LoopUnswitch.cpp 64.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to multiple loops.  For example, it turns the left into the right code:
//
//  for (...)                  if (lic)
//    A                          for (...)
//    if (lic)                     A; B; C
//      B                      else
//    C                          for (...)
//                                 A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-unswitch"

STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards,   "Number of guards unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
STATISTIC(TotalInsts,  "Total number of instructions analyzed");

// The specific value of 100 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
          cl::init(100), cl::Hidden);

namespace {

  class LUAnalysisCache {
    using UnswitchedValsMap =
        DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
    using UnswitchedValsIt = UnswitchedValsMap::iterator;

    struct LoopProperties {
      unsigned CanBeUnswitchedCount;
      unsigned WasUnswitchedCount;
      unsigned SizeEstimation;
      UnswitchedValsMap UnswitchedVals;
    };

    // Here we use std::map instead of DenseMap, since we need to keep valid
    // LoopProperties pointer for current loop for better performance.
    using LoopPropsMap = std::map<const Loop *, LoopProperties>;
    using LoopPropsMapIt = LoopPropsMap::iterator;

    LoopPropsMap LoopsProperties;
    UnswitchedValsMap *CurLoopInstructions = nullptr;
    LoopProperties *CurrentLoopProperties = nullptr;

    // A loop unswitching with an estimated cost above this threshold
    // is not performed. MaxSize is turned into unswitching quota for
    // the current loop, and reduced correspondingly, though note that
    // the quota is returned by releaseMemory() when the loop has been
    // processed, so that MaxSize will return to its previous
    // value. So in most cases MaxSize will equal the Threshold flag
    // when a new loop is processed. An exception to that is that
    // MaxSize will have a smaller value while processing nested loops
    // that were introduced due to loop unswitching of an outer loop.
    //
    // FIXME: The way that MaxSize works is subtle and depends on the
    // pass manager processing loops and calling releaseMemory() in a
    // specific order. It would be good to find a more straightforward
    // way of doing what MaxSize does.
    unsigned MaxSize;

  public:
    LUAnalysisCache() : MaxSize(Threshold) {}

    // Analyze loop. Check its size, calculate is it possible to unswitch
    // it. Returns true if we can unswitch this loop.
    bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
                   AssumptionCache *AC);

    // Clean all data related to given loop.
    void forgetLoop(const Loop *L);

    // Mark case value as unswitched.
    // Since SI instruction can be partly unswitched, in order to avoid
    // extra unswitching in cloned loops keep track all unswitched values.
    void setUnswitched(const SwitchInst *SI, const Value *V);

    // Check was this case value unswitched before or not.
    bool isUnswitched(const SwitchInst *SI, const Value *V);

    // Returns true if another unswitching could be done within the cost
    // threshold.
    bool costAllowsUnswitching();

    // Clone all loop-unswitch related loop properties.
    // Redistribute unswitching quotas.
    // Note, that new loop data is stored inside the VMap.
    void cloneData(const Loop *NewLoop, const Loop *OldLoop,
                   const ValueToValueMapTy &VMap);
  };

  class LoopUnswitch : public LoopPass {
    LoopInfo *LI;  // Loop information
    LPPassManager *LPM;
    AssumptionCache *AC;

    // Used to check if second loop needs processing after
    // rewriteLoopBodyWithConditionConstant rewrites first loop.
    std::vector<Loop*> LoopProcessWorklist;

    LUAnalysisCache BranchesInfo;

    bool OptimizeForSize;
    bool RedoLoop = false;

    Loop *CurrentLoop = nullptr;
    DominatorTree *DT = nullptr;
    MemorySSA *MSSA = nullptr;
    std::unique_ptr<MemorySSAUpdater> MSSAU;
    BasicBlock *LoopHeader = nullptr;
    BasicBlock *LoopPreheader = nullptr;

    bool SanitizeMemory;
    SimpleLoopSafetyInfo SafetyInfo;

    // LoopBlocks contains all of the basic blocks of the loop, including the
    // preheader of the loop, the body of the loop, and the exit blocks of the
    // loop, in that order.
    std::vector<BasicBlock*> LoopBlocks;
    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    std::vector<BasicBlock*> NewBlocks;

    bool HasBranchDivergence;

  public:
    static char ID; // Pass ID, replacement for typeid

    explicit LoopUnswitch(bool Os = false, bool HasBranchDivergence = false)
        : LoopPass(ID), OptimizeForSize(Os),
          HasBranchDivergence(HasBranchDivergence) {
      initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    bool processCurrentLoop();
    bool isUnreachableDueToPreviousUnswitching(BasicBlock *);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.
    ///
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
      if (EnableMSSALoopDependency) {
        AU.addRequired<MemorySSAWrapperPass>();
        AU.addPreserved<MemorySSAWrapperPass>();
      }
      if (HasBranchDivergence)
        AU.addRequired<LegacyDivergenceAnalysis>();
      getLoopAnalysisUsage(AU);
    }

  private:
    void releaseMemory() override { BranchesInfo.forgetLoop(CurrentLoop); }

    void initLoopData() {
      LoopHeader = CurrentLoop->getHeader();
      LoopPreheader = CurrentLoop->getLoopPreheader();
    }

    /// Split all of the edges from inside the loop to their exit blocks.
    /// Update the appropriate Phi nodes as we do so.
    void splitExitEdges(Loop *L,
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks);

    bool tryTrivialLoopUnswitch(bool &Changed);

    bool unswitchIfProfitable(Value *LoopCond, Constant *Val,
                              Instruction *TI = nullptr);
    void unswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                  BasicBlock *ExitBlock, Instruction *TI);
    void unswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
                                     Instruction *TI);

    void rewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                              Constant *Val, bool IsEqual);

    void emitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                        BasicBlock *TrueDest,
                                        BasicBlock *FalseDest,
                                        BranchInst *OldBranch, Instruction *TI);

    void simplifyCode(std::vector<Instruction *> &Worklist, Loop *L);

    /// Given that the Invariant is not equal to Val. Simplify instructions
    /// in the loop.
    Value *simplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
                                           Constant *Val);
  };

} // end anonymous namespace

// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
                                AssumptionCache *AC) {
  LoopPropsMapIt PropsIt;
  bool Inserted;
  std::tie(PropsIt, Inserted) =
      LoopsProperties.insert(std::make_pair(L, LoopProperties()));

  LoopProperties &Props = PropsIt->second;

  if (Inserted) {
    // New loop.

