LoopFuse.cpp 68.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the loop fusion pass.
/// The implementation is largely based on the following document:
///
///       Code Transformations to Augment the Scope of Loop Fusion in a
///         Production Compiler
///       Christopher Mark Barton
///       MSc Thesis
///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
///
/// The general approach taken is to collect sets of control flow equivalent
/// loops and test whether they can be fused. The necessary conditions for
/// fusion are:
///    1. The loops must be adjacent (there cannot be any statements between
///       the two loops).
///    2. The loops must be conforming (they must execute the same number of
///       iterations).
///    3. The loops must be control flow equivalent (if one loop executes, the
///       other is guaranteed to execute).
///    4. There cannot be any negative distance dependencies between the loops.
/// If all of these conditions are satisfied, it is safe to fuse the loops.
///
/// This implementation creates FusionCandidates that represent the loop and the
/// necessary information needed by fusion. It then operates on the fusion
/// candidates, first confirming that the candidate is eligible for fusion. The
/// candidates are then collected into control flow equivalent sets, sorted in
/// dominance order. Each set of control flow equivalent candidates is then
/// traversed, attempting to fuse pairs of candidates in the set. If all
/// requirements for fusion are met, the two candidates are fused, creating a
/// new (fused) candidate which is then added back into the set to consider for
/// additional fusion.
///
/// This implementation currently does not make any modifications to remove
/// conditions for fusion. Code transformations to make loops conform to each of
/// the conditions for fusion are discussed in more detail in the document
/// above. These can be added to the current implementation in the future.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopFuse.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CodeMoverUtils.h"

using namespace llvm;

#define DEBUG_TYPE "loop-fusion"

STATISTIC(FuseCounter, "Loops fused");
STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
STATISTIC(InvalidPreheader, "Loop has invalid preheader");
STATISTIC(InvalidHeader, "Loop has invalid header");
STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
STATISTIC(InvalidLatch, "Loop has invalid latch");
STATISTIC(InvalidLoop, "Loop is invalid");
STATISTIC(AddressTakenBB, "Basic block has address taken");
STATISTIC(MayThrowException, "Loop may throw an exception");
STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
STATISTIC(UnknownTripCount, "Loop has unknown trip count");
STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
STATISTIC(NonAdjacent, "Loops are not adjacent");
STATISTIC(
    NonEmptyPreheader,
    "Loop has a non-empty preheader with instructions that cannot be moved");
STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
STATISTIC(NonIdenticalGuards, "Candidates have different guards");
STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
                             "instructions that cannot be moved");
STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
                              "instructions that cannot be moved");
STATISTIC(NotRotated, "Candidate is not rotated");

enum FusionDependenceAnalysisChoice {
  FUSION_DEPENDENCE_ANALYSIS_SCEV,
  FUSION_DEPENDENCE_ANALYSIS_DA,
  FUSION_DEPENDENCE_ANALYSIS_ALL,
};

static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
    "loop-fusion-dependence-analysis",
    cl::desc("Which dependence analysis should loop fusion use?"),
    cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
                          "Use the scalar evolution interface"),
               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
                          "Use the dependence analysis interface"),
               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
                          "Use all available analyses")),
    cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);

#ifndef NDEBUG
static cl::opt<bool>
    VerboseFusionDebugging("loop-fusion-verbose-debug",
                           cl::desc("Enable verbose debugging for Loop Fusion"),
                           cl::Hidden, cl::init(false), cl::ZeroOrMore);
#endif

namespace {
/// This class is used to represent a candidate for loop fusion. When it is
/// constructed, it checks the conditions for loop fusion to ensure that it
/// represents a valid candidate. It caches several parts of a loop that are
/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
/// of continually querying the underlying Loop to retrieve these values. It is
/// assumed these will not change throughout loop fusion.
///
/// The invalidate method should be used to indicate that the FusionCandidate is
/// no longer a valid candidate for fusion. Similarly, the isValid() method can
/// be used to ensure that the FusionCandidate is still valid for fusion.
struct FusionCandidate {
  /// Cache of parts of the loop used throughout loop fusion. These should not
  /// need to change throughout the analysis and transformation.
  /// These parts are cached to avoid repeatedly looking up in the Loop class.

  /// Preheader of the loop this candidate represents
  BasicBlock *Preheader;
  /// Header of the loop this candidate represents
  BasicBlock *Header;
  /// Blocks in the loop that exit the loop
  BasicBlock *ExitingBlock;
  /// The successor block of this loop (where the exiting blocks go to)
  BasicBlock *ExitBlock;
  /// Latch of the loop
  BasicBlock *Latch;
  /// The loop that this fusion candidate represents
  Loop *L;
  /// Vector of instructions in this loop that read from memory
  SmallVector<Instruction *, 16> MemReads;
  /// Vector of instructions in this loop that write to memory
  SmallVector<Instruction *, 16> MemWrites;
  /// Are all of the members of this fusion candidate still valid
  bool Valid;
  /// Guard branch of the loop, if it exists
  BranchInst *GuardBranch;

  /// Dominator and PostDominator trees are needed for the
  /// FusionCandidateCompare function, required by FusionCandidateSet to
  /// determine where the FusionCandidate should be inserted into the set. These
  /// are used to establish ordering of the FusionCandidates based on dominance.
  const DominatorTree *DT;
  const PostDominatorTree *PDT;

  OptimizationRemarkEmitter &ORE;

  FusionCandidate(Loop *L, const DominatorTree *DT,
                  const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
      : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
        ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
        Latch(L->getLoopLatch()), L(L), Valid(true),
        GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) {

