LoopInterchange.cpp 60.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This Pass handles loop interchange transform.
// This pass interchanges loops to provide a more cache-friendly memory access
// patterns.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-interchange"

STATISTIC(LoopsInterchanged, "Number of loops interchanged");

static cl::opt<int> LoopInterchangeCostThreshold(
    "loop-interchange-threshold", cl::init(0), cl::Hidden,
    cl::desc("Interchange if you gain more than this number"));

namespace {

using LoopVector = SmallVector<Loop *, 8>;

// TODO: Check if we can use a sparse matrix here.
using CharMatrix = std::vector<std::vector<char>>;

} // end anonymous namespace

// Maximum number of dependencies that can be handled in the dependency matrix.
static const unsigned MaxMemInstrCount = 100;

// Maximum loop depth supported.
static const unsigned MaxLoopNestDepth = 10;

#ifdef DUMP_DEP_MATRICIES
static void printDepMatrix(CharMatrix &DepMatrix) {
  for (auto &Row : DepMatrix) {
    for (auto D : Row)
      LLVM_DEBUG(dbgs() << D << " ");
    LLVM_DEBUG(dbgs() << "\n");
  }
}
#endif

static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
                                     Loop *L, DependenceInfo *DI) {
  using ValueVector = SmallVector<Value *, 16>;

  ValueVector MemInstr;

  // For each block.
  for (BasicBlock *BB : L->blocks()) {
    // Scan the BB and collect legal loads and stores.
    for (Instruction &I : *BB) {
      if (!isa<Instruction>(I))
        return false;
      if (auto *Ld = dyn_cast<LoadInst>(&I)) {
        if (!Ld->isSimple())
          return false;
        MemInstr.push_back(&I);
      } else if (auto *St = dyn_cast<StoreInst>(&I)) {
        if (!St->isSimple())
          return false;
        MemInstr.push_back(&I);
      }
    }
  }

  LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
                    << " Loads and Stores to analyze\n");

  ValueVector::iterator I, IE, J, JE;

  for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
    for (J = I, JE = MemInstr.end(); J != JE; ++J) {
      std::vector<char> Dep;
      Instruction *Src = cast<Instruction>(*I);
      Instruction *Dst = cast<Instruction>(*J);
      if (Src == Dst)
        continue;
      // Ignore Input dependencies.
      if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
        continue;
      // Track Output, Flow, and Anti dependencies.
      if (auto D = DI->depends(Src, Dst, true)) {
        assert(D->isOrdered() && "Expected an output, flow or anti dep.");
        LLVM_DEBUG(StringRef DepType =
                       D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
                   dbgs() << "Found " << DepType
                          << " dependency between Src and Dst\n"
                          << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
        unsigned Levels = D->getLevels();
        char Direction;
        for (unsigned II = 1; II <= Levels; ++II) {
          const SCEV *Distance = D->getDistance(II);
          const SCEVConstant *SCEVConst =
              dyn_cast_or_null<SCEVConstant>(Distance);
          if (SCEVConst) {
            const ConstantInt *CI = SCEVConst->getValue();
            if (CI->isNegative())
              Direction = '<';
            else if (CI->isZero())
              Direction = '=';
            else
              Direction = '>';
            Dep.push_back(Direction);
          } else if (D->isScalar(II)) {
            Direction = 'S';
            Dep.push_back(Direction);
          } else {
            unsigned Dir = D->getDirection(II);
            if (Dir == Dependence::DVEntry::LT ||
                Dir == Dependence::DVEntry::LE)
              Direction = '<';
            else if (Dir == Dependence::DVEntry::GT ||
                     Dir == Dependence::DVEntry::GE)
              Direction = '>';
            else if (Dir == Dependence::DVEntry::EQ)
              Direction = '=';
            else
              Direction = '*';
            Dep.push_back(Direction);
          }
        }
        while (Dep.size() != Level) {
          Dep.push_back('I');
        }

        DepMatrix.push_back(Dep);
        if (DepMatrix.size() > MaxMemInstrCount) {
          LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
                            << " dependencies inside loop\n");
          return false;
        }
      }
    }
  }

  return true;
}

// A loop is moved from index 'from' to an index 'to'. Update the Dependence
// matrix by exchanging the two columns.
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
                                    unsigned ToIndx) {
  unsigned numRows = DepMatrix.size();
  for (unsigned i = 0; i < numRows; ++i) {
    char TmpVal = DepMatrix[i][ToIndx];
    DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
    DepMatrix[i][FromIndx] = TmpVal;
  }
}

// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
// '>'
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
                                   unsigned Column) {
  for (unsigned i = 0; i <= Column; ++i) {
    if (DepMatrix[Row][i] == '<')
      return false;
    if (DepMatrix[Row][i] == '>')
      return true;
  }
  // All dependencies were '=','S' or 'I'
  return false;
}

// Checks if no dependence exist in the dependency matrix in Row before Column.
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
                                 unsigned Column) {
  for (unsigned i = 0; i < Column; ++i) {
    if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
        DepMatrix[Row][i] != 'I')
      return false;
  }
  return true;
}

static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
                                unsigned OuterLoopId, char InnerDep,
                                char OuterDep) {
  if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
    return false;

  if (InnerDep == OuterDep)
    return true;

  // It is legal to interchange if and only if after interchange no row has a
  // '>' direction as the leftmost non-'='.

  if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
    return true;

  if (InnerDep == '<')
    return true;

  if (InnerDep == '>') {
    // If OuterLoopId represents outermost loop then interchanging will make the
    // 1st dependency as '>'
    if (OuterLoopId == 0)
      return false;

    // If all dependencies before OuterloopId are '=','S'or 'I'. Then
    // interchanging will result in this row having an outermost non '='
    // dependency of '>'
    if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
      return true;
  }

  return false;
}

// Checks if it is legal to interchange 2 loops.
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
// if the direction matrix, after the same permutation is applied to its
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
                                      unsigned InnerLoopId,
                                      unsigned OuterLoopId) {
  unsigned NumRows = DepMatrix.size();
  // For each row check if it is valid to interchange.
  for (unsigned Row = 0; Row < NumRows; ++Row) {
    char InnerDep = DepMatrix[Row][InnerLoopId];
    char OuterDep = DepMatrix[Row][OuterLoopId];
    if (InnerDep == '*' || OuterDep == '*')
      return false;
    if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
      return false;
  }
  return true;
}

static LoopVector populateWorklist(Loop &L) {
  LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
                    << L.getHeader()->getParent()->getName() << " Loop: %"
                    << L.getHeader()->getName() << '\n');
  LoopVector LoopList;
  Loop *CurrentLoop = &L;
  const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
  while (!Vec->empty()) {
    // The current loop has multiple subloops in it hence it is not tightly
    // nested.
    // Discard all loops above it added into Worklist.
    if (Vec->size() != 1)
      return {};

    LoopList.push_back(CurrentLoop);
    CurrentLoop = Vec->front();
    Vec = &CurrentLoop->getSubLoops();
  }
  LoopList.push_back(CurrentLoop);
  return LoopList;
}

static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
  PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
  if (InnerIndexVar)
    return InnerIndexVar;
  if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
    return nullptr;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    PHINode *PhiVar = cast<PHINode>(I);
    Type *PhiTy = PhiVar->getType();
    if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
        !PhiTy->isPointerTy())
      return nullptr;
    const SCEVAddRecExpr *AddRec =
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
    if (!AddRec || !AddRec->isAffine())
      continue;
    const SCEV *Step = AddRec->getStepRecurrence(*SE);
    if (!isa<SCEVConstant>(Step))
      continue;
    // Found the induction variable.
    // FIXME: Handle loops with more than one induction variable. Note that,
    // currently, legality makes sure we have only one induction variable.
    return PhiVar;
  }
  return nullptr;
}

namespace {

/// LoopInterchangeLegality checks if it is legal to interchange the loop.
class LoopInterchangeLegality {
public:
  LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
                          OptimizationRemarkEmitter *ORE)
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}

  /// Check if the loops can be interchanged.
  bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
                           CharMatrix &DepMatrix);

  /// Check if the loop structure is understood. We do not handle triangular
  /// loops for now.
  bool isLoopStructureUnderstood(PHINode *InnerInductionVar);

  bool currentLimitations();

  const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
    return OuterInnerReductions;
  }

private:
  bool tightlyNested(Loop *Outer, Loop *Inner);
  bool containsUnsafeInstructions(BasicBlock *BB);

  /// Discover induction and reduction PHIs in the header of \p L. Induction
  /// PHIs are added to \p Inductions, reductions are added to
  /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
  /// to be passed as \p InnerLoop.
  bool findInductionAndReductions(Loop *L,
                                  SmallVector<PHINode *, 8> &Inductions,
                                  Loop *InnerLoop);

  Loop *OuterLoop;
  Loop *InnerLoop;

  ScalarEvolution *SE;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  /// Set of reduction PHIs taking part of a reduction across the inner and
  /// outer loop.
  SmallPtrSet<PHINode *, 4> OuterInnerReductions;
};

/// LoopInterchangeProfitability checks if it is profitable to interchange the
/// loop.
class LoopInterchangeProfitability {
public:
  LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
                               OptimizationRemarkEmitter *ORE)
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}

  /// Check if the loop interchange is profitable.
  bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
                    CharMatrix &DepMatrix);

private:
  int getInstrOrderCost();

  Loop *OuterLoop;
  Loop *InnerLoop;

  /// Scev analysis.
  ScalarEvolution *SE;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;
};

/// LoopInterchangeTransform interchanges the loop.
class LoopInterchangeTransform {
public:
  LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
                           LoopInfo *LI, DominatorTree *DT,
                           BasicBlock *LoopNestExit,
                           const LoopInterchangeLegality &LIL)
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
        LoopExit(LoopNestExit), LIL(LIL) {}

  /// Interchange OuterLoop and InnerLoop.
  bool transform();
  void restructureLoops(Loop *NewInner, Loop *NewOuter,
                        BasicBlock *OrigInnerPreHeader,
                        BasicBlock *OrigOuterPreHeader);
  void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);

private:
  bool adjustLoopLinks();
  bool adjustLoopBranches();

  Loop *OuterLoop;
  Loop *InnerLoop;

  /// Scev analysis.
  ScalarEvolution *SE;

  LoopInfo *LI;
  DominatorTree *DT;
  BasicBlock *LoopExit;

  const LoopInterchangeLegality &LIL;
};

// Main LoopInterchange Pass.
struct LoopInterchange : public LoopPass {
  static char ID;
  ScalarEvolution *SE = nullptr;
  LoopInfo *LI = nullptr;
  DependenceInfo *DI = nullptr;
  DominatorTree *DT = nullptr;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  LoopInterchange() : LoopPass(ID) {
    initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DependenceAnalysisWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();

    getLoopAnalysisUsage(AU);
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L) || L->getParentLoop())
      return false;

    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    return processLoopList(populateWorklist(*L));
  }

  bool isComputableLoopNest(LoopVector LoopList) {
    for (Loop *L : LoopList) {
      const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
      if (ExitCountOuter == SE->getCouldNotCompute()) {
        LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
        return false;
      }
      if (L->getNumBackEdges() != 1) {
        LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
        return false;
      }
      if (!L->getExitingBlock()) {
        LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
        return false;
      }
    }
    return true;
  }

  unsigned selectLoopForInterchange(const LoopVector &LoopList) {
    // TODO: Add a better heuristic to select the loop to be interchanged based
    // on the dependence matrix. Currently we select the innermost loop.
    return LoopList.size() - 1;
  }

  bool processLoopList(LoopVector LoopList) {
    bool Changed = false;
    unsigned LoopNestDepth = LoopList.size();
    if (LoopNestDepth < 2) {
      LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
      return false;
    }
    if (LoopNestDepth > MaxLoopNestDepth) {
      LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
                        << MaxLoopNestDepth << "\n");
      return false;
    }
    if (!isComputableLoopNest(LoopList)) {
      LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
      return false;
    }

    LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
                      << "\n");

    CharMatrix DependencyMatrix;
    Loop *OuterMostLoop = *(LoopList.begin());
    if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
                                  OuterMostLoop, DI)) {
      LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
      return false;
    }
#ifdef DUMP_DEP_MATRICIES
    LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
    printDepMatrix(DependencyMatrix);
#endif

    // Get the Outermost loop exit.
    BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
    if (!LoopNestExit) {
      LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
      return false;
    }

    unsigned SelecLoopId = selectLoopForInterchange(LoopList);
    // Move the selected loop outwards to the best possible position.
    for (unsigned i = SelecLoopId; i > 0; i--) {
      bool Interchanged =
          processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
      if (!Interchanged)
        return Changed;
      // Loops interchanged reflect the same in LoopList
      std::swap(LoopList[i - 1], LoopList[i]);

      // Update the DependencyMatrix
      interChangeDependencies(DependencyMatrix, i, i - 1);
#ifdef DUMP_DEP_MATRICIES
      LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
      printDepMatrix(DependencyMatrix);
#endif
      Changed |= Interchanged;
    }
    return Changed;
  }

  bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
                   unsigned OuterLoopId, BasicBlock *LoopNestExit,
                   std::vector<std::vector<char>> &DependencyMatrix) {
    LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
                      << " and OuterLoopId = " << OuterLoopId << "\n");
    Loop *InnerLoop = LoopList[InnerLoopId];
    Loop *OuterLoop = LoopList[OuterLoopId];

    LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
    if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
      LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
      return false;
    }
    LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
    LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
    if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
      LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
      return false;
    }

    ORE->emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "Interchanged",
                                InnerLoop->getStartLoc(),
                                InnerLoop->getHeader())
             << "Loop interchanged with enclosing loop.";
    });

    LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
                                 LIL);
    LIT.transform();
    LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
    LoopsInterchanged++;

    assert(InnerLoop->isLCSSAForm(*DT) &&
           "Inner loop not left in LCSSA form after loop interchange!");
    assert(OuterLoop->isLCSSAForm(*DT) &&
           "Outer loop not left in LCSSA form after loop interchange!");

    return true;
  }
};

} // end anonymous namespace

bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
  return any_of(*BB, [](const Instruction &I) {
    return I.mayHaveSideEffects() || I.mayReadFromMemory();
  });
}

bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();

  LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");

  // A perfectly nested loop will not have any branch in between the outer and
  // inner block i.e. outer header will branch to either inner preheader and
  // outerloop latch.
  BranchInst *OuterLoopHeaderBI =
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
  if (!OuterLoopHeaderBI)
    return false;

  for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
    if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
        Succ != OuterLoopLatch)
      return false;

  LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
  // We do not have any basic block in between now make sure the outer header
  // and outer loop latch doesn't contain any unsafe instructions.
  if (containsUnsafeInstructions(OuterLoopHeader) ||
      containsUnsafeInstructions(OuterLoopLatch))
    return false;

  LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
  // We have a perfect loop nest.
  return true;
}

bool LoopInterchangeLegality::isLoopStructureUnderstood(
    PHINode *InnerInduction) {
  unsigned Num = InnerInduction->getNumOperands();
  BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
  for (unsigned i = 0; i < Num; ++i) {
    Value *Val = InnerInduction->getOperand(i);
    if (isa<Constant>(Val))
      continue;
    Instruction *I = dyn_cast<Instruction>(Val);
    if (!I)
      return false;
    // TODO: Handle triangular loops.
    // e.g. for(int i=0;i<N;i++)
    //        for(int j=i;j<N;j++)
    unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
    if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
            InnerLoopPreheader &&
        !OuterLoop->isLoopInvariant(I)) {
      return false;
    }
  }
  return true;
}

// If SV is a LCSSA PHI node with a single incoming value, return the incoming
// value.
static Value *followLCSSA(Value *SV) {
  PHINode *PHI = dyn_cast<PHINode>(SV);
  if (!PHI)
    return SV;

  if (PHI->getNumIncomingValues() != 1)
    return SV;
  return followLCSSA(PHI->getIncomingValue(0));
}

// Check V's users to see if it is involved in a reduction in L.
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
  for (Value *User : V->users()) {
    if (PHINode *PHI = dyn_cast<PHINode>(User)) {
      if (PHI->getNumIncomingValues() == 1)
        continue;
      RecurrenceDescriptor RD;
      if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
        return PHI;
      return nullptr;
    }
  }

  return nullptr;
}

bool LoopInterchangeLegality::findInductionAndReductions(
    Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
  if (!L->getLoopLatch() || !L->getLoopPredecessor())
    return false;
  for (PHINode &PHI : L->getHeader()->phis()) {
    RecurrenceDescriptor RD;
    InductionDescriptor ID;
    if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
      Inductions.push_back(&PHI);
    else {
      // PHIs in inner loops need to be part of a reduction in the outer loop,
      // discovered when checking the PHIs of the outer loop earlier.
      if (!InnerLoop) {
        if (!OuterInnerReductions.count(&PHI)) {
          LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
                               "across the outer loop.\n");
          return false;
        }
      } else {
        assert(PHI.getNumIncomingValues() == 2 &&
               "Phis in loop header should have exactly 2 incoming values");
        // Check if we have a PHI node in the outer loop that has a reduction
        // result from the inner loop as an incoming value.
        Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
        PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
        if (!InnerRedPhi ||
            !llvm::any_of(InnerRedPhi->incoming_values(),
                          [&PHI](Value *V) { return V == &PHI; })) {
          LLVM_DEBUG(
              dbgs()
              << "Failed to recognize PHI as an induction or reduction.\n");
          return false;
        }
        OuterInnerReductions.insert(&PHI);
        OuterInnerReductions.insert(InnerRedPhi);
      }
    }
  }
  return true;
}

// This function indicates the current limitations in the transform as a result
// of which we do not proceed.
bool LoopInterchangeLegality::currentLimitations() {
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();

  // transform currently expects the loop latches to also be the exiting
  // blocks.
  if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
      OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
      !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
      !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
    LLVM_DEBUG(
        dbgs() << "Loops where the latch is not the exiting block are not"
               << " supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Loops where the latch is not the exiting block cannot be"
                " interchange currently.";
    });
    return true;
  }

  PHINode *InnerInductionVar;
  SmallVector<PHINode *, 8> Inductions;
  if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
    LLVM_DEBUG(
        dbgs() << "Only outer loops with induction or reduction PHI nodes "
               << "are supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Only outer loops with induction or reduction PHI nodes can be"
                " interchanged currently.";
    });
    return true;
  }

  // TODO: Currently we handle only loops with 1 induction variable.
  if (Inductions.size() != 1) {
    LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
                      << "supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Only outer loops with 1 induction variable can be "
                "interchanged currently.";
    });
    return true;
  }

  Inductions.clear();
  if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
    LLVM_DEBUG(
        dbgs() << "Only inner loops with induction or reduction PHI nodes "
               << "are supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Only inner loops with induction or reduction PHI nodes can be"
                " interchange currently.";
    });
    return true;
  }

  // TODO: Currently we handle only loops with 1 induction variable.
  if (Inductions.size() != 1) {
    LLVM_DEBUG(
        dbgs() << "We currently only support loops with 1 induction variable."
               << "Failed to interchange due to current limitation\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Only inner loops with 1 induction variable can be "
                "interchanged currently.";
    });
    return true;
  }
  InnerInductionVar = Inductions.pop_back_val();

  // TODO: Triangular loops are not handled for now.
  if (!isLoopStructureUnderstood(InnerInductionVar)) {
    LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Inner loop structure not understood currently.";
    });
    return true;
  }

  // TODO: Current limitation: Since we split the inner loop latch at the point
  // were induction variable is incremented (induction.next); We cannot have
  // more than 1 user of induction.next since it would result in broken code
  // after split.
  // e.g.
  // for(i=0;i<N;i++) {
  //    for(j = 0;j<M;j++) {
  //      A[j+1][i+2] = A[j][i]+k;
  //  }
  // }
  Instruction *InnerIndexVarInc = nullptr;
  if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
    InnerIndexVarInc =
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
  else
    InnerIndexVarInc =
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));

  if (!InnerIndexVarInc) {
    LLVM_DEBUG(
        dbgs() << "Did not find an instruction to increment the induction "
               << "variable.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "The inner loop does not increment the induction variable.";
    });
    return true;
  }

  // Since we split the inner loop latch on this induction variable. Make sure
  // we do not have any instruction between the induction variable and branch
  // instruction.

  bool FoundInduction = false;
  for (const Instruction &I :
       llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
    if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
        isa<ZExtInst>(I))
      continue;

    // We found an instruction. If this is not induction variable then it is not
    // safe to split this loop latch.
    if (!I.isIdenticalTo(InnerIndexVarInc)) {
      LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
                        << "variable increment and branch.\n");
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "UnsupportedInsBetweenInduction",
                   InnerLoop->getStartLoc(), InnerLoop->getHeader())
               << "Found unsupported instruction between induction variable "
                  "increment and branch.";
      });
      return true;
    }

    FoundInduction = true;
    break;
  }
  // The loop latch ended and we didn't find the induction variable return as
  // current limitation.
  if (!FoundInduction) {
    LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Did not find the induction variable.";
    });
    return true;
  }
  return false;
}

// We currently only support LCSSA PHI nodes in the inner loop exit, if their
// users are either reduction PHIs or PHIs outside the outer loop (which means
// the we are only interested in the final value after the loop).
static bool
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
                              SmallPtrSetImpl<PHINode *> &Reductions) {
  BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
  for (PHINode &PHI : InnerExit->phis()) {
    // Reduction lcssa phi will have only 1 incoming block that from loop latch.
    if (PHI.getNumIncomingValues() > 1)
      return false;
    if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
          PHINode *PN = dyn_cast<PHINode>(U);
          return !PN ||
                 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
        })) {
      return false;
    }
  }
  return true;
}

// We currently support LCSSA PHI nodes in the outer loop exit, if their
// incoming values do not come from the outer loop latch or if the
// outer loop latch has a single predecessor. In that case, the value will
// be available if both the inner and outer loop conditions are true, which
// will still be true after interchanging. If we have multiple predecessor,
// that may not be the case, e.g. because the outer loop latch may be executed
// if the inner loop is not executed.
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
  BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
  for (PHINode &PHI : LoopNestExit->phis()) {
    //  FIXME: We currently are not able to detect floating point reductions
    //         and have to use floating point PHIs as a proxy to prevent
    //         interchanging in the presence of floating point reductions.
    if (PHI.getType()->isFloatingPointTy())
      return false;
    for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
     Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
     if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
       continue;

     // The incoming value is defined in the outer loop latch. Currently we
     // only support that in case the outer loop latch has a single predecessor.
     // This guarantees that the outer loop latch is executed if and only if
     // the inner loop is executed (because tightlyNested() guarantees that the
     // outer loop header only branches to the inner loop or the outer loop
     // latch).
     // FIXME: We could weaken this logic and allow multiple predecessors,
     //        if the values are produced outside the loop latch. We would need
     //        additional logic to update the PHI nodes in the exit block as
     //        well.
     if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
       return false;
    }
  }
  return true;
}

bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
                                                  unsigned OuterLoopId,
                                                  CharMatrix &DepMatrix) {
  if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
    LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
                      << " and OuterLoopId = " << OuterLoopId
                      << " due to dependence\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Cannot interchange loops due to dependences.";
    });
    return false;
  }
  // Check if outer and inner loop contain legal instructions only.
  for (auto *BB : OuterLoop->blocks())
    for (Instruction &I : BB->instructionsWithoutDebug())
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
        // readnone functions do not prevent interchanging.
        if (CI->doesNotReadMemory())
          continue;
        LLVM_DEBUG(
            dbgs() << "Loops with call instructions cannot be interchanged "
                   << "safely.");
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
                                          CI->getDebugLoc(),
                                          CI->getParent())
                 << "Cannot interchange loops due to call instruction.";
        });

        return false;
      }

  // TODO: The loops could not be interchanged due to current limitations in the
  // transform module.
  if (currentLimitations()) {
    LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
    return false;
  }

  // Check if the loops are tightly nested.
  if (!tightlyNested(OuterLoop, InnerLoop)) {
    LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Cannot interchange loops because they are not tightly "
                "nested.";
    });
    return false;
  }

  if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
                                     OuterInnerReductions)) {
    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Found unsupported PHI node in loop exit.";
    });
    return false;
  }

  if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Found unsupported PHI node in loop exit.";
    });
    return false;
  }

  return true;
}

int LoopInterchangeProfitability::getInstrOrderCost() {
  unsigned GoodOrder, BadOrder;
  BadOrder = GoodOrder = 0;
  for (BasicBlock *BB : InnerLoop->blocks()) {
    for (Instruction &Ins : *BB) {
      if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
        unsigned NumOp = GEP->getNumOperands();
        bool FoundInnerInduction = false;
        bool FoundOuterInduction = false;
        for (unsigned i = 0; i < NumOp; ++i) {
          const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
          if (!AR)
            continue;

          // If we find the inner induction after an outer induction e.g.
          // for(int i=0;i<N;i++)
          //   for(int j=0;j<N;j++)
          //     A[i][j] = A[i-1][j-1]+k;
          // then it is a good order.
          if (AR->getLoop() == InnerLoop) {
            // We found an InnerLoop induction after OuterLoop induction. It is
            // a good order.
            FoundInnerInduction = true;
            if (FoundOuterInduction) {
              GoodOrder++;
              break;
            }
          }
          // If we find the outer induction after an inner induction e.g.
          // for(int i=0;i<N;i++)
          //   for(int j=0;j<N;j++)
          //     A[j][i] = A[j-1][i-1]+k;
          // then it is a bad order.
          if (AR->getLoop() == OuterLoop) {
            // We found an OuterLoop induction after InnerLoop induction. It is
            // a bad order.
            FoundOuterInduction = true;
            if (FoundInnerInduction) {
              BadOrder++;
              break;
            }
          }
        }
      }
    }
  }
  return GoodOrder - BadOrder;
}

static bool isProfitableForVectorization(unsigned InnerLoopId,
                                         unsigned OuterLoopId,
                                         CharMatrix &DepMatrix) {
  // TODO: Improve this heuristic to catch more cases.
  // If the inner loop is loop independent or doesn't carry any dependency it is
  // profitable to move this to outer position.
  for (auto &Row : DepMatrix) {
    if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
      return false;
    // TODO: We need to improve this heuristic.
    if (Row[OuterLoopId] != '=')
      return false;
  }
  // If outer loop has dependence and inner loop is loop independent then it is
  // profitable to interchange to enable parallelism.
  // If there are no dependences, interchanging will not improve anything.
  return !DepMatrix.empty();
}

bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
                                                unsigned OuterLoopId,
                                                CharMatrix &DepMatrix) {
  // TODO: Add better profitability checks.
  // e.g
  // 1) Construct dependency matrix and move the one with no loop carried dep
  //    inside to enable vectorization.

  // This is rough cost estimation algorithm. It counts the good and bad order
  // of induction variables in the instruction and allows reordering if number
  // of bad orders is more than good.
  int Cost = getInstrOrderCost();
  LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
  if (Cost < -LoopInterchangeCostThreshold)
    return true;

  // It is not profitable as per current cache profitability model. But check if
  // we can move this loop outside to improve parallelism.
  if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
    return true;

  ORE->emit([&]() {
    return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
                                    InnerLoop->getStartLoc(),
                                    InnerLoop->getHeader())
           << "Interchanging loops is too costly (cost="
           << ore::NV("Cost", Cost) << ", threshold="
           << ore::NV("Threshold", LoopInterchangeCostThreshold)
           << ") and it does not improve parallelism.";
  });
  return false;
}

void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
                                               Loop *InnerLoop) {
  for (Loop *L : *OuterLoop)
    if (L == InnerLoop) {
      OuterLoop->removeChildLoop(L);
      return;
    }
  llvm_unreachable("Couldn't find loop");
}

/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
/// new inner and outer loop after interchanging: NewInner is the original
/// outer loop and NewOuter is the original inner loop.
///
/// Before interchanging, we have the following structure
/// Outer preheader
//  Outer header
//    Inner preheader
//    Inner header
//      Inner body
//      Inner latch
//   outer bbs
//   Outer latch
//
// After interchanging:
// Inner preheader
// Inner header
//   Outer preheader
//   Outer header
//     Inner body
//     outer bbs
//     Outer latch
//   Inner latch
void LoopInterchangeTransform::restructureLoops(
    Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
    BasicBlock *OrigOuterPreHeader) {
  Loop *OuterLoopParent = OuterLoop->getParentLoop();
  // The original inner loop preheader moves from the new inner loop to
  // the parent loop, if there is one.
  NewInner->removeBlockFromLoop(OrigInnerPreHeader);
  LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);

  // Switch the loop levels.
  if (OuterLoopParent) {
    // Remove the loop from its parent loop.
    removeChildLoop(OuterLoopParent, NewInner);
    removeChildLoop(NewInner, NewOuter);
    OuterLoopParent->addChildLoop(NewOuter);
  } else {
    removeChildLoop(NewInner, NewOuter);
    LI->changeTopLevelLoop(NewInner, NewOuter);
  }
  while (!NewOuter->empty())
    NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
  NewOuter->addChildLoop(NewInner);

  // BBs from the original inner loop.
  SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());

  // Add BBs from the original outer loop to the original inner loop (excluding
  // BBs already in inner loop)
  for (BasicBlock *BB : NewInner->blocks())
    if (LI->getLoopFor(BB) == NewInner)
      NewOuter->addBlockEntry(BB);

  // Now remove inner loop header and latch from the new inner loop and move
  // other BBs (the loop body) to the new inner loop.
  BasicBlock *OuterHeader = NewOuter->getHeader();
  BasicBlock *OuterLatch = NewOuter->getLoopLatch();
  for (BasicBlock *BB : OrigInnerBBs) {
    // Nothing will change for BBs in child loops.
    if (LI->getLoopFor(BB) != NewOuter)
      continue;
    // Remove the new outer loop header and latch from the new inner loop.
    if (BB == OuterHeader || BB == OuterLatch)
      NewInner->removeBlockFromLoop(BB);
    else
      LI->changeLoopFor(BB, NewInner);
  }

  // The preheader of the original outer loop becomes part of the new
  // outer loop.
  NewOuter->addBlockEntry(OrigOuterPreHeader);
  LI->changeLoopFor(OrigOuterPreHeader, NewOuter);

  // Tell SE that we move the loops around.
  SE->forgetLoop(NewOuter);
  SE->forgetLoop(NewInner);
}

bool LoopInterchangeTransform::transform() {
  bool Transformed = false;
  Instruction *InnerIndexVar;

  if (InnerLoop->getSubLoops().empty()) {
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
    LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
    PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
    if (!InductionPHI) {
      LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
      return false;
    }

    if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
    else
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));

    // Ensure that InductionPHI is the first Phi node.
    if (&InductionPHI->getParent()->front() != InductionPHI)
      InductionPHI->moveBefore(&InductionPHI->getParent()->front());

    // Create a new latch block for the inner loop. We split at the
    // current latch's terminator and then move the condition and all
    // operands that are not either loop-invariant or the induction PHI into the
    // new latch block.
    BasicBlock *NewLatch =
        SplitBlock(InnerLoop->getLoopLatch(),
                   InnerLoop->getLoopLatch()->getTerminator(), DT, LI);

    SmallSetVector<Instruction *, 4> WorkList;
    unsigned i = 0;
    auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
      for (; i < WorkList.size(); i++) {
        // Duplicate instruction and move it the new latch. Update uses that
        // have been moved.
        Instruction *NewI = WorkList[i]->clone();
        NewI->insertBefore(NewLatch->getFirstNonPHI());
        assert(!NewI->mayHaveSideEffects() &&
               "Moving instructions with side-effects may change behavior of "
               "the loop nest!");
        for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
             UI != UE;) {
          Use &U = *UI++;
          Instruction *UserI = cast<Instruction>(U.getUser());
          if (!InnerLoop->contains(UserI->getParent()) ||
              UserI->getParent() == NewLatch || UserI == InductionPHI)
            U.set(NewI);
        }
        // Add operands of moved instruction to the worklist, except if they are
        // outside the inner loop or are the induction PHI.
        for (Value *Op : WorkList[i]->operands()) {
          Instruction *OpI = dyn_cast<Instruction>(Op);
          if (!OpI ||
              this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
              OpI == InductionPHI)
            continue;
          WorkList.insert(OpI);
        }
      }
    };

    // FIXME: Should we interchange when we have a constant condition?
    Instruction *CondI = dyn_cast<Instruction>(
        cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
            ->getCondition());
    if (CondI)
      WorkList.insert(CondI);
    MoveInstructions();
    WorkList.insert(cast<Instruction>(InnerIndexVar));
    MoveInstructions();

    // Splits the inner loops phi nodes out into a separate basic block.
    BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
    SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
    LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
  }

  Transformed |= adjustLoopLinks();
  if (!Transformed) {
    LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
    return false;
  }

  return true;
}

/// \brief Move all instructions except the terminator from FromBB right before
/// InsertBefore
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
  auto &ToList = InsertBefore->getParent()->getInstList();
  auto &FromList = FromBB->getInstList();

  ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
                FromBB->getTerminator()->getIterator());
}

/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
  // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
  // from BB1 afterwards.
  auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
  SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
  for (Instruction *I : TempInstrs)
    I->removeFromParent();

  // Move instructions from BB2 to BB1.
  moveBBContents(BB2, BB1->getTerminator());

  // Move instructions from TempInstrs to BB2.
  for (Instruction *I : TempInstrs)
    I->insertBefore(BB2->getTerminator());
}

// Update BI to jump to NewBB instead of OldBB. Records updates to the
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
// \p OldBB  is exactly once in BI's successor list.
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
                            BasicBlock *NewBB,
                            std::vector<DominatorTree::UpdateType> &DTUpdates,
                            bool MustUpdateOnce = true) {
  assert((!MustUpdateOnce ||
          llvm::count_if(successors(BI),
                         [OldBB](BasicBlock *BB) {
                           return BB == OldBB;
                         }) == 1) && "BI must jump to OldBB exactly once.");
  bool Changed = false;
  for (Use &Op : BI->operands())
    if (Op == OldBB) {
      Op.set(NewBB);
      Changed = true;
    }

  if (Changed) {
    DTUpdates.push_back(
        {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
    DTUpdates.push_back(
        {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
  }
  assert(Changed && "Expected a successor to be updated");
}

// Move Lcssa PHIs to the right place.
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
                          BasicBlock *InnerLatch, BasicBlock *OuterHeader,
                          BasicBlock *OuterLatch, BasicBlock *OuterExit,
                          Loop *InnerLoop, LoopInfo *LI) {

  // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
  // defined either in the header or latch. Those blocks will become header and
  // latch of the new outer loop, and the only possible users can PHI nodes
  // in the exit block of the loop nest or the outer loop header (reduction
  // PHIs, in that case, the incoming value must be defined in the inner loop
  // header). We can just substitute the user with the incoming value and remove
  // the PHI.
  for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
    assert(P.getNumIncomingValues() == 1 &&
           "Only loops with a single exit are supported!");

    // Incoming values are guaranteed be instructions currently.
    auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
    // Skip phis with incoming values from the inner loop body, excluding the
    // header and latch.
    if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
      continue;

    assert(all_of(P.users(),
                  [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
                    return (cast<PHINode>(U)->getParent() == OuterHeader &&
                            IncI->getParent() == InnerHeader) ||
                           cast<PHINode>(U)->getParent() == OuterExit;
                  }) &&
           "Can only replace phis iff the uses are in the loop nest exit or "
           "the incoming value is defined in the inner header (it will "
           "dominate all loop blocks after interchanging)");
    P.replaceAllUsesWith(IncI);
    P.eraseFromParent();
  }

  SmallVector<PHINode *, 8> LcssaInnerExit;
  for (PHINode &P : InnerExit->phis())
    LcssaInnerExit.push_back(&P);

  SmallVector<PHINode *, 8> LcssaInnerLatch;
  for (PHINode &P : InnerLatch->phis())
    LcssaInnerLatch.push_back(&P);

  // Lcssa PHIs for values used outside the inner loop are in InnerExit.
  // If a PHI node has users outside of InnerExit, it has a use outside the
  // interchanged loop and we have to preserve it. We move these to
  // InnerLatch, which will become the new exit block for the innermost
  // loop after interchanging.
  for (PHINode *P : LcssaInnerExit)
    P->moveBefore(InnerLatch->getFirstNonPHI());

  // If the inner loop latch contains LCSSA PHIs, those come from a child loop
  // and we have to move them to the new inner latch.
  for (PHINode *P : LcssaInnerLatch)
    P->moveBefore(InnerExit->getFirstNonPHI());

  // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
  // incoming values defined in the outer loop, we have to add a new PHI
  // in the inner loop latch, which became the exit block of the outer loop,
  // after interchanging.
  if (OuterExit) {
    for (PHINode &P : OuterExit->phis()) {
      if (P.getNumIncomingValues() != 1)
        continue;
      // Skip Phis with incoming values defined in the inner loop. Those should
      // already have been updated.
      auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
      if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
        continue;

      PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
      NewPhi->setIncomingValue(0, P.getIncomingValue(0));
      NewPhi->setIncomingBlock(0, OuterLatch);
      NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
      P.setIncomingValue(0, NewPhi);
    }
  }

  // Now adjust the incoming blocks for the LCSSA PHIs.
  // For PHIs moved from Inner's exit block, we need to replace Inner's latch
  // with the new latch.
  InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
}

bool LoopInterchangeTransform::adjustLoopBranches() {
  LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
  std::vector<DominatorTree::UpdateType> DTUpdates;

  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();

  assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
         InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
         InnerLoopPreHeader && "Guaranteed by loop-simplify form");
  // Ensure that both preheaders do not contain PHI nodes and have single
  // predecessors. This allows us to move them easily. We use
  // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
  // preheaders do not satisfy those conditions.
  if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
      !OuterLoopPreHeader->getUniquePredecessor())
    OuterLoopPreHeader =
        InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
  if (InnerLoopPreHeader == OuterLoop->getHeader())
    InnerLoopPreHeader =
        InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);

  // Adjust the loop preheader
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
  BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
  BasicBlock *InnerLoopLatchPredecessor =
      InnerLoopLatch->getUniquePredecessor();
  BasicBlock *InnerLoopLatchSuccessor;
  BasicBlock *OuterLoopLatchSuccessor;

  BranchInst *OuterLoopLatchBI =
      dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
  BranchInst *InnerLoopLatchBI =
      dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
  BranchInst *OuterLoopHeaderBI =
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
  BranchInst *InnerLoopHeaderBI =
      dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());

  if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
      !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
      !InnerLoopHeaderBI)
    return false;

  BranchInst *InnerLoopLatchPredecessorBI =
      dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
  BranchInst *OuterLoopPredecessorBI =
      dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());

  if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
    return false;
  BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
  if (!InnerLoopHeaderSuccessor)
    return false;

  // Adjust Loop Preheader and headers.
  // The branches in the outer loop predecessor and the outer loop header can
  // be unconditional branches or conditional branches with duplicates. Consider
  // this when updating the successors.
  updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
                  InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
  // The outer loop header might or might not branch to the outer latch.
  // We are guaranteed to branch to the inner loop preheader.
  if (std::find(succ_begin(OuterLoopHeaderBI), succ_end(OuterLoopHeaderBI),
                OuterLoopLatch) != succ_end(OuterLoopHeaderBI))
    updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates,
                    /*MustUpdateOnce=*/false);
  updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
                  InnerLoopHeaderSuccessor, DTUpdates,
                  /*MustUpdateOnce=*/false);

  // Adjust reduction PHI's now that the incoming block has changed.
  InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
                                               OuterLoopHeader);

  updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
                  OuterLoopPreHeader, DTUpdates);

  // -------------Adjust loop latches-----------
  if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
  else
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);

  updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
                  InnerLoopLatchSuccessor, DTUpdates);


  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
  else
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);

  updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
                  OuterLoopLatchSuccessor, DTUpdates);
  updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
                  DTUpdates);

  DT->applyUpdates(DTUpdates);
  restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
                   OuterLoopPreHeader);

  moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
                OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
                InnerLoop, LI);
  // For PHIs in the exit block of the outer loop, outer's latch has been
  // replaced by Inners'.
  OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);

  // Now update the reduction PHIs in the inner and outer loop headers.
  SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
  for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
    InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
  for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
    OuterLoopPHIs.push_back(cast<PHINode>(&PHI));

  auto &OuterInnerReductions = LIL.getOuterInnerReductions();
  (void)OuterInnerReductions;

  // Now move the remaining reduction PHIs from outer to inner loop header and
  // vice versa. The PHI nodes must be part of a reduction across the inner and
  // outer loop and all the remains to do is and updating the incoming blocks.
  for (PHINode *PHI : OuterLoopPHIs) {
    PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
    assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
  }
  for (PHINode *PHI : InnerLoopPHIs) {
    PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
    assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
  }

  // Update the incoming blocks for moved PHI nodes.
  OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
  OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
  InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
  InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);

  return true;
}

bool LoopInterchangeTransform::adjustLoopLinks() {
  // Adjust all branches in the inner and outer loop.
  bool Changed = adjustLoopBranches();
  if (Changed) {
    // We have interchanged the preheaders so we need to interchange the data in
    // the preheaders as well. This is because the content of the inner
    // preheader was previously executed inside the outer loop.
    BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
    swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
  }
  return Changed;
}

char LoopInterchange::ID = 0;

INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
                      "Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)

INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
                    "Interchanges loops for cache reuse", false, false)

Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }