LoopVersioningLICM.cpp 23.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
//===- LoopVersioningLICM.cpp - LICM Loop Versioning ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// When alias analysis is uncertain about the aliasing between any two accesses,
// it will return MayAlias. This uncertainty from alias analysis restricts LICM
// from proceeding further. In cases where alias analysis is uncertain we might
// use loop versioning as an alternative.
//
// Loop Versioning will create a version of the loop with aggressive aliasing
// assumptions in addition to the original with conservative (default) aliasing
// assumptions. The version of the loop making aggressive aliasing assumptions
// will have all the memory accesses marked as no-alias. These two versions of
// loop will be preceded by a memory runtime check. This runtime check consists
// of bound checks for all unique memory accessed in loop, and it ensures the
// lack of memory aliasing. The result of the runtime check determines which of
// the loop versions is executed: If the runtime check detects any memory
// aliasing, then the original loop is executed. Otherwise, the version with
// aggressive aliasing assumptions is used.
//
// Following are the top level steps:
//
// a) Perform LoopVersioningLICM's feasibility check.
// b) If loop is a candidate for versioning then create a memory bound check,
//    by considering all the memory accesses in loop body.
// c) Clone original loop and set all memory accesses as no-alias in new loop.
// d) Set original loop & versioned loop as a branch target of the runtime check
//    result.
//
// It transforms loop as shown below:
//
//                         +----------------+
//                         |Runtime Memcheck|
//                         +----------------+
//                                 |
//              +----------+----------------+----------+
//              |                                      |
//    +---------+----------+               +-----------+----------+
//    |Orig Loop Preheader |               |Cloned Loop Preheader |
//    +--------------------+               +----------------------+
//              |                                      |
//    +--------------------+               +----------------------+
//    |Orig Loop Body      |               |Cloned Loop Body      |
//    +--------------------+               +----------------------+
//              |                                      |
//    +--------------------+               +----------------------+
//    |Orig Loop Exit Block|               |Cloned Loop Exit Block|
//    +--------------------+               +-----------+----------+
//              |                                      |
//              +----------+--------------+-----------+
//                                 |
//                           +-----+----+
//                           |Join Block|
//                           +----------+
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include <cassert>
#include <memory>

using namespace llvm;

#define DEBUG_TYPE "loop-versioning-licm"

static const char *LICMVersioningMetaData = "llvm.loop.licm_versioning.disable";

/// Threshold minimum allowed percentage for possible
/// invariant instructions in a loop.
static cl::opt<float>
    LVInvarThreshold("licm-versioning-invariant-threshold",
                     cl::desc("LoopVersioningLICM's minimum allowed percentage"
                              "of possible invariant instructions per loop"),
                     cl::init(25), cl::Hidden);

/// Threshold for maximum allowed loop nest/depth
static cl::opt<unsigned> LVLoopDepthThreshold(
    "licm-versioning-max-depth-threshold",
    cl::desc(
        "LoopVersioningLICM's threshold for maximum allowed loop nest/depth"),
    cl::init(2), cl::Hidden);

namespace {

struct LoopVersioningLICM : public LoopPass {
  static char ID;

  LoopVersioningLICM()
      : LoopPass(ID), LoopDepthThreshold(LVLoopDepthThreshold),
        InvariantThreshold(LVInvarThreshold) {
    initializeLoopVersioningLICMPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequiredID(LCSSAID);
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  }

  StringRef getPassName() const override { return "Loop Versioning for LICM"; }

  void reset() {
    AA = nullptr;
    SE = nullptr;
    LAA = nullptr;
    CurLoop = nullptr;
    LoadAndStoreCounter = 0;
    InvariantCounter = 0;
    IsReadOnlyLoop = true;
    ORE = nullptr;
    CurAST.reset();
  }

  class AutoResetter {
  public:
    AutoResetter(LoopVersioningLICM &LVLICM) : LVLICM(LVLICM) {}
    ~AutoResetter() { LVLICM.reset(); }

  private:
    LoopVersioningLICM &LVLICM;
  };

private:
  // Current AliasAnalysis information
  AliasAnalysis *AA = nullptr;

  // Current ScalarEvolution
  ScalarEvolution *SE = nullptr;

  // Current LoopAccessAnalysis
  LoopAccessLegacyAnalysis *LAA = nullptr;

  // Current Loop's LoopAccessInfo
  const LoopAccessInfo *LAI = nullptr;

  // The current loop we are working on.
  Loop *CurLoop = nullptr;

  // AliasSet information for the current loop.
  std::unique_ptr<AliasSetTracker> CurAST;

  // Maximum loop nest threshold
  unsigned LoopDepthThreshold;

  // Minimum invariant threshold
  float InvariantThreshold;

  // Counter to track num of load & store
  unsigned LoadAndStoreCounter = 0;

  // Counter to track num of invariant
  unsigned InvariantCounter = 0;

  // Read only loop marker.
  bool IsReadOnlyLoop = true;

  // OptimizationRemarkEmitter
  OptimizationRemarkEmitter *ORE;

  bool isLegalForVersioning();
  bool legalLoopStructure();
  bool legalLoopInstructions();
  bool legalLoopMemoryAccesses();
  bool isLoopAlreadyVisited();
  void setNoAliasToLoop(Loop *VerLoop);
  bool instructionSafeForVersioning(Instruction *I);
};

} // end anonymous namespace

/// Check loop structure and confirms it's good for LoopVersioningLICM.
bool LoopVersioningLICM::legalLoopStructure() {
  // Loop must be in loop simplify form.
  if (!CurLoop->isLoopSimplifyForm()) {
    LLVM_DEBUG(dbgs() << "    loop is not in loop-simplify form.\n");
    return false;
  }
  // Loop should be innermost loop, if not return false.
  if (!CurLoop->getSubLoops().empty()) {
    LLVM_DEBUG(dbgs() << "    loop is not innermost\n");
    return false;
  }
  // Loop should have a single backedge, if not return false.
  if (CurLoop->getNumBackEdges() != 1) {
    LLVM_DEBUG(dbgs() << "    loop has multiple backedges\n");
    return false;
  }
  // Loop must have a single exiting block, if not return false.
  if (!CurLoop->getExitingBlock()) {
    LLVM_DEBUG(dbgs() << "    loop has multiple exiting block\n");
    return false;
  }
  // We only handle bottom-tested loop, i.e. loop in which the condition is
  // checked at the end of each iteration. With that we can assume that all
  // instructions in the loop are executed the same number of times.
  if (CurLoop->getExitingBlock() != CurLoop->getLoopLatch()) {
    LLVM_DEBUG(dbgs() << "    loop is not bottom tested\n");
    return false;
  }
  // Parallel loops must not have aliasing loop-invariant memory accesses.
  // Hence we don't need to version anything in this case.
  if (CurLoop->isAnnotatedParallel()) {
    LLVM_DEBUG(dbgs() << "    Parallel loop is not worth versioning\n");
    return false;
  }
  // Loop depth more then LoopDepthThreshold are not allowed
  if (CurLoop->getLoopDepth() > LoopDepthThreshold) {
    LLVM_DEBUG(dbgs() << "    loop depth is more then threshold\n");
    return false;
  }
  // We need to be able to compute the loop trip count in order
  // to generate the bound checks.
  const SCEV *ExitCount = SE->getBackedgeTakenCount(CurLoop);
  if (ExitCount == SE->getCouldNotCompute()) {
    LLVM_DEBUG(dbgs() << "    loop does not has trip count\n");
    return false;
  }
  return true;
}

/// Check memory accesses in loop and confirms it's good for
/// LoopVersioningLICM.
bool LoopVersioningLICM::legalLoopMemoryAccesses() {
  bool HasMayAlias = false;
  bool TypeSafety = false;
  bool HasMod = false;
  // Memory check:
  // Transform phase will generate a versioned loop and also a runtime check to
  // ensure the pointers are independent and they don’t alias.
  // In version variant of loop, alias meta data asserts that all access are
  // mutually independent.
  //
  // Pointers aliasing in alias domain are avoided because with multiple
  // aliasing domains we may not be able to hoist potential loop invariant
  // access out of the loop.
  //
  // Iterate over alias tracker sets, and confirm AliasSets doesn't have any
  // must alias set.
  for (const auto &I : *CurAST) {
    const AliasSet &AS = I;
    // Skip Forward Alias Sets, as this should be ignored as part of
    // the AliasSetTracker object.
    if (AS.isForwardingAliasSet())
      continue;
    // With MustAlias its not worth adding runtime bound check.
    if (AS.isMustAlias())
      return false;
    Value *SomePtr = AS.begin()->getValue();
    bool TypeCheck = true;
    // Check for Mod & MayAlias
    HasMayAlias |= AS.isMayAlias();
    HasMod |= AS.isMod();
    for (const auto &A : AS) {
      Value *Ptr = A.getValue();
      // Alias tracker should have pointers of same data type.
      TypeCheck = (TypeCheck && (SomePtr->getType() == Ptr->getType()));
    }
    // At least one alias tracker should have pointers of same data type.
    TypeSafety |= TypeCheck;
  }
  // Ensure types should be of same type.
  if (!TypeSafety) {
    LLVM_DEBUG(dbgs() << "    Alias tracker type safety failed!\n");
    return false;
  }
  // Ensure loop body shouldn't be read only.
  if (!HasMod) {
    LLVM_DEBUG(dbgs() << "    No memory modified in loop body\n");
    return false;
  }
  // Make sure alias set has may alias case.
  // If there no alias memory ambiguity, return false.
  if (!HasMayAlias) {
    LLVM_DEBUG(dbgs() << "    No ambiguity in memory access.\n");
    return false;
  }
  return true;
}