    // Walk over all blocks in the loop and check for conditions that may
    // prevent fusion. For each block, walk over all instructions and collect
    // the memory reads and writes If any instructions that prevent fusion are
    // found, invalidate this object and return.
    for (BasicBlock *BB : L->blocks()) {
      if (BB->hasAddressTaken()) {
        invalidate();
        reportInvalidCandidate(AddressTakenBB);
        return;
      }

      for (Instruction &I : *BB) {
        if (I.mayThrow()) {
          invalidate();
          reportInvalidCandidate(MayThrowException);
          return;
        }
        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
          if (SI->isVolatile()) {
            invalidate();
            reportInvalidCandidate(ContainsVolatileAccess);
            return;
          }
        }
        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
          if (LI->isVolatile()) {
            invalidate();
            reportInvalidCandidate(ContainsVolatileAccess);
            return;
          }
        }
        if (I.mayWriteToMemory())
          MemWrites.push_back(&I);
        if (I.mayReadFromMemory())
          MemReads.push_back(&I);
      }
    }
  }

  /// Check if all members of the class are valid.
  bool isValid() const {
    return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
           !L->isInvalid() && Valid;
  }

  /// Verify that all members are in sync with the Loop object.
  void verify() const {
    assert(isValid() && "Candidate is not valid!!");
    assert(!L->isInvalid() && "Loop is invalid!");
    assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
    assert(Header == L->getHeader() && "Header is out of sync");
    assert(ExitingBlock == L->getExitingBlock() &&
           "Exiting Blocks is out of sync");
    assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
    assert(Latch == L->getLoopLatch() && "Latch is out of sync");
  }

  /// Get the entry block for this fusion candidate.
  ///
  /// If this fusion candidate represents a guarded loop, the entry block is the
  /// loop guard block. If it represents an unguarded loop, the entry block is
  /// the preheader of the loop.
  BasicBlock *getEntryBlock() const {
    if (GuardBranch)
      return GuardBranch->getParent();
    else
      return Preheader;
  }

  /// Given a guarded loop, get the successor of the guard that is not in the
  /// loop.
  ///
  /// This method returns the successor of the loop guard that is not located
  /// within the loop (i.e., the successor of the guard that is not the
  /// preheader).
  /// This method is only valid for guarded loops.
  BasicBlock *getNonLoopBlock() const {
    assert(GuardBranch && "Only valid on guarded loops.");
    assert(GuardBranch->isConditional() &&
           "Expecting guard to be a conditional branch.");
    return (GuardBranch->getSuccessor(0) == Preheader)
               ? GuardBranch->getSuccessor(1)
               : GuardBranch->getSuccessor(0);
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const {
    dbgs() << "\tGuardBranch: ";
    if (GuardBranch)
      dbgs() << *GuardBranch;
    else
      dbgs() << "nullptr";
    dbgs() << "\n"
           << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
           << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
           << "\n"
           << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
           << "\tExitingBB: "
           << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
           << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
           << "\n"
           << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
           << "\tEntryBlock: "
           << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
           << "\n";
  }
#endif

  /// Determine if a fusion candidate (representing a loop) is eligible for
  /// fusion. Note that this only checks whether a single loop can be fused - it
  /// does not check whether it is *legal* to fuse two loops together.
  bool isEligibleForFusion(ScalarEvolution &SE) const {
    if (!isValid()) {
      LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
      if (!Preheader)
        ++InvalidPreheader;
      if (!Header)
        ++InvalidHeader;
      if (!ExitingBlock)
        ++InvalidExitingBlock;
      if (!ExitBlock)
        ++InvalidExitBlock;
      if (!Latch)
        ++InvalidLatch;
      if (L->isInvalid())
        ++InvalidLoop;

      return false;
    }

    // Require ScalarEvolution to be able to determine a trip count.
    if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
                        << " trip count not computable!\n");
      return reportInvalidCandidate(UnknownTripCount);
    }

    if (!L->isLoopSimplifyForm()) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
                        << " is not in simplified form!\n");
      return reportInvalidCandidate(NotSimplifiedForm);
    }

    if (!L->isRotatedForm()) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
      return reportInvalidCandidate(NotRotated);
    }

    return true;
  }

private:
  // This is only used internally for now, to clear the MemWrites and MemReads
  // list and setting Valid to false. I can't envision other uses of this right
  // now, since once FusionCandidates are put into the FusionCandidateSet they
  // are immutable. Thus, any time we need to change/update a FusionCandidate,
  // we must create a new one and insert it into the FusionCandidateSet to
  // ensure the FusionCandidateSet remains ordered correctly.
  void invalidate() {
    MemWrites.clear();
    MemReads.clear();
    Valid = false;
  }

  bool reportInvalidCandidate(llvm::Statistic &Stat) const {
    using namespace ore;
    assert(L && Preheader && "Fusion candidate not initialized properly!");
    ++Stat;
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
                                        L->getStartLoc(), Preheader)
             << "[" << Preheader->getParent()->getName() << "]: "
             << "Loop is not a candidate for fusion: " << Stat.getDesc());
    return false;
  }
};

struct FusionCandidateCompare {
  /// Comparison functor to sort two Control Flow Equivalent fusion candidates
  /// into dominance order.
  /// If LHS dominates RHS and RHS post-dominates LHS, return true;
  /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
  bool operator()(const FusionCandidate &LHS,
                  const FusionCandidate &RHS) const {
    const DominatorTree *DT = LHS.DT;

    BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
    BasicBlock *RHSEntryBlock = RHS.getEntryBlock();

    // Do not save PDT to local variable as it is only used in asserts and thus
    // will trigger an unused variable warning if building without asserts.
    assert(DT && LHS.PDT && "Expecting valid dominator tree");

    // Do this compare first so if LHS == RHS, function returns false.
    if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
      // RHS dominates LHS
      // Verify LHS post-dominates RHS
      assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
      return false;
    }

    if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
      // Verify RHS Postdominates LHS
      assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
      return true;
    }

    // If LHS does not dominate RHS and RHS does not dominate LHS then there is
    // no dominance relationship between the two FusionCandidates. Thus, they
    // should not be in the same set together.
    llvm_unreachable(
        "No dominance relationship between these fusion candidates!");
  }
};

using LoopVector = SmallVector<Loop *, 4>;

// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
// dominates FC1 and FC1 post-dominates FC0.
// std::set was chosen because we want a sorted data structure with stable
// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
// loops by moving intervening code around. When this intervening code contains
// loops, those loops will be moved also. The corresponding FusionCandidates
// will also need to be moved accordingly. As this is done, having stable
// iterators will simplify the logic. Similarly, having an efficient insert that
// keeps the FusionCandidateSet sorted will also simplify the implementation.
using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;

#if !defined(NDEBUG)
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const FusionCandidate &FC) {
  if (FC.isValid())
    OS << FC.Preheader->getName();
  else
    OS << "<Invalid>";

  return OS;
}

static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const FusionCandidateSet &CandSet) {
  for (const FusionCandidate &FC : CandSet)
    OS << FC << '\n';

  return OS;
}

static void
printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
  dbgs() << "Fusion Candidates: \n";
  for (const auto &CandidateSet : FusionCandidates) {
    dbgs() << "*** Fusion Candidate Set ***\n";
    dbgs() << CandidateSet;
    dbgs() << "****************************\n";
  }
}
#endif

/// Collect all loops in function at the same nest level, starting at the
/// outermost level.
///
/// This data structure collects all loops at the same nest level for a
/// given function (specified by the LoopInfo object). It starts at the
/// outermost level.
struct LoopDepthTree {
  using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
  using iterator = LoopsOnLevelTy::iterator;
  using const_iterator = LoopsOnLevelTy::const_iterator;

  LoopDepthTree(LoopInfo &LI) : Depth(1) {
    if (!LI.empty())
      LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
  }

  /// Test whether a given loop has been removed from the function, and thus is
  /// no longer valid.
  bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }

  /// Record that a given loop has been removed from the function and is no
  /// longer valid.
  void removeLoop(const Loop *L) { RemovedLoops.insert(L); }

  /// Descend the tree to the next (inner) nesting level
  void descend() {
    LoopsOnLevelTy LoopsOnNextLevel;

    for (const LoopVector &LV : *this)
      for (Loop *L : LV)
        if (!isRemovedLoop(L) && L->begin() != L->end())
          LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));

    LoopsOnLevel = LoopsOnNextLevel;
    RemovedLoops.clear();
    Depth++;
  }

  bool empty() const { return size() == 0; }
  size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
  unsigned getDepth() const { return Depth; }

  iterator begin() { return LoopsOnLevel.begin(); }
  iterator end() { return LoopsOnLevel.end(); }
  const_iterator begin() const { return LoopsOnLevel.begin(); }
  const_iterator end() const { return LoopsOnLevel.end(); }

private:
  /// Set of loops that have been removed from the function and are no longer
  /// valid.
  SmallPtrSet<const Loop *, 8> RemovedLoops;

  /// Depth of the current level, starting at 1 (outermost loops).
  unsigned Depth;

  /// Vector of loops at the current depth level that have the same parent loop
  LoopsOnLevelTy LoopsOnLevel;
};

#ifndef NDEBUG
static void printLoopVector(const LoopVector &LV) {
  dbgs() << "****************************\n";
  for (auto L : LV)
    printLoop(*L, dbgs());
  dbgs() << "****************************\n";
}
#endif

struct LoopFuser {
private:
  // Sets of control flow equivalent fusion candidates for a given nest level.
  FusionCandidateCollection FusionCandidates;

  LoopDepthTree LDT;
  DomTreeUpdater DTU;

  LoopInfo &LI;
  DominatorTree &DT;
  DependenceInfo &DI;
  ScalarEvolution &SE;
  PostDominatorTree &PDT;
  OptimizationRemarkEmitter &ORE;

public:
  LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
            ScalarEvolution &SE, PostDominatorTree &PDT,
            OptimizationRemarkEmitter &ORE, const DataLayout &DL)
      : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
        DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}

  /// This is the main entry point for loop fusion. It will traverse the
  /// specified function and collect candidate loops to fuse, starting at the
  /// outermost nesting level and working inwards.
  bool fuseLoops(Function &F) {
#ifndef NDEBUG
    if (VerboseFusionDebugging) {
      LI.print(dbgs());
    }
#endif

    LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
                      << "\n");
    bool Changed = false;

    while (!LDT.empty()) {
      LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
                        << LDT.getDepth() << "\n";);

      for (const LoopVector &LV : LDT) {
        assert(LV.size() > 0 && "Empty loop set was build!");

        // Skip singleton loop sets as they do not offer fusion opportunities on
        // this level.
        if (LV.size() == 1)
          continue;
#ifndef NDEBUG
        if (VerboseFusionDebugging) {
          LLVM_DEBUG({
            dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
            printLoopVector(LV);
          });
        }
#endif

        collectFusionCandidates(LV);
        Changed |= fuseCandidates();
      }

      // Finished analyzing candidates at this level.
      // Descend to the next level and clear all of the candidates currently
      // collected. Note that it will not be possible to fuse any of the
      // existing candidates with new candidates because the new candidates will
      // be at a different nest level and thus not be control flow equivalent
      // with all of the candidates collected so far.
      LLVM_DEBUG(dbgs() << "Descend one level!\n");
      LDT.descend();
      FusionCandidates.clear();
    }

    if (Changed)
      LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););

#ifndef NDEBUG
    assert(DT.verify());
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
    return Changed;
  }

private:
  /// Determine if two fusion candidates are control flow equivalent.
  ///
  /// Two fusion candidates are control flow equivalent if when one executes,
  /// the other is guaranteed to execute. This is determined using dominators
  /// and post-dominators: if A dominates B and B post-dominates A then A and B
  /// are control-flow equivalent.
  bool isControlFlowEquivalent(const FusionCandidate &FC0,
                               const FusionCandidate &FC1) const {
    assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");

    return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
                                     DT, PDT);
  }

  /// Iterate over all loops in the given loop set and identify the loops that
  /// are eligible for fusion. Place all eligible fusion candidates into Control
  /// Flow Equivalent sets, sorted by dominance.
  void collectFusionCandidates(const LoopVector &LV) {
    for (Loop *L : LV) {
      FusionCandidate CurrCand(L, &DT, &PDT, ORE);
      if (!CurrCand.isEligibleForFusion(SE))
        continue;

      // Go through each list in FusionCandidates and determine if L is control
      // flow equivalent with the first loop in that list. If it is, append LV.
      // If not, go to the next list.
      // If no suitable list is found, start another list and add it to
      // FusionCandidates.
      bool FoundSet = false;

      for (auto &CurrCandSet : FusionCandidates) {
        if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
          CurrCandSet.insert(CurrCand);
          FoundSet = true;
#ifndef NDEBUG
          if (VerboseFusionDebugging)
            LLVM_DEBUG(dbgs() << "Adding " << CurrCand
                              << " to existing candidate set\n");
#endif
          break;
        }
      }
      if (!FoundSet) {
        // No set was found. Create a new set and add to FusionCandidates
#ifndef NDEBUG
        if (VerboseFusionDebugging)
          LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
#endif
        FusionCandidateSet NewCandSet;
        NewCandSet.insert(CurrCand);
        FusionCandidates.push_back(NewCandSet);
      }
      NumFusionCandidates++;
    }
  }

  /// Determine if it is beneficial to fuse two loops.
  ///
  /// For now, this method simply returns true because we want to fuse as much
  /// as possible (primarily to test the pass). This method will evolve, over
  /// time, to add heuristics for profitability of fusion.
  bool isBeneficialFusion(const FusionCandidate &FC0,
                          const FusionCandidate &FC1) {
    return true;
  }

  /// Determine if two fusion candidates have the same trip count (i.e., they
  /// execute the same number of iterations).
  ///
  /// Note that for now this method simply returns a boolean value because there
  /// are no mechanisms in loop fusion to handle different trip counts. In the
  /// future, this behaviour can be extended to adjust one of the loops to make
  /// the trip counts equal (e.g., loop peeling). When this is added, this
  /// interface may need to change to return more information than just a
  /// boolean value.
  bool identicalTripCounts(const FusionCandidate &FC0,
                           const FusionCandidate &FC1) const {
    const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
    if (isa<SCEVCouldNotCompute>(TripCount0)) {
      UncomputableTripCount++;
      LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
      return false;
    }

    const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
    if (isa<SCEVCouldNotCompute>(TripCount1)) {
      UncomputableTripCount++;
      LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
      return false;
    }
    LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
                      << *TripCount1 << " are "
                      << (TripCount0 == TripCount1 ? "identical" : "different")
                      << "\n");

    return (TripCount0 == TripCount1);
  }

  /// Walk each set of control flow equivalent fusion candidates and attempt to
  /// fuse them. This does a single linear traversal of all candidates in the
  /// set. The conditions for legal fusion are checked at this point. If a pair
  /// of fusion candidates passes all legality checks, they are fused together
  /// and a new fusion candidate is created and added to the FusionCandidateSet.
  /// The original fusion candidates are then removed, as they are no longer
  /// valid.
  bool fuseCandidates() {
    bool Fused = false;
    LLVM_DEBUG(printFusionCandidates(FusionCandidates));
    for (auto &CandidateSet : FusionCandidates) {
      if (CandidateSet.size() < 2)
        continue;

      LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
                        << CandidateSet << "\n");

      for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
        assert(!LDT.isRemovedLoop(FC0->L) &&
               "Should not have removed loops in CandidateSet!");
        auto FC1 = FC0;
        for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
          assert(!LDT.isRemovedLoop(FC1->L) &&
                 "Should not have removed loops in CandidateSet!");

          LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
                     dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");

          FC0->verify();
          FC1->verify();

          if (!identicalTripCounts(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
                                 "counts. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEqualTripCount);
            continue;
          }

          if (!isAdjacent(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs()
                       << "Fusion candidates are not adjacent. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
            continue;
          }

          // Ensure that FC0 and FC1 have identical guards.
          // If one (or both) are not guarded, this check is not necessary.
          if (FC0->GuardBranch && FC1->GuardBranch &&
              !haveIdenticalGuards(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
                                 "guards. Not Fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonIdenticalGuards);
            continue;
          }

          if (!isSafeToMoveBefore(*FC1->Preheader,
                                  *FC0->Preheader->getTerminator(), DT, &PDT,
                                  &DI)) {
            LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
                                 "instructions in preheader. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEmptyPreheader);
            continue;
          }

          if (FC0->GuardBranch) {
            assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");

            if (!isSafeToMoveBefore(*FC0->ExitBlock,
                                    *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
                                    &PDT, &DI)) {
              LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
                                   "instructions in exit block. Not fusing.\n");
              reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                         NonEmptyExitBlock);
              continue;
            }

            if (!isSafeToMoveBefore(
                    *FC1->GuardBranch->getParent(),
                    *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
                    &DI)) {
              LLVM_DEBUG(dbgs()
                         << "Fusion candidate contains unsafe "
                            "instructions in guard block. Not fusing.\n");
              reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                         NonEmptyGuardBlock);
              continue;
            }
          }

          // Check the dependencies across the loops and do not fuse if it would
          // violate them.
          if (!dependencesAllowFusion(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       InvalidDependencies);
            continue;
          }

          bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
          LLVM_DEBUG(dbgs()
                     << "\tFusion appears to be "
                     << (BeneficialToFuse ? "" : "un") << "profitable!\n");
          if (!BeneficialToFuse) {
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       FusionNotBeneficial);
            continue;
          }
          // All analysis has completed and has determined that fusion is legal
          // and profitable. At this point, start transforming the code and
          // perform fusion.

          LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
                            << *FC1 << "\n");

          // Report fusion to the Optimization Remarks.
          // Note this needs to be done *before* performFusion because
          // performFusion will change the original loops, making it not
          // possible to identify them after fusion is complete.
          reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);

          FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
          FusedCand.verify();
          assert(FusedCand.isEligibleForFusion(SE) &&
                 "Fused candidate should be eligible for fusion!");

          // Notify the loop-depth-tree that these loops are not valid objects
          LDT.removeLoop(FC1->L);

          CandidateSet.erase(FC0);
          CandidateSet.erase(FC1);

          auto InsertPos = CandidateSet.insert(FusedCand);

          assert(InsertPos.second &&
                 "Unable to insert TargetCandidate in CandidateSet!");

          // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
          // of the FC1 loop will attempt to fuse the new (fused) loop with the
          // remaining candidates in the current candidate set.
          FC0 = FC1 = InsertPos.first;

          LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
                            << "\n");

          Fused = true;
        }
      }
    }
    return Fused;
  }

  /// Rewrite all additive recurrences in a SCEV to use a new loop.
  class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
  public:
    AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
                       bool UseMax = true)
        : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
          NewL(NewL) {}

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      const Loop *ExprL = Expr->getLoop();
      SmallVector<const SCEV *, 2> Operands;
      if (ExprL == &OldL) {
        Operands.append(Expr->op_begin(), Expr->op_end());
        return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
      }

      if (OldL.contains(ExprL)) {
        bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
        if (!UseMax || !Pos || !Expr->isAffine()) {
          Valid = false;
          return Expr;
        }
        return visit(Expr->getStart());
      }

      for (const SCEV *Op : Expr->operands())
        Operands.push_back(visit(Op));
      return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
    }

    bool wasValidSCEV() const { return Valid; }

  private:
    bool Valid, UseMax;
    const Loop &OldL, &NewL;
  };

  /// Return false if the access functions of \p I0 and \p I1 could cause
  /// a negative dependence.
  bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
                            Instruction &I1, bool EqualIsInvalid) {
    Value *Ptr0 = getLoadStorePointerOperand(&I0);
    Value *Ptr1 = getLoadStorePointerOperand(&I1);
    if (!Ptr0 || !Ptr1)
      return false;

    const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
    const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
                        << *SCEVPtr1 << "\n");
#endif
    AddRecLoopReplacer Rewriter(SE, L0, L1);
    SCEVPtr0 = Rewriter.visit(SCEVPtr0);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
                        << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
#endif
    if (!Rewriter.wasValidSCEV())
      return false;

    // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
    //       L0) and the other is not. We could check if it is monotone and test
    //       the beginning and end value instead.

    BasicBlock *L0Header = L0.getHeader();
    auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
      const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
      if (!AddRec)
        return false;
      return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
             !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
    };
    if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
      return false;

    ICmpInst::Predicate Pred =
        EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
    bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
                        << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
                        << "\n");
#endif
    return IsAlwaysGE;
  }

  /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
  /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
  /// specified by @p DepChoice are used to determine this.
  bool dependencesAllowFusion(const FusionCandidate &FC0,
                              const FusionCandidate &FC1, Instruction &I0,
                              Instruction &I1, bool AnyDep,
                              FusionDependenceAnalysisChoice DepChoice) {
#ifndef NDEBUG
    if (VerboseFusionDebugging) {
      LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
                        << DepChoice << "\n");
    }
#endif
    switch (DepChoice) {
    case FUSION_DEPENDENCE_ANALYSIS_SCEV:
      return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
    case FUSION_DEPENDENCE_ANALYSIS_DA: {
      auto DepResult = DI.depends(&I0, &I1, true);
      if (!DepResult)
        return true;
#ifndef NDEBUG
      if (VerboseFusionDebugging) {
        LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
                   dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
                          << (DepResult->isOrdered() ? "true" : "false")
                          << "]\n");
        LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
                          << "\n");
      }
#endif

      if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
        LLVM_DEBUG(
            dbgs() << "TODO: Implement pred/succ dependence handling!\n");

      // TODO: Can we actually use the dependence info analysis here?
      return false;
    }

    case FUSION_DEPENDENCE_ANALYSIS_ALL:
      return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
                                    FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
             dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
                                    FUSION_DEPENDENCE_ANALYSIS_DA);
    }

    llvm_unreachable("Unknown fusion dependence analysis choice!");
  }

  /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
  bool dependencesAllowFusion(const FusionCandidate &FC0,
                              const FusionCandidate &FC1) {
    LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
                      << "\n");
    assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
    assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));

    for (Instruction *WriteL0 : FC0.MemWrites) {
      for (Instruction *WriteL1 : FC1.MemWrites)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
      for (Instruction *ReadL1 : FC1.MemReads)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
    }

    for (Instruction *WriteL1 : FC1.MemWrites) {
      for (Instruction *WriteL0 : FC0.MemWrites)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
      for (Instruction *ReadL0 : FC0.MemReads)
        if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
    }

    // Walk through all uses in FC1. For each use, find the reaching def. If the
    // def is located in FC0 then it is is not safe to fuse.
    for (BasicBlock *BB : FC1.L->blocks())
      for (Instruction &I : *BB)
        for (auto &Op : I.operands())
          if (Instruction *Def = dyn_cast<Instruction>(Op))
            if (FC0.L->contains(Def->getParent())) {
              InvalidDependencies++;
              return false;
            }

    return true;
  }

  /// Determine if two fusion candidates are adjacent in the CFG.
  ///
  /// This method will determine if there are additional basic blocks in the CFG
  /// between the exit of \p FC0 and the entry of \p FC1.
  /// If the two candidates are guarded loops, then it checks whether the
  /// non-loop successor of the \p FC0 guard branch is the entry block of \p
  /// FC1. If not, then the loops are not adjacent. If the two candidates are
  /// not guarded loops, then it checks whether the exit block of \p FC0 is the
  /// preheader of \p FC1.
  bool isAdjacent(const FusionCandidate &FC0,
                  const FusionCandidate &FC1) const {
    // If the successor of the guard branch is FC1, then the loops are adjacent
    if (FC0.GuardBranch)
      return FC0.getNonLoopBlock() == FC1.getEntryBlock();
    else
      return FC0.ExitBlock == FC1.getEntryBlock();
  }

  /// Determine if two fusion candidates have identical guards
  ///
  /// This method will determine if two fusion candidates have the same guards.
  /// The guards are considered the same if:
  ///   1. The instructions to compute the condition used in the compare are
  ///      identical.
  ///   2. The successors of the guard have the same flow into/around the loop.
  /// If the compare instructions are identical, then the first successor of the
  /// guard must go to the same place (either the preheader of the loop or the
  /// NonLoopBlock). In other words, the the first successor of both loops must
  /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
  /// the NonLoopBlock). The same must be true for the second successor.
  bool haveIdenticalGuards(const FusionCandidate &FC0,
                           const FusionCandidate &FC1) const {
    assert(FC0.GuardBranch && FC1.GuardBranch &&
           "Expecting FC0 and FC1 to be guarded loops.");

    if (auto FC0CmpInst =
            dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
      if (auto FC1CmpInst =
              dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
        if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
          return false;

    // The compare instructions are identical.
    // Now make sure the successor of the guards have the same flow into/around
    // the loop
    if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
      return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
    else
      return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
  }

  /// Simplify the condition of the latch branch of \p FC to true, when both of
  /// its successors are the same.
  void simplifyLatchBranch(const FusionCandidate &FC) const {
    BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
    if (FCLatchBranch) {
      assert(FCLatchBranch->isConditional() &&
             FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
             "Expecting the two successors of FCLatchBranch to be the same");
      FCLatchBranch->setCondition(
          llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType()));
    }
  }

  /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
  /// successor, then merge FC0.Latch with its unique successor.
  void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
    moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
    if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
      MergeBlockIntoPredecessor(Succ, &DTU, &LI);
      DTU.flush();
    }
  }

  /// Fuse two fusion candidates, creating a new fused loop.
  ///
  /// This method contains the mechanics of fusing two loops, represented by \p
  /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
  /// postdominates \p FC0 (making them control flow equivalent). It also
  /// assumes that the other conditions for fusion have been met: adjacent,
  /// identical trip counts, and no negative distance dependencies exist that
  /// would prevent fusion. Thus, there is no checking for these conditions in
  /// this method.
  ///
  /// Fusion is performed by rewiring the CFG to update successor blocks of the
  /// components of tho loop. Specifically, the following changes are done:
  ///
  ///   1. The preheader of \p FC1 is removed as it is no longer necessary
  ///   (because it is currently only a single statement block).
  ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
  ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
  ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
  ///
  /// All of these modifications are done with dominator tree updates, thus
  /// keeping the dominator (and post dominator) information up-to-date.
  ///
  /// This can be improved in the future by actually merging blocks during
  /// fusion. For example, the preheader of \p FC1 can be merged with the
  /// preheader of \p FC0. This would allow loops with more than a single
  /// statement in the preheader to be fused. Similarly, the latch blocks of the
  /// two loops could also be fused into a single block. This will require
  /// analysis to prove it is safe to move the contents of the block past
  /// existing code, which currently has not been implemented.
  Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
    assert(FC0.isValid() && FC1.isValid() &&
           "Expecting valid fusion candidates");

    LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
               dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););

    // Move instructions from the preheader of FC1 to the end of the preheader
    // of FC0.
    moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);

    // Fusing guarded loops is handled slightly differently than non-guarded
    // loops and has been broken out into a separate method instead of trying to
    // intersperse the logic within a single method.
    if (FC0.GuardBranch)
      return fuseGuardedLoops(FC0, FC1);

    assert(FC1.Preheader == FC0.ExitBlock);
    assert(FC1.Preheader->size() == 1 &&
           FC1.Preheader->getSingleSuccessor() == FC1.Header);

    // Remember the phi nodes originally in the header of FC0 in order to rewire
    // them later. However, this is only necessary if the new loop carried
    // values might not dominate the exiting branch. While we do not generally
    // test if this is the case but simply insert intermediate phi nodes, we
    // need to make sure these intermediate phi nodes have different
    // predecessors. To this end, we filter the special case where the exiting
    // block is the latch block of the first loop. Nothing needs to be done
    // anyway as all loop carried values dominate the latch and thereby also the
    // exiting branch.
    SmallVector<PHINode *, 8> OriginalFC0PHIs;
    if (FC0.ExitingBlock != FC0.Latch)
      for (PHINode &PHI : FC0.Header->phis())
        OriginalFC0PHIs.push_back(&PHI);

    // Replace incoming blocks for header PHIs first.
    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);

    // Then modify the control flow and update DT and PDT.
    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;

    // The old exiting block of the first loop (FC0) has to jump to the header
    // of the second as we need to execute the code in the second header block
    // regardless of the trip count. That is, if the trip count is 0, so the
    // back edge is never taken, we still have to execute both loop headers,
    // especially (but not only!) if the second is a do-while style loop.
    // However, doing so might invalidate the phi nodes of the first loop as
    // the new values do only need to dominate their latch and not the exiting
    // predicate. To remedy this potential problem we always introduce phi
    // nodes in the header of the second loop later that select the loop carried
    // value, if the second header was reached through an old latch of the
    // first, or undef otherwise. This is sound as exiting the first implies the
    // second will exit too, __without__ taking the back-edge. [Their
    // trip-counts are equal after all.
    // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
    // to FC1.Header? I think this is basically what the three sequences are
    // trying to accomplish; however, doing this directly in the CFG may mean
    // the DT/PDT becomes invalid
    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
                                                         FC1.Header);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));

