LoopPredication.cpp 49.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LoopPredication pass tries to convert loop variant range checks to loop
// invariant by widening checks across loop iterations. For example, it will
// convert
//
//   for (i = 0; i < n; i++) {
//     guard(i < len);
//     ...
//   }
//
// to
//
//   for (i = 0; i < n; i++) {
//     guard(n - 1 < len);
//     ...
//   }
//
// After this transformation the condition of the guard is loop invariant, so
// loop-unswitch can later unswitch the loop by this condition which basically
// predicates the loop by the widened condition:
//
//   if (n - 1 < len)
//     for (i = 0; i < n; i++) {
//       ...
//     }
//   else
//     deoptimize
//
// It's tempting to rely on SCEV here, but it has proven to be problematic.
// Generally the facts SCEV provides about the increment step of add
// recurrences are true if the backedge of the loop is taken, which implicitly
// assumes that the guard doesn't fail. Using these facts to optimize the
// guard results in a circular logic where the guard is optimized under the
// assumption that it never fails.
//
// For example, in the loop below the induction variable will be marked as nuw
// basing on the guard. Basing on nuw the guard predicate will be considered
// monotonic. Given a monotonic condition it's tempting to replace the induction
// variable in the condition with its value on the last iteration. But this
// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
//
//   for (int i = b; i != e; i++)
//     guard(i u< len)
//
// One of the ways to reason about this problem is to use an inductive proof
// approach. Given the loop:
//
//   if (B(0)) {
//     do {
//       I = PHI(0, I.INC)
//       I.INC = I + Step
//       guard(G(I));
//     } while (B(I));
//   }
//
// where B(x) and G(x) are predicates that map integers to booleans, we want a
// loop invariant expression M such the following program has the same semantics
// as the above:
//
//   if (B(0)) {
//     do {
//       I = PHI(0, I.INC)
//       I.INC = I + Step
//       guard(G(0) && M);
//     } while (B(I));
//   }
//
// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
//
// Informal proof that the transformation above is correct:
//
//   By the definition of guards we can rewrite the guard condition to:
//     G(I) && G(0) && M
//
//   Let's prove that for each iteration of the loop:
//     G(0) && M => G(I)
//   And the condition above can be simplified to G(Start) && M.
//
//   Induction base.
//     G(0) && M => G(0)
//
//   Induction step. Assuming G(0) && M => G(I) on the subsequent
//   iteration:
//
//     B(I) is true because it's the backedge condition.
//     G(I) is true because the backedge is guarded by this condition.
//
//   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
//
// Note that we can use anything stronger than M, i.e. any condition which
// implies M.
//
// When S = 1 (i.e. forward iterating loop), the transformation is supported
// when:
//   * The loop has a single latch with the condition of the form:
//     B(X) = latchStart + X <pred> latchLimit,
//     where <pred> is u<, u<=, s<, or s<=.
//   * The guard condition is of the form
//     G(X) = guardStart + X u< guardLimit
//
//   For the ult latch comparison case M is:
//     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
//        guardStart + X + 1 u< guardLimit
//
//   The only way the antecedent can be true and the consequent can be false is
//   if
//     X == guardLimit - 1 - guardStart
//   (and guardLimit is non-zero, but we won't use this latter fact).
//   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
//     latchStart + guardLimit - 1 - guardStart u< latchLimit
//   and its negation is
//     latchStart + guardLimit - 1 - guardStart u>= latchLimit
//
//   In other words, if
//     latchLimit u<= latchStart + guardLimit - 1 - guardStart
//   then:
//   (the ranges below are written in ConstantRange notation, where [A, B) is the
//   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
//
//      forall X . guardStart + X u< guardLimit &&
//                 latchStart + X u< latchLimit =>
//        guardStart + X + 1 u< guardLimit
//   == forall X . guardStart + X u< guardLimit &&
//                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
//        guardStart + X + 1 u< guardLimit
//   == forall X . (guardStart + X) in [0, guardLimit) &&
//                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
//        (guardStart + X + 1) in [0, guardLimit)
//   == forall X . X in [-guardStart, guardLimit - guardStart) &&
//                 X in [-latchStart, guardLimit - 1 - guardStart) =>
//         X in [-guardStart - 1, guardLimit - guardStart - 1)
//   == true
//
//   So the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart u>= latchLimit
//   Similarly for ule condition the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart u> latchLimit
//   For slt condition the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart s>= latchLimit
//   For sle condition the widened condition is:
//     guardStart u< guardLimit &&
//     latchStart + guardLimit - 1 - guardStart s> latchLimit
//
// When S = -1 (i.e. reverse iterating loop), the transformation is supported
// when:
//   * The loop has a single latch with the condition of the form:
//     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
//   * The guard condition is of the form
//     G(X) = X - 1 u< guardLimit
//
//   For the ugt latch comparison case M is:
//     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
//
//   The only way the antecedent can be true and the consequent can be false is if
//     X == 1.
//   If X == 1 then the second half of the antecedent is
//     1 u> latchLimit, and its negation is latchLimit u>= 1.
//
//   So the widened condition is:
//     guardStart u< guardLimit && latchLimit u>= 1.
//   Similarly for sgt condition the widened condition is:
//     guardStart u< guardLimit && latchLimit s>= 1.
//   For uge condition the widened condition is:
//     guardStart u< guardLimit && latchLimit u> 1.
//   For sge condition the widened condition is:
//     guardStart u< guardLimit && latchLimit s> 1.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/GuardUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

#define DEBUG_TYPE "loop-predication"

STATISTIC(TotalConsidered, "Number of guards considered");
STATISTIC(TotalWidened, "Number of checks widened");

using namespace llvm;

static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
                                        cl::Hidden, cl::init(true));

static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
                                        cl::Hidden, cl::init(true));

static cl::opt<bool>
    SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
                            cl::Hidden, cl::init(false));

// This is the scale factor for the latch probability. We use this during
// profitability analysis to find other exiting blocks that have a much higher
// probability of exiting the loop instead of loop exiting via latch.
// This value should be greater than 1 for a sane profitability check.
static cl::opt<float> LatchExitProbabilityScale(
    "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
    cl::desc("scale factor for the latch probability. Value should be greater "
             "than 1. Lower values are ignored"));

static cl::opt<bool> PredicateWidenableBranchGuards(
    "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
    cl::desc("Whether or not we should predicate guards "
             "expressed as widenable branches to deoptimize blocks"),
    cl::init(true));

namespace {
/// Represents an induction variable check:
///   icmp Pred, <induction variable>, <loop invariant limit>
struct LoopICmp {
  ICmpInst::Predicate Pred;
  const SCEVAddRecExpr *IV;
  const SCEV *Limit;
  LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
           const SCEV *Limit)
    : Pred(Pred), IV(IV), Limit(Limit) {}
  LoopICmp() {}
  void dump() {
    dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
           << ", Limit = " << *Limit << "\n";
  }
};

class LoopPredication {
  AliasAnalysis *AA;
  DominatorTree *DT;
  ScalarEvolution *SE;
  LoopInfo *LI;
  BranchProbabilityInfo *BPI;

  Loop *L;
  const DataLayout *DL;
  BasicBlock *Preheader;
  LoopICmp LatchCheck;

  bool isSupportedStep(const SCEV* Step);
  Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
  Optional<LoopICmp> parseLoopLatchICmp();

  /// Return an insertion point suitable for inserting a safe to speculate
  /// instruction whose only user will be 'User' which has operands 'Ops'.  A
  /// trivial result would be the at the User itself, but we try to return a
  /// loop invariant location if possible.
  Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
  /// Same as above, *except* that this uses the SCEV definition of invariant
  /// which is that an expression *can be made* invariant via SCEVExpander.
  /// Thus, this version is only suitable for finding an insert point to be be
  /// passed to SCEVExpander!
  Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);

  /// Return true if the value is known to produce a single fixed value across
  /// all iterations on which it executes.  Note that this does not imply
  /// speculation safety.  That must be established separately.
  bool isLoopInvariantValue(const SCEV* S);

  Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
                     ICmpInst::Predicate Pred, const SCEV *LHS,
                     const SCEV *RHS);

  Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
                                        Instruction *Guard);
  Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
                                                        LoopICmp RangeCheck,
                                                        SCEVExpander &Expander,
                                                        Instruction *Guard);
  Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
                                                        LoopICmp RangeCheck,
                                                        SCEVExpander &Expander,
                                                        Instruction *Guard);
  unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
                         SCEVExpander &Expander, Instruction *Guard);
  bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
  bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
  // If the loop always exits through another block in the loop, we should not
  // predicate based on the latch check. For example, the latch check can be a
  // very coarse grained check and there can be more fine grained exit checks
  // within the loop. We identify such unprofitable loops through BPI.
  bool isLoopProfitableToPredicate();

  bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);

public:
  LoopPredication(AliasAnalysis *AA, DominatorTree *DT,
                  ScalarEvolution *SE, LoopInfo *LI,
                  BranchProbabilityInfo *BPI)
    : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {};
  bool runOnLoop(Loop *L);
};

class LoopPredicationLegacyPass : public LoopPass {
public:
  static char ID;
  LoopPredicationLegacyPass() : LoopPass(ID) {
    initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
    getLoopAnalysisUsage(AU);
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    BranchProbabilityInfo &BPI =
        getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    LoopPredication LP(AA, DT, SE, LI, &BPI);
    return LP.runOnLoop(L);
  }
};

char LoopPredicationLegacyPass::ID = 0;
} // end namespace

INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
                      "Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
                    "Loop predication", false, false)

Pass *llvm::createLoopPredicationPass() {
  return new LoopPredicationLegacyPass();
}

PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
                                           LoopStandardAnalysisResults &AR,
                                           LPMUpdater &U) {
  Function *F = L.getHeader()->getParent();
  // For the new PM, we also can't use BranchProbabilityInfo as an analysis
  // pass. Function analyses need to be preserved across loop transformations
  // but BPI is not preserved, hence a newly built one is needed.
  BranchProbabilityInfo BPI(*F, AR.LI, &AR.TLI);
  LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, &BPI);
  if (!LP.runOnLoop(&L))
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}

Optional<LoopICmp>
LoopPredication::parseLoopICmp(ICmpInst *ICI) {
  auto Pred = ICI->getPredicate();
  auto *LHS = ICI->getOperand(0);
  auto *RHS = ICI->getOperand(1);

  const SCEV *LHSS = SE->getSCEV(LHS);
  if (isa<SCEVCouldNotCompute>(LHSS))
    return None;
  const SCEV *RHSS = SE->getSCEV(RHS);
  if (isa<SCEVCouldNotCompute>(RHSS))
    return None;

  // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
  if (SE->isLoopInvariant(LHSS, L)) {
    std::swap(LHS, RHS);
    std::swap(LHSS, RHSS);
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
  if (!AR || AR->getLoop() != L)
    return None;

  return LoopICmp(Pred, AR, RHSS);
}

Value *LoopPredication::expandCheck(SCEVExpander &Expander,
                                    Instruction *Guard,
                                    ICmpInst::Predicate Pred, const SCEV *LHS,
                                    const SCEV *RHS) {
  Type *Ty = LHS->getType();
  assert(Ty == RHS->getType() && "expandCheck operands have different types?");

  if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
    IRBuilder<> Builder(Guard);
    if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
      return Builder.getTrue();
    if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
                                     LHS, RHS))
      return Builder.getFalse();
  }

  Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
  Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
  IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
  return Builder.CreateICmp(Pred, LHSV, RHSV);
}


// Returns true if its safe to truncate the IV to RangeCheckType.
// When the IV type is wider than the range operand type, we can still do loop
// predication, by generating SCEVs for the range and latch that are of the
// same type. We achieve this by generating a SCEV truncate expression for the
// latch IV. This is done iff truncation of the IV is a safe operation,
// without loss of information.
// Another way to achieve this is by generating a wider type SCEV for the
// range check operand, however, this needs a more involved check that
// operands do not overflow. This can lead to loss of information when the
// range operand is of the form: add i32 %offset, %iv. We need to prove that
// sext(x + y) is same as sext(x) + sext(y).
// This function returns true if we can safely represent the IV type in
// the RangeCheckType without loss of information.
static bool isSafeToTruncateWideIVType(const DataLayout &DL,
                                       ScalarEvolution &SE,
                                       const LoopICmp LatchCheck,
                                       Type *RangeCheckType) {
  if (!EnableIVTruncation)
    return false;
  assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
             DL.getTypeSizeInBits(RangeCheckType) &&
         "Expected latch check IV type to be larger than range check operand "
         "type!");
  // The start and end values of the IV should be known. This is to guarantee
  // that truncating the wide type will not lose information.
  auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
  auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
  if (!Limit || !Start)
    return false;
  // This check makes sure that the IV does not change sign during loop
  // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
  // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
  // IV wraps around, and the truncation of the IV would lose the range of
  // iterations between 2^32 and 2^64.
  bool Increasing;
  if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
    return false;
  // The active bits should be less than the bits in the RangeCheckType. This
  // guarantees that truncating the latch check to RangeCheckType is a safe
  // operation.
  auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
  return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
         Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
}


// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
// the requested type if safe to do so.  May involve the use of a new IV.
static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
                                                 ScalarEvolution &SE,
                                                 const LoopICmp LatchCheck,
                                                 Type *RangeCheckType) {

  auto *LatchType = LatchCheck.IV->getType();
  if (RangeCheckType == LatchType)
    return LatchCheck;
  // For now, bail out if latch type is narrower than range type.
  if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
    return None;
  if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
    return None;
  // We can now safely identify the truncated version of the IV and limit for
  // RangeCheckType.
  LoopICmp NewLatchCheck;
  NewLatchCheck.Pred = LatchCheck.Pred;
  NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
      SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
  if (!NewLatchCheck.IV)
    return None;
  NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
  LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
                    << "can be represented as range check type:"
                    << *RangeCheckType << "\n");
  LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
  LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
  return NewLatchCheck;
}

bool LoopPredication::isSupportedStep(const SCEV* Step) {
  return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
}

Instruction *LoopPredication::findInsertPt(Instruction *Use,
                                           ArrayRef<Value*> Ops) {
  for (Value *Op : Ops)
    if (!L->isLoopInvariant(Op))
      return Use;
  return Preheader->getTerminator();
}

Instruction *LoopPredication::findInsertPt(Instruction *Use,
                                           ArrayRef<const SCEV*> Ops) {
  // Subtlety: SCEV considers things to be invariant if the value produced is
  // the same across iterations.  This is not the same as being able to
  // evaluate outside the loop, which is what we actually need here.
  for (const SCEV *Op : Ops)
    if (!SE->isLoopInvariant(Op, L) ||
        !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
      return Use;
  return Preheader->getTerminator();
}

bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
  // Handling expressions which produce invariant results, but *haven't* yet
  // been removed from the loop serves two important purposes.
  // 1) Most importantly, it resolves a pass ordering cycle which would
  // otherwise need us to iteration licm, loop-predication, and either
  // loop-unswitch or loop-peeling to make progress on examples with lots of
  // predicable range checks in a row.  (Since, in the general case,  we can't
  // hoist the length checks until the dominating checks have been discharged
  // as we can't prove doing so is safe.)
  // 2) As a nice side effect, this exposes the value of peeling or unswitching
  // much more obviously in the IR.  Otherwise, the cost modeling for other
  // transforms would end up needing to duplicate all of this logic to model a
  // check which becomes predictable based on a modeled peel or unswitch.
  //
  // The cost of doing so in the worst case is an extra fill from the stack  in
  // the loop to materialize the loop invariant test value instead of checking
  // against the original IV which is presumable in a register inside the loop.
  // Such cases are presumably rare, and hint at missing oppurtunities for
  // other passes.

  if (SE->isLoopInvariant(S, L))
    // Note: This the SCEV variant, so the original Value* may be within the
    // loop even though SCEV has proven it is loop invariant.
    return true;

  // Handle a particular important case which SCEV doesn't yet know about which
  // shows up in range checks on arrays with immutable lengths.
  // TODO: This should be sunk inside SCEV.
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
    if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
      if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
        if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
            LI->hasMetadata(LLVMContext::MD_invariant_load))
          return true;
  return false;
}

Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
    LoopICmp LatchCheck, LoopICmp RangeCheck,
    SCEVExpander &Expander, Instruction *Guard) {
  auto *Ty = RangeCheck.IV->getType();
  // Generate the widened condition for the forward loop:
  //   guardStart u< guardLimit &&
  //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
  // where <pred> depends on the latch condition predicate. See the file
  // header comment for the reasoning.
  // guardLimit - guardStart + latchStart - 1
  const SCEV *GuardStart = RangeCheck.IV->getStart();
  const SCEV *GuardLimit = RangeCheck.Limit;
  const SCEV *LatchStart = LatchCheck.IV->getStart();
  const SCEV *LatchLimit = LatchCheck.Limit;
  // Subtlety: We need all the values to be *invariant* across all iterations,
  // but we only need to check expansion safety for those which *aren't*
  // already guaranteed to dominate the guard.
  if (!isLoopInvariantValue(GuardStart) ||
      !isLoopInvariantValue(GuardLimit) ||
      !isLoopInvariantValue(LatchStart) ||
      !isLoopInvariantValue(LatchLimit)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }
  if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
      !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }

  // guardLimit - guardStart + latchStart - 1
  const SCEV *RHS =
      SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
                     SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
  auto LimitCheckPred =
      ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);

  LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
  LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
  LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");

  auto *LimitCheck =
      expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
  auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
                                          GuardStart, GuardLimit);
  IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
  return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}

Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
    LoopICmp LatchCheck, LoopICmp RangeCheck,
    SCEVExpander &Expander, Instruction *Guard) {
  auto *Ty = RangeCheck.IV->getType();
  const SCEV *GuardStart = RangeCheck.IV->getStart();
  const SCEV *GuardLimit = RangeCheck.Limit;
  const SCEV *LatchStart = LatchCheck.IV->getStart();
  const SCEV *LatchLimit = LatchCheck.Limit;
  // Subtlety: We need all the values to be *invariant* across all iterations,
  // but we only need to check expansion safety for those which *aren't*
  // already guaranteed to dominate the guard.
  if (!isLoopInvariantValue(GuardStart) ||
      !isLoopInvariantValue(GuardLimit) ||
      !isLoopInvariantValue(LatchStart) ||
      !isLoopInvariantValue(LatchLimit)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }
  if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
      !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
    LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
    return None;
  }
  // The decrement of the latch check IV should be the same as the
  // rangeCheckIV.
  auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
  if (RangeCheck.IV != PostDecLatchCheckIV) {
    LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
                      << *PostDecLatchCheckIV
                      << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
    return None;
  }

  // Generate the widened condition for CountDownLoop:
  // guardStart u< guardLimit &&
  // latchLimit <pred> 1.
  // See the header comment for reasoning of the checks.
  auto LimitCheckPred =
      ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
  auto *FirstIterationCheck = expandCheck(Expander, Guard,
                                          ICmpInst::ICMP_ULT,
                                          GuardStart, GuardLimit);
  auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
                                 SE->getOne(Ty));
  IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
  return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}

static void normalizePredicate(ScalarEvolution *SE, Loop *L,
                               LoopICmp& RC) {
  // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
  // ULT/UGE form for ease of handling by our caller.
  if (ICmpInst::isEquality(RC.Pred) &&
      RC.IV->getStepRecurrence(*SE)->isOne() &&
      SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
    RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
      ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
}


/// If ICI can be widened to a loop invariant condition emits the loop
/// invariant condition in the loop preheader and return it, otherwise
/// returns None.
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
                                                       SCEVExpander &Expander,
                                                       Instruction *Guard) {
  LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
  LLVM_DEBUG(ICI->dump());

  // parseLoopStructure guarantees that the latch condition is:
  //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
  // We are looking for the range checks of the form:
  //   i u< guardLimit
  auto RangeCheck = parseLoopICmp(ICI);
  if (!RangeCheck) {
    LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
    return None;
  }
  LLVM_DEBUG(dbgs() << "Guard check:\n");
  LLVM_DEBUG(RangeCheck->dump());
  if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
    LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
                      << RangeCheck->Pred << ")!\n");
    return None;
  }
  auto *RangeCheckIV = RangeCheck->IV;
  if (!RangeCheckIV->isAffine()) {
    LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
    return None;
  }
  auto *Step = RangeCheckIV->getStepRecurrence(*SE);
  // We cannot just compare with latch IV step because the latch and range IVs
  // may have different types.
  if (!isSupportedStep(Step)) {
    LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
    return None;
  }
  auto *Ty = RangeCheckIV->getType();
  auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
  if (!CurrLatchCheckOpt) {
    LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
                         "corresponding to range type: "
                      << *Ty << "\n");
    return None;
  }

  LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
  // At this point, the range and latch step should have the same type, but need
  // not have the same value (we support both 1 and -1 steps).
  assert(Step->getType() ==
             CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
         "Range and latch steps should be of same type!");
  if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
    LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
    return None;
  }

  if (Step->isOne())
    return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
                                               Expander, Guard);
  else {
    assert(Step->isAllOnesValue() && "Step should be -1!");
    return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
                                               Expander, Guard);
  }
}

unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
                                        Value *Condition,
                                        SCEVExpander &Expander,
                                        Instruction *Guard) {
  unsigned NumWidened = 0;
  // The guard condition is expected to be in form of:
  //   cond1 && cond2 && cond3 ...
  // Iterate over subconditions looking for icmp conditions which can be
  // widened across loop iterations. Widening these conditions remember the
  // resulting list of subconditions in Checks vector.
  SmallVector<Value *, 4> Worklist(1, Condition);
  SmallPtrSet<Value *, 4> Visited;
  Value *WideableCond = nullptr;
  do {
    Value *Condition = Worklist.pop_back_val();
    if (!Visited.insert(Condition).second)
      continue;

    Value *LHS, *RHS;
    using namespace llvm::PatternMatch;
    if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
      Worklist.push_back(LHS);
      Worklist.push_back(RHS);
      continue;
    }

    if (match(Condition,
              m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
      // Pick any, we don't care which
      WideableCond = Condition;
      continue;
    }

    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
      if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
                                                   Guard)) {
        Checks.push_back(NewRangeCheck.getValue());
        NumWidened++;
        continue;
      }
    }

    // Save the condition as is if we can't widen it
    Checks.push_back(Condition);
  } while (!Worklist.empty());
  // At the moment, our matching logic for wideable conditions implicitly
  // assumes we preserve the form: (br (and Cond, WC())).  FIXME
  // Note that if there were multiple calls to wideable condition in the
  // traversal, we only need to keep one, and which one is arbitrary.
  if (WideableCond)
    Checks.push_back(WideableCond);
  return NumWidened;
}

bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
                                           SCEVExpander &Expander) {
  LLVM_DEBUG(dbgs() << "Processing guard:\n");
  LLVM_DEBUG(Guard->dump());

  TotalConsidered++;
  SmallVector<Value *, 4> Checks;
  unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
                                      Guard);
  if (NumWidened == 0)
    return false;

  TotalWidened += NumWidened;

  // Emit the new guard condition
  IRBuilder<> Builder(findInsertPt(Guard, Checks));
  Value *AllChecks = Builder.CreateAnd(Checks);
  auto *OldCond = Guard->getOperand(0);
  Guard->setOperand(0, AllChecks);
  RecursivelyDeleteTriviallyDeadInstructions(OldCond);

  LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
  return true;
}

bool LoopPredication::widenWidenableBranchGuardConditions(
    BranchInst *BI, SCEVExpander &Expander) {
  assert(isGuardAsWidenableBranch(BI) && "Must be!");
  LLVM_DEBUG(dbgs() << "Processing guard:\n");
  LLVM_DEBUG(BI->dump());

  TotalConsidered++;
  SmallVector<Value *, 4> Checks;
  unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
                                      Expander, BI);
  if (NumWidened == 0)
    return false;

  TotalWidened += NumWidened;

  // Emit the new guard condition
  IRBuilder<> Builder(findInsertPt(BI, Checks));
  Value *AllChecks = Builder.CreateAnd(Checks);
  auto *OldCond = BI->getCondition();
  BI->setCondition(AllChecks);
  RecursivelyDeleteTriviallyDeadInstructions(OldCond);
  assert(isGuardAsWidenableBranch(BI) &&
         "Stopped being a guard after transform?");

  LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
  return true;
}

Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
  using namespace PatternMatch;

  BasicBlock *LoopLatch = L->getLoopLatch();
  if (!LoopLatch) {
    LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
    return None;
  }

  auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
  if (!BI || !BI->isConditional()) {
    LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
    return None;
  }
  BasicBlock *TrueDest = BI->getSuccessor(0);
  assert(
      (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
      "One of the latch's destinations must be the header");

  auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
  if (!ICI) {
    LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
    return None;
  }
  auto Result = parseLoopICmp(ICI);
  if (!Result) {
    LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
    return None;
  }

  if (TrueDest != L->getHeader())
    Result->Pred = ICmpInst::getInversePredicate(Result->Pred);

  // Check affine first, so if it's not we don't try to compute the step
  // recurrence.
  if (!Result->IV->isAffine()) {
    LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
    return None;
  }

  auto *Step = Result->IV->getStepRecurrence(*SE);
  if (!isSupportedStep(Step)) {
    LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
    return None;
  }

  auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
    if (Step->isOne()) {
      return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
             Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
    } else {
      assert(Step->isAllOnesValue() && "Step should be -1!");
      return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
             Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
    }
  };

  normalizePredicate(SE, L, *Result);
  if (IsUnsupportedPredicate(Step, Result->Pred)) {
    LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
                      << ")!\n");
    return None;
  }

  return Result;
}


bool LoopPredication::isLoopProfitableToPredicate() {
  if (SkipProfitabilityChecks || !BPI)
    return true;

  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
  L->getExitEdges(ExitEdges);
  // If there is only one exiting edge in the loop, it is always profitable to
  // predicate the loop.
  if (ExitEdges.size() == 1)
    return true;

  // Calculate the exiting probabilities of all exiting edges from the loop,
  // starting with the LatchExitProbability.
  // Heuristic for profitability: If any of the exiting blocks' probability of
  // exiting the loop is larger than exiting through the latch block, it's not
  // profitable to predicate the loop.
  auto *LatchBlock = L->getLoopLatch();
  assert(LatchBlock && "Should have a single latch at this point!");
  auto *LatchTerm = LatchBlock->getTerminator();
  assert(LatchTerm->getNumSuccessors() == 2 &&
         "expected to be an exiting block with 2 succs!");
  unsigned LatchBrExitIdx =
      LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
  BranchProbability LatchExitProbability =
      BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);

  // Protect against degenerate inputs provided by the user. Providing a value
  // less than one, can invert the definition of profitable loop predication.
  float ScaleFactor = LatchExitProbabilityScale;
  if (ScaleFactor < 1) {
    LLVM_DEBUG(
        dbgs()
        << "Ignored user setting for loop-predication-latch-probability-scale: "
        << LatchExitProbabilityScale << "\n");
    LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
    ScaleFactor = 1.0;
  }
  const auto LatchProbabilityThreshold =
      LatchExitProbability * ScaleFactor;

  for (const auto &ExitEdge : ExitEdges) {
    BranchProbability ExitingBlockProbability =
        BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
    // Some exiting edge has higher probability than the latch exiting edge.
    // No longer profitable to predicate.
    if (ExitingBlockProbability > LatchProbabilityThreshold)
      return false;
  }
  // Using BPI, we have concluded that the most probable way to exit from the
  // loop is through the latch (or there's no profile information and all
  // exits are equally likely).
  return true;
}

/// If we can (cheaply) find a widenable branch which controls entry into the
/// loop, return it.
static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
  // Walk back through any unconditional executed blocks and see if we can find
  // a widenable condition which seems to control execution of this loop.  Note
  // that we predict that maythrow calls are likely untaken and thus that it's
  // profitable to widen a branch before a maythrow call with a condition
  // afterwards even though that may cause the slow path to run in a case where
  // it wouldn't have otherwise.
  BasicBlock *BB = L->getLoopPreheader();
  if (!BB)
    return nullptr;
  do {
    if (BasicBlock *Pred = BB->getSinglePredecessor())
      if (BB == Pred->getSingleSuccessor()) {
        BB = Pred;
        continue;
      }
    break;
  } while (true);

  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    auto *Term = Pred->getTerminator();

    Value *Cond, *WC;
    BasicBlock *IfTrueBB, *IfFalseBB;
    if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
        IfTrueBB == BB)
      return cast<BranchInst>(Term);
  }
  return nullptr;
}

/// Return the minimum of all analyzeable exit counts.  This is an upper bound
/// on the actual exit count.  If there are not at least two analyzeable exits,
/// returns SCEVCouldNotCompute.
static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
                                                       DominatorTree &DT,
                                                       Loop *L) {
  SmallVector<BasicBlock *, 16> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  SmallVector<const SCEV *, 4> ExitCounts;
  for (BasicBlock *ExitingBB : ExitingBlocks) {
    const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
    if (isa<SCEVCouldNotCompute>(ExitCount))
      continue;
    assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
           "We should only have known counts for exiting blocks that "
           "dominate latch!");
    ExitCounts.push_back(ExitCount);
  }
  if (ExitCounts.size() < 2)
    return SE.getCouldNotCompute();
  return SE.getUMinFromMismatchedTypes(ExitCounts);
}

/// This implements an analogous, but entirely distinct transform from the main
/// loop predication transform.  This one is phrased in terms of using a
/// widenable branch *outside* the loop to allow us to simplify loop exits in a
/// following loop.  This is close in spirit to the IndVarSimplify transform
/// of the same name, but is materially different widening loosens legality
/// sharply.
bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
  // The transformation performed here aims to widen a widenable condition
  // above the loop such that all analyzeable exit leading to deopt are dead.
  // It assumes that the latch is the dominant exit for profitability and that
  // exits branching to deoptimizing blocks are rarely taken. It relies on the
  // semantics of widenable expressions for legality. (i.e. being able to fall
  // down the widenable path spuriously allows us to ignore exit order,
  // unanalyzeable exits, side effects, exceptional exits, and other challenges
  // which restrict the applicability of the non-WC based version of this
  // transform in IndVarSimplify.)
  //
  // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
  // imply flags on the expression being hoisted and inserting new uses (flags
  // are only correct for current uses).  The result is that we may be
  // inserting a branch on the value which can be either poison or undef.  In
  // this case, the branch can legally go either way; we just need to avoid
  // introducing UB.  This is achieved through the use of the freeze
  // instruction.

  SmallVector<BasicBlock *, 16> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  if (ExitingBlocks.empty())
    return false; // Nothing to do.

  auto *Latch = L->getLoopLatch();
  if (!Latch)
    return false;

  auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
  if (!WidenableBR)
    return false;

  const SCEV *LatchEC = SE->getExitCount(L, Latch);
  if (isa<SCEVCouldNotCompute>(LatchEC))
    return false; // profitability - want hot exit in analyzeable set

  // At this point, we have found an analyzeable latch, and a widenable
  // condition above the loop.  If we have a widenable exit within the loop
  // (for which we can't compute exit counts), drop the ability to further
  // widen so that we gain ability to analyze it's exit count and perform this
  // transform.  TODO: It'd be nice to know for sure the exit became
  // analyzeable after dropping widenability.
  {
    bool Invalidate = false;

    for (auto *ExitingBB : ExitingBlocks) {
      if (LI->getLoopFor(ExitingBB) != L)
        continue;

      auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
      if (!BI)
        continue;

      Use *Cond, *WC;
      BasicBlock *IfTrueBB, *IfFalseBB;
      if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
          L->contains(IfTrueBB)) {
        WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
        Invalidate = true;
      }
    }
    if (Invalidate)
      SE->forgetLoop(L);
  }

  // The use of umin(all analyzeable exits) instead of latch is subtle, but
  // important for profitability.  We may have a loop which hasn't been fully
  // canonicalized just yet.  If the exit we chose to widen is provably never
  // taken, we want the widened form to *also* be provably never taken.  We
  // can't guarantee this as a current unanalyzeable exit may later become
  // analyzeable, but we can at least avoid the obvious cases.
  const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
  if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
      !SE->isLoopInvariant(MinEC, L) ||
      !isSafeToExpandAt(MinEC, WidenableBR, *SE))
    return false;

  // Subtlety: We need to avoid inserting additional uses of the WC.  We know
  // that it can only have one transitive use at the moment, and thus moving
  // that use to just before the branch and inserting code before it and then
  // modifying the operand is legal.
  auto *IP = cast<Instruction>(WidenableBR->getCondition());
  IP->moveBefore(WidenableBR);
  Rewriter.setInsertPoint(IP);
  IRBuilder<> B(IP);

  bool Changed = false;
  Value *MinECV = nullptr; // lazily generated if needed
  for (BasicBlock *ExitingBB : ExitingBlocks) {
    // If our exiting block exits multiple loops, we can only rewrite the
    // innermost one.  Otherwise, we're changing how many times the innermost
    // loop runs before it exits.
    if (LI->getLoopFor(ExitingBB) != L)
      continue;

    // Can't rewrite non-branch yet.
    auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
    if (!BI)
      continue;

    // If already constant, nothing to do.
    if (isa<Constant>(BI->getCondition()))
      continue;

    const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
    if (isa<SCEVCouldNotCompute>(ExitCount) ||
        ExitCount->getType()->isPointerTy() ||
        !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
      continue;

    const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
    BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
    if (!ExitBB->getPostdominatingDeoptimizeCall())
      continue;

    /// Here we can be fairly sure that executing this exit will most likely
    /// lead to executing llvm.experimental.deoptimize.
    /// This is a profitability heuristic, not a legality constraint.

    // If we found a widenable exit condition, do two things:
    // 1) fold the widened exit test into the widenable condition
    // 2) fold the branch to untaken - avoids infinite looping

    Value *ECV = Rewriter.expandCodeFor(ExitCount);
    if (!MinECV)
      MinECV = Rewriter.expandCodeFor(MinEC);
    Value *RHS = MinECV;
    if (ECV->getType() != RHS->getType()) {
      Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
      ECV = B.CreateZExt(ECV, WiderTy);
      RHS = B.CreateZExt(RHS, WiderTy);
    }
    assert(!Latch || DT->dominates(ExitingBB, Latch));
    Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
    // Freeze poison or undef to an arbitrary bit pattern to ensure we can
    // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
    // context.
    NewCond = B.CreateFreeze(NewCond);

    widenWidenableBranch(WidenableBR, NewCond);

    Value *OldCond = BI->getCondition();
    BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
    Changed = true;
  }

  if (Changed)
    // We just mutated a bunch of loop exits changing there exit counts
    // widely.  We need to force recomputation of the exit counts given these
    // changes.  Note that all of the inserted exits are never taken, and
    // should be removed next time the CFG is modified.
    SE->forgetLoop(L);
  return Changed;
}

bool LoopPredication::runOnLoop(Loop *Loop) {
  L = Loop;

  LLVM_DEBUG(dbgs() << "Analyzing ");
  LLVM_DEBUG(L->dump());

  Module *M = L->getHeader()->getModule();

  // There is nothing to do if the module doesn't use guards
  auto *GuardDecl =
      M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
  bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
  auto *WCDecl = M->getFunction(
      Intrinsic::getName(Intrinsic::experimental_widenable_condition));
  bool HasWidenableConditions =
      PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
  if (!HasIntrinsicGuards && !HasWidenableConditions)
    return false;

  DL = &M->getDataLayout();

  Preheader = L->getLoopPreheader();
  if (!Preheader)
    return false;

  auto LatchCheckOpt = parseLoopLatchICmp();
  if (!LatchCheckOpt)
    return false;
  LatchCheck = *LatchCheckOpt;

  LLVM_DEBUG(dbgs() << "Latch check:\n");
  LLVM_DEBUG(LatchCheck.dump());

  if (!isLoopProfitableToPredicate()) {
    LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
    return false;
  }
  // Collect all the guards into a vector and process later, so as not
  // to invalidate the instruction iterator.
  SmallVector<IntrinsicInst *, 4> Guards;
  SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
  for (const auto BB : L->blocks()) {
    for (auto &I : *BB)
      if (isGuard(&I))
        Guards.push_back(cast<IntrinsicInst>(&I));
    if (PredicateWidenableBranchGuards &&
        isGuardAsWidenableBranch(BB->getTerminator()))
      GuardsAsWidenableBranches.push_back(
          cast<BranchInst>(BB->getTerminator()));
  }

  SCEVExpander Expander(*SE, *DL, "loop-predication");
  bool Changed = false;
  for (auto *Guard : Guards)
    Changed |= widenGuardConditions(Guard, Expander);
  for (auto *Guard : GuardsAsWidenableBranches)
    Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
  Changed |= predicateLoopExits(L, Expander);
  return Changed;
}