/// Check loop instructions safe for Loop versioning.
/// It returns true if it's safe else returns false.
/// Consider following:
/// 1) Check all load store in loop body are non atomic & non volatile.
/// 2) Check function call safety, by ensuring its not accessing memory.
/// 3) Loop body shouldn't have any may throw instruction.
/// 4) Loop body shouldn't have any convergent or noduplicate instructions.
bool LoopVersioningLICM::instructionSafeForVersioning(Instruction *I) {
  assert(I != nullptr && "Null instruction found!");
  // Check function call safety
  if (auto *Call = dyn_cast<CallBase>(I)) {
    if (Call->isConvergent() || Call->cannotDuplicate()) {
      LLVM_DEBUG(dbgs() << "    Convergent call site found.\n");
      return false;
    }

    if (!AA->doesNotAccessMemory(Call)) {
      LLVM_DEBUG(dbgs() << "    Unsafe call site found.\n");
      return false;
    }
  }

  // Avoid loops with possiblity of throw
  if (I->mayThrow()) {
    LLVM_DEBUG(dbgs() << "    May throw instruction found in loop body\n");
    return false;
  }
  // If current instruction is load instructions
  // make sure it's a simple load (non atomic & non volatile)
  if (I->mayReadFromMemory()) {
    LoadInst *Ld = dyn_cast<LoadInst>(I);
    if (!Ld || !Ld->isSimple()) {
      LLVM_DEBUG(dbgs() << "    Found a non-simple load.\n");
      return false;
    }
    LoadAndStoreCounter++;
    Value *Ptr = Ld->getPointerOperand();
    // Check loop invariant.
    if (SE->isLoopInvariant(SE->getSCEV(Ptr), CurLoop))
      InvariantCounter++;
  }
  // If current instruction is store instruction
  // make sure it's a simple store (non atomic & non volatile)
  else if (I->mayWriteToMemory()) {
    StoreInst *St = dyn_cast<StoreInst>(I);
    if (!St || !St->isSimple()) {
      LLVM_DEBUG(dbgs() << "    Found a non-simple store.\n");
      return false;
    }
    LoadAndStoreCounter++;
    Value *Ptr = St->getPointerOperand();
    // Check loop invariant.
    if (SE->isLoopInvariant(SE->getSCEV(Ptr), CurLoop))
      InvariantCounter++;

    IsReadOnlyLoop = false;
  }
  return true;
}

/// Check loop instructions and confirms it's good for
/// LoopVersioningLICM.
bool LoopVersioningLICM::legalLoopInstructions() {
  // Resetting counters.
  LoadAndStoreCounter = 0;
  InvariantCounter = 0;
  IsReadOnlyLoop = true;
  using namespace ore;
  // Iterate over loop blocks and instructions of each block and check
  // instruction safety.
  for (auto *Block : CurLoop->getBlocks())
    for (auto &Inst : *Block) {
      // If instruction is unsafe just return false.
      if (!instructionSafeForVersioning(&Inst)) {
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "IllegalLoopInst", &Inst)
                 << " Unsafe Loop Instruction";
        });
        return false;
      }
    }
  // Get LoopAccessInfo from current loop.
  LAI = &LAA->getInfo(CurLoop);
  // Check LoopAccessInfo for need of runtime check.
  if (LAI->getRuntimePointerChecking()->getChecks().empty()) {
    LLVM_DEBUG(dbgs() << "    LAA: Runtime check not found !!\n");
    return false;
  }
  // Number of runtime-checks should be less then RuntimeMemoryCheckThreshold
  if (LAI->getNumRuntimePointerChecks() >
      VectorizerParams::RuntimeMemoryCheckThreshold) {
    LLVM_DEBUG(
        dbgs() << "    LAA: Runtime checks are more than threshold !!\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "RuntimeCheck",
                                      CurLoop->getStartLoc(),
                                      CurLoop->getHeader())
             << "Number of runtime checks "
             << NV("RuntimeChecks", LAI->getNumRuntimePointerChecks())
             << " exceeds threshold "
             << NV("Threshold", VectorizerParams::RuntimeMemoryCheckThreshold);
    });
    return false;
  }
  // Loop should have at least one invariant load or store instruction.
  if (!InvariantCounter) {
    LLVM_DEBUG(dbgs() << "    Invariant not found !!\n");
    return false;
  }
  // Read only loop not allowed.
  if (IsReadOnlyLoop) {
    LLVM_DEBUG(dbgs() << "    Found a read-only loop!\n");
    return false;
  }
  // Profitablity check:
  // Check invariant threshold, should be in limit.
  if (InvariantCounter * 100 < InvariantThreshold * LoadAndStoreCounter) {
    LLVM_DEBUG(
        dbgs()
        << "    Invariant load & store are less then defined threshold\n");
    LLVM_DEBUG(dbgs() << "    Invariant loads & stores: "
                      << ((InvariantCounter * 100) / LoadAndStoreCounter)
                      << "%\n");
    LLVM_DEBUG(dbgs() << "    Invariant loads & store threshold: "
                      << InvariantThreshold << "%\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "InvariantThreshold",
                                      CurLoop->getStartLoc(),
                                      CurLoop->getHeader())
             << "Invariant load & store "
             << NV("LoadAndStoreCounter",
                   ((InvariantCounter * 100) / LoadAndStoreCounter))
             << " are less then defined threshold "
             << NV("Threshold", InvariantThreshold);
    });
    return false;
  }
  return true;
}

/// It checks loop is already visited or not.
/// check loop meta data, if loop revisited return true
/// else false.
bool LoopVersioningLICM::isLoopAlreadyVisited() {
  // Check LoopVersioningLICM metadata into loop
  if (findStringMetadataForLoop(CurLoop, LICMVersioningMetaData)) {
    return true;
  }
  return false;
}

/// Checks legality for LoopVersioningLICM by considering following:
/// a) loop structure legality   b) loop instruction legality
/// c) loop memory access legality.
/// Return true if legal else returns false.
bool LoopVersioningLICM::isLegalForVersioning() {
  using namespace ore;
  LLVM_DEBUG(dbgs() << "Loop: " << *CurLoop);
  // Make sure not re-visiting same loop again.
  if (isLoopAlreadyVisited()) {
    LLVM_DEBUG(
        dbgs() << "    Revisiting loop in LoopVersioningLICM not allowed.\n\n");
    return false;
  }
  // Check loop structure leagality.
  if (!legalLoopStructure()) {
    LLVM_DEBUG(
        dbgs() << "    Loop structure not suitable for LoopVersioningLICM\n\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "IllegalLoopStruct",
                                      CurLoop->getStartLoc(),
                                      CurLoop->getHeader())
             << " Unsafe Loop structure";
    });
    return false;
  }
  // Check loop instruction leagality.
  if (!legalLoopInstructions()) {
    LLVM_DEBUG(
        dbgs()
        << "    Loop instructions not suitable for LoopVersioningLICM\n\n");
    return false;
  }
  // Check loop memory access leagality.
  if (!legalLoopMemoryAccesses()) {
    LLVM_DEBUG(
        dbgs()
        << "    Loop memory access not suitable for LoopVersioningLICM\n\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "IllegalLoopMemoryAccess",
                                      CurLoop->getStartLoc(),
                                      CurLoop->getHeader())
             << " Unsafe Loop memory access";
    });
    return false;
  }
  // Loop versioning is feasible, return true.
  LLVM_DEBUG(dbgs() << "    Loop Versioning found to be beneficial\n\n");
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "IsLegalForVersioning",
                              CurLoop->getStartLoc(), CurLoop->getHeader())
           << " Versioned loop for LICM."
           << " Number of runtime checks we had to insert "
           << NV("RuntimeChecks", LAI->getNumRuntimePointerChecks());
  });
  return true;
}

/// Update loop with aggressive aliasing assumptions.
/// It marks no-alias to any pairs of memory operations by assuming
/// loop should not have any must-alias memory accesses pairs.
/// During LoopVersioningLICM legality we ignore loops having must
/// aliasing memory accesses.
void LoopVersioningLICM::setNoAliasToLoop(Loop *VerLoop) {
  // Get latch terminator instruction.
  Instruction *I = VerLoop->getLoopLatch()->getTerminator();
  // Create alias scope domain.
  MDBuilder MDB(I->getContext());
  MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("LVDomain");
  StringRef Name = "LVAliasScope";
  SmallVector<Metadata *, 4> Scopes, NoAliases;
  MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
  // Iterate over each instruction of loop.
  // set no-alias for all load & store instructions.
  for (auto *Block : CurLoop->getBlocks()) {
    for (auto &Inst : *Block) {
      // Only interested in instruction that may modify or read memory.
      if (!Inst.mayReadFromMemory() && !Inst.mayWriteToMemory())
        continue;
      Scopes.push_back(NewScope);
      NoAliases.push_back(NewScope);
      // Set no-alias for current instruction.
      Inst.setMetadata(
          LLVMContext::MD_noalias,
          MDNode::concatenate(Inst.getMetadata(LLVMContext::MD_noalias),
                              MDNode::get(Inst.getContext(), NoAliases)));
      // set alias-scope for current instruction.
      Inst.setMetadata(
          LLVMContext::MD_alias_scope,
          MDNode::concatenate(Inst.getMetadata(LLVMContext::MD_alias_scope),
                              MDNode::get(Inst.getContext(), Scopes)));
    }
  }
}

bool LoopVersioningLICM::runOnLoop(Loop *L, LPPassManager &LPM) {
  // This will automatically release all resources hold by the current
  // LoopVersioningLICM object.
  AutoResetter Resetter(*this);

  if (skipLoop(L))
    return false;

  // Do not do the transformation if disabled by metadata.
  if (hasLICMVersioningTransformation(L) & TM_Disable)
    return false;

  // Get Analysis information.
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
  ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  LAI = nullptr;
  // Set Current Loop
  CurLoop = L;
  CurAST.reset(new AliasSetTracker(*AA));

  // Loop over the body of this loop, construct AST.
  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  for (auto *Block : L->getBlocks()) {
    if (LI->getLoopFor(Block) == L) // Ignore blocks in subloop.
      CurAST->add(*Block);          // Incorporate the specified basic block
  }

  bool Changed = false;

  // Check feasiblity of LoopVersioningLICM.
  // If versioning found to be feasible and beneficial then proceed
  // else simply return, by cleaning up memory.
  if (isLegalForVersioning()) {
    // Do loop versioning.
    // Create memcheck for memory accessed inside loop.
    // Clone original loop, and set blocks properly.
    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopVersioning LVer(*LAI, CurLoop, LI, DT, SE, true);
    LVer.versionLoop();
    // Set Loop Versioning metaData for original loop.
    addStringMetadataToLoop(LVer.getNonVersionedLoop(), LICMVersioningMetaData);
    // Set Loop Versioning metaData for version loop.
    addStringMetadataToLoop(LVer.getVersionedLoop(), LICMVersioningMetaData);
    // Set "llvm.mem.parallel_loop_access" metaData to versioned loop.
    // FIXME: "llvm.mem.parallel_loop_access" annotates memory access
    // instructions, not loops.
    addStringMetadataToLoop(LVer.getVersionedLoop(),
                            "llvm.mem.parallel_loop_access");
    // Update version loop with aggressive aliasing assumption.
    setNoAliasToLoop(LVer.getVersionedLoop());
    Changed = true;
  }
  return Changed;
}

char LoopVersioningLICM::ID = 0;

INITIALIZE_PASS_BEGIN(LoopVersioningLICM, "loop-versioning-licm",
                      "Loop Versioning For LICM", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopVersioningLICM, "loop-versioning-licm",
                    "Loop Versioning For LICM", false, false)

Pass *llvm::createLoopVersioningLICMPass() { return new LoopVersioningLICM(); }