    // The pre-header of L1 is not necessary anymore.
    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
    FC1.Preheader->getTerminator()->eraseFromParent();
    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1.Preheader, FC1.Header));

    // Moves the phi nodes from the second to the first loops header block.
    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
      if (SE.isSCEVable(PHI->getType()))
        SE.forgetValue(PHI);
      if (PHI->hasNUsesOrMore(1))
        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
      else
        PHI->eraseFromParent();
    }

    // Introduce new phi nodes in the second loop header to ensure
    // exiting the first and jumping to the header of the second does not break
    // the SSA property of the phis originally in the first loop. See also the
    // comment above.
    Instruction *L1HeaderIP = &FC1.Header->front();
    for (PHINode *LCPHI : OriginalFC0PHIs) {
      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
      assert(L1LatchBBIdx >= 0 &&
             "Expected loop carried value to be rewired at this point!");

      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);

      PHINode *L1HeaderPHI = PHINode::Create(
          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
                               FC0.ExitingBlock);

      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
    }

    // Replace latch terminator destinations.
    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);

    // Change the condition of FC0 latch branch to true, as both successors of
    // the branch are the same.
    simplifyLatchBranch(FC0);

    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
    // performed the updates above.
    if (FC0.Latch != FC0.ExitingBlock)
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.Latch, FC1.Header));

    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC0.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
                                                       FC1.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC1.Latch, FC1.Header));

    // Update DT/PDT
    DTU.applyUpdates(TreeUpdates);

    LI.removeBlock(FC1.Preheader);
    DTU.deleteBB(FC1.Preheader);
    DTU.flush();

    // Is there a way to keep SE up-to-date so we don't need to forget the loops
    // and rebuild the information in subsequent passes of fusion?
    // Note: Need to forget the loops before merging the loop latches, as
    // mergeLatch may remove the only block in FC1.
    SE.forgetLoop(FC1.L);
    SE.forgetLoop(FC0.L);

    // Move instructions from FC0.Latch to FC1.Latch.
    // Note: mergeLatch requires an updated DT.
    mergeLatch(FC0, FC1);

    // Merge the loops.
    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
                                        FC1.L->block_end());
    for (BasicBlock *BB : Blocks) {
      FC0.L->addBlockEntry(BB);
      FC1.L->removeBlockFromLoop(BB);
      if (LI.getLoopFor(BB) != FC1.L)
        continue;
      LI.changeLoopFor(BB, FC0.L);
    }
    while (!FC1.L->empty()) {
      const auto &ChildLoopIt = FC1.L->begin();
      Loop *ChildLoop = *ChildLoopIt;
      FC1.L->removeChildLoop(ChildLoopIt);
      FC0.L->addChildLoop(ChildLoop);
    }

    // Delete the now empty loop L1.
    LI.erase(FC1.L);

#ifndef NDEBUG
    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Fusion done:\n");

    return FC0.L;
  }

  /// Report details on loop fusion opportunities.
  ///
  /// This template function can be used to report both successful and missed
  /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
  /// be one of:
  ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
  ///     given two valid fusion candidates.
  ///   - OptimizationRemark to report successful fusion of two fusion
  ///     candidates.
  /// The remarks will be printed using the form:
  ///    <path/filename>:<line number>:<column number>: [<function name>]:
  ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
  template <typename RemarkKind>
  void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
                        llvm::Statistic &Stat) {
    assert(FC0.Preheader && FC1.Preheader &&
           "Expecting valid fusion candidates");
    using namespace ore;
    ++Stat;
    ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
                        FC0.Preheader)
             << "[" << FC0.Preheader->getParent()->getName()
             << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
             << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
             << ": " << Stat.getDesc());
  }

  /// Fuse two guarded fusion candidates, creating a new fused loop.
  ///
  /// Fusing guarded loops is handled much the same way as fusing non-guarded
  /// loops. The rewiring of the CFG is slightly different though, because of
  /// the presence of the guards around the loops and the exit blocks after the
  /// loop body. As such, the new loop is rewired as follows:
  ///    1. Keep the guard branch from FC0 and use the non-loop block target
  /// from the FC1 guard branch.
  ///    2. Remove the exit block from FC0 (this exit block should be empty
  /// right now).
  ///    3. Remove the guard branch for FC1
  ///    4. Remove the preheader for FC1.
  /// The exit block successor for the latch of FC0 is updated to be the header
  /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
  /// be the header of FC0, thus creating the fused loop.
  Loop *fuseGuardedLoops(const FusionCandidate &FC0,
                         const FusionCandidate &FC1) {
    assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");

    BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
    BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
    BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
    BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();

    // Move instructions from the exit block of FC0 to the beginning of the exit
    // block of FC1.
    moveInstructionsToTheBeginning(*FC0.ExitBlock, *FC1.ExitBlock, DT, PDT, DI);

    // Move instructions from the guard block of FC1 to the end of the guard
    // block of FC0.
    moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);

    assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");

    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;

    ////////////////////////////////////////////////////////////////////////////
    // Update the Loop Guard
    ////////////////////////////////////////////////////////////////////////////
    // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
    // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
    // Thus, one path from the guard goes to the preheader for FC0 (and thus
    // executes the new fused loop) and the other path goes to the NonLoopBlock
    // for FC1 (where FC1 guard would have gone if FC1 was not executed).
    FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
    FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
    FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
                                                      FC1.Header);

    // The guard of FC1 is not necessary anymore.
    FC1.GuardBranch->eraseFromParent();
    new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);

    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));

    assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
           "Expecting guard block to have no predecessors");
    assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
           "Expecting guard block to have no successors");

    // Remember the phi nodes originally in the header of FC0 in order to rewire
    // them later. However, this is only necessary if the new loop carried
    // values might not dominate the exiting branch. While we do not generally
    // test if this is the case but simply insert intermediate phi nodes, we
    // need to make sure these intermediate phi nodes have different
    // predecessors. To this end, we filter the special case where the exiting
    // block is the latch block of the first loop. Nothing needs to be done
    // anyway as all loop carried values dominate the latch and thereby also the
    // exiting branch.
    // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
    // (because the loops are rotated. Thus, nothing will ever be added to
    // OriginalFC0PHIs.
    SmallVector<PHINode *, 8> OriginalFC0PHIs;
    if (FC0.ExitingBlock != FC0.Latch)
      for (PHINode &PHI : FC0.Header->phis())
        OriginalFC0PHIs.push_back(&PHI);

    assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");

    // Replace incoming blocks for header PHIs first.
    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);

    // The old exiting block of the first loop (FC0) has to jump to the header
    // of the second as we need to execute the code in the second header block
    // regardless of the trip count. That is, if the trip count is 0, so the
    // back edge is never taken, we still have to execute both loop headers,
    // especially (but not only!) if the second is a do-while style loop.
    // However, doing so might invalidate the phi nodes of the first loop as
    // the new values do only need to dominate their latch and not the exiting
    // predicate. To remedy this potential problem we always introduce phi
    // nodes in the header of the second loop later that select the loop carried
    // value, if the second header was reached through an old latch of the
    // first, or undef otherwise. This is sound as exiting the first implies the
    // second will exit too, __without__ taking the back-edge (their
    // trip-counts are equal after all).
    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
                                                         FC1.Header);

    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));

    // Remove FC0 Exit Block
    // The exit block for FC0 is no longer needed since control will flow
    // directly to the header of FC1. Since it is an empty block, it can be
    // removed at this point.
    // TODO: In the future, we can handle non-empty exit blocks my merging any
    // instructions from FC0 exit block into FC1 exit block prior to removing
    // the block.
    assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
           "Expecting exit block to be empty");
    FC0.ExitBlock->getTerminator()->eraseFromParent();
    new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);

    // Remove FC1 Preheader
    // The pre-header of L1 is not necessary anymore.
    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
    FC1.Preheader->getTerminator()->eraseFromParent();
    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1.Preheader, FC1.Header));

    // Moves the phi nodes from the second to the first loops header block.
    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
      if (SE.isSCEVable(PHI->getType()))
        SE.forgetValue(PHI);
      if (PHI->hasNUsesOrMore(1))
        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
      else
        PHI->eraseFromParent();
    }

    // Introduce new phi nodes in the second loop header to ensure
    // exiting the first and jumping to the header of the second does not break
    // the SSA property of the phis originally in the first loop. See also the
    // comment above.
    Instruction *L1HeaderIP = &FC1.Header->front();
    for (PHINode *LCPHI : OriginalFC0PHIs) {
      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
      assert(L1LatchBBIdx >= 0 &&
             "Expected loop carried value to be rewired at this point!");

      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);

      PHINode *L1HeaderPHI = PHINode::Create(
          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
                               FC0.ExitingBlock);

      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
    }

    // Update the latches

    // Replace latch terminator destinations.
    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);

    // Change the condition of FC0 latch branch to true, as both successors of
    // the branch are the same.
    simplifyLatchBranch(FC0);

    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
    // performed the updates above.
    if (FC0.Latch != FC0.ExitingBlock)
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.Latch, FC1.Header));

    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC0.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
                                                       FC1.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC1.Latch, FC1.Header));

    // All done
    // Apply the updates to the Dominator Tree and cleanup.

    assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
           "FC1GuardBlock has successors!!");
    assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
           "FC1GuardBlock has predecessors!!");

    // Update DT/PDT
    DTU.applyUpdates(TreeUpdates);

    LI.removeBlock(FC1GuardBlock);
    LI.removeBlock(FC1.Preheader);
    LI.removeBlock(FC0.ExitBlock);
    DTU.deleteBB(FC1GuardBlock);
    DTU.deleteBB(FC1.Preheader);
    DTU.deleteBB(FC0.ExitBlock);
    DTU.flush();

    // Is there a way to keep SE up-to-date so we don't need to forget the loops
    // and rebuild the information in subsequent passes of fusion?
    // Note: Need to forget the loops before merging the loop latches, as
    // mergeLatch may remove the only block in FC1.
    SE.forgetLoop(FC1.L);
    SE.forgetLoop(FC0.L);

    // Move instructions from FC0.Latch to FC1.Latch.
    // Note: mergeLatch requires an updated DT.
    mergeLatch(FC0, FC1);

    // Merge the loops.
    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
                                        FC1.L->block_end());
    for (BasicBlock *BB : Blocks) {
      FC0.L->addBlockEntry(BB);
      FC1.L->removeBlockFromLoop(BB);
      if (LI.getLoopFor(BB) != FC1.L)
        continue;
      LI.changeLoopFor(BB, FC0.L);
    }
    while (!FC1.L->empty()) {
      const auto &ChildLoopIt = FC1.L->begin();
      Loop *ChildLoop = *ChildLoopIt;
      FC1.L->removeChildLoop(ChildLoopIt);
      FC0.L->addChildLoop(ChildLoop);
    }

    // Delete the now empty loop L1.
    LI.erase(FC1.L);

#ifndef NDEBUG
    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Fusion done:\n");

    return FC0.L;
  }
};

struct LoopFuseLegacy : public FunctionPass {

  static char ID;

  LoopFuseLegacy() : FunctionPass(ID) {
    initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<DependenceAnalysisWrapperPass>();

    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    const DataLayout &DL = F.getParent()->getDataLayout();
    LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
    return LF.fuseLoops(F);
  }
};
} // namespace

PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &DI = AM.getResult<DependenceAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  const DataLayout &DL = F.getParent()->getDataLayout();
  LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
  bool Changed = LF.fuseLoops(F);
  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  PA.preserve<ScalarEvolutionAnalysis>();
  PA.preserve<LoopAnalysis>();
  return PA;
}

char LoopFuseLegacy::ID = 0;

INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)

FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }