LICM.cpp 92.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion, attempting to remove as much
// code from the body of a loop as possible.  It does this by either hoisting
// code into the preheader block, or by sinking code to the exit blocks if it is
// safe.  This pass also promotes must-aliased memory locations in the loop to
// live in registers, thus hoisting and sinking "invariant" loads and stores.
//
// This pass uses alias analysis for two purposes:
//
//  1. Moving loop invariant loads and calls out of loops.  If we can determine
//     that a load or call inside of a loop never aliases anything stored to,
//     we can hoist it or sink it like any other instruction.
//  2. Scalar Promotion of Memory - If there is a store instruction inside of
//     the loop, we try to move the store to happen AFTER the loop instead of
//     inside of the loop.  This can only happen if a few conditions are true:
//       A. The pointer stored through is loop invariant
//       B. There are no stores or loads in the loop which _may_ alias the
//          pointer.  There are no calls in the loop which mod/ref the pointer.
//     If these conditions are true, we can promote the loads and stores in the
//     loop of the pointer to use a temporary alloca'd variable.  We then use
//     the SSAUpdater to construct the appropriate SSA form for the value.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <utility>
using namespace llvm;

#define DEBUG_TYPE "licm"

STATISTIC(NumCreatedBlocks, "Number of blocks created");
STATISTIC(NumClonedBranches, "Number of branches cloned");
STATISTIC(NumSunk, "Number of instructions sunk out of loop");
STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
STATISTIC(NumPromoted, "Number of memory locations promoted to registers");

/// Memory promotion is enabled by default.
static cl::opt<bool>
    DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
                     cl::desc("Disable memory promotion in LICM pass"));

static cl::opt<bool> ControlFlowHoisting(
    "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
    cl::desc("Enable control flow (and PHI) hoisting in LICM"));

static cl::opt<uint32_t> MaxNumUsesTraversed(
    "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
    cl::desc("Max num uses visited for identifying load "
             "invariance in loop using invariant start (default = 8)"));

// Default value of zero implies we use the regular alias set tracker mechanism
// instead of the cross product using AA to identify aliasing of the memory
// location we are interested in.
static cl::opt<int>
LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
               cl::desc("How many instruction to cross product using AA"));

// Experimental option to allow imprecision in LICM in pathological cases, in
// exchange for faster compile. This is to be removed if MemorySSA starts to
// address the same issue. This flag applies only when LICM uses MemorySSA
// instead on AliasSetTracker. LICM calls MemorySSAWalker's
// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
// which may not be precise, since optimizeUses is capped. The result is
// correct, but we may not get as "far up" as possible to get which access is
// clobbering the one queried.
cl::opt<unsigned> llvm::SetLicmMssaOptCap(
    "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
    cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
             "for faster compile. Caps the MemorySSA clobbering calls."));

// Experimentally, memory promotion carries less importance than sinking and
// hoisting. Limit when we do promotion when using MemorySSA, in order to save
// compile time.
cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
    "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
    cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
             "effect. When MSSA in LICM is enabled, then this is the maximum "
             "number of accesses allowed to be present in a loop in order to "
             "enable memory promotion."));

static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
                                  const LoopSafetyInfo *SafetyInfo,
                                  TargetTransformInfo *TTI, bool &FreeInLoop);
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
                  OptimizationRemarkEmitter *ORE);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
                 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
                 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
                                           const DominatorTree *DT,
                                           const Loop *CurLoop,
                                           const LoopSafetyInfo *SafetyInfo,
                                           OptimizationRemarkEmitter *ORE,
                                           const Instruction *CtxI = nullptr);
static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
                                     AliasSetTracker *CurAST, Loop *CurLoop,
                                     AAResults *AA);
static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
                                             Loop *CurLoop,
                                             SinkAndHoistLICMFlags &Flags);
static Instruction *cloneInstructionInExitBlock(
    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);

static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
                             AliasSetTracker *AST, MemorySSAUpdater *MSSAU);

static void moveInstructionBefore(Instruction &I, Instruction &Dest,
                                  ICFLoopSafetyInfo &SafetyInfo,
                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE);

namespace {
struct LoopInvariantCodeMotion {
  bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
                 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
                 ScalarEvolution *SE, MemorySSA *MSSA,
                 OptimizationRemarkEmitter *ORE);

  LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
                          unsigned LicmMssaNoAccForPromotionCap)
      : LicmMssaOptCap(LicmMssaOptCap),
        LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}

private:
  unsigned LicmMssaOptCap;
  unsigned LicmMssaNoAccForPromotionCap;

  std::unique_ptr<AliasSetTracker>
  collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
  std::unique_ptr<AliasSetTracker>
  collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
                                  MemorySSAUpdater *MSSAU);
};

struct LegacyLICMPass : public LoopPass {
  static char ID; // Pass identification, replacement for typeid
  LegacyLICMPass(
      unsigned LicmMssaOptCap = SetLicmMssaOptCap,
      unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
      : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
    initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    MemorySSA *MSSA = EnableMSSALoopDependency
                          ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
                          : nullptr;
    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass.  Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
    return LICM.runOnLoop(L,
                          &getAnalysis<AAResultsWrapperPass>().getAAResults(),
                          &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
                          &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
                          &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
                              *L->getHeader()->getParent()),
                          &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
                              *L->getHeader()->getParent()),
                          SE ? &SE->getSE() : nullptr, MSSA, &ORE);
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG...
  ///
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    if (EnableMSSALoopDependency) {
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    }
    AU.addRequired<TargetTransformInfoWrapperPass>();
    getLoopAnalysisUsage(AU);
  }

private:
  LoopInvariantCodeMotion LICM;
};
} // namespace

PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
  // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
  // pass.  Function analyses need to be preserved across loop transformations
  // but ORE cannot be preserved (see comment before the pass definition).
  OptimizationRemarkEmitter ORE(L.getHeader()->getParent());

  LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
  if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
                      AR.MSSA, &ORE))
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();

  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LoopAnalysis>();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();

  return PA;
}

char LegacyLICMPass::ID = 0;
INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
                    false)

Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
                           unsigned LicmMssaNoAccForPromotionCap) {
  return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
}

/// Hoist expressions out of the specified loop. Note, alias info for inner
/// loop is not preserved so it is not a good idea to run LICM multiple
/// times on one loop.
bool LoopInvariantCodeMotion::runOnLoop(
    Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
    TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
    MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
  bool Changed = false;

  assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");

  // If this loop has metadata indicating that LICM is not to be performed then
  // just exit.
  if (hasDisableLICMTransformsHint(L)) {
    return false;
  }

  std::unique_ptr<AliasSetTracker> CurAST;
  std::unique_ptr<MemorySSAUpdater> MSSAU;
  bool NoOfMemAccTooLarge = false;
  unsigned LicmMssaOptCounter = 0;

  if (!MSSA) {
    LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
    CurAST = collectAliasInfoForLoop(L, LI, AA);
  } else {
    LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);

    unsigned AccessCapCount = 0;
    for (auto *BB : L->getBlocks()) {
      if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
        for (const auto &MA : *Accesses) {
          (void)MA;
          AccessCapCount++;
          if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
            NoOfMemAccTooLarge = true;
            break;
          }
        }
      }
      if (NoOfMemAccTooLarge)
        break;
    }
  }

  // Get the preheader block to move instructions into...
  BasicBlock *Preheader = L->getLoopPreheader();

  // Compute loop safety information.
  ICFLoopSafetyInfo SafetyInfo;
  SafetyInfo.computeLoopSafetyInfo(L);

  // We want to visit all of the instructions in this loop... that are not parts
  // of our subloops (they have already had their invariants hoisted out of
  // their loop, into this loop, so there is no need to process the BODIES of
  // the subloops).
  //
  // Traverse the body of the loop in depth first order on the dominator tree so
  // that we are guaranteed to see definitions before we see uses.  This allows
  // us to sink instructions in one pass, without iteration.  After sinking
  // instructions, we perform another pass to hoist them out of the loop.
  SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
                                 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                                 /*IsSink=*/true};
  if (L->hasDedicatedExits())
    Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
                          CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
  Flags.IsSink = false;
  if (Preheader)
    Changed |=
        hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
                    CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);

  // Now that all loop invariants have been removed from the loop, promote any
  // memory references to scalars that we can.
  // Don't sink stores from loops without dedicated block exits. Exits
  // containing indirect branches are not transformed by loop simplify,
  // make sure we catch that. An additional load may be generated in the
  // preheader for SSA updater, so also avoid sinking when no preheader
  // is available.
  if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
      !NoOfMemAccTooLarge) {
    // Figure out the loop exits and their insertion points
    SmallVector<BasicBlock *, 8> ExitBlocks;
    L->getUniqueExitBlocks(ExitBlocks);

    // We can't insert into a catchswitch.
    bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
      return isa<CatchSwitchInst>(Exit->getTerminator());
    });

    if (!HasCatchSwitch) {
      SmallVector<Instruction *, 8> InsertPts;
      SmallVector<MemoryAccess *, 8> MSSAInsertPts;
      InsertPts.reserve(ExitBlocks.size());
      if (MSSAU)
        MSSAInsertPts.reserve(ExitBlocks.size());
      for (BasicBlock *ExitBlock : ExitBlocks) {
        InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
        if (MSSAU)
          MSSAInsertPts.push_back(nullptr);
      }

      PredIteratorCache PIC;

      bool Promoted = false;

      // Build an AST using MSSA.
      if (!CurAST.get())
        CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());

      // Loop over all of the alias sets in the tracker object.
      for (AliasSet &AS : *CurAST) {
        // We can promote this alias set if it has a store, if it is a "Must"
        // alias set, if the pointer is loop invariant, and if we are not
        // eliminating any volatile loads or stores.
        if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
            !L->isLoopInvariant(AS.begin()->getValue()))
          continue;

        assert(
            !AS.empty() &&
            "Must alias set should have at least one pointer element in it!");

        SmallSetVector<Value *, 8> PointerMustAliases;
        for (const auto &ASI : AS)
          PointerMustAliases.insert(ASI.getValue());

        Promoted |= promoteLoopAccessesToScalars(
            PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
            DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
      }

      // Once we have promoted values across the loop body we have to
      // recursively reform LCSSA as any nested loop may now have values defined
      // within the loop used in the outer loop.
      // FIXME: This is really heavy handed. It would be a bit better to use an
      // SSAUpdater strategy during promotion that was LCSSA aware and reformed
      // it as it went.
      if (Promoted)
        formLCSSARecursively(*L, *DT, LI, SE);

      Changed |= Promoted;
    }
  }

  // Check that neither this loop nor its parent have had LCSSA broken. LICM is
  // specifically moving instructions across the loop boundary and so it is
  // especially in need of sanity checking here.
  assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
  assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
         "Parent loop not left in LCSSA form after LICM!");

  if (MSSAU.get() && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  if (Changed && SE)
    SE->forgetLoopDispositions(L);
  return Changed;
}

/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in reverse depth
/// first order w.r.t the DominatorTree.  This allows us to visit uses before
/// definitions, allowing us to sink a loop body in one pass without iteration.
///
bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
                      DominatorTree *DT, TargetLibraryInfo *TLI,
                      TargetTransformInfo *TTI, Loop *CurLoop,
                      AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
                      ICFLoopSafetyInfo *SafetyInfo,
                      SinkAndHoistLICMFlags &Flags,
                      OptimizationRemarkEmitter *ORE) {

  // Verify inputs.
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
         CurLoop != nullptr && SafetyInfo != nullptr &&
         "Unexpected input to sinkRegion.");
  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
         "Either AliasSetTracker or MemorySSA should be initialized.");

  // We want to visit children before parents. We will enque all the parents
  // before their children in the worklist and process the worklist in reverse
  // order.
  SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);

  bool Changed = false;
  for (DomTreeNode *DTN : reverse(Worklist)) {
    BasicBlock *BB = DTN->getBlock();
    // Only need to process the contents of this block if it is not part of a
    // subloop (which would already have been processed).
    if (inSubLoop(BB, CurLoop, LI))
      continue;

    for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
      Instruction &I = *--II;

      // If the instruction is dead, we would try to sink it because it isn't
      // used in the loop, instead, just delete it.
      if (isInstructionTriviallyDead(&I, TLI)) {
        LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
        salvageKnowledge(&I);
        salvageDebugInfo(I);
        ++II;
        eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
        Changed = true;
        continue;
      }

      // Check to see if we can sink this instruction to the exit blocks
      // of the loop.  We can do this if the all users of the instruction are
      // outside of the loop.  In this case, it doesn't even matter if the
      // operands of the instruction are loop invariant.
      //
      bool FreeInLoop = false;
      if (!I.mayHaveSideEffects() &&
          isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
                             ORE)) {
        if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
          if (!FreeInLoop) {
            ++II;
            salvageDebugInfo(I);
            eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
          }
          Changed = true;
        }
      }
    }
  }
  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  return Changed;
}

namespace {
// This is a helper class for hoistRegion to make it able to hoist control flow
// in order to be able to hoist phis. The way this works is that we initially
// start hoisting to the loop preheader, and when we see a loop invariant branch
// we make note of this. When we then come to hoist an instruction that's
// conditional on such a branch we duplicate the branch and the relevant control
// flow, then hoist the instruction into the block corresponding to its original
// block in the duplicated control flow.
class ControlFlowHoister {
private:
  // Information about the loop we are hoisting from
  LoopInfo *LI;
  DominatorTree *DT;
  Loop *CurLoop;
  MemorySSAUpdater *MSSAU;

  // A map of blocks in the loop to the block their instructions will be hoisted
  // to.
  DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;

  // The branches that we can hoist, mapped to the block that marks a
  // convergence point of their control flow.
  DenseMap<BranchInst *, BasicBlock *> HoistableBranches;

public:
  ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
                     MemorySSAUpdater *MSSAU)
      : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}

  void registerPossiblyHoistableBranch(BranchInst *BI) {
    // We can only hoist conditional branches with loop invariant operands.
    if (!ControlFlowHoisting || !BI->isConditional() ||
        !CurLoop->hasLoopInvariantOperands(BI))
      return;

    // The branch destinations need to be in the loop, and we don't gain
    // anything by duplicating conditional branches with duplicate successors,
    // as it's essentially the same as an unconditional branch.
    BasicBlock *TrueDest = BI->getSuccessor(0);
    BasicBlock *FalseDest = BI->getSuccessor(1);
    if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
        TrueDest == FalseDest)
      return;

    // We can hoist BI if one branch destination is the successor of the other,
    // or both have common successor which we check by seeing if the
    // intersection of their successors is non-empty.
    // TODO: This could be expanded to allowing branches where both ends
    // eventually converge to a single block.
    SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
    TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
    FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
    BasicBlock *CommonSucc = nullptr;
    if (TrueDestSucc.count(FalseDest)) {
      CommonSucc = FalseDest;
    } else if (FalseDestSucc.count(TrueDest)) {
      CommonSucc = TrueDest;
    } else {
      set_intersect(TrueDestSucc, FalseDestSucc);
      // If there's one common successor use that.
      if (TrueDestSucc.size() == 1)
        CommonSucc = *TrueDestSucc.begin();
      // If there's more than one pick whichever appears first in the block list
      // (we can't use the value returned by TrueDestSucc.begin() as it's
      // unpredicatable which element gets returned).
      else if (!TrueDestSucc.empty()) {
        Function *F = TrueDest->getParent();
        auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
        auto It = std::find_if(F->begin(), F->end(), IsSucc);
        assert(It != F->end() && "Could not find successor in function");
        CommonSucc = &*It;
      }
    }
    // The common successor has to be dominated by the branch, as otherwise
    // there will be some other path to the successor that will not be
    // controlled by this branch so any phi we hoist would be controlled by the
    // wrong condition. This also takes care of avoiding hoisting of loop back
    // edges.
    // TODO: In some cases this could be relaxed if the successor is dominated
    // by another block that's been hoisted and we can guarantee that the
    // control flow has been replicated exactly.
    if (CommonSucc && DT->dominates(BI, CommonSucc))
      HoistableBranches[BI] = CommonSucc;
  }

  bool canHoistPHI(PHINode *PN) {
    // The phi must have loop invariant operands.
    if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
      return false;
    // We can hoist phis if the block they are in is the target of hoistable
    // branches which cover all of the predecessors of the block.
    SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
    BasicBlock *BB = PN->getParent();
    for (BasicBlock *PredBB : predecessors(BB))
      PredecessorBlocks.insert(PredBB);
    // If we have less predecessor blocks than predecessors then the phi will
    // have more than one incoming value for the same block which we can't
    // handle.
    // TODO: This could be handled be erasing some of the duplicate incoming
    // values.
    if (PredecessorBlocks.size() != pred_size(BB))
      return false;
    for (auto &Pair : HoistableBranches) {
      if (Pair.second == BB) {
        // Which blocks are predecessors via this branch depends on if the
        // branch is triangle-like or diamond-like.
        if (Pair.first->getSuccessor(0) == BB) {
          PredecessorBlocks.erase(Pair.first->getParent());
          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
        } else if (Pair.first->getSuccessor(1) == BB) {
          PredecessorBlocks.erase(Pair.first->getParent());
          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
        } else {
          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
        }
      }
    }
    // PredecessorBlocks will now be empty if for every predecessor of BB we
    // found a hoistable branch source.
    return PredecessorBlocks.empty();
  }

  BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
    if (!ControlFlowHoisting)
      return CurLoop->getLoopPreheader();
    // If BB has already been hoisted, return that
    if (HoistDestinationMap.count(BB))
      return HoistDestinationMap[BB];

    // Check if this block is conditional based on a pending branch
    auto HasBBAsSuccessor =
        [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
          return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
                                       Pair.first->getSuccessor(1) == BB);
        };
    auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
                           HasBBAsSuccessor);

    // If not involved in a pending branch, hoist to preheader
    BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
    if (It == HoistableBranches.end()) {
      LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
                        << " as hoist destination for " << BB->getName()
                        << "\n");
      HoistDestinationMap[BB] = InitialPreheader;
      return InitialPreheader;
    }
    BranchInst *BI = It->first;
    assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
               HoistableBranches.end() &&
           "BB is expected to be the target of at most one branch");

    LLVMContext &C = BB->getContext();
    BasicBlock *TrueDest = BI->getSuccessor(0);
    BasicBlock *FalseDest = BI->getSuccessor(1);
    BasicBlock *CommonSucc = HoistableBranches[BI];
    BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());

    // Create hoisted versions of blocks that currently don't have them
    auto CreateHoistedBlock = [&](BasicBlock *Orig) {
      if (HoistDestinationMap.count(Orig))
        return HoistDestinationMap[Orig];
      BasicBlock *New =
          BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
      HoistDestinationMap[Orig] = New;
      DT->addNewBlock(New, HoistTarget);
      if (CurLoop->getParentLoop())
        CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
      ++NumCreatedBlocks;
      LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
                        << " as hoist destination for " << Orig->getName()
                        << "\n");
      return New;
    };
    BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
    BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
    BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);

    // Link up these blocks with branches.
    if (!HoistCommonSucc->getTerminator()) {
      // The new common successor we've generated will branch to whatever that
      // hoist target branched to.
      BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
      assert(TargetSucc && "Expected hoist target to have a single successor");
      HoistCommonSucc->moveBefore(TargetSucc);
      BranchInst::Create(TargetSucc, HoistCommonSucc);
    }
    if (!HoistTrueDest->getTerminator()) {
      HoistTrueDest->moveBefore(HoistCommonSucc);
      BranchInst::Create(HoistCommonSucc, HoistTrueDest);
    }
    if (!HoistFalseDest->getTerminator()) {
      HoistFalseDest->moveBefore(HoistCommonSucc);
      BranchInst::Create(HoistCommonSucc, HoistFalseDest);
    }

    // If BI is being cloned to what was originally the preheader then
    // HoistCommonSucc will now be the new preheader.
    if (HoistTarget == InitialPreheader) {
      // Phis in the loop header now need to use the new preheader.
      InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
      if (MSSAU)
        MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
            HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
      // The new preheader dominates the loop header.
      DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
      DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
      DT->changeImmediateDominator(HeaderNode, PreheaderNode);
      // The preheader hoist destination is now the new preheader, with the
      // exception of the hoist destination of this branch.
      for (auto &Pair : HoistDestinationMap)
        if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
          Pair.second = HoistCommonSucc;
    }

    // Now finally clone BI.
    ReplaceInstWithInst(
        HoistTarget->getTerminator(),
        BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
    ++NumClonedBranches;

    assert(CurLoop->getLoopPreheader() &&
           "Hoisting blocks should not have destroyed preheader");
    return HoistDestinationMap[BB];
  }
};
} // namespace

/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in depth first
/// order w.r.t the DominatorTree.  This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
                       DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
                       AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
                       ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
                       SinkAndHoistLICMFlags &Flags,
                       OptimizationRemarkEmitter *ORE) {
  // Verify inputs.
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
         CurLoop != nullptr && SafetyInfo != nullptr &&
         "Unexpected input to hoistRegion.");
  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
         "Either AliasSetTracker or MemorySSA should be initialized.");

  ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);

  // Keep track of instructions that have been hoisted, as they may need to be
  // re-hoisted if they end up not dominating all of their uses.
  SmallVector<Instruction *, 16> HoistedInstructions;

  // For PHI hoisting to work we need to hoist blocks before their successors.
  // We can do this by iterating through the blocks in the loop in reverse
  // post-order.
  LoopBlocksRPO Worklist(CurLoop);
  Worklist.perform(LI);
  bool Changed = false;
  for (BasicBlock *BB : Worklist) {
    // Only need to process the contents of this block if it is not part of a
    // subloop (which would already have been processed).
    if (inSubLoop(BB, CurLoop, LI))
      continue;

    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
      Instruction &I = *II++;
      // Try constant folding this instruction.  If all the operands are
      // constants, it is technically hoistable, but it would be better to
      // just fold it.
      if (Constant *C = ConstantFoldInstruction(
              &I, I.getModule()->getDataLayout(), TLI)) {
        LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
                          << '\n');
        if (CurAST)
          CurAST->copyValue(&I, C);
        // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
        I.replaceAllUsesWith(C);
        if (isInstructionTriviallyDead(&I, TLI))
          eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
        Changed = true;
        continue;
      }

      // Try hoisting the instruction out to the preheader.  We can only do
      // this if all of the operands of the instruction are loop invariant and
      // if it is safe to hoist the instruction.
      // TODO: It may be safe to hoist if we are hoisting to a conditional block
      // and we have accurately duplicated the control flow from the loop header
      // to that block.
      if (CurLoop->hasLoopInvariantOperands(&I) &&
          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
                             ORE) &&
          isSafeToExecuteUnconditionally(
              I, DT, CurLoop, SafetyInfo, ORE,
              CurLoop->getLoopPreheader()->getTerminator())) {
        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
              MSSAU, SE, ORE);
        HoistedInstructions.push_back(&I);
        Changed = true;
        continue;
      }

      // Attempt to remove floating point division out of the loop by
      // converting it to a reciprocal multiplication.
      if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
          CurLoop->isLoopInvariant(I.getOperand(1))) {
        auto Divisor = I.getOperand(1);
        auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
        auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
        ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
        SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
        ReciprocalDivisor->insertBefore(&I);

        auto Product =
            BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
        Product->setFastMathFlags(I.getFastMathFlags());
        SafetyInfo->insertInstructionTo(Product, I.getParent());
        Product->insertAfter(&I);
        I.replaceAllUsesWith(Product);
        eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);

        hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
              SafetyInfo, MSSAU, SE, ORE);
        HoistedInstructions.push_back(ReciprocalDivisor);
        Changed = true;
        continue;
      }

      auto IsInvariantStart = [&](Instruction &I) {
        using namespace PatternMatch;
        return I.use_empty() &&
               match(&I, m_Intrinsic<Intrinsic::invariant_start>());
      };
      auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
        return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
               SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
      };
      if ((IsInvariantStart(I) || isGuard(&I)) &&
          CurLoop->hasLoopInvariantOperands(&I) &&
          MustExecuteWