV, Value *V,
                    ValueLatticeElement MergeWithV,
                    ValueLatticeElement::MergeOptions Opts = {
                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
    if (IV.mergeIn(MergeWithV, Opts)) {
      pushToWorkList(IV, V);
      LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
                        << IV << "\n");
      return true;
    }
    return false;
  }

  bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
                    ValueLatticeElement::MergeOptions Opts = {
                        /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
    assert(!V->getType()->isStructTy() &&
           "non-structs should use markConstant");
    return mergeInValue(ValueState[V], V, MergeWithV, Opts);
  }

  /// getValueState - Return the ValueLatticeElement object that corresponds to
  /// the value.  This function handles the case when the value hasn't been seen
  /// yet by properly seeding constants etc.
  ValueLatticeElement &getValueState(Value *V) {
    assert(!V->getType()->isStructTy() && "Should use getStructValueState");

    auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
    ValueLatticeElement &LV = I.first->second;

    if (!I.second)
      return LV;  // Common case, already in the map.

    if (auto *C = dyn_cast<Constant>(V))
      LV.markConstant(C);          // Constants are constant

    // All others are unknown by default.
    return LV;
  }

  /// getStructValueState - Return the ValueLatticeElement object that
  /// corresponds to the value/field pair.  This function handles the case when
  /// the value hasn't been seen yet by properly seeding constants etc.
  ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
    assert(V->getType()->isStructTy() && "Should use getValueState");
    assert(i < cast<StructType>(V->getType())->getNumElements() &&
           "Invalid element #");

    auto I = StructValueState.insert(
        std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
    ValueLatticeElement &LV = I.first->second;

    if (!I.second)
      return LV;  // Common case, already in the map.

    if (auto *C = dyn_cast<Constant>(V)) {
      Constant *Elt = C->getAggregateElement(i);

      if (!Elt)
        LV.markOverdefined();      // Unknown sort of constant.
      else if (isa<UndefValue>(Elt))
        ; // Undef values remain unknown.
      else
        LV.markConstant(Elt);      // Constants are constant.
    }

    // All others are underdefined by default.
    return LV;
  }

  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  /// work list if it is not already executable.
  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
      return false;  // This edge is already known to be executable!

    if (!MarkBlockExecutable(Dest)) {
      // If the destination is already executable, we just made an *edge*
      // feasible that wasn't before.  Revisit the PHI nodes in the block
      // because they have potentially new operands.
      LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
                        << " -> " << Dest->getName() << '\n');

      for (PHINode &PN : Dest->phis())
        visitPHINode(PN);
    }
    return true;
  }

  // getFeasibleSuccessors - Return a vector of booleans to indicate which
  // successors are reachable from a given terminator instruction.
  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);

  // OperandChangedState - This method is invoked on all of the users of an
  // instruction that was just changed state somehow.  Based on this
  // information, we need to update the specified user of this instruction.
  void OperandChangedState(Instruction *I) {
    if (BBExecutable.count(I->getParent()))   // Inst is executable?
      visit(*I);
  }

  // Add U as additional user of V.
  void addAdditionalUser(Value *V, User *U) {
    auto Iter = AdditionalUsers.insert({V, {}});
    Iter.first->second.insert(U);
  }

  // Mark I's users as changed, including AdditionalUsers.
  void markUsersAsChanged(Value *I) {
    // Functions include their arguments in the use-list. Changed function
    // values mean that the result of the function changed. We only need to
    // update the call sites with the new function result and do not have to
    // propagate the call arguments.
    if (isa<Function>(I)) {
      for (User *U : I->users()) {
        if (auto *CB = dyn_cast<CallBase>(U))
          handleCallResult(*CB);
      }
    } else {
      for (User *U : I->users())
        if (auto *UI = dyn_cast<Instruction>(U))
          OperandChangedState(UI);
    }

    auto Iter = AdditionalUsers.find(I);
    if (Iter != AdditionalUsers.end()) {
      for (User *U : Iter->second)
        if (auto *UI = dyn_cast<Instruction>(U))
          OperandChangedState(UI);
    }
  }
  void handleCallOverdefined(CallBase &CB);
  void handleCallResult(CallBase &CB);
  void handleCallArguments(CallBase &CB);

private:
  friend class InstVisitor<SCCPSolver>;

  // visit implementations - Something changed in this instruction.  Either an
  // operand made a transition, or the instruction is newly executable.  Change
  // the value type of I to reflect these changes if appropriate.
  void visitPHINode(PHINode &I);

  // Terminators

  void visitReturnInst(ReturnInst &I);
  void visitTerminator(Instruction &TI);

  void visitCastInst(CastInst &I);
  void visitSelectInst(SelectInst &I);
  void visitUnaryOperator(Instruction &I);
  void visitBinaryOperator(Instruction &I);
  void visitCmpInst(CmpInst &I);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);

  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
    markOverdefined(&CPI);
    visitTerminator(CPI);
  }

  // Instructions that cannot be folded away.

  void visitStoreInst     (StoreInst &I);
  void visitLoadInst      (LoadInst &I);
  void visitGetElementPtrInst(GetElementPtrInst &I);

  void visitCallInst      (CallInst &I) {
    visitCallBase(I);
  }

  void visitInvokeInst    (InvokeInst &II) {
    visitCallBase(II);
    visitTerminator(II);
  }

  void visitCallBrInst    (CallBrInst &CBI) {
    visitCallBase(CBI);
    visitTerminator(CBI);
  }

  void visitCallBase      (CallBase &CB);
  void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
  void visitFenceInst     (FenceInst &I) { /*returns void*/ }

  void visitInstruction(Instruction &I) {
    // All the instructions we don't do any special handling for just
    // go to overdefined.
    LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
    markOverdefined(&I);
  }
};

} // end anonymous namespace

// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
                                       SmallVectorImpl<bool> &Succs) {
  Succs.resize(TI.getNumSuccessors());
  if (auto *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
      return;
    }

    ValueLatticeElement BCValue = getValueState(BI->getCondition());
    ConstantInt *CI = getConstantInt(BCValue);
    if (!CI) {
      // Overdefined condition variables, and branches on unfoldable constant
      // conditions, mean the branch could go either way.
      if (!BCValue.isUnknownOrUndef())
        Succs[0] = Succs[1] = true;
      return;
    }

    // Constant condition variables mean the branch can only go a single way.
    Succs[CI->isZero()] = true;
    return;
  }

  // Unwinding instructions successors are always executable.
  if (TI.isExceptionalTerminator()) {
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
    if (!SI->getNumCases()) {
      Succs[0] = true;
      return;
    }
    ValueLatticeElement SCValue = getValueState(SI->getCondition());
    ConstantInt *CI = getConstantInt(SCValue);

    if (!CI) {   // Overdefined or unknown condition?
      // All destinations are executable!
      if (!SCValue.isUnknownOrUndef())
        Succs.assign(TI.getNumSuccessors(), true);
      return;
    }

    Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
    return;
  }

  // In case of indirect branch and its address is a blockaddress, we mark
  // the target as executable.
  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
    // Casts are folded by visitCastInst.
    ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
    BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
    if (!Addr) {   // Overdefined or unknown condition?
      // All destinations are executable!
      if (!IBRValue.isUnknownOrUndef())
        Succs.assign(TI.getNumSuccessors(), true);
      return;
    }

    BasicBlock* T = Addr->getBasicBlock();
    assert(Addr->getFunction() == T->getParent() &&
           "Block address of a different function ?");
    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
      // This is the target.
      if (IBR->getDestination(i) == T) {
        Succs[i] = true;
        return;
      }
    }

    // If we didn't find our destination in the IBR successor list, then we
    // have undefined behavior. Its ok to assume no successor is executable.
    return;
  }

  // In case of callbr, we pessimistically assume that all successors are
  // feasible.
  if (isa<CallBrInst>(&TI)) {
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}

// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
  // Check if we've called markEdgeExecutable on the edge yet. (We could
  // be more aggressive and try to consider edges which haven't been marked
  // yet, but there isn't any need.)
  return KnownFeasibleEdges.count(Edge(From, To));
}

// visit Implementations - Something changed in this instruction, either an
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
void SCCPSolver::visitPHINode(PHINode &PN) {
  // If this PN returns a struct, just mark the result overdefined.
  // TODO: We could do a lot better than this if code actually uses this.
  if (PN.getType()->isStructTy())
    return (void)markOverdefined(&PN);

  if (getValueState(&PN).isOverdefined())
    return; // Quick exit

  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
  // and slow us down a lot.  Just mark them overdefined.
  if (PN.getNumIncomingValues() > 64)
    return (void)markOverdefined(&PN);

  unsigned NumActiveIncoming = 0;

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  If they are all
  // constant, and they agree with each other, the PHI becomes the identical
  // constant.  If they are constant and don't agree, the PHI is a constant
  // range. If there are no executable operands, the PHI remains unknown.
  ValueLatticeElement PhiState = getValueState(&PN);
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
      continue;

    ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
    PhiState.mergeIn(IV);
    NumActiveIncoming++;
    if (PhiState.isOverdefined())
      break;
  }

  // We allow up to 1 range extension per active incoming value and one
  // additional extension. Note that we manually adjust the number of range
  // extensions to match the number of active incoming values. This helps to
  // limit multiple extensions caused by the same incoming value, if other
  // incoming values are equal.
  mergeInValue(&PN, PhiState,
               ValueLatticeElement::MergeOptions().setMaxWidenSteps(
                   NumActiveIncoming + 1));
  ValueLatticeElement &PhiStateRef = getValueState(&PN);
  PhiStateRef.setNumRangeExtensions(
      std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
}

void SCCPSolver::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() == 0) return;  // ret void

  Function *F = I.getParent()->getParent();
  Value *ResultOp = I.getOperand(0);

  // If we are tracking the return value of this function, merge it in.
  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    auto TFRVI = TrackedRetVals.find(F);
    if (TFRVI != TrackedRetVals.end()) {
      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
      return;
    }
  }

  // Handle functions that return multiple values.
  if (!TrackedMultipleRetVals.empty()) {
    if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
      if (MRVFunctionsTracked.count(F))
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
                       getStructValueState(ResultOp, i));
  }
}

void SCCPSolver::visitTerminator(Instruction &TI) {
  SmallVector<bool, 16> SuccFeasible;
  getFeasibleSuccessors(TI, SuccFeasible);

  BasicBlock *BB = TI.getParent();

  // Mark all feasible successors executable.
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i])
      markEdgeExecutable(BB, TI.getSuccessor(i));
}

void SCCPSolver::visitCastInst(CastInst &I) {
  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&I].isOverdefined())
    return;

  ValueLatticeElement OpSt = getValueState(I.getOperand(0));
  if (Constant *OpC = getConstant(OpSt)) {
    // Fold the constant as we build.
    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
    if (isa<UndefValue>(C))
      return;
    // Propagate constant value
    markConstant(&I, C);
  } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
    auto &LV = getValueState(&I);
    ConstantRange OpRange = OpSt.getConstantRange();
    Type *DestTy = I.getDestTy();
    ConstantRange Res =
        OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
    mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
  } else if (!OpSt.isUnknownOrUndef())
    markOverdefined(&I);
}

void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
  // If this returns a struct, mark all elements over defined, we don't track
  // structs in structs.
  if (EVI.getType()->isStructTy())
    return (void)markOverdefined(&EVI);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&EVI].isOverdefined())
    return (void)markOverdefined(&EVI);

  // If this is extracting from more than one level of struct, we don't know.
  if (EVI.getNumIndices() != 1)
    return (void)markOverdefined(&EVI);

  Value *AggVal = EVI.getAggregateOperand();
  if (AggVal->getType()->isStructTy()) {
    unsigned i = *EVI.idx_begin();
    ValueLatticeElement EltVal = getStructValueState(AggVal, i);
    mergeInValue(getValueState(&EVI), &EVI, EltVal);
  } else {
    // Otherwise, must be extracting from an array.
    return (void)markOverdefined(&EVI);
  }
}

void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
  auto *STy = dyn_cast<StructType>(IVI.getType());
  if (!STy)
    return (void)markOverdefined(&IVI);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (isOverdefined(ValueState[&IVI]))
    return (void)markOverdefined(&IVI);

  // If this has more than one index, we can't handle it, drive all results to
  // undef.
  if (IVI.getNumIndices() != 1)
    return (void)markOverdefined(&IVI);

  Value *Aggr = IVI.getAggregateOperand();
  unsigned Idx = *IVI.idx_begin();

  // Compute the result based on what we're inserting.
  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    // This passes through all values that aren't the inserted element.
    if (i != Idx) {
      ValueLatticeElement EltVal = getStructValueState(Aggr, i);
      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
      continue;
    }

    Value *Val = IVI.getInsertedValueOperand();
    if (Val->getType()->isStructTy())
      // We don't track structs in structs.
      markOverdefined(getStructValueState(&IVI, i), &IVI);
    else {
      ValueLatticeElement InVal = getValueState(Val);
      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    }
  }
}

void SCCPSolver::visitSelectInst(SelectInst &I) {
  // If this select returns a struct, just mark the result overdefined.
  // TODO: We could do a lot better than this if code actually uses this.
  if (I.getType()->isStructTy())
    return (void)markOverdefined(&I);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&I].isOverdefined())
    return (void)markOverdefined(&I);

  ValueLatticeElement CondValue = getValueState(I.getCondition());
  if (CondValue.isUnknownOrUndef())
    return;

  if (ConstantInt *CondCB = getConstantInt(CondValue)) {
    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    mergeInValue(&I, getValueState(OpVal));
    return;
  }

  // Otherwise, the condition is overdefined or a constant we can't evaluate.
  // See if we can produce something better than overdefined based on the T/F
  // value.
  ValueLatticeElement TVal = getValueState(I.getTrueValue());
  ValueLatticeElement FVal = getValueState(I.getFalseValue());

  bool Changed = ValueState[&I].mergeIn(TVal);
  Changed |= ValueState[&I].mergeIn(FVal);
  if (Changed)
    pushToWorkListMsg(ValueState[&I], &I);
}

// Handle Unary Operators.
void SCCPSolver::visitUnaryOperator(Instruction &I) {
  ValueLatticeElement V0State = getValueState(I.getOperand(0));

  ValueLatticeElement &IV = ValueState[&I];
  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (isOverdefined(IV))
    return (void)markOverdefined(&I);

  if (isConstant(V0State)) {
    Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));

    // op Y -> undef.
    if (isa<UndefValue>(C))
      return;
    return (void)markConstant(IV, &I, C);
  }

  // If something is undef, wait for it to resolve.
  if (!isOverdefined(V0State))
    return;

  markOverdefined(&I);
}

// Handle Binary Operators.
void SCCPSolver::visitBinaryOperator(Instruction &I) {
  ValueLatticeElement V1State = getValueState(I.getOperand(0));
  ValueLatticeElement V2State = getValueState(I.getOperand(1));

  ValueLatticeElement &IV = ValueState[&I];
  if (IV.isOverdefined())
    return;

  // If something is undef, wait for it to resolve.
  if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
    return;

  if (V1State.isOverdefined() && V2State.isOverdefined())
    return (void)markOverdefined(&I);

  // If either of the operands is a constant, try to fold it to a constant.
  // TODO: Use information from notconstant better.
  if ((V1State.isConstant() || V2State.isConstant())) {
    Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
    Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
    Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
    auto *C = dyn_cast_or_null<Constant>(R);
    if (C) {
      // X op Y -> undef.
      if (isa<UndefValue>(C))
        return;
      // Conservatively assume that the result may be based on operands that may
      // be undef. Note that we use mergeInValue to combine the constant with
      // the existing lattice value for I, as different constants might be found
      // after one of the operands go to overdefined, e.g. due to one operand
      // being a special floating value.
      ValueLatticeElement NewV;
      NewV.markConstant(C, /*MayIncludeUndef=*/true);
      return (void)mergeInValue(&I, NewV);
    }
  }

  // Only use ranges for binary operators on integers.
  if (!I.getType()->isIntegerTy())
    return markOverdefined(&I);

  // Try to simplify to a constant range.
  ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
  ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
  if (V1State.isConstantRange())
    A = V1State.getConstantRange();
  if (V2State.isConstantRange())
    B = V2State.getConstantRange();

  ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
  mergeInValue(&I, ValueLatticeElement::getRange(R));

  // TODO: Currently we do not exploit special values that produce something
  // better than overdefined with an overdefined operand for vector or floating
  // point types, like and <4 x i32> overdefined, zeroinitializer.
}

// Handle ICmpInst instruction.
void SCCPSolver::visitCmpInst(CmpInst &I) {
  // Do not cache this lookup, getValueState calls later in the function might
  // invalidate the reference.
  if (isOverdefined(ValueState[&I]))
    return (void)markOverdefined(&I);

  Value *Op1 = I.getOperand(0);
  Value *Op2 = I.getOperand(1);

  // For parameters, use ParamState which includes constant range info if
  // available.
  auto V1State = getValueState(Op1);
  auto V2State = getValueState(Op2);

  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
  if (C) {
    if (isa<UndefValue>(C))
      return;
    ValueLatticeElement CV;
    CV.markConstant(C);
    mergeInValue(&I, CV);
    return;
  }

  // If operands are still unknown, wait for it to resolve.
  if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
      !isConstant(ValueState[&I]))
    return;

  markOverdefined(&I);
}

// Handle getelementptr instructions.  If all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
  if (isOverdefined(ValueState[&I]))
    return (void)markOverdefined(&I);

  SmallVector<Constant*, 8> Operands;
  Operands.reserve(I.getNumOperands());

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    ValueLatticeElement State = getValueState(I.getOperand(i));
    if (State.isUnknownOrUndef())
      return;  // Operands are not resolved yet.

    if (isOverdefined(State))
      return (void)markOverdefined(&I);

    if (Constant *C = getConstant(State)) {
      Operands.push_back(C);
      continue;
    }

    return (void)markOverdefined(&I);
  }

  Constant *Ptr = Operands[0];
  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
  Constant *C =
      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
  if (isa<UndefValue>(C))
      return;
  markConstant(&I, C);
}

void SCCPSolver::visitStoreInst(StoreInst &SI) {
  // If this store is of a struct, ignore it.
  if (SI.getOperand(0)->getType()->isStructTy())
    return;

  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
    return;

  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
  auto I = TrackedGlobals.find(GV);
  if (I == TrackedGlobals.end())
    return;

  // Get the value we are storing into the global, then merge it.
  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
               ValueLatticeElement::MergeOptions().setCheckWiden(false));
  if (I->second.isOverdefined())
    TrackedGlobals.erase(I);      // No need to keep tracking this!
}

static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
  if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
    if (I->getType()->isIntegerTy())
      return ValueLatticeElement::getRange(
          getConstantRangeFromMetadata(*Ranges));
  // TODO: Also handle MD_nonnull.
  return ValueLatticeElement::getOverdefined();
}

// Handle load instructions.  If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPSolver::visitLoadInst(LoadInst &I) {
  // If this load is of a struct or the load is volatile, just mark the result
  // as overdefined.
  if (I.getType()->isStructTy() || I.isVolatile())
    return (void)markOverdefined(&I);

  // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
  // discover a concrete value later.
  if (ValueState[&I].isOverdefined())
    return (void)markOverdefined(&I);

  ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
  if (PtrVal.isUnknownOrUndef())
    return; // The pointer is not resolved yet!

  ValueLatticeElement &IV = ValueState[&I];

  if (isConstant(PtrVal)) {
    Constant *Ptr = getConstant(PtrVal);

    // load null is undefined.
    if (isa<ConstantPointerNull>(Ptr)) {
      if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
        return (void)markOverdefined(IV, &I);
      else
        return;
    }

    // Transform load (constant global) into the value loaded.
    if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
      if (!TrackedGlobals.empty()) {
        // If we are tracking this global, merge in the known value for it.
        auto It = TrackedGlobals.find(GV);
        if (It != TrackedGlobals.end()) {
          mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
          return;
        }
      }
    }

    // Transform load from a constant into a constant if possible.
    if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
      if (isa<UndefValue>(C))
        return;
      return (void)markConstant(IV, &I, C);
    }
  }

  // Fall back to metadata.
  mergeInValue(&I, getValueFromMetadata(&I));
}

void SCCPSolver::visitCallBase(CallBase &CB) {
  handleCallResult(CB);
  handleCallArguments(CB);
}

void SCCPSolver::handleCallOverdefined(CallBase &CB) {
  Function *F = CB.getCalledFunction();

  // Void return and not tracking callee, just bail.
  if (CB.getType()->isVoidTy())
    return;

  // Always mark struct return as overdefined.
  if (CB.getType()->isStructTy())
    return (void)markOverdefined(&CB);

  // Otherwise, if we have a single return value case, and if the function is
  // a declaration, maybe we can constant fold it.
  if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
    SmallVector<Constant *, 8> Operands;
    for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
      if (AI->get()->getType()->isStructTy())
        return markOverdefined(&CB); // Can't handle struct args.
      ValueLatticeElement State = getValueState(*AI);

      if (State.isUnknownOrUndef())
        return; // Operands are not resolved yet.
      if (isOverdefined(State))
        return (void)markOverdefined(&CB);
      assert(isConstant(State) && "Unknown state!");
      Operands.push_back(getConstant(State));
    }

    if (isOverdefined(getValueState(&CB)))
      return (void)markOverdefined(&CB);

    // If we can constant fold this, mark the result of the call as a
    // constant.
    if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
      // call -> undef.
      if (isa<UndefValue>(C))
        return;
      return (void)markConstant(&CB, C);
    }
  }

  // Fall back to metadata.
  mergeInValue(&CB, getValueFromMetadata(&CB));
}

void SCCPSolver::handleCallArguments(CallBase &CB) {
  Function *F = CB.getCalledFunction();
  // If this is a local function that doesn't have its address taken, mark its
  // entry block executable and merge in the actual arguments to the call into
  // the formal arguments of the function.
  if (!TrackingIncomingArguments.empty() &&
      TrackingIncomingArguments.count(F)) {
    MarkBlockExecutable(&F->front());

    // Propagate information from this call site into the callee.
    auto CAI = CB.arg_begin();
    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
         ++AI, ++CAI) {
      // If this argument is byval, and if the function is not readonly, there
      // will be an implicit copy formed of the input aggregate.
      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
        markOverdefined(&*AI);
        continue;
      }

      if (auto *STy = dyn_cast<StructType>(AI->getType())) {
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          ValueLatticeElement CallArg = getStructValueState(*CAI, i);
          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
                       getMaxWidenStepsOpts());
        }
      } else
        mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
    }
  }
}

void SCCPSolver::handleCallResult(CallBase &CB) {
  Function *F = CB.getCalledFunction();

  if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
    if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
      if (ValueState[&CB].isOverdefined())
        return;

      Value *CopyOf = CB.getOperand(0);
      ValueLatticeElement CopyOfVal = getValueState(CopyOf);
      auto *PI = getPredicateInfoFor(&CB);
      assert(PI && "Missing predicate info for ssa.copy");

      CmpInst *Cmp;
      bool TrueEdge;
      if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
        Cmp = dyn_cast<CmpInst>(PBranch->Condition);
        TrueEdge = PBranch->TrueEdge;
      } else if (auto *PAssume = dyn_cast<PredicateAssume>(PI)) {
        Cmp = dyn_cast<CmpInst>(PAssume->Condition);
        TrueEdge = true;
      } else {
        mergeInValue(ValueState[&CB], &CB, CopyOfVal);
        return;
      }

      // Everything below relies on the condition being a comparison.
      if (!Cmp) {
        mergeInValue(ValueState[&CB], &CB, CopyOfVal);
        return;
      }

      Value *RenamedOp = PI->RenamedOp;
      Value *CmpOp0 = Cmp->getOperand(0);
      Value *CmpOp1 = Cmp->getOperand(1);
      // Bail out if neither of the operands matches RenamedOp.
      if (CmpOp0 != RenamedOp && CmpOp1 != RenamedOp) {
        mergeInValue(ValueState[&CB], &CB, getValueState(CopyOf));
        return;
      }

      auto Pred = Cmp->getPredicate();
      if (CmpOp1 == RenamedOp) {
        std::swap(CmpOp0, CmpOp1);
        Pred = Cmp->getSwappedPredicate();
      }

      // Wait until CmpOp1 is resolved.
      if (getValueState(CmpOp1).isUnknown()) {
        addAdditionalUser(CmpOp1, &CB);
        return;
      }

      // The code below relies on PredicateInfo only inserting copies for the
      // true branch when the branch condition is an AND and only inserting
      // copies for the false branch when the branch condition is an OR. This
      // ensures we can intersect the range from the condition with the range of
      // CopyOf.
      if (!TrueEdge)
        Pred = CmpInst::getInversePredicate(Pred);

      ValueLatticeElement CondVal = getValueState(CmpOp1);
      ValueLatticeElement &IV = ValueState[&CB];
      if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
        auto ImposedCR =
            ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));

        // Get the range imposed by the condition.
        if (CondVal.isConstantRange())
          ImposedCR = ConstantRange::makeAllowedICmpRegion(
              Pred, CondVal.getConstantRange());

        // Combine range info for the original value with the new range from the
        // condition.
        auto CopyOfCR = CopyOfVal.isConstantRange()
                            ? CopyOfVal.getConstantRange()
                            : ConstantRange::getFull(
                                  DL.getTypeSizeInBits(CopyOf->getType()));
        auto NewCR = ImposedCR.intersectWith(CopyOfCR);
        // If the existing information is != x, do not use the information from
        // a chained predicate, as the != x information is more likely to be
        // helpful in practice.
        if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
          NewCR = CopyOfCR;

        addAdditionalUser(CmpOp1, &CB);
        // TODO: Actually filp MayIncludeUndef for the created range to false,
        // once most places in the optimizer respect the branches on
        // undef/poison are UB rule. The reason why the new range cannot be
        // undef is as follows below:
        // The new range is based on a branch condition. That guarantees that
        // neither of the compare operands can be undef in the branch targets,
        // unless we have conditions that are always true/false (e.g. icmp ule
        // i32, %a, i32_max). For the latter overdefined/empty range will be
        // inferred, but the branch will get folded accordingly anyways.
        mergeInValue(
            IV, &CB,
            ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef=*/true));
        return;
      } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
        // For non-integer values or integer constant expressions, only
        // propagate equal constants.
        addAdditionalUser(CmpOp1, &CB);
        mergeInValue(IV, &CB, CondVal);
        return;
      }

      return (void)mergeInValue(IV, &CB, CopyOfVal);
    }
  }

  // The common case is that we aren't tracking the callee, either because we
  // are not doing interprocedural analysis or the callee is indirect, or is
  // external.  Handle these cases first.
  if (!F || F->isDeclaration())
    return handleCallOverdefined(CB);

  // If this is a single/zero retval case, see if we're tracking the function.
  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
    if (!MRVFunctionsTracked.count(F))
      return handleCallOverdefined(CB); // Not tracking this callee.

    // If we are tracking this callee, propagate the result of the function
    // into this call site.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      mergeInValue(getStructValueState(&CB, i), &CB,
                   TrackedMultipleRetVals[std::make_pair(F, i)],
                   getMaxWidenStepsOpts());
  } else {
    auto TFRVI = TrackedRetVals.find(F);
    if (TFRVI == TrackedRetVals.end())
      return handleCallOverdefined(CB); // Not tracking this callee.

    // If so, propagate the return value of the callee into this call result.
    mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
  }
}

void SCCPSolver::Solve() {
  // Process the work lists until they are empty!
  while (!BBWorkList.empty() || !InstWorkList.empty() ||
         !OverdefinedInstWorkList.empty()) {
    // Process the overdefined instruction's work list first, which drives other
    // things to overdefined more quickly.
    while (!OverdefinedInstWorkList.empty()) {
      Value *I = OverdefinedInstWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');

      // "I" got into the work list because it either made the transition from
      // bottom to constant, or to overdefined.
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined
      // Update all of the users of this instruction's value.
      //
      markUsersAsChanged(I);
    }

    // Process the instruction work list.
    while (!InstWorkList.empty()) {
      Value *I = InstWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');

      // "I" got into the work list because it made the transition from undef to
      // constant.
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined.
      // Update all of the users of this instruction's value.
      //
      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
        markUsersAsChanged(I);
    }

    // Process the basic block work list.
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.back();
      BBWorkList.pop_back();

      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');

      // Notify all instructions in this basic block that they are newly
      // executable.
      visit(BB);
    }
  }
}

/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption.  After we solve dataflow, this
/// method should be use to handle this.  If this returns true, the solver
/// should be rerun.
///
/// This method handles this by finding an unresolved branch and marking it one
/// of the edges from the block as being feasible, even though the condition
/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
/// CFG and only slightly pessimizes the analysis results (by marking one,
/// potentially infeasible, edge feasible).  This cannot usefully modify the
/// constraints on the condition of the branch, as that would impact other users
/// of the value.
///
/// This scan also checks for values that use undefs. It conservatively marks
/// them as overdefined.
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
  for (BasicBlock &BB : F) {
    if (!BBExecutable.count(&BB))
      continue;

    for (Instruction &I : BB) {
      // Look for instructions which produce undef values.
      if (I.getType()->isVoidTy()) continue;

      if (auto *STy = dyn_cast<StructType>(I.getType())) {
        // Only a few things that can be structs matter for undef.

        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
        if (auto *CB = dyn_cast<CallBase>(&I))
          if (Function *F = CB->getCalledFunction())
            if (MRVFunctionsTracked.count(F))
              continue;

        // extractvalue and insertvalue don't need to be marked; they are
        // tracked as precisely as their operands.
        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
          continue;
        // Send the results of everything else to overdefined.  We could be
        // more precise than this but it isn't worth bothering.
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          ValueLatticeElement &LV = getStructValueState(&I, i);
          if (LV.isUnknownOrUndef())
            markOverdefined(LV, &I);
        }
        continue;
      }

      ValueLatticeElement &LV = getValueState(&I);
      if (!LV.isUnknownOrUndef())
        continue;

      // There are two reasons a call can have an undef result
      // 1. It could be tracked.
      // 2. It could be constant-foldable.
      // Because of the way we solve return values, tracked calls must
      // never be marked overdefined in ResolvedUndefsIn.
      if (auto *CB = dyn_cast<CallBase>(&I))
        if (Function *F = CB->getCalledFunction())
          if (TrackedRetVals.count(F))
            continue;

      if (isa<LoadInst>(I)) {
        // A load here means one of two things: a load of undef from a global,
        // a load from an unknown pointer.  Either way, having it return undef
        // is okay.
        continue;
      }

      markOverdefined(&I);
      return true;
    }

    // Check to see if we have a branch or switch on an undefined value.  If so
    // we force the branch to go one way or the other to make the successor
    // values live.  It doesn't really matter which way we force it.
    Instruction *TI = BB.getTerminator();
    if (auto *BI = dyn_cast<BranchInst>(TI)) {
      if (!BI->isConditional()) continue;
      if (!getValueState(BI->getCondition()).isUnknownOrUndef())
        continue;

      // If the input to SCCP is actually branch on undef, fix the undef to
      // false.
      if (isa<UndefValue>(BI->getCondition())) {
        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
        markEdgeExecutable(&BB, TI->getSuccessor(1));
        return true;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: Distinguish between dead code and an LLVM "undef" value.
      BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        return true;

      continue;
    }

   if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
      // Indirect branch with no successor ?. Its ok to assume it branches
      // to no target.
      if (IBR->getNumSuccessors() < 1)
        continue;

      if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
        continue;

      // If the input to SCCP is actually branch on undef, fix the undef to
      // the first successor of the indirect branch.
      if (isa<UndefValue>(IBR->getAddress())) {
        IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
        markEdgeExecutable(&BB, IBR->getSuccessor(0));
        return true;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
      // we can assume the branch has undefined behavior instead.
      BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        return true;

      continue;
    }

    if (auto *SI = dyn_cast<SwitchInst>(TI)) {
      if (!SI->getNumCases() ||
          !getValueState(SI->getCondition()).isUnknownOrUndef())
        continue;

      // If the input to SCCP is actually switch on undef, fix the undef to
      // the first constant.
      if (isa<UndefValue>(SI->getCondition())) {
        SI->setCondition(SI->case_begin()->getCaseValue());
        markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
        return true;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: Distinguish between dead code and an LLVM "undef" value.
      BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        return true;

      continue;
    }
  }

  return false;
}

static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
  Constant *Const = nullptr;
  if (V->getType()->isStructTy()) {
    std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
    if (any_of(IVs,
               [](const ValueLatticeElement &LV) { return isOverdefined(LV); }))
      return false;
    std::vector<Constant *> ConstVals;
    auto *ST = cast<StructType>(V->getType());
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
      ValueLatticeElement V = IVs[i];
      ConstVals.push_back(isConstant(V)
                              ? Solver.getConstant(V)
                              : UndefValue::get(ST->getElementType(i)));
    }
    Const = ConstantStruct::get(ST, ConstVals);
  } else {
    const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
    if (isOverdefined(IV))
      return false;

    Const =
        isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
  }
  assert(Const && "Constant is nullptr here!");

  // Replacing `musttail` instructions with constant breaks `musttail` invariant
  // unless the call itself can be removed
  CallInst *CI = dyn_cast<CallInst>(V);
  if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
    Function *F = CI->getCalledFunction();

    // Don't zap returns of the callee
    if (F)
      Solver.AddMustTailCallee(F);

    LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI
                      << " as a constant\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');

  // Replaces all of the uses of a variable with uses of the constant.
  V->replaceAllUsesWith(Const);
  return true;
}

static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
                                 SmallPtrSetImpl<Value *> &InsertedValues,
                                 Statistic &InstRemovedStat,
                                 Statistic &InstReplacedStat) {
  bool MadeChanges = false;
  for (Instruction &Inst : make_early_inc_range(BB)) {
    if (Inst.getType()->isVoidTy())
      continue;
    if (tryToReplaceWithConstant(Solver, &Inst)) {
      if (Inst.isSafeToRemove())
        Inst.eraseFromParent();
      // Hey, we just changed something!
      MadeChanges = true;
      ++InstRemovedStat;
    } else if (isa<SExtInst>(&Inst)) {
      Value *ExtOp = Inst.getOperand(0);
      if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
        continue;
      const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
      if (!IV.isConstantRange(/*UndefAllowed=*/false))
        continue;
      if (IV.getConstantRange().isAllNonNegative()) {
        auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
        InsertedValues.insert(ZExt);
        Inst.replaceAllUsesWith(ZExt);
        Solver.removeLatticeValueFor(&Inst);
        Inst.eraseFromParent();
        InstReplacedStat++;
        MadeChanges = true;
      }
    }
  }
  return MadeChanges;
}

// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
static bool runSCCP(Function &F, const DataLayout &DL,
                    const TargetLibraryInfo *TLI) {
  LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
  SCCPSolver Solver(
      DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
      F.getContext());

  // Mark the first block of the function as being executable.
  Solver.MarkBlockExecutable(&F.front());

  // Mark all arguments to the function as being overdefined.
  for (Argument &AI : F.args())
    Solver.markOverdefined(&AI);

  // Solve for constants.
  bool ResolvedUndefs = true;
  while (ResolvedUndefs) {
    Solver.Solve();
    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
  }

  bool MadeChanges = false;

  // If we decided that there are basic blocks that are dead in this function,
  // delete their contents now.  Note that we cannot actually delete the blocks,
  // as we cannot modify the CFG of the function.

  SmallPtrSet<Value *, 32> InsertedValues;
  for (BasicBlock &BB : F) {
    if (!Solver.isBlockExecutable(&BB)) {
      LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);

      ++NumDeadBlocks;
      NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);

      MadeChanges = true;
      continue;
    }

    MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
                                        NumInstRemoved, NumInstReplaced);
  }

  return MadeChanges;
}

PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
  const DataLayout &DL = F.getParent()->getDataLayout();
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  if (!runSCCP(F, DL, &TLI))
    return PreservedAnalyses::all();

  auto PA = PreservedAnalyses();
  PA.preserve<GlobalsAA>();
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

namespace {

//===--------------------------------------------------------------------===//
//
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
class SCCPLegacyPass : public FunctionPass {
public:
  // Pass identification, replacement for typeid
  static char ID;

  SCCPLegacyPass() : FunctionPass(ID) {
    initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.setPreservesCFG();
  }

  // runOnFunction - Run the Sparse Conditional Constant Propagation
  // algorithm, and return true if the function was modified.
  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    const DataLayout &DL = F.getParent()->getDataLayout();
    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    return runSCCP(F, DL, TLI);
  }
};

} // end anonymous namespace

char SCCPLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
                      "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
                    "Sparse Conditional Constant Propagation", false, false)

// createSCCPPass - This is the public interface to this file.
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }

static void findReturnsToZap(Function &F,
                             SmallVector<ReturnInst *, 8> &ReturnsToZap,
                             SCCPSolver &Solver) {
  // We can only do this if we know that nothing else can call the function.
  if (!Solver.isArgumentTrackedFunction(&F))
    return;

  // There is a non-removable musttail call site of this function. Zapping
  // returns is not allowed.
  if (Solver.isMustTailCallee(&F)) {
    LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
                      << " due to present musttail call of it\n");
    return;
  }

  assert(
      all_of(F.users(),
             [&Solver](User *U) {
               if (isa<Instruction>(U) &&
                   !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
                 return true;
               // Non-callsite uses are not impacted by zapping. Also, constant
               // uses (like blockaddresses) could stuck around, without being
               // used in the underlying IR, meaning we do not have lattice
               // values for them.
               if (!isa<CallBase>(U))
                 return true;
               if (U->getType()->isStructTy()) {
                 return all_of(Solver.getStructLatticeValueFor(U),
                               [](const ValueLatticeElement &LV) {
                                 return !isOverdefined(LV);
                               });
               }
               return !isOverdefined(Solver.getLatticeValueFor(U));
             }) &&
      "We can only zap functions where all live users have a concrete value");

  for (BasicBlock &BB : F) {
    if (CallInst *CI = BB.getTerminatingMustTailCall()) {
      LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
                        << "musttail call : " << *CI << "\n");
      (void)CI;
      return;
    }

    if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
      if (!isa<UndefValue>(RI->getOperand(0)))
        ReturnsToZap.push_back(RI);
  }
}

// Update the condition for terminators that are branching on indeterminate
// values, forcing them to use a specific edge.
static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
  BasicBlock *Dest = nullptr;
  Constant *C = nullptr;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
    if (!isa<ConstantInt>(SI->getCondition())) {
      // Indeterminate switch; use first case value.
      Dest = SI->case_begin()->getCaseSuccessor();
      C = SI->case_begin()->getCaseValue();
    }
  } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
    if (!isa<ConstantInt>(BI->getCondition())) {
      // Indeterminate branch; use false.
      Dest = BI->getSuccessor(1);
      C = ConstantInt::getFalse(BI->getContext());
    }
  } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
    if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
      // Indeterminate indirectbr; use successor 0.
      Dest = IBR->getSuccessor(0);
      C = BlockAddress::get(IBR->getSuccessor(0));
    }
  } else {
    llvm_unreachable("Unexpected terminator instruction");
  }
  if (C) {
    assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
           "Didn't find feasible edge?");
    (void)Dest;

    I->setOperand(0, C);
  }
}

bool llvm::runIPSCCP(
    Module &M, const DataLayout &DL,
    std::function<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
  SCCPSolver Solver(DL, GetTLI, M.getContext());

  // Loop over all functions, marking arguments to those with their addresses
  // taken or that are external as overdefined.
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;

    Solver.addAnalysis(F, getAnalysis(F));

    // Determine if we can track the function's return values. If so, add the
    // function to the solver's set of return-tracked functions.
    if (canTrackReturnsInterprocedurally(&F))
      Solver.AddTrackedFunction(&F);

    // Determine if we can track the function's arguments. If so, add the
    // function to the solver's set of argument-tracked functions.
    if (canTrackArgumentsInterprocedurally(&F)) {
      Solver.AddArgumentTrackedFunction(&F);
      continue;
    }

    // Assume the function is called.
    Solver.MarkBlockExecutable(&F.front());

    // Assume nothing about the incoming arguments.
    for (Argument &AI : F.args())
      Solver.markOverdefined(&AI);
  }

  // Determine if we can track any of the module's global variables. If so, add
  // the global variables we can track to the solver's set of tracked global
  // variables.
  for (GlobalVariable &G : M.globals()) {
    G.removeDeadConstantUsers();
    if (canTrackGlobalVariableInterprocedurally(&G))
      Solver.TrackValueOfGlobalVariable(&G);
  }

  // Solve for constants.
  bool ResolvedUndefs = true;
  Solver.Solve();
  while (ResolvedUndefs) {
    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
    ResolvedUndefs = false;
    for (Function &F : M)
      if (Solver.ResolvedUndefsIn(F)) {
        // We run Solve() after we resolved an undef in a function, because
        // we might deduce a fact that eliminates an undef in another function.
        Solver.Solve();
        ResolvedUndefs = true;
      }
  }

  bool MadeChanges = false;

  // Iterate over all of the instructions in the module, replacing them with
  // constants if we have found them to be of constant values.

  for (Function &F : M) {
    if (F.isDeclaration())
      continue;

    SmallVector<BasicBlock *, 512> BlocksToErase;

    if (Solver.isBlockExecutable(&F.front()))
      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
           ++AI) {
        if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
          ++IPNumArgsElimed;
          continue;
        }
      }

    SmallPtrSet<Value *, 32> InsertedValues;
    for (BasicBlock &BB : F) {
      if (!Solver.isBlockExecutable(&BB)) {
        LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
        ++NumDeadBlocks;

        MadeChanges = true;

        if (&BB != &F.front())
          BlocksToErase.push_back(&BB);
        continue;
      }

      MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
                                          IPNumInstRemoved, IPNumInstReplaced);
    }

    DomTreeUpdater DTU = Solver.getDTU(F);
    // Change dead blocks to unreachable. We do it after replacing constants
    // in all executable blocks, because changeToUnreachable may remove PHI
    // nodes in executable blocks we found values for. The function's entry
    // block is not part of BlocksToErase, so we have to handle it separately.
    for (BasicBlock *BB : BlocksToErase) {
      NumInstRemoved +=
          changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
                              /*PreserveLCSSA=*/false, &DTU);
    }
    if (!Solver.isBlockExecutable(&F.front()))
      NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
                                            /*UseLLVMTrap=*/false,
                                            /*PreserveLCSSA=*/false, &DTU);

    // Now that all instructions in the function are constant folded,
    // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
    // delete dead BBs.
    for (BasicBlock *DeadBB : BlocksToErase) {
      // If there are any PHI nodes in this successor, drop entries for BB now.
      for (Value::user_iterator UI = DeadBB->user_begin(),
                                UE = DeadBB->user_end();
           UI != UE;) {
        // Grab the user and then increment the iterator early, as the user
        // will be deleted. Step past all adjacent uses from the same user.
        auto *I = dyn_cast<Instruction>(*UI);
        do { ++UI; } while (UI != UE && *UI == I);

        // Ignore blockaddress users; BasicBlock's dtor will handle them.
        if (!I) continue;

        // If we have forced an edge for an indeterminate value, then force the
        // terminator to fold to that edge.
        forceIndeterminateEdge(I, Solver);
        BasicBlock *InstBB = I->getParent();
        bool Folded = ConstantFoldTerminator(InstBB,
                                             /*DeleteDeadConditions=*/false,
                                             /*TLI=*/nullptr, &DTU);
        assert(Folded &&
              "Expect TermInst on constantint or blockaddress to be folded");
        (void) Folded;
        // If we folded the terminator to an unconditional branch to another
        // dead block, replace it with Unreachable, to avoid trying to fold that
        // branch again.
        BranchInst *BI = cast<BranchInst>(InstBB->getTerminator());
        if (BI && BI->isUnconditional() &&
            !Solver.isBlockExecutable(BI->getSuccessor(0))) {
          InstBB->getTerminator()->eraseFromParent();
          new UnreachableInst(InstBB->getContext(), InstBB);
        }
      }
      // Mark dead BB for deletion.
      DTU.deleteBB(DeadBB);
    }

    for (BasicBlock &BB : F) {
      for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
        Instruction *Inst = &*BI++;
        if (Solver.getPredicateInfoFor(Inst)) {
          if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
            if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
              Value *Op = II->getOperand(0);
              Inst->replaceAllUsesWith(Op);
              Inst->eraseFromParent();
            }
          }
        }
      }
    }
  }

  // If we inferred constant or undef return values for a function, we replaced
  // all call uses with the inferred value.  This means we don't need to bother
  // actually returning anything from the function.  Replace all return
  // instructions with return undef.
  //
  // Do this in two stages: first identify the functions we should process, then
  // actually zap their returns.  This is important because we can only do this
  // if the address of the function isn't taken.  In cases where a return is the
  // last use of a function, the order of processing functions would affect
  // whether other functions are optimizable.
  SmallVector<ReturnInst*, 8> ReturnsToZap;

  for (const auto &I : Solver.getTrackedRetVals()) {
    Function *F = I.first;
    if (isOverdefined(I.second) || F->getReturnType()->isVoidTy())
      continue;
    findReturnsToZap(*F, ReturnsToZap, Solver);
  }

  for (auto F : Solver.getMRVFunctionsTracked()) {
    assert(F->getReturnType()->isStructTy() &&
           "The return type should be a struct");
    StructType *STy = cast<StructType>(F->getReturnType());
    if (Solver.isStructLatticeConstant(F, STy))
      findReturnsToZap(*F, ReturnsToZap, Solver);
  }

  // Zap all returns which we've identified as zap to change.
  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
    Function *F = ReturnsToZap[i]->getParent()->getParent();
    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
  }

  // If we inferred constant or undef values for globals variables, we can
  // delete the global and any stores that remain to it.
  for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
    GlobalVariable *GV = I.first;
    if (isOverdefined(I.second))
      continue;
    LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
                      << "' is constant!\n");
    while (!GV->use_empty()) {
      StoreInst *SI = cast<StoreInst>(GV->user_back());
      SI->eraseFromParent();
      MadeChanges = true;
    }
    M.getGlobalList().erase(GV);
    ++IPNumGlobalConst;
  }

  return MadeChanges;
}