    // Limit the number of instructions to avoid causing significant code
    // expansion, and the number of basic blocks, to avoid loops with
    // large numbers of branches which cause loop unswitching to go crazy.
    // This is a very ad-hoc heuristic.

    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(L, AC, EphValues);

    // FIXME: This is overly conservative because it does not take into
    // consideration code simplification opportunities and code that can
    // be shared by the resultant unswitched loops.
    CodeMetrics Metrics;
    for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
         ++I)
      Metrics.analyzeBasicBlock(*I, TTI, EphValues);

    Props.SizeEstimation = Metrics.NumInsts;
    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    Props.WasUnswitchedCount = 0;
    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;

    if (Metrics.notDuplicatable) {
      LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
                        << ", contents cannot be "
                        << "duplicated!\n");
      return false;
    }
  }

  // Be careful. This links are good only before new loop addition.
  CurrentLoopProperties = &Props;
  CurLoopInstructions = &Props.UnswitchedVals;

  return true;
}

// Clean all data related to given loop.
void LUAnalysisCache::forgetLoop(const Loop *L) {
  LoopPropsMapIt LIt = LoopsProperties.find(L);

  if (LIt != LoopsProperties.end()) {
    LoopProperties &Props = LIt->second;
    MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
               Props.SizeEstimation;
    LoopsProperties.erase(LIt);
  }

  CurrentLoopProperties = nullptr;
  CurLoopInstructions = nullptr;
}

// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
  (*CurLoopInstructions)[SI].insert(V);
}

// Check was this case value unswitched before or not.
bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
  return (*CurLoopInstructions)[SI].count(V);
}

bool LUAnalysisCache::costAllowsUnswitching() {
  return CurrentLoopProperties->CanBeUnswitchedCount > 0;
}

// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
                                const ValueToValueMapTy &VMap) {
  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
  LoopProperties &OldLoopProps = *CurrentLoopProperties;
  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;

  // Reallocate "can-be-unswitched quota"

  --OldLoopProps.CanBeUnswitchedCount;
  ++OldLoopProps.WasUnswitchedCount;
  NewLoopProps.WasUnswitchedCount = 0;
  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;

  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;

  // Clone unswitched values info:
  // for new loop switches we clone info about values that was
  // already unswitched and has redundant successors.
  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    const SwitchInst *OldInst = I->first;
    Value *NewI = VMap.lookup(OldInst);
    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");

    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
  }
}

char LoopUnswitch::ID = 0;

INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)

Pass *llvm::createLoopUnswitchPass(bool Os, bool HasBranchDivergence) {
  return new LoopUnswitch(Os, HasBranchDivergence);
}

/// Operator chain lattice.
enum OperatorChain {
  OC_OpChainNone,    ///< There is no operator.
  OC_OpChainOr,      ///< There are only ORs.
  OC_OpChainAnd,     ///< There are only ANDs.
  OC_OpChainMixed    ///< There are ANDs and ORs.
};

/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant. Otherwise, return null.
//
/// NOTE: findLIVLoopCondition will not return a partial LIV by walking up a
/// mixed operator chain, as we can not reliably find a value which will
/// simplify the operator chain. If the chain is AND-only or OR-only, we can use
/// 0 or ~0 to simplify the chain.
///
/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
/// simplify the condition itself to a loop variant condition, but at the
/// cost of creating an entirely new loop.
static Value *findLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
                                   OperatorChain &ParentChain,
                                   DenseMap<Value *, Value *> &Cache,
                                   MemorySSAUpdater *MSSAU) {
  auto CacheIt = Cache.find(Cond);
  if (CacheIt != Cache.end())
    return CacheIt->second;

  // We started analyze new instruction, increment scanned instructions counter.
  ++TotalInsts;

  // We can never unswitch on vector conditions.
  if (Cond->getType()->isVectorTy())
    return nullptr;

  // Constants should be folded, not unswitched on!
  if (isa<Constant>(Cond)) return nullptr;

  // TODO: Handle: br (VARIANT|INVARIANT).

  // Hoist simple values out.
  if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) {
    Cache[Cond] = Cond;
    return Cond;
  }

  // Walk up the operator chain to find partial invariant conditions.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    if (BO->getOpcode() == Instruction::And ||
        BO->getOpcode() == Instruction::Or) {
      // Given the previous operator, compute the current operator chain status.
      OperatorChain NewChain;
      switch (ParentChain) {
      case OC_OpChainNone:
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
                                      OC_OpChainOr;
        break;
      case OC_OpChainOr:
        NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
                                      OC_OpChainMixed;
        break;
      case OC_OpChainAnd:
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
                                      OC_OpChainMixed;
        break;
      case OC_OpChainMixed:
        NewChain = OC_OpChainMixed;
        break;
      }

      // If we reach a Mixed state, we do not want to keep walking up as we can not
      // reliably find a value that will simplify the chain. With this check, we
      // will return null on the first sight of mixed chain and the caller will
      // either backtrack to find partial LIV in other operand or return null.
      if (NewChain != OC_OpChainMixed) {
        // Update the current operator chain type before we search up the chain.
        ParentChain = NewChain;
        // If either the left or right side is invariant, we can unswitch on this,
        // which will cause the branch to go away in one loop and the condition to
        // simplify in the other one.
        if (Value *LHS = findLIVLoopCondition(BO->getOperand(0), L, Changed,
                                              ParentChain, Cache, MSSAU)) {
          Cache[Cond] = LHS;
          return LHS;
        }
        // We did not manage to find a partial LIV in operand(0). Backtrack and try
        // operand(1).
        ParentChain = NewChain;
        if (Value *RHS = findLIVLoopCondition(BO->getOperand(1), L, Changed,
                                              ParentChain, Cache, MSSAU)) {
          Cache[Cond] = RHS;
          return RHS;
        }
      }
    }

  Cache[Cond] = nullptr;
  return nullptr;
}

/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant along with the operator chain type.
/// Otherwise, return null.
static std::pair<Value *, OperatorChain>
findLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
                     MemorySSAUpdater *MSSAU) {
  DenseMap<Value *, Value *> Cache;
  OperatorChain OpChain = OC_OpChainNone;
  Value *FCond = findLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU);

  // In case we do find a LIV, it can not be obtained by walking up a mixed
  // operator chain.
  assert((!FCond || OpChain != OC_OpChainMixed) &&
        "Do not expect a partial LIV with mixed operator chain");
  return {FCond, OpChain};
}

bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPMRef) {
  if (skipLoop(L))
    return false;

  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
      *L->getHeader()->getParent());
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  LPM = &LPMRef;
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  if (EnableMSSALoopDependency) {
    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
    assert(DT && "Cannot update MemorySSA without a valid DomTree.");
  }
  CurrentLoop = L;
  Function *F = CurrentLoop->getHeader()->getParent();

  SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
  if (SanitizeMemory)
    SafetyInfo.computeLoopSafetyInfo(L);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  bool Changed = false;
  do {
    assert(CurrentLoop->isLCSSAForm(*DT));
    if (MSSA && VerifyMemorySSA)
      MSSA->verifyMemorySSA();
    RedoLoop = false;
    Changed |= processCurrentLoop();
  } while (RedoLoop);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  return Changed;
}

// Return true if the BasicBlock BB is unreachable from the loop header.
// Return false, otherwise.
bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
  auto *Node = DT->getNode(BB)->getIDom();
  BasicBlock *DomBB = Node->getBlock();
  while (CurrentLoop->contains(DomBB)) {
    BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());

    Node = DT->getNode(DomBB)->getIDom();
    DomBB = Node->getBlock();

    if (!BInst || !BInst->isConditional())
      continue;

    Value *Cond = BInst->getCondition();
    if (!isa<ConstantInt>(Cond))
      continue;

    BasicBlock *UnreachableSucc =
        Cond == ConstantInt::getTrue(Cond->getContext())
            ? BInst->getSuccessor(1)
            : BInst->getSuccessor(0);

    if (DT->dominates(UnreachableSucc, BB))
      return true;
  }
  return false;
}

/// FIXME: Remove this workaround when freeze related patches are done.
/// LoopUnswitch and Equality propagation in GVN have discrepancy about
/// whether branch on undef/poison has undefine behavior. Here it is to
/// rule out some common cases that we found such discrepancy already
/// causing problems. Detail could be found in PR31652. Note if the
/// func returns true, it is unsafe. But if it is false, it doesn't mean
/// it is necessarily safe.
static bool equalityPropUnSafe(Value &LoopCond) {
  ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);
  Value *RHS = CI->getOperand(1);
  if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
    return true;

  auto HasUndefInPHI = [](PHINode &PN) {
    for (Value *Opd : PN.incoming_values()) {
      if (isa<UndefValue>(Opd))
        return true;
    }
    return false;
  };
  PHINode *LPHI = dyn_cast<PHINode>(LHS);
  PHINode *RPHI = dyn_cast<PHINode>(RHS);
  if ((LPHI && HasUndefInPHI(*LPHI)) || (RPHI && HasUndefInPHI(*RPHI)))
    return true;

  auto HasUndefInSelect = [](SelectInst &SI) {
    if (isa<UndefValue>(SI.getTrueValue()) ||
        isa<UndefValue>(SI.getFalseValue()))
      return true;
    return false;
  };
  SelectInst *LSI = dyn_cast<SelectInst>(LHS);
  SelectInst *RSI = dyn_cast<SelectInst>(RHS);
  if ((LSI && HasUndefInSelect(*LSI)) || (RSI && HasUndefInSelect(*RSI)))
    return true;
  return false;
}

/// Do actual work and unswitch loop if possible and profitable.
bool LoopUnswitch::processCurrentLoop() {
  bool Changed = false;

  initLoopData();

  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
  if (!LoopPreheader)
    return false;

  // Loops with indirectbr cannot be cloned.
  if (!CurrentLoop->isSafeToClone())
    return false;

  // Without dedicated exits, splitting the exit edge may fail.
  if (!CurrentLoop->hasDedicatedExits())
    return false;

  LLVMContext &Context = LoopHeader->getContext();

  // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
  if (!BranchesInfo.countLoop(
          CurrentLoop,
          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
              *CurrentLoop->getHeader()->getParent()),
          AC))
    return false;

  // Try trivial unswitch first before loop over other basic blocks in the loop.
  if (tryTrivialLoopUnswitch(Changed)) {
    return true;
  }

  // Do not do non-trivial unswitch while optimizing for size.
  // FIXME: Use Function::hasOptSize().
  if (OptimizeForSize ||
      LoopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
    return false;

  // Run through the instructions in the loop, keeping track of three things:
  //
  //  - That we do not unswitch loops containing convergent operations, as we
  //    might be making them control dependent on the unswitch value when they
  //    were not before.
  //    FIXME: This could be refined to only bail if the convergent operation is
  //    not already control-dependent on the unswitch value.
  //
  //  - That basic blocks in the loop contain invokes whose predecessor edges we
  //    cannot split.
  //
  //  - The set of guard intrinsics encountered (these are non terminator
  //    instructions that are also profitable to be unswitched).

  SmallVector<IntrinsicInst *, 4> Guards;

  for (const auto BB : CurrentLoop->blocks()) {
    for (auto &I : *BB) {
      auto *CB = dyn_cast<CallBase>(&I);
      if (!CB)
        continue;
      if (CB->isConvergent())
        return false;
      if (auto *II = dyn_cast<InvokeInst>(&I))
        if (!II->getUnwindDest()->canSplitPredecessors())
          return false;
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::experimental_guard)
          Guards.push_back(II);
    }
  }

  for (IntrinsicInst *Guard : Guards) {
    Value *LoopCond = findLIVLoopCondition(Guard->getOperand(0), CurrentLoop,
                                           Changed, MSSAU.get())
                          .first;
    if (LoopCond &&
        unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
      // NB! Unswitching (if successful) could have erased some of the
      // instructions in Guards leaving dangling pointers there.  This is fine
      // because we're returning now, and won't look at Guards again.
      ++NumGuards;
      return true;
    }
  }

  // Loop over all of the basic blocks in the loop.  If we find an interior
  // block that is branching on a loop-invariant condition, we can unswitch this
  // loop.
  for (Loop::block_iterator I = CurrentLoop->block_begin(),
                            E = CurrentLoop->block_end();
       I != E; ++I) {
    Instruction *TI = (*I)->getTerminator();

    // Unswitching on a potentially uninitialized predicate is not
    // MSan-friendly. Limit this to the cases when the original predicate is
    // guaranteed to execute, to avoid creating a use-of-uninitialized-value
    // in the code that did not have one.
    // This is a workaround for the discrepancy between LLVM IR and MSan
    // semantics. See PR28054 for more details.
    if (SanitizeMemory &&
        !SafetyInfo.isGuaranteedToExecute(*TI, DT, CurrentLoop))
      continue;

    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      // Some branches may be rendered unreachable because of previous
      // unswitching.
      // Unswitch only those branches that are reachable.
      if (isUnreachableDueToPreviousUnswitching(*I))
        continue;

      // If this isn't branching on an invariant condition, we can't unswitch
      // it.
      if (BI->isConditional()) {
        // See if this, or some part of it, is loop invariant.  If so, we can
        // unswitch on it if we desire.
        Value *LoopCond = findLIVLoopCondition(BI->getCondition(), CurrentLoop,
                                               Changed, MSSAU.get())
                              .first;
        if (LoopCond && !equalityPropUnSafe(*LoopCond) &&
            unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
          ++NumBranches;
          return true;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *SC = SI->getCondition();
      Value *LoopCond;
      OperatorChain OpChain;
      std::tie(LoopCond, OpChain) =
          findLIVLoopCondition(SC, CurrentLoop, Changed, MSSAU.get());

      unsigned NumCases = SI->getNumCases();
      if (LoopCond && NumCases) {
        // Find a value to unswitch on:
        // FIXME: this should chose the most expensive case!
        // FIXME: scan for a case with a non-critical edge?
        Constant *UnswitchVal = nullptr;
        // Find a case value such that at least one case value is unswitched
        // out.
        if (OpChain == OC_OpChainAnd) {
          // If the chain only has ANDs and the switch has a case value of 0.
          // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
          auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
          if (BranchesInfo.isUnswitched(SI, AllZero))
            continue;
          // We are unswitching 0 out.
          UnswitchVal = AllZero;
        } else if (OpChain == OC_OpChainOr) {
          // If the chain only has ORs and the switch has a case value of ~0.
          // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
          auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
          if (BranchesInfo.isUnswitched(SI, AllOne))
            continue;
          // We are unswitching ~0 out.
          UnswitchVal = AllOne;
        } else {
          assert(OpChain == OC_OpChainNone &&
                 "Expect to unswitch on trivial chain");
          // Do not process same value again and again.
          // At this point we have some cases already unswitched and
          // some not yet unswitched. Let's find the first not yet unswitched one.
          for (auto Case : SI->cases()) {
            Constant *UnswitchValCandidate = Case.getCaseValue();
            if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
              UnswitchVal = UnswitchValCandidate;
              break;
            }
          }
        }

        if (!UnswitchVal)
          continue;

        if (unswitchIfProfitable(LoopCond, UnswitchVal)) {
          ++NumSwitches;
          // In case of a full LIV, UnswitchVal is the value we unswitched out.
          // In case of a partial LIV, we only unswitch when its an AND-chain
          // or OR-chain. In both cases switch input value simplifies to
          // UnswitchVal.
          BranchesInfo.setUnswitched(SI, UnswitchVal);
          return true;
        }
      }
    }

    // Scan the instructions to check for unswitchable values.
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
         BBI != E; ++BBI)
      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
        Value *LoopCond = findLIVLoopCondition(SI->getCondition(), CurrentLoop,
                                               Changed, MSSAU.get())
                              .first;
        if (LoopCond &&
            unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
          ++NumSelects;
          return true;
        }
      }
  }
  return Changed;
}

/// Check to see if all paths from BB exit the loop with no side effects
/// (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
                                         BasicBlock *&ExitBB,
                                         std::set<BasicBlock*> &Visited) {
  if (!Visited.insert(BB).second) {
    // Already visited. Without more analysis, this could indicate an infinite
    // loop.
    return false;
  }
  if (!L->contains(BB)) {
    // Otherwise, this is a loop exit, this is fine so long as this is the
    // first exit.
    if (ExitBB) return false;
    ExitBB = BB;
    return true;
  }

  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    // Check to see if the successor is a trivial loop exit.
    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
      return false;
  }

  // Okay, everything after this looks good, check to make sure that this block
  // doesn't include any side effects.
  for (Instruction &I : *BB)
    if (I.mayHaveSideEffects())
      return false;

  return true;
}

/// Return true if the specified block unconditionally leads to an exit from
/// the specified loop, and has no side-effects in the process. If so, return
/// the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
  std::set<BasicBlock*> Visited;
  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
  BasicBlock *ExitBB = nullptr;
  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    return ExitBB;
  return nullptr;
}

/// We have found that we can unswitch CurrentLoop when LoopCond == Val to
/// simplify the loop.  If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::unswitchIfProfitable(Value *LoopCond, Constant *Val,
                                        Instruction *TI) {
  // Check to see if it would be profitable to unswitch current loop.
  if (!BranchesInfo.costAllowsUnswitching()) {
    LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
                      << CurrentLoop->getHeader()->getName()
                      << " at non-trivial condition '" << *Val
                      << "' == " << *LoopCond << "\n"
                      << ". Cost too high.\n");
    return false;
  }
  if (HasBranchDivergence &&
      getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
    LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
                      << CurrentLoop->getHeader()->getName()
                      << " at non-trivial condition '" << *Val
                      << "' == " << *LoopCond << "\n"
                      << ". Condition is divergent.\n");
    return false;
  }

  unswitchNontrivialCondition(LoopCond, Val, CurrentLoop, TI);
  return true;
}

/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
/// and remove (but not erase!) it from the function.
void LoopUnswitch::emitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                                  BasicBlock *TrueDest,
                                                  BasicBlock *FalseDest,
                                                  BranchInst *OldBranch,
                                                  Instruction *TI) {
  assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
  assert(TrueDest != FalseDest && "Branch targets should be different");
  // Insert a conditional branch on LIC to the two preheaders.  The original
  // code is the true version and the new code is the false version.
  Value *BranchVal = LIC;
  bool Swapped = false;
  if (!isa<ConstantInt>(Val) ||
      Val->getType() != Type::getInt1Ty(LIC->getContext()))
    BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
  else if (Val != ConstantInt::getTrue(Val->getContext())) {
    // We want to enter the new loop when the condition is true.
    std::swap(TrueDest, FalseDest);
    Swapped = true;
  }

  // Old branch will be removed, so save its parent and successor to update the
  // DomTree.
  auto *OldBranchSucc = OldBranch->getSuccessor(0);
  auto *OldBranchParent = OldBranch->getParent();

  // Insert the new branch.
  BranchInst *BI =
      IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
  if (Swapped)
    BI->swapProfMetadata();

  // Remove the old branch so there is only one branch at the end. This is
  // needed to perform DomTree's internal DFS walk on the function's CFG.
  OldBranch->removeFromParent();

  // Inform the DT about the new branch.
  if (DT) {
    // First, add both successors.
    SmallVector<DominatorTree::UpdateType, 3> Updates;
    if (TrueDest != OldBranchSucc)
      Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
    if (FalseDest != OldBranchSucc)
      Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
    // If both of the new successors are different from the old one, inform the
    // DT that the edge was deleted.
    if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
      Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
    }
    DT->applyUpdates(Updates);

    if (MSSAU)
      MSSAU->applyUpdates(Updates, *DT);
  }

  // If either edge is critical, split it. This helps preserve LoopSimplify
  // form for enclosing loops.
  auto Options =
      CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
  SplitCriticalEdge(BI, 0, Options);
  SplitCriticalEdge(BI, 1, Options);
}

/// Given a loop that has a trivial unswitchable condition in it (a cond branch
/// from its header block to its latch block, where the path through the loop
/// that doesn't execute its body has no side-effects), unswitch it. This
/// doesn't involve any code duplication, just moving the conditional branch
/// outside of the loop and updating loop info.
void LoopUnswitch::unswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                            BasicBlock *ExitBlock,
                                            Instruction *TI) {
  LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
                    << LoopHeader->getName() << " [" << L->getBlocks().size()
                    << " blocks] in Function "
                    << L->getHeader()->getParent()->getName()
                    << " on cond: " << *Val << " == " << *Cond << "\n");
  // We are going to make essential changes to CFG. This may invalidate cached
  // information for L or one of its parent loops in SCEV.
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    SEWP->getSE().forgetTopmostLoop(L);

  // First step, split the preheader, so that we know that there is a safe place
  // to insert the conditional branch.  We will change LoopPreheader to have a
  // conditional branch on Cond.
  BasicBlock *NewPH = SplitEdge(LoopPreheader, LoopHeader, DT, LI, MSSAU.get());

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we should
  // short-circuit to.

  // Split this block now, so that the loop maintains its exit block, and so
  // that the jump from the preheader can execute the contents of the exit block
  // without actually branching to it (the exit block should be dominated by the
  // loop header, not the preheader).
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
  BasicBlock *NewExit =
      SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());

  // Okay, now we have a position to branch from and a position to branch to,
  // insert the new conditional branch.
  auto *OldBranch = dyn_cast<BranchInst>(LoopPreheader->getTerminator());
  assert(OldBranch && "Failed to split the preheader");
  emitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);

  // emitPreheaderBranchOnCondition removed the OldBranch from the function.
  // Delete it, as it is no longer needed.
  delete OldBranch;

  // We need to reprocess this loop, it could be unswitched again.
  RedoLoop = true;

  // Now that we know that the loop is never entered when this condition is a
  // particular value, rewrite the loop with this info.  We know that this will
  // at least eliminate the old branch.
  rewriteLoopBodyWithConditionConstant(L, Cond, Val, /*IsEqual=*/false);

  ++NumTrivial;
}

/// Check if the first non-constant condition starting from the loop header is
/// a trivial unswitch condition: that is, a condition controls whether or not
/// the loop does anything at all. If it is a trivial condition, unswitching
/// produces no code duplications (equivalently, it produces a simpler loop and
/// a new empty loop, which gets deleted). Therefore always unswitch trivial
/// condition.
bool LoopUnswitch::tryTrivialLoopUnswitch(bool &Changed) {
  BasicBlock *CurrentBB = CurrentLoop->getHeader();
  Instruction *CurrentTerm = CurrentBB->getTerminator();
  LLVMContext &Context = CurrentBB->getContext();

  // If loop header has only one reachable successor (currently via an
  // unconditional branch or constant foldable conditional branch, but
  // should also consider adding constant foldable switch instruction in
  // future), we should keep looking for trivial condition candidates in
  // the successor as well. An alternative is to constant fold conditions
  // and merge successors into loop header (then we only need to check header's
  // terminator). The reason for not doing this in LoopUnswitch pass is that
  // it could potentially break LoopPassManager's invariants. Folding dead
  // branches could either eliminate the current loop or make other loops
  // unreachable. LCSSA form might also not be preserved after deleting
  // branches. The following code keeps traversing loop header's successors
  // until it finds the trivial condition candidate (condition that is not a
  // constant). Since unswitching generates branches with constant conditions,
  // this scenario could be very common in practice.
  SmallPtrSet<BasicBlock*, 8> Visited;

  while (true) {
    // If we exit loop or reach a previous visited block, then
    // we can not reach any trivial condition candidates (unfoldable
    // branch instructions or switch instructions) and no unswitch
    // can happen. Exit and return false.
    if (!CurrentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
      return false;

    // Check if this loop will execute any side-effecting instructions (e.g.
    // stores, calls, volatile loads) in the part of the loop that the code
    // *would* execute. Check the header first.
    for (Instruction &I : *CurrentBB)
      if (I.mayHaveSideEffects())
        return false;

    if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
      if (BI->isUnconditional()) {
        CurrentBB = BI->getSuccessor(0);
      } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
        CurrentBB = BI->getSuccessor(0);
      } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
        CurrentBB = BI->getSuccessor(1);
      } else {
        // Found a trivial condition candidate: non-foldable conditional branch.
        break;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
      // At this point, any constant-foldable instructions should have probably
      // been folded.
      ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
      if (!Cond)
        break;
      // Find the target block we are definitely going to.
      CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
    } else {
      // We do not understand these terminator instructions.
      break;
    }

    CurrentTerm = CurrentBB->getTerminator();
  }

  // CondVal is the condition that controls the trivial condition.
  // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
  Constant *CondVal = nullptr;
  BasicBlock *LoopExitBB = nullptr;

  if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
    // If this isn't branching on an invariant condition, we can't unswitch it.
    if (!BI->isConditional())
      return false;

    Value *LoopCond = findLIVLoopCondition(BI->getCondition(), CurrentLoop,
                                           Changed, MSSAU.get())
                          .first;

    // Unswitch only if the trivial condition itself is an LIV (not
    // partial LIV which could occur in and/or)
    if (!LoopCond || LoopCond != BI->getCondition())
      return false;

    // Check to see if a successor of the branch is guaranteed to
    // exit through a unique exit block without having any
    // side-effects.  If so, determine the value of Cond that causes
    // it to do this.
    if ((LoopExitBB =
             isTrivialLoopExitBlock(CurrentLoop, BI->getSuccessor(0)))) {
      CondVal = ConstantInt::getTrue(Context);
    } else if ((LoopExitBB =
                    isTrivialLoopExitBlock(CurrentLoop, BI->getSuccessor(1)))) {
      CondVal = ConstantInt::getFalse(Context);
    }

    // If we didn't find a single unique LoopExit block, or if the loop exit
    // block contains phi nodes, this isn't trivial.
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
      return false;   // Can't handle this.

    if (equalityPropUnSafe(*LoopCond))
      return false;

    unswitchTrivialCondition(CurrentLoop, LoopCond, CondVal, LoopExitBB,
                             CurrentTerm);
    ++NumBranches;
    return true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
    // If this isn't switching on an invariant condition, we can't unswitch it.
    Value *LoopCond = findLIVLoopCondition(SI->getCondition(), CurrentLoop,
                                           Changed, MSSAU.get())
                          .first;

    // Unswitch only if the trivial condition itself is an LIV (not
    // partial LIV which could occur in and/or)
    if (!LoopCond || LoopCond != SI->getCondition())
      return false;

    // Check to see if a successor of the switch is guaranteed to go to the
    // latch block or exit through a one exit block without having any
    // side-effects.  If so, determine the value of Cond that causes it to do
    // this.
    // Note that we can't trivially unswitch on the default case or
    // on already unswitched cases.
    for (auto Case : SI->cases()) {
      BasicBlock *LoopExitCandidate;
      if ((LoopExitCandidate =
               isTrivialLoopExitBlock(CurrentLoop, Case.getCaseSuccessor()))) {
        // Okay, we found a trivial case, remember the value that is trivial.
        ConstantInt *CaseVal = Case.getCaseValue();

        // Check that it was not unswitched before, since already unswitched
        // trivial vals are looks trivial too.
        if (BranchesInfo.isUnswitched(SI, CaseVal))
          continue;
        LoopExitBB = LoopExitCandidate;
        CondVal = CaseVal;
        break;
      }
    }

    // If we didn't find a single unique LoopExit block, or if the loop exit
    // block contains phi nodes, this isn't trivial.
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
      return false;   // Can't handle this.

    unswitchTrivialCondition(CurrentLoop, LoopCond, CondVal, LoopExitBB,
                             nullptr);

    // We are only unswitching full LIV.
    BranchesInfo.setUnswitched(SI, CondVal);
    ++NumSwitches;
    return true;
  }
  return false;
}

/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void LoopUnswitch::splitExitEdges(
    Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks) {

  for (unsigned I = 0, E = ExitBlocks.size(); I != E; ++I) {
    BasicBlock *ExitBlock = ExitBlocks[I];
    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
                                       pred_end(ExitBlock));

    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    // general, if we call it on all predecessors of all exits then it does.
    SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
                           /*PreserveLCSSA*/ true);
  }
}

/// We determined that the loop is profitable to unswitch when LIC equal Val.
/// Split it into loop versions and test the condition outside of either loop.
/// Return the loops created as Out1/Out2.
void LoopUnswitch::unswitchNontrivialCondition(Value *LIC, Constant *Val,
                                               Loop *L, Instruction *TI) {
  Function *F = LoopHeader->getParent();
  LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
                    << LoopHeader->getName() << " [" << L->getBlocks().size()
                    << " blocks] in Function " << F->getName() << " when '"
                    << *Val << "' == " << *LIC << "\n");

  // We are going to make essential changes to CFG. This may invalidate cached
  // information for L or one of its parent loops in SCEV.
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    SEWP->getSE().forgetTopmostLoop(L);

  LoopBlocks.clear();
  NewBlocks.clear();

  if (MSSAU && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  // First step, split the preheader and exit blocks, and add these blocks to
  // the LoopBlocks list.
  BasicBlock *NewPreheader =
      SplitEdge(LoopPreheader, LoopHeader, DT, LI, MSSAU.get());
  LoopBlocks.push_back(NewPreheader);

  // We want the loop to come after the preheader, but before the exit blocks.
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Split all of the edges from inside the loop to their exit blocks.  Update
  // the appropriate Phi nodes as we do so.
  splitExitEdges(L, ExitBlocks);

  // The exit blocks may have been changed due to edge splitting, recompute.
  ExitBlocks.clear();
  L->getUniqueExitBlocks(ExitBlocks);

  // Add exit blocks to the loop blocks.
  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());

  // Next step, clone all of the basic blocks that make up the loop (including
  // the loop preheader and exit blocks), keeping track of the mapping between
  // the instructions and blocks.
  NewBlocks.reserve(LoopBlocks.size());
  ValueToValueMapTy VMap;
  for (unsigned I = 0, E = LoopBlocks.size(); I != E; ++I) {
    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[I], VMap, ".us", F);

    NewBlocks.push_back(NewBB);
    VMap[LoopBlocks[I]] = NewBB; // Keep the BB mapping.
  }

  // Splice the newly inserted blocks into the function right before the
  // original preheader.
  F->getBasicBlockList().splice(NewPreheader->getIterator(),
                                F->getBasicBlockList(),
                                NewBlocks[0]->getIterator(), F->end());

  // Now we create the new Loop object for the versioned loop.
  Loop *NewLoop = cloneLoop(L, L->getParentLoop(), VMap, LI, LPM);

  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
  // Probably clone more loop-unswitch related loop properties.
  BranchesInfo.cloneData(NewLoop, L, VMap);

  Loop *ParentLoop = L->getParentLoop();
  if (ParentLoop) {
    // Make sure to add the cloned preheader and exit blocks to the parent loop
    // as well.
    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
  }

  for (unsigned EBI = 0, EBE = ExitBlocks.size(); EBI != EBE; ++EBI) {
    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[EBI]]);
    // The new exit block should be in the same loop as the old one.
    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[EBI]))
      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);

    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);

    // If the successor of the exit block had PHI nodes, add an entry for
    // NewExit.
    for (PHINode &PN : ExitSucc->phis()) {
      Value *V = PN.getIncomingValueForBlock(ExitBlocks[EBI]);
      ValueToValueMapTy::iterator It = VMap.find(V);
      if (It != VMap.end()) V = It->second;
      PN.addIncoming(V, NewExit);
    }

    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
                                    &*ExitSucc->getFirstInsertionPt());

      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
           I != E; ++I) {
        BasicBlock *BB = *I;
        LandingPadInst *LPI = BB->getLandingPadInst();
        LPI->replaceAllUsesWith(PN);
        PN->addIncoming(LPI, BB);
      }
    }
  }

  // Rewrite the code to refer to itself.
  for (unsigned NBI = 0, NBE = NewBlocks.size(); NBI != NBE; ++NBI) {
    for (Instruction &I : *NewBlocks[NBI]) {
      RemapInstruction(&I, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC->registerAssumption(II);
    }
  }

  // Rewrite the original preheader to select between versions of the loop.
  BranchInst *OldBR = cast<BranchInst>(LoopPreheader->getTerminator());
  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
         "Preheader splitting did not work correctly!");

  if (MSSAU) {
    // Update MemorySSA after cloning, and before splitting to unreachables,
    // since that invalidates the 1:1 mapping of clones in VMap.
    LoopBlocksRPO LBRPO(L);
    LBRPO.perform(LI);
    MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
  }

  // Emit the new branch that selects between the two versions of this loop.
  emitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
                                 TI);
  if (MSSAU) {
    // Update MemoryPhis in Exit blocks.
    MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
    if (VerifyMemorySSA)
      MSSA->verifyMemorySSA();
  }

  // The OldBr was replaced by a new one and removed (but not erased) by
  // emitPreheaderBranchOnCondition. It is no longer needed, so delete it.
  delete OldBR;

  LoopProcessWorklist.push_back(NewLoop);
  RedoLoop = true;

  // Keep a WeakTrackingVH holding onto LIC.  If the first call to
  // RewriteLoopBody
  // deletes the instruction (for example by simplifying a PHI that feeds into
  // the condition that we're unswitching on), we don't rewrite the second
  // iteration.
  WeakTrackingVH LICHandle(LIC);

  // Now we rewrite the original code to know that the condition is true and the
  // new code to know that the condition is false.
  rewriteLoopBodyWithConditionConstant(L, LIC, Val, /*IsEqual=*/false);

  // It's possible that simplifying one loop could cause the other to be
  // changed to another value or a constant.  If its a constant, don't simplify
  // it.
  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
      LICHandle && !isa<Constant>(LICHandle))
    rewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val,
                                         /*IsEqual=*/true);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();
}

/// Remove all instances of I from the worklist vector specified.
static void removeFromWorklist(Instruction *I,
                               std::vector<Instruction *> &Worklist) {

  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
                 Worklist.end());
}

/// When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void replaceUsesOfWith(Instruction *I, Value *V,
                              std::vector<Instruction *> &Worklist, Loop *L,
                              LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
  LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");

  // Add uses to the worklist, which may be dead now.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
      Worklist.push_back(Use);

  // Add users to the worklist which may be simplified now.
  for (User *U : I->users())
    Worklist.push_back(cast<Instruction>(U));
  removeFromWorklist(I, Worklist);
  I->replaceAllUsesWith(V);
  if (!I->mayHaveSideEffects()) {
    if (MSSAU)
      MSSAU->removeMemoryAccess(I);
    I->eraseFromParent();
  }
  ++NumSimplify;
}

/// We know either that the value LIC has the value specified by Val in the
/// specified loop, or we know it does NOT have that value.
/// Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::rewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                                        Constant *Val,
                                                        bool IsEqual) {
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");

  // FIXME: Support correlated properties, like:
  //  for (...)
  //    if (li1 < li2)
  //      ...
  //    if (li1 > li2)
  //      ...

  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
  // selects, switches.
  std::vector<Instruction*> Worklist;
  LLVMContext &Context = Val->getContext();

  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
  // in the loop with the appropriate one directly.
  if (IsEqual || (isa<ConstantInt>(Val) &&
      Val->getType()->isIntegerTy(1))) {
    Value *Replacement;
    if (IsEqual)
      Replacement = Val;
    else
      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
                                     !cast<ConstantInt>(Val)->getZExtValue());

    for (User *U : LIC->users()) {
      Instruction *UI = dyn_cast<Instruction>(U);
      if (!UI || !L->contains(UI))
        continue;
      Worklist.push_back(UI);
    }

    for (Instruction *UI : Worklist)
      UI->replaceUsesOfWith(LIC, Replacement);

    simplifyCode(Worklist, L);
    return;
  }

  // Otherwise, we don't know the precise value of LIC, but we do know that it
  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
  // can.  This case occurs when we unswitch switch statements.
  for (User *U : LIC->users()) {
    Instruction *UI = dyn_cast<Instruction>(U);
    if (!UI || !L->contains(UI))
      continue;

    // At this point, we know LIC is definitely not Val. Try to use some simple
    // logic to simplify the user w.r.t. to the context.
    if (Value *Replacement = simplifyInstructionWithNotEqual(UI, LIC, Val)) {
      if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
        // This in-loop instruction has been simplified w.r.t. its context,
        // i.e. LIC != Val, make sure we propagate its replacement value to
        // all its users.
        //
        // We can not yet delete UI, the LIC user, yet, because that would invalidate
        // the LIC->users() iterator !. However, we can make this instruction
        // dead by replacing all its users and push it onto the worklist so that
        // it can be properly deleted and its operands simplified.
        UI->replaceAllUsesWith(Replacement);
      }
    }

    // This is a LIC user, push it into the worklist so that simplifyCode can
    // attempt to simplify it.
    Worklist.push_back(UI);

    // If we know that LIC is not Val, use this info to simplify code.
    SwitchInst *SI = dyn_cast<SwitchInst>(UI);
    if (!SI || !isa<ConstantInt>(Val)) continue;

    // NOTE: if a case value for the switch is unswitched out, we record it
    // after the unswitch finishes. We can not record it here as the switch
    // is not a direct user of the partial LIV.
    SwitchInst::CaseHandle DeadCase =
        *SI->findCaseValue(cast<ConstantInt>(Val));
    // Default case is live for multiple values.
    if (DeadCase == *SI->case_default())
      continue;

    // Found a dead case value.  Don't remove PHI nodes in the
    // successor if they become single-entry, those PHI nodes may
    // be in the Users list.

    BasicBlock *Switch = SI->getParent();
    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
    BasicBlock *Latch = L->getLoopLatch();

    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
    // If the DeadCase successor dominates the loop latch, then the
    // transformation isn't safe since it will delete the sole predecessor edge
    // to the latch.
    if (Latch && DT->dominates(SISucc, Latch))
      continue;

    // FIXME: This is a hack.  We need to keep the successor around
    // and hooked up so as to preserve the loop structure, because
    // trying to update it is complicated.  So instead we preserve the
    // loop structure and put the block on a dead code path.
    SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
    // Compute the successors instead of relying on the return value
    // of SplitEdge, since it may have split the switch successor
    // after PHI nodes.
    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
    // Create an "unreachable" destination.
    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
                                           Switch->getParent(),
                                           OldSISucc);
    new UnreachableInst(Context, Abort);
    // Force the new case destination to branch to the "unreachable"
    // block while maintaining a (dead) CFG edge to the old block.
    NewSISucc->getTerminator()->eraseFromParent();
    BranchInst::Create(Abort, OldSISucc,
                       ConstantInt::getTrue(Context), NewSISucc);
    // Release the PHI operands for this edge.
    for (PHINode &PN : NewSISucc->phis())
      PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
    // Tell the domtree about the new block. We don't fully update the
    // domtree here -- instead we force it to do a full recomputation
    // after the pass is complete -- but we do need to inform it of
    // new blocks.
    DT->addNewBlock(Abort, NewSISucc);
  }

  simplifyCode(Worklist, L);
}

/// Now that we have simplified some instructions in the loop, walk over it and
/// constant prop, dce, and fold control flow where possible. Note that this is
/// effectively a very simple loop-structure-aware optimizer. During processing
/// of this loop, L could very well be deleted, so it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::simplifyCode(std::vector<Instruction *> &Worklist, Loop *L) {
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  while (!Worklist.empty()) {
    Instruction *I = Worklist.back();
    Worklist.pop_back();

    // Simple DCE.
    if (isInstructionTriviallyDead(I)) {
      LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");

      // Add uses to the worklist, which may be dead now.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
          Worklist.push_back(Use);
      removeFromWorklist(I, Worklist);
      if (MSSAU)
        MSSAU->removeMemoryAccess(I);
      I->eraseFromParent();
      ++NumSimplify;
      continue;
    }

    // See if instruction simplification can hack this up.  This is common for
    // things like "select false, X, Y" after unswitching made the condition be
    // 'false'.  TODO: update the domtree properly so we can pass it here.
    if (Value *V = SimplifyInstruction(I, DL))
      if (LI->replacementPreservesLCSSAForm(I, V)) {
        replaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
        continue;
      }

    // Special case hacks that appear commonly in unswitched code.
    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
      if (BI->isUnconditional()) {
        // If BI's parent is the only pred of the successor, fold the two blocks
        // together.
        BasicBlock *Pred = BI->getParent();
        (void)Pred;
        BasicBlock *Succ = BI->getSuccessor(0);
        BasicBlock *SinglePred = Succ->getSinglePredecessor();
        if (!SinglePred) continue;  // Nothing to do.
        assert(SinglePred == Pred && "CFG broken");

        // Make the LPM and Worklist updates specific to LoopUnswitch.
        removeFromWorklist(BI, Worklist);
        auto SuccIt = Succ->begin();
        while (PHINode *PN = dyn_cast<PHINode>(SuccIt++)) {
          for (unsigned It = 0, E = PN->getNumOperands(); It != E; ++It)
            if (Instruction *Use = dyn_cast<Instruction>(PN->getOperand(It)))
              Worklist.push_back(Use);
          for (User *U : PN->users())
            Worklist.push_back(cast<Instruction>(U));
          removeFromWorklist(PN, Worklist);
          ++NumSimplify;
        }
        // Merge the block and make the remaining analyses updates.
        DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
        MergeBlockIntoPredecessor(Succ, &DTU, LI, MSSAU.get());
        ++NumSimplify;
        continue;
      }

      continue;
    }
  }
}

/// Simple simplifications we can do given the information that Cond is
/// definitely not equal to Val.
Value *LoopUnswitch::simplifyInstructionWithNotEqual(Instruction *Inst,
                                                     Value *Invariant,
                                                     Constant *Val) {
  // icmp eq cond, val -> false
  ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
  if (CI && CI->isEquality()) {
    Value *Op0 = CI->getOperand(0);
    Value *Op1 = CI->getOperand(1);
    if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
      LLVMContext &Ctx = Inst->getContext();
      if (CI->getPredicate() == CmpInst::ICMP_EQ)
        return ConstantInt::getFalse(Ctx);
      else
        return ConstantInt::getTrue(Ctx);
     }
  }

  // FIXME: there may be other opportunities, e.g. comparison with floating
  // point, or Invariant - Val != 0, etc.
  return nullptr;
}