NaryReassociate.cpp 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
//   void foo(int a, int b) {
//     bar(a + b);
//     bar((a + 2) + b);
//   }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
//   int t = a + b;
//   bar(t);
//   bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
//   (a + c) + d
//   ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
//   ac = a + c
//   ab = a + b
//   abc = ab + c
//   ab2 = ab + b
//   ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds and muls for now. This should be extended
// and generalized.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/NaryReassociate.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "nary-reassociate"

namespace {

class NaryReassociateLegacyPass : public FunctionPass {
public:
  static char ID;

  NaryReassociateLegacyPass() : FunctionPass(ID) {
    initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    return false;
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }

private:
  NaryReassociatePass Impl;
};

} // end anonymous namespace

char NaryReassociateLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
                      "Nary reassociation", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
                    "Nary reassociation", false, false)

FunctionPass *llvm::createNaryReassociatePass() {
  return new NaryReassociateLegacyPass();
}

bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
}

PreservedAnalyses NaryReassociatePass::run(Function &F,
                                           FunctionAnalysisManager &AM) {
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);

  if (!runImpl(F, AC, DT, SE, TLI, TTI))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<ScalarEvolutionAnalysis>();
  return PA;
}

bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
                                  DominatorTree *DT_, ScalarEvolution *SE_,
                                  TargetLibraryInfo *TLI_,
                                  TargetTransformInfo *TTI_) {
  AC = AC_;
  DT = DT_;
  SE = SE_;
  TLI = TLI_;
  TTI = TTI_;
  DL = &F.getParent()->getDataLayout();

  bool Changed = false, ChangedInThisIteration;
  do {
    ChangedInThisIteration = doOneIteration(F);
    Changed |= ChangedInThisIteration;
  } while (ChangedInThisIteration);
  return Changed;
}

// Explicitly list the instruction types NaryReassociate handles for now.
static bool isPotentiallyNaryReassociable(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::GetElementPtr:
  case Instruction::Mul:
    return true;
  default:
    return false;
  }
}

bool NaryReassociatePass::doOneIteration(Function &F) {
  bool Changed = false;
  SeenExprs.clear();
  // Process the basic blocks in a depth first traversal of the dominator
  // tree. This order ensures that all bases of a candidate are in Candidates
  // when we process it.
  for (const auto Node : depth_first(DT)) {
    BasicBlock *BB = Node->getBlock();
    for (auto I = BB->begin(); I != BB->end(); ++I) {
      if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
        const SCEV *OldSCEV = SE->getSCEV(&*I);
        if (Instruction *NewI = tryReassociate(&*I)) {
          Changed = true;
          SE->forgetValue(&*I);
          I->replaceAllUsesWith(NewI);
          WeakVH NewIExist = NewI;
          // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
          // entry will be replaced with nullptr if deleted.
          RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
          if (!NewIExist) {
            // Rare occation where the new instruction (NewI) have been removed,
            // probably due to parts of the input code was dead from the
            // beginning, reset the iterator and start over from the beginning
            I = BB->begin();
            continue;
          }
          I = NewI->getIterator();
        }
        // Add the rewritten instruction to SeenExprs; the original instruction
        // is deleted.
        const SCEV *NewSCEV = SE->getSCEV(&*I);
        SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
        // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
        // is equivalent to I. However, ScalarEvolution::getSCEV may
        // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
        // we reassociate
        //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
        // to
        //   NewI = &a[sext(i)] + sext(j).
        //
        // ScalarEvolution computes
        //   getSCEV(I)    = a + 4 * sext(i + j)
        //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
        // which are different SCEVs.
        //
        // To alleviate this issue of ScalarEvolution not always capturing
        // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
        // map both SCEV before and after tryReassociate(I) to I.
        //
        // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
        if (NewSCEV != OldSCEV)
          SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
      }
    }
  }
  return Changed;
}

Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
    return tryReassociateBinaryOp(cast<BinaryOperator>(I));
  case Instruction::GetElementPtr:
    return tryReassociateGEP(cast<GetElementPtrInst>(I));
  default:
    llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
  }
}

static bool isGEPFoldable(GetElementPtrInst *GEP,
                          const TargetTransformInfo *TTI) {
  SmallVector<const Value*, 4> Indices;
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
    Indices.push_back(*I);
  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
                         Indices) == TargetTransformInfo::TCC_Free;
}

Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
  // Not worth reassociating GEP if it is foldable.
  if (isGEPFoldable(GEP, TTI))
    return nullptr;

  gep_type_iterator GTI = gep_type_begin(*GEP);
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
    if (GTI.isSequential()) {
      if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
                                                  GTI.getIndexedType())) {
        return NewGEP;
      }
    }
  }
  return nullptr;
}

bool NaryReassociatePass::requiresSignExtension(Value *Index,
                                                GetElementPtrInst *GEP) {
  unsigned PointerSizeInBits =
      DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
  return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
}

GetElementPtrInst *
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Type *IndexedType) {
  Value *IndexToSplit = GEP->getOperand(I + 1);
  if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
    IndexToSplit = SExt->getOperand(0);
  } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
    // zext can be treated as sext if the source is non-negative.
    if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
      IndexToSplit = ZExt->getOperand(0);
  }

  if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
    // If the I-th index needs sext and the underlying add is not equipped with
    // nsw, we cannot split the add because
    //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
    if (requiresSignExtension(IndexToSplit, GEP) &&
        computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
            OverflowResult::NeverOverflows)
      return nullptr;

    Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
    // IndexToSplit = LHS + RHS.
    if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
      return NewGEP;
    // Symmetrically, try IndexToSplit = RHS + LHS.
    if (LHS != RHS) {
      if (auto *NewGEP =
              tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
        return NewGEP;
    }
  }
  return nullptr;
}

GetElementPtrInst *
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Value *LHS,
                                              Value *RHS, Type *IndexedType) {
  // Look for GEP's closest dominator that has the same SCEV as GEP except that
  // the I-th index is replaced with LHS.
  SmallVector<const SCEV *, 4> IndexExprs;
  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
    IndexExprs.push_back(SE->getSCEV(*Index));
  // Replace the I-th index with LHS.
  IndexExprs[I] = SE->getSCEV(LHS);
  if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
      DL->getTypeSizeInBits(LHS->getType()) <
          DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
    // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
    // zext if the source operand is proved non-negative. We should do that
    // consistently so that CandidateExpr more likely appears before. See
    // @reassociate_gep_assume for an example of this canonicalization.
    IndexExprs[I] =
        SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
  }
  const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
                                             IndexExprs);

  Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
  if (Candidate == nullptr)
    return nullptr;

  IRBuilder<> Builder(GEP);
  // Candidate does not necessarily have the same pointer type as GEP. Use
  // bitcast or pointer cast to make sure they have the same type, so that the
  // later RAUW doesn't complain.
  Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
  assert(Candidate->getType() == GEP->getType());

  // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
  uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
  Type *ElementType = GEP->getResultElementType();
  uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
  // Another less rare case: because I is not necessarily the last index of the
  // GEP, the size of the type at the I-th index (IndexedSize) is not
  // necessarily divisible by ElementSize. For example,
  //
  // #pragma pack(1)
  // struct S {
  //   int a[3];
  //   int64 b[8];
  // };
  // #pragma pack()
  //
  // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
  //
  // TODO: bail out on this case for now. We could emit uglygep.
  if (IndexedSize % ElementSize != 0)
    return nullptr;

  // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
  if (RHS->getType() != IntPtrTy)
    RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
  if (IndexedSize != ElementSize) {
    RHS = Builder.CreateMul(
        RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
  }
  GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
      Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
  NewGEP->setIsInBounds(GEP->isInBounds());
  NewGEP->takeName(GEP);
  return NewGEP;
}

Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  // There is no need to reassociate 0.
  if (SE->getSCEV(I)->isZero())
    return nullptr;
  if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
    return NewI;
  if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
    return NewI;
  return nullptr;
}

Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
                                                         BinaryOperator *I) {
  Value *A = nullptr, *B = nullptr;
  // To be conservative, we reassociate I only when it is the only user of (A op
  // B).
  if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
    // I = (A op B) op RHS
    //   = (A op RHS) op B or (B op RHS) op A
    const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
    const SCEV *RHSExpr = SE->getSCEV(RHS);
    if (BExpr != RHSExpr) {
      if (auto *NewI =
              tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
        return NewI;
    }
    if (AExpr != RHSExpr) {
      if (auto *NewI =
              tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
        return NewI;
    }
  }
  return nullptr;
}

Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
                                                          Value *RHS,
                                                          BinaryOperator *I) {
  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
  // I with LHS op RHS.
  auto *LHS = findClosestMatchingDominator(LHSExpr, I);
  if (LHS == nullptr)
    return nullptr;

  Instruction *NewI = nullptr;
  switch (I->getOpcode()) {
  case Instruction::Add:
    NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
    break;
  case Instruction::Mul:
    NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
    break;
  default:
    llvm_unreachable("Unexpected instruction.");
  }
  NewI->takeName(I);
  return NewI;
}

bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
                                         Value *&Op1, Value *&Op2) {
  switch (I->getOpcode()) {
  case Instruction::Add:
    return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
  case Instruction::Mul:
    return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
  default:
    llvm_unreachable("Unexpected instruction.");
  }
  return false;
}

const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
                                               const SCEV *LHS,
                                               const SCEV *RHS) {
  switch (I->getOpcode()) {
  case Instruction::Add:
    return SE->getAddExpr(LHS, RHS);
  case Instruction::Mul:
    return SE->getMulExpr(LHS, RHS);
  default:
    llvm_unreachable("Unexpected instruction.");
  }
  return nullptr;
}

Instruction *
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
                                                  Instruction *Dominatee) {
  auto Pos = SeenExprs.find(CandidateExpr);
  if (Pos == SeenExprs.end())
    return nullptr;

  auto &Candidates = Pos->second;
  // Because we process the basic blocks in pre-order of the dominator tree, a
  // candidate that doesn't dominate the current instruction won't dominate any
  // future instruction either. Therefore, we pop it out of the stack. This
  // optimization makes the algorithm O(n).
  while (!Candidates.empty()) {
    // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
    // removed
    // during rewriting.
    if (Value *Candidate = Candidates.back()) {
      Instruction *CandidateInstruction = cast<Instruction>(Candidate);
      if (DT->dominates(CandidateInstruction, Dominatee))
        return CandidateInstruction;
    }
    Candidates.pop_back();
  }
  return nullptr;
}