LoopUnrollPass.cpp 60.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller.  It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "loop-unroll"

cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
    "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
    cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
             " the current top-most loop. This is somtimes preferred to reduce"
             " compile time."));

static cl::opt<unsigned>
    UnrollThreshold("unroll-threshold", cl::Hidden,
                    cl::desc("The cost threshold for loop unrolling"));

static cl::opt<unsigned> UnrollPartialThreshold(
    "unroll-partial-threshold", cl::Hidden,
    cl::desc("The cost threshold for partial loop unrolling"));

static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
    "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
    cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
             "to the threshold when aggressively unrolling a loop due to the "
             "dynamic cost savings. If completely unrolling a loop will reduce "
             "the total runtime from X to Y, we boost the loop unroll "
             "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
             "X/Y). This limit avoids excessive code bloat."));

static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
    "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
    cl::desc("Don't allow loop unrolling to simulate more than this number of"
             "iterations when checking full unroll profitability"));

static cl::opt<unsigned> UnrollCount(
    "unroll-count", cl::Hidden,
    cl::desc("Use this unroll count for all loops including those with "
             "unroll_count pragma values, for testing purposes"));

static cl::opt<unsigned> UnrollMaxCount(
    "unroll-max-count", cl::Hidden,
    cl::desc("Set the max unroll count for partial and runtime unrolling, for"
             "testing purposes"));

static cl::opt<unsigned> UnrollFullMaxCount(
    "unroll-full-max-count", cl::Hidden,
    cl::desc(
        "Set the max unroll count for full unrolling, for testing purposes"));

static cl::opt<unsigned> UnrollPeelCount(
    "unroll-peel-count", cl::Hidden,
    cl::desc("Set the unroll peeling count, for testing purposes"));

static cl::opt<bool>
    UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
                       cl::desc("Allows loops to be partially unrolled until "
                                "-unroll-threshold loop size is reached."));

static cl::opt<bool> UnrollAllowRemainder(
    "unroll-allow-remainder", cl::Hidden,
    cl::desc("Allow generation of a loop remainder (extra iterations) "
             "when unrolling a loop."));

static cl::opt<bool>
    UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
                  cl::desc("Unroll loops with run-time trip counts"));

static cl::opt<unsigned> UnrollMaxUpperBound(
    "unroll-max-upperbound", cl::init(8), cl::Hidden,
    cl::desc(
        "The max of trip count upper bound that is considered in unrolling"));

static cl::opt<unsigned> PragmaUnrollThreshold(
    "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
    cl::desc("Unrolled size limit for loops with an unroll(full) or "
             "unroll_count pragma."));

static cl::opt<unsigned> FlatLoopTripCountThreshold(
    "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
    cl::desc("If the runtime tripcount for the loop is lower than the "
             "threshold, the loop is considered as flat and will be less "
             "aggressively unrolled."));

static cl::opt<bool>
    UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
                       cl::desc("Allows loops to be peeled when the dynamic "
                                "trip count is known to be low."));

static cl::opt<bool> UnrollAllowLoopNestsPeeling(
    "unroll-allow-loop-nests-peeling", cl::init(false), cl::Hidden,
    cl::desc("Allows loop nests to be peeled."));

static cl::opt<bool> UnrollUnrollRemainder(
  "unroll-remainder", cl::Hidden,
  cl::desc("Allow the loop remainder to be unrolled."));

// This option isn't ever intended to be enabled, it serves to allow
// experiments to check the assumptions about when this kind of revisit is
// necessary.
static cl::opt<bool> UnrollRevisitChildLoops(
    "unroll-revisit-child-loops", cl::Hidden,
    cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
             "This shouldn't typically be needed as child loops (or their "
             "clones) were already visited."));

static cl::opt<unsigned> UnrollThresholdAggressive(
    "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
    cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
             "optimizations"));
static cl::opt<unsigned>
    UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
                           cl::Hidden,
                           cl::desc("Default threshold (max size of unrolled "
                                    "loop), used in all but O3 optimizations"));

/// A magic value for use with the Threshold parameter to indicate
/// that the loop unroll should be performed regardless of how much
/// code expansion would result.
static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();

/// Gather the various unrolling parameters based on the defaults, compiler
/// flags, TTI overrides and user specified parameters.
TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
    Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
    Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
    Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
    Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
  TargetTransformInfo::UnrollingPreferences UP;

  // Set up the defaults
  UP.Threshold =
      OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
  UP.MaxPercentThresholdBoost = 400;
  UP.OptSizeThreshold = 0;
  UP.PartialThreshold = 150;
  UP.PartialOptSizeThreshold = 0;
  UP.Count = 0;
  UP.DefaultUnrollRuntimeCount = 8;
  UP.MaxCount = std::numeric_limits<unsigned>::max();
  UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
  UP.BEInsns = 2;
  UP.Partial = false;
  UP.Runtime = false;
  UP.AllowRemainder = true;
  UP.UnrollRemainder = false;
  UP.AllowExpensiveTripCount = false;
  UP.Force = false;
  UP.UpperBound = false;
  UP.UnrollAndJam = false;
  UP.UnrollAndJamInnerLoopThreshold = 60;
  UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;

  // Override with any target specific settings
  TTI.getUnrollingPreferences(L, SE, UP);

  // Apply size attributes
  bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
                    llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
                                                PGSOQueryType::IRPass);
  if (OptForSize) {
    UP.Threshold = UP.OptSizeThreshold;
    UP.PartialThreshold = UP.PartialOptSizeThreshold;
    UP.MaxPercentThresholdBoost = 100;
  }

  // Apply any user values specified by cl::opt
  if (UnrollThreshold.getNumOccurrences() > 0)
    UP.Threshold = UnrollThreshold;
  if (UnrollPartialThreshold.getNumOccurrences() > 0)
    UP.PartialThreshold = UnrollPartialThreshold;
  if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
    UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
  if (UnrollMaxCount.getNumOccurrences() > 0)
    UP.MaxCount = UnrollMaxCount;
  if (UnrollFullMaxCount.getNumOccurrences() > 0)
    UP.FullUnrollMaxCount = UnrollFullMaxCount;
  if (UnrollAllowPartial.getNumOccurrences() > 0)
    UP.Partial = UnrollAllowPartial;
  if (UnrollAllowRemainder.getNumOccurrences() > 0)
    UP.AllowRemainder = UnrollAllowRemainder;
  if (UnrollRuntime.getNumOccurrences() > 0)
    UP.Runtime = UnrollRuntime;
  if (UnrollMaxUpperBound == 0)
    UP.UpperBound = false;
  if (UnrollUnrollRemainder.getNumOccurrences() > 0)
    UP.UnrollRemainder = UnrollUnrollRemainder;
  if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
    UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;

  // Apply user values provided by argument
  if (UserThreshold.hasValue()) {
    UP.Threshold = *UserThreshold;
    UP.PartialThreshold = *UserThreshold;
  }
  if (UserCount.hasValue())
    UP.Count = *UserCount;
  if (UserAllowPartial.hasValue())
    UP.Partial = *UserAllowPartial;
  if (UserRuntime.hasValue())
    UP.Runtime = *UserRuntime;
  if (UserUpperBound.hasValue())
    UP.UpperBound = *UserUpperBound;
  if (UserFullUnrollMaxCount.hasValue())
    UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;

  return UP;
}

TargetTransformInfo::PeelingPreferences
llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
                               const TargetTransformInfo &TTI,
                               Optional<bool> UserAllowPeeling,
                               Optional<bool> UserAllowProfileBasedPeeling) {
  TargetTransformInfo::PeelingPreferences PP;

  // Default values
  PP.PeelCount = 0;
  PP.AllowPeeling = true;
  PP.AllowLoopNestsPeeling = false;
  PP.PeelProfiledIterations = true;

  // Get Target Specifc Values
  TTI.getPeelingPreferences(L, SE, PP);

  // User Specified Values using cl::opt
  if (UnrollPeelCount.getNumOccurrences() > 0)
    PP.PeelCount = UnrollPeelCount;
  if (UnrollAllowPeeling.getNumOccurrences() > 0)
    PP.AllowPeeling = UnrollAllowPeeling;
  if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
    PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;

  // User Specifed values provided by argument
  if (UserAllowPeeling.hasValue())
    PP.AllowPeeling = *UserAllowPeeling;
  if (UserAllowProfileBasedPeeling.hasValue())
    PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;

  return PP;
}

namespace {

/// A struct to densely store the state of an instruction after unrolling at
/// each iteration.
///
/// This is designed to work like a tuple of <Instruction *, int> for the
/// purposes of hashing and lookup, but to be able to associate two boolean
/// states with each key.
struct UnrolledInstState {
  Instruction *I;
  int Iteration : 30;
  unsigned IsFree : 1;
  unsigned IsCounted : 1;
};

/// Hashing and equality testing for a set of the instruction states.
struct UnrolledInstStateKeyInfo {
  using PtrInfo = DenseMapInfo<Instruction *>;
  using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;

  static inline UnrolledInstState getEmptyKey() {
    return {PtrInfo::getEmptyKey(), 0, 0, 0};
  }

  static inline UnrolledInstState getTombstoneKey() {
    return {PtrInfo::getTombstoneKey(), 0, 0, 0};
  }

  static inline unsigned getHashValue(const UnrolledInstState &S) {
    return PairInfo::getHashValue({S.I, S.Iteration});
  }

  static inline bool isEqual(const UnrolledInstState &LHS,
                             const UnrolledInstState &RHS) {
    return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
  }
};

struct EstimatedUnrollCost {
  /// The estimated cost after unrolling.
  unsigned UnrolledCost;

  /// The estimated dynamic cost of executing the instructions in the
  /// rolled form.
  unsigned RolledDynamicCost;
};

} // end anonymous namespace

/// Figure out if the loop is worth full unrolling.
///
/// Complete loop unrolling can make some loads constant, and we need to know
/// if that would expose any further optimization opportunities.  This routine
/// estimates this optimization.  It computes cost of unrolled loop
/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
/// dynamic cost we mean that we won't count costs of blocks that are known not
/// to be executed (i.e. if we have a branch in the loop and we know that at the
/// given iteration its condition would be resolved to true, we won't add up the
/// cost of the 'false'-block).
/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
/// the analysis failed (no benefits expected from the unrolling, or the loop is
/// too big to analyze), the returned value is None.
static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
    const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
    const SmallPtrSetImpl<const Value *> &EphValues,
    const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
    unsigned MaxIterationsCountToAnalyze) {
  // We want to be able to scale offsets by the trip count and add more offsets
  // to them without checking for overflows, and we already don't want to
  // analyze *massive* trip counts, so we force the max to be reasonably small.
  assert(MaxIterationsCountToAnalyze <
             (unsigned)(std::numeric_limits<int>::max() / 2) &&
         "The unroll iterations max is too large!");

  // Only analyze inner loops. We can't properly estimate cost of nested loops
  // and we won't visit inner loops again anyway.
  if (!L->empty())
    return None;

  // Don't simulate loops with a big or unknown tripcount
  if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
    return None;

  SmallSetVector<BasicBlock *, 16> BBWorklist;
  SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
  DenseMap<Value *, Constant *> SimplifiedValues;
  SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;

  // The estimated cost of the unrolled form of the loop. We try to estimate
  // this by simplifying as much as we can while computing the estimate.
  unsigned UnrolledCost = 0;

  // We also track the estimated dynamic (that is, actually executed) cost in
  // the rolled form. This helps identify cases when the savings from unrolling
  // aren't just exposing dead control flows, but actual reduced dynamic
  // instructions due to the simplifications which we expect to occur after
  // unrolling.
  unsigned RolledDynamicCost = 0;

  // We track the simplification of each instruction in each iteration. We use
  // this to recursively merge costs into the unrolled cost on-demand so that
  // we don't count the cost of any dead code. This is essentially a map from
  // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
  DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;

  // A small worklist used to accumulate cost of instructions from each
  // observable and reached root in the loop.
  SmallVector<Instruction *, 16> CostWorklist;

  // PHI-used worklist used between iterations while accumulating cost.
  SmallVector<Instruction *, 4> PHIUsedList;

  // Helper function to accumulate cost for instructions in the loop.
  auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
    assert(Iteration >= 0 && "Cannot have a negative iteration!");
    assert(CostWorklist.empty() && "Must start with an empty cost list");
    assert(PHIUsedList.empty() && "Must start with an empty phi used list");
    CostWorklist.push_back(&RootI);
    for (;; --Iteration) {
      do {
        Instruction *I = CostWorklist.pop_back_val();

        // InstCostMap only uses I and Iteration as a key, the other two values
        // don't matter here.
        auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
        if (CostIter == InstCostMap.end())
          // If an input to a PHI node comes from a dead path through the loop
          // we may have no cost data for it here. What that actually means is
          // that it is free.
          continue;
        auto &Cost = *CostIter;
        if (Cost.IsCounted)
          // Already counted this instruction.
          continue;

        // Mark that we are counting the cost of this instruction now.
        Cost.IsCounted = true;

        // If this is a PHI node in the loop header, just add it to the PHI set.
        if (auto *PhiI = dyn_cast<PHINode>(I))
          if (PhiI->getParent() == L->getHeader()) {
            assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
                                  "inherently simplify during unrolling.");
            if (Iteration == 0)
              continue;

            // Push the incoming value from the backedge into the PHI used list
            // if it is an in-loop instruction. We'll use this to populate the
            // cost worklist for the next iteration (as we count backwards).
            if (auto *OpI = dyn_cast<Instruction>(
                    PhiI->getIncomingValueForBlock(L->getLoopLatch())))
              if (L->contains(OpI))
                PHIUsedList.push_back(OpI);
            continue;
          }

        // First accumulate the cost of this instruction.
        if (!Cost.IsFree) {
          UnrolledCost += TTI.getUserCost(I, TargetTransformInfo::TCK_CodeSize);
          LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
                            << Iteration << "): ");
          LLVM_DEBUG(I->dump());
        }

        // We must count the cost of every operand which is not free,
        // recursively. If we reach a loop PHI node, simply add it to the set
        // to be considered on the next iteration (backwards!).
        for (Value *Op : I->operands()) {
          // Check whether this operand is free due to being a constant or
          // outside the loop.
          auto *OpI = dyn_cast<Instruction>(Op);
          if (!OpI || !L->contains(OpI))
            continue;

          // Otherwise accumulate its cost.
          CostWorklist.push_back(OpI);
        }
      } while (!CostWorklist.empty());

      if (PHIUsedList.empty())
        // We've exhausted the search.
        break;

      assert(Iteration > 0 &&
             "Cannot track PHI-used values past the first iteration!");
      CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
      PHIUsedList.clear();
    }
  };

  // Ensure that we don't violate the loop structure invariants relied on by
  // this analysis.
  assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
  assert(L->isLCSSAForm(DT) &&
         "Must have loops in LCSSA form to track live-out values.");

  LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");

  // Simulate execution of each iteration of the loop counting instructions,
  // which would be simplified.
  // Since the same load will take different values on different iterations,
  // we literally have to go through all loop's iterations.
  for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
    LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");

    // Prepare for the iteration by collecting any simplified entry or backedge
    // inputs.
    for (Instruction &I : *L->getHeader()) {
      auto *PHI = dyn_cast<PHINode>(&I);
      if (!PHI)
        break;

      // The loop header PHI nodes must have exactly two input: one from the
      // loop preheader and one from the loop latch.
      assert(
          PHI->getNumIncomingValues() == 2 &&
          "Must have an incoming value only for the preheader and the latch.");

      Value *V = PHI->getIncomingValueForBlock(
          Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
      Constant *C = dyn_cast<Constant>(V);
      if (Iteration != 0 && !C)
        C = SimplifiedValues.lookup(V);
      if (C)
        SimplifiedInputValues.push_back({PHI, C});
    }

    // Now clear and re-populate the map for the next iteration.
    SimplifiedValues.clear();
    while (!SimplifiedInputValues.empty())
      SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());

    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);

    BBWorklist.clear();
    BBWorklist.insert(L->getHeader());
    // Note that we *must not* cache the size, this loop grows the worklist.
    for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
      BasicBlock *BB = BBWorklist[Idx];

      // Visit all instructions in the given basic block and try to simplify
      // it.  We don't change the actual IR, just count optimization
      // opportunities.
      for (Instruction &I : *BB) {
        // These won't get into the final code - don't even try calculating the
        // cost for them.
        if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
          continue;

        // Track this instruction's expected baseline cost when executing the
        // rolled loop form.
        RolledDynamicCost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);

        // Visit the instruction to analyze its loop cost after unrolling,
        // and if the visitor returns true, mark the instruction as free after
        // unrolling and continue.
        bool IsFree = Analyzer.visit(I);
        bool Inserted = InstCostMap.insert({&I, (int)Iteration,
                                           (unsigned)IsFree,
                                           /*IsCounted*/ false}).second;
        (void)Inserted;
        assert(Inserted && "Cannot have a state for an unvisited instruction!");

        if (IsFree)
          continue;

        // Can't properly model a cost of a call.
        // FIXME: With a proper cost model we should be able to do it.
        if (auto *CI = dyn_cast<CallInst>(&I)) {
          const Function *Callee = CI->getCalledFunction();
          if (!Callee || TTI.isLoweredToCall(Callee)) {
            LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
            return None;
          }
        }

        // If the instruction might have a side-effect recursively account for
        // the cost of it and all the instructions leading up to it.
        if (I.mayHaveSideEffects())
          AddCostRecursively(I, Iteration);

        // If unrolled body turns out to be too big, bail out.
        if (UnrolledCost > MaxUnrolledLoopSize) {
          LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
                            << "  UnrolledCost: " << UnrolledCost
                            << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
                            << "\n");
          return None;
        }
      }

      Instruction *TI = BB->getTerminator();

      // Add in the live successors by first checking whether we have terminator
      // that may be simplified based on the values simplified by this call.
      BasicBlock *KnownSucc = nullptr;
      if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
        if (BI->isConditional()) {
          if (Constant *SimpleCond =
                  SimplifiedValues.lookup(BI->getCondition())) {
            // Just take the first successor if condition is undef
            if (isa<UndefValue>(SimpleCond))
              KnownSucc = BI->getSuccessor(0);
            else if (ConstantInt *SimpleCondVal =
                         dyn_cast<ConstantInt>(SimpleCond))
              KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
          }
        }
      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
        if (Constant *SimpleCond =
                SimplifiedValues.lookup(SI->getCondition())) {
          // Just take the first successor if condition is undef
          if (isa<UndefValue>(SimpleCond))
            KnownSucc = SI->getSuccessor(0);
          else if (ConstantInt *SimpleCondVal =
                       dyn_cast<ConstantInt>(SimpleCond))
            KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
        }
      }
      if (KnownSucc) {
        if (L->contains(KnownSucc))
          BBWorklist.insert(KnownSucc);
        else
          ExitWorklist.insert({BB, KnownSucc});
        continue;
      }

      // Add BB's successors to the worklist.
      for (BasicBlock *Succ : successors(BB))
        if (L->contains(Succ))
          BBWorklist.insert(Succ);
        else
          ExitWorklist.insert({BB, Succ});
      AddCostRecursively(*TI, Iteration);
    }

    // If we found no optimization opportunities on the first iteration, we
    // won't find them on later ones too.
    if (UnrolledCost == RolledDynamicCost) {
      LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
                        << "  UnrolledCost: " << UnrolledCost << "\n");
      return None;
    }
  }

  while (!ExitWorklist.empty()) {
    BasicBlock *ExitingBB, *ExitBB;
    std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();

    for (Instruction &I : *ExitBB) {
      auto *PN = dyn_cast<PHINode>(&I);
      if (!PN)
        break;

      Value *Op = PN->getIncomingValueForBlock(ExitingBB);
      if (auto *OpI = dyn_cast<Instruction>(Op))
        if (L->contains(OpI))
          AddCostRecursively(*OpI, TripCount - 1);
    }
  }

  LLVM_DEBUG(dbgs() << "Analysis finished:\n"
                    << "UnrolledCost: " << UnrolledCost << ", "
                    << "RolledDynamicCost: " << RolledDynamicCost << "\n");
  return {{UnrolledCost, RolledDynamicCost}};
}

/// ApproximateLoopSize - Approximate the size of the loop.
unsigned llvm::ApproximateLoopSize(
    const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
    const TargetTransformInfo &TTI,
    const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
  CodeMetrics Metrics;
  for (BasicBlock *BB : L->blocks())
    Metrics.analyzeBasicBlock(BB, TTI, EphValues);
  NumCalls = Metrics.NumInlineCandidates;
  NotDuplicatable = Metrics.notDuplicatable;
  Convergent = Metrics.convergent;

  unsigned LoopSize = Metrics.NumInsts;

  // Don't allow an estimate of size zero.  This would allows unrolling of loops
  // with huge iteration counts, which is a compile time problem even if it's
  // not a problem for code quality. Also, the code using this size may assume
  // that each loop has at least three instructions (likely a conditional
  // branch, a comparison feeding that branch, and some kind of loop increment
  // feeding that comparison instruction).
  LoopSize = std::max(LoopSize, BEInsns + 1);

  return LoopSize;
}

// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
// returned.
static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
  if (MDNode *LoopID = L->getLoopID())
    return GetUnrollMetadata(LoopID, Name);
  return nullptr;
}

// Returns true if the loop has an unroll(full) pragma.
static bool hasUnrollFullPragma(const Loop *L) {
  return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}

// Returns true if the loop has an unroll(enable) pragma. This metadata is used
// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
static bool hasUnrollEnablePragma(const Loop *L) {
  return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
}

// Returns true if the loop has an runtime unroll(disable) pragma.
static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
  return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}

// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma.  Otherwise return 0.
static unsigned unrollCountPragmaValue(const Loop *L) {
  MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
  if (MD) {
    assert(MD->getNumOperands() == 2 &&
           "Unroll count hint metadata should have two operands.");
    unsigned Count =
        mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
    assert(Count >= 1 && "Unroll count must be positive.");
    return Count;
  }
  return 0;
}

// Computes the boosting factor for complete unrolling.
// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
// be beneficial to fully unroll the loop even if unrolledcost is large. We
// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
// the unroll threshold.
static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
                                            unsigned MaxPercentThresholdBoost) {
  if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
    return 100;
  else if (Cost.UnrolledCost != 0)
    // The boosting factor is RolledDynamicCost / UnrolledCost
    return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
                    MaxPercentThresholdBoost);
  else
    return MaxPercentThresholdBoost;
}

// Returns loop size estimation for unrolled loop.
static uint64_t getUnrolledLoopSize(
    unsigned LoopSize,
    TargetTransformInfo::UnrollingPreferences &UP) {
  assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
  return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
}

// Returns true if unroll count was set explicitly.
// Calculates unroll count and writes it to UP.Count.
// Unless IgnoreUser is true, will also use metadata and command-line options
// that are specific to to the LoopUnroll pass (which, for instance, are
// irrelevant for the LoopUnrollAndJam pass).
// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
// many LoopUnroll-specific options. The shared functionality should be
// refactored into it own function.
bool llvm::computeUnrollCount(
    Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
    ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
    OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
    bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
    TargetTransformInfo::UnrollingPreferences &UP,
    TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {

  // Check for explicit Count.
  // 1st priority is unroll count set by "unroll-count" option.
  bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
  if (UserUnrollCount) {
    UP.Count = UnrollCount;
    UP.AllowExpensiveTripCount = true;
    UP.Force = true;
    if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
      return true;
  }

  // 2nd priority is unroll count set by pragma.
  unsigned PragmaCount = unrollCountPragmaValue(L);
  if (PragmaCount > 0) {
    UP.Count = PragmaCount;
    UP.Runtime = true;
    UP.AllowExpensiveTripCount = true;
    UP.Force = true;
    if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
        getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
      return true;
  }
  bool PragmaFullUnroll = hasUnrollFullPragma(L);
  if (PragmaFullUnroll && TripCount != 0) {
    UP.Count = TripCount;
    if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
      return false;
  }

  bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
  bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
                        PragmaEnableUnroll || UserUnrollCount;

  if (ExplicitUnroll && TripCount != 0) {
    // If the loop has an unrolling pragma, we want to be more aggressive with
    // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
    // value which is larger than the default limits.
    UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
    UP.PartialThreshold =
        std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
  }

  // 3rd priority is full unroll count.
  // Full unroll makes sense only when TripCount or its upper bound could be
  // statically calculated.
  // Also we need to check if we exceed FullUnrollMaxCount.
  // If using the upper bound to unroll, TripMultiple should be set to 1 because
  // we do not know when loop may exit.

  // We can unroll by the upper bound amount if it's generally allowed or if
  // we know that the loop is executed either the upper bound or zero times.
  // (MaxOrZero unrolling keeps only the first loop test, so the number of
  // loop tests remains the same compared to the non-unrolled version, whereas
  // the generic upper bound unrolling keeps all but the last loop test so the
  // number of loop tests goes up which may end up being worse on targets with
  // constrained branch predictor resources so is controlled by an option.)
  // In addition we only unroll small upper bounds.
  unsigned FullUnrollMaxTripCount = MaxTripCount;
  if (!(UP.UpperBound || MaxOrZero) ||
      FullUnrollMaxTripCount > UnrollMaxUpperBound)
    FullUnrollMaxTripCount = 0;

  // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
  // compute the former when the latter is zero.
  unsigned ExactTripCount = TripCount;
  assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
         "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");

  unsigned FullUnrollTripCount =
      ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
  UP.Count = FullUnrollTripCount;
  if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
    // When computing the unrolled size, note that BEInsns are not replicated
    // like the rest of the loop body.
    if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
      UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
      TripCount = FullUnrollTripCount;
      TripMultiple = UP.UpperBound ? 1 : TripMultiple;
      return ExplicitUnroll;
    } else {
      // The loop isn't that small, but we still can fully unroll it if that
      // helps to remove a significant number of instructions.
      // To check that, run additional analysis on the loop.
      if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
              L, FullUnrollTripCount, DT, SE, EphValues, TTI,
              UP.Threshold * UP.MaxPercentThresholdBoost / 100,
              UP.MaxIterationsCountToAnalyze)) {
        unsigned Boost =
            getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
        if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
          UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
          TripCount = FullUnrollTripCount;
          TripMultiple = UP.UpperBound ? 1 : TripMultiple;
          return ExplicitUnroll;
        }
      }
    }
  }

  // 4th priority is loop peeling.
  computePeelCount(L, LoopSize, UP, PP, TripCount, SE);
  if (PP.PeelCount) {
    UP.Runtime = false;
    UP.Count = 1;
    return ExplicitUnroll;
  }

  // 5th priority is partial unrolling.
  // Try partial unroll only when TripCount could be statically calculated.
  if (TripCount) {
    UP.Partial |= ExplicitUnroll;
    if (!UP.Partial) {
      LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
                        << "-unroll-allow-partial not given\n");
      UP.Count = 0;
      return false;
    }
    if (UP.Count == 0)
      UP.Count = TripCount;
    if (UP.PartialThreshold != NoThreshold) {
      // Reduce unroll count to be modulo of TripCount for partial unrolling.
      if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
        UP.Count =
            (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
            (LoopSize - UP.BEInsns);
      if (UP.Count > UP.MaxCount)
        UP.Count = UP.MaxCount;
      while (UP.Count != 0 && TripCount % UP.Count != 0)
        UP.Count--;
      if (UP.AllowRemainder && UP.Count <= 1) {
        // If there is no Count that is modulo of TripCount, set Count to
        // largest power-of-two factor that satisfies the threshold limit.
        // As we'll create fixup loop, do the type of unrolling only if
        // remainder loop is allowed.
        UP.Count = UP.DefaultUnrollRuntimeCount;
        while (UP.Count != 0 &&
               getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
          UP.Count >>= 1;
      }
      if (UP.Count < 2) {
        if (PragmaEnableUnroll)
          ORE->emit([&]() {
            return OptimizationRemarkMissed(DEBUG_TYPE,
                                            "UnrollAsDirectedTooLarge",
                                            L->getStartLoc(), L->getHeader())
                   << "Unable to unroll loop as directed by unroll(enable) "
                      "pragma "
                      "because unrolled size is too large.";
          });
        UP.Count = 0;
      }
    } else {
      UP.Count = TripCount;
    }
    if (UP.Count > UP.MaxCount)
      UP.Count = UP.MaxCount;
    if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
        UP.Count != TripCount)
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE,
                                        "FullUnrollAsDirectedTooLarge",
                                        L->getStartLoc(), L->getHeader())
               << "Unable to fully unroll loop as directed by unroll pragma "
                  "because "
                  "unrolled size is too large.";
      });
    LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
                      << "\n");
    return ExplicitUnroll;
  }
  assert(TripCount == 0 &&
         "All cases when TripCount is constant should be covered here.");
  if (PragmaFullUnroll)
    ORE->emit([&]() {
      return OptimizationRemarkMissed(
                 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
                 L->getStartLoc(), L->getHeader())
             << "Unable to fully unroll loop as directed by unroll(full) "
                "pragma "
                "because loop has a runtime trip count.";
    });

  // 6th priority is runtime unrolling.
  // Don't unroll a runtime trip count loop when it is disabled.
  if (hasRuntimeUnrollDisablePragma(L)) {
    UP.Count = 0;
    return false;
  }

  // Don't unroll a small upper bound loop unless user or TTI asked to do so.
  if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
    UP.Count = 0;
    return false;
  }

  // Check if the runtime trip count is too small when profile is available.
  if (L->getHeader()->getParent()->hasProfileData()) {
    if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
      if (*ProfileTripCount < FlatLoopTripCountThreshold)
        return false;
      else
        UP.AllowExpensiveTripCount = true;
    }
  }

  // Reduce count based on the type of unrolling and the threshold values.
  UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
  if (!UP.Runtime) {
    LLVM_DEBUG(
        dbgs() << "  will not try to unroll loop with runtime trip count "
               << "-unroll-runtime not given\n");
    UP.Count = 0;
    return false;
  }
  if (UP.Count == 0)
    UP.Count = UP.DefaultUnrollRuntimeCount;

  // Reduce unroll count to be the largest power-of-two factor of
  // the original count which satisfies the threshold limit.
  while (UP.Count != 0 &&
         getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
    UP.Count >>= 1;

#ifndef NDEBUG
  unsigned OrigCount = UP.Count;
#endif

  if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
    while (UP.Count != 0 && TripMultiple % UP.Count != 0)
      UP.Count >>= 1;
    LLVM_DEBUG(
        dbgs() << "Remainder loop is restricted (that could architecture "
                  "specific or because the loop contains a convergent "
                  "instruction), so unroll count must divide the trip "
                  "multiple, "
               << TripMultiple << ".  Reducing unroll count from " << OrigCount
               << " to " << UP.Count << ".\n");

    using namespace ore;

    if (PragmaCount > 0 && !UP.AllowRemainder)
      ORE->emit([&]() {
        return OptimizationRemarkMissed(DEBUG_TYPE,
                                        "DifferentUnrollCountFromDirected",
                                        L->getStartLoc(), L->getHeader())
               << "Unable to unroll loop the number of times directed by "
                  "unroll_count pragma because remainder loop is restricted "
                  "(that could architecture specific or because the loop "
                  "contains a convergent instruction) and so must have an "
                  "unroll "
                  "count that divides the loop trip multiple of "
               << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
               << NV("UnrollCount", UP.Count) << " time(s).";
      });
  }

  if (UP.Count > UP.MaxCount)
    UP.Count = UP.MaxCount;

  if (MaxTripCount && UP.Count > MaxTripCount)
    UP.Count = MaxTripCount;

  LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
                    << "\n");
  if (UP.Count < 2)
    UP.Count = 0;
  return ExplicitUnroll;
}

static LoopUnrollResult tryToUnrollLoop(
    Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
    const TargetTransformInfo &TTI, AssumptionCache &AC,
    OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
    ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
    bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
    Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
    Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
    Optional<bool> ProvidedAllowPeeling,
    Optional<bool> ProvidedAllowProfileBasedPeeling,
    Optional<unsigned> ProvidedFullUnrollMaxCount) {
  LLVM_DEBUG(dbgs() << "Loop Unroll: F["
                    << L->getHeader()->getParent()->getName() << "] Loop %"
                    << L->getHeader()->getName() << "\n");
  TransformationMode TM = hasUnrollTransformation(L);
  if (TM & TM_Disable)
    return LoopUnrollResult::Unmodified;
  if (!L->isLoopSimplifyForm()) {
    LLVM_DEBUG(
        dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
    return LoopUnrollResult::Unmodified;
  }

  // When automtatic unrolling is disabled, do not unroll unless overridden for
  // this loop.
  if (OnlyWhenForced && !(TM & TM_Enable))
    return LoopUnrollResult::Unmodified;

  bool OptForSize = L->getHeader()->getParent()->hasOptSize();
  unsigned NumInlineCandidates;
  bool NotDuplicatable;
  bool Convergent;
  TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
      L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
      ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
      ProvidedFullUnrollMaxCount);
  TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
      L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling);

  // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
  // as threshold later on.
  if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
      !OptForSize)
    return LoopUnrollResult::Unmodified;

  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(L, &AC, EphValues);

  unsigned LoopSize =
      ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
                          TTI, EphValues, UP.BEInsns);
  LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
  if (NotDuplicatable) {
    LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
                      << " instructions.\n");
    return LoopUnrollResult::Unmodified;
  }

  // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
  // later), to (fully) unroll loops, if it does not increase code size.
  if (OptForSize)
    UP.Threshold = std::max(UP.Threshold, LoopSize + 1);

  if (NumInlineCandidates != 0) {
    LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
    return LoopUnrollResult::Unmodified;
  }

  // Find trip count and trip multiple if count is not available
  unsigned TripCount = 0;
  unsigned TripMultiple = 1;
  // If there are multiple exiting blocks but one of them is the latch, use the
  // latch for the trip count estimation. Otherwise insist on a single exiting
  // block for the trip count estimation.
  BasicBlock *ExitingBlock = L->getLoopLatch();
  if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
    ExitingBlock = L->getExitingBlock();
  if (ExitingBlock) {
    TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
    TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
  }

  // If the loop contains a convergent operation, the prelude we'd add
  // to do the first few instructions before we hit the unrolled loop
  // is unsafe -- it adds a control-flow dependency to the convergent
  // operation.  Therefore restrict remainder loop (try unrollig without).
  //
  // TODO: This is quite conservative.  In practice, convergent_op()
  // is likely to be called unconditionally in the loop.  In this
  // case, the program would be ill-formed (on most architectures)
  // unless n were the same on all threads in a thread group.
  // Assuming n is the same on all threads, any kind of unrolling is
  // safe.  But currently llvm's notion of convergence isn't powerful
  // enough to express this.
  if (Convergent)
    UP.AllowRemainder = false;

  // Try to find the trip count upper bound if we cannot find the exact trip
  // count.
  unsigned MaxTripCount = 0;
  bool MaxOrZero = false;
  if (!TripCount) {
    MaxTripCount = SE.getSmallConstantMaxTripCount(L);
    MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
  }

  // computeUnrollCount() decides whether it is beneficial to use upper bound to
  // fully unroll the loop.
  bool UseUpperBound = false;
  bool IsCountSetExplicitly = computeUnrollCount(
      L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
      TripMultiple, LoopSize, UP, PP, UseUpperBound);
  if (!UP.Count)
    return LoopUnrollResult::Unmodified;
  // Unroll factor (Count) must be less or equal to TripCount.
  if (TripCount && UP.Count > TripCount)
    UP.Count = TripCount;

  // Save loop properties before it is transformed.
  MDNode *OrigLoopID = L->getLoopID();

  // Unroll the loop.
  Loop *RemainderLoop = nullptr;
  LoopUnrollResult UnrollResult = UnrollLoop(
      L,
      {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
       UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder,
       ForgetAllSCEV},
      LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
  if (UnrollResult == LoopUnrollResult::Unmodified)
    return LoopUnrollResult::Unmodified;

  if (RemainderLoop) {
    Optional<MDNode *> RemainderLoopID =
        makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
                                        LLVMLoopUnrollFollowupRemainder});
    if (RemainderLoopID.hasValue())
      RemainderLoop->setLoopID(RemainderLoopID.getValue());
  }

  if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
    Optional<MDNode *> NewLoopID =
        makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
                                        LLVMLoopUnrollFollowupUnrolled});
    if (NewLoopID.hasValue()) {
      L->setLoopID(NewLoopID.getValue());

      // Do not setLoopAlreadyUnrolled if loop attributes have been specified
      // explicitly.
      return UnrollResult;
    }
  }

  // If loop has an unroll count pragma or unrolled by explicitly set count
  // mark loop as unrolled to prevent unrolling beyond that requested.
  // If the loop was peeled, we already "used up" the profile information
  // we had, so we don't want to unroll or peel again.
  if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
      (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount)))
    L->setLoopAlreadyUnrolled();

  return UnrollResult;
}

namespace {

class LoopUnroll : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid

  int OptLevel;

  /// If false, use a cost model to determine whether unrolling of a loop is
  /// profitable. If true, only loops that explicitly request unrolling via
  /// metadata are considered. All other loops are skipped.
  bool OnlyWhenForced;

  /// If false, when SCEV is invalidated, only forget everything in the
  /// top-most loop (call forgetTopMostLoop), of the loop being processed.
  /// Otherwise, forgetAllLoops and rebuild when needed next.
  bool ForgetAllSCEV;

  Optional<unsigned> ProvidedCount;
  Optional<unsigned> ProvidedThreshold;
  Optional<bool> ProvidedAllowPartial;
  Optional<bool> ProvidedRuntime;
  Optional<bool> ProvidedUpperBound;
  Optional<bool> ProvidedAllowPeeling;
  Optional<bool> ProvidedAllowProfileBasedPeeling;
  Optional<unsigned> ProvidedFullUnrollMaxCount;

  LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
             bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
             Optional<unsigned> Count = None,
             Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
             Optional<bool> UpperBound = None,
             Optional<bool> AllowPeeling = None,
             Optional<bool> AllowProfileBasedPeeling = None,
             Optional<unsigned> ProvidedFullUnrollMaxCount = None)
      : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
        ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
        ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
        ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
        ProvidedAllowPeeling(AllowPeeling),
        ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
        ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
    initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    Function &F = *L->getHeader()->getParent();

    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    const TargetTransformInfo &TTI =
        getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass.  Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(&F);
    bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);

    LoopUnrollResult Result = tryToUnrollLoop(
        L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
        OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
        ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
        ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
        ProvidedFullUnrollMaxCount);

    if (Result == LoopUnrollResult::FullyUnrolled)
      LPM.markLoopAsDeleted(*L);

    return Result != LoopUnrollResult::Unmodified;
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG...
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    // FIXME: Loop passes are required to preserve domtree, and for now we just
    // recreate dom info if anything gets unrolled.
    getLoopAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char LoopUnroll::ID = 0;

INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)

Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
                                 bool ForgetAllSCEV, int Threshold, int Count,
                                 int AllowPartial, int Runtime, int UpperBound,
                                 int AllowPeeling) {
  // TODO: It would make more sense for this function to take the optionals
  // directly, but that's dangerous since it would silently break out of tree
  // callers.
  return new LoopUnroll(
      OptLevel, OnlyWhenForced, ForgetAllSCEV,
      Threshold == -1 ? None : Optional<unsigned>(Threshold),
      Count == -1 ? None : Optional<unsigned>(Count),
      AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
      Runtime == -1 ? None : Optional<bool>(Runtime),
      UpperBound == -1 ? None : Optional<bool>(UpperBound),
      AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
}

Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
                                       bool ForgetAllSCEV) {
  return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
                              0, 0, 0, 0);
}

PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
                                          LoopStandardAnalysisResults &AR,
                                          LPMUpdater &Updater) {
  // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
  // pass. Function analyses need to be preserved across loop transformations
  // but ORE cannot be preserved (see comment before the pass definition).
  OptimizationRemarkEmitter ORE(L.getHeader()->getParent());

  // Keep track of the previous loop structure so we can identify new loops
  // created by unrolling.
  Loop *ParentL = L.getParentLoop();
  SmallPtrSet<Loop *, 4> OldLoops;
  if (ParentL)
    OldLoops.insert(ParentL->begin(), ParentL->end());
  else
    OldLoops.insert(AR.LI.begin(), AR.LI.end());

  std::string LoopName = std::string(L.getName());

  bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
                                 /*BFI*/ nullptr, /*PSI*/ nullptr,
                                 /*PreserveLCSSA*/ true, OptLevel,
                                 OnlyWhenForced, ForgetSCEV, /*Count*/ None,
                                 /*Threshold*/ None, /*AllowPartial*/ false,
                                 /*Runtime*/ false, /*UpperBound*/ false,
                                 /*AllowPeeling*/ false,
                                 /*AllowProfileBasedPeeling*/ false,
                                 /*FullUnrollMaxCount*/ None) !=
                 LoopUnrollResult::Unmodified;
  if (!Changed)
    return PreservedAnalyses::all();

  // The parent must not be damaged by unrolling!
#ifndef NDEBUG
  if (ParentL)
    ParentL->verifyLoop();
#endif

  // Unrolling can do several things to introduce new loops into a loop nest:
  // - Full unrolling clones child loops within the current loop but then
  //   removes the current loop making all of the children appear to be new
  //   sibling loops.
  //
  // When a new loop appears as a sibling loop after fully unrolling,
  // its nesting structure has fundamentally changed and we want to revisit
  // it to reflect that.
  //
  // When unrolling has removed the current loop, we need to tell the
  // infrastructure that it is gone.
  //
  // Finally, we support a debugging/testing mode where we revisit child loops
  // as well. These are not expected to require further optimizations as either
  // they or the loop they were cloned from have been directly visited already.
  // But the debugging mode allows us to check this assumption.
  bool IsCurrentLoopValid = false;
  SmallVector<Loop *, 4> SibLoops;
  if (ParentL)
    SibLoops.append(ParentL->begin(), ParentL->end());
  else
    SibLoops.append(AR.LI.begin(), AR.LI.end());
  erase_if(SibLoops, [&](Loop *SibLoop) {
    if (SibLoop == &L) {
      IsCurrentLoopValid = true;
      return true;
    }

    // Otherwise erase the loop from the list if it was in the old loops.
    return OldLoops.count(SibLoop) != 0;
  });
  Updater.addSiblingLoops(SibLoops);

  if (!IsCurrentLoopValid) {
    Updater.markLoopAsDeleted(L, LoopName);
  } else {
    // We can only walk child loops if the current loop remained valid.
    if (UnrollRevisitChildLoops) {
      // Walk *all* of the child loops.
      SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
      Updater.addChildLoops(ChildLoops);
    }
  }

  return getLoopPassPreservedAnalyses();
}

PreservedAnalyses LoopUnrollPass::run(Function &F,
                                      FunctionAnalysisManager &AM) {
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  LoopAnalysisManager *LAM = nullptr;
  if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
    LAM = &LAMProxy->getManager();

  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
  ProfileSummaryInfo *PSI =
      MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;

  bool Changed = false;

  // The unroller requires loops to be in simplified form, and also needs LCSSA.
  // Since simplification may add new inner loops, it has to run before the
  // legality and profitability checks. This means running the loop unroller
  // will simplify all loops, regardless of whether anything end up being
  // unrolled.
  for (auto &L : LI) {
    Changed |=
        simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
    Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
  }

  // Add the loop nests in the reverse order of LoopInfo. See method
  // declaration.
  SmallPriorityWorklist<Loop *, 4> Worklist;
  appendLoopsToWorklist(LI, Worklist);

  while (!Worklist.empty()) {
    // Because the LoopInfo stores the loops in RPO, we walk the worklist
    // from back to front so that we work forward across the CFG, which
    // for unrolling is only needed to get optimization remarks emitted in
    // a forward order.
    Loop &L = *Worklist.pop_back_val();
#ifndef NDEBUG
    Loop *ParentL = L.getParentLoop();
#endif

    // Check if the profile summary indicates that the profiled application
    // has a huge working set size, in which case we disable peeling to avoid
    // bloating it further.
    Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
    if (PSI && PSI->hasHugeWorkingSetSize())
      LocalAllowPeeling = false;
    std::string LoopName = std::string(L.getName());
    // The API here is quite complex to call and we allow to select some
    // flavors of unrolling during construction time (by setting UnrollOpts).
    LoopUnrollResult Result = tryToUnrollLoop(
        &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
        /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
        UnrollOpts.ForgetSCEV, /*Count*/ None,
        /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
        UnrollOpts.AllowUpperBound, LocalAllowPeeling,
        UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
    Changed |= Result != LoopUnrollResult::Unmodified;

    // The parent must not be damaged by unrolling!
#ifndef NDEBUG
    if (Result != LoopUnrollResult::Unmodified && ParentL)
      ParentL->verifyLoop();
#endif

    // Clear any cached analysis results for L if we removed it completely.
    if (LAM && Result == LoopUnrollResult::FullyUnrolled)
      LAM->clear(L, LoopName);
  }

  if (!Changed)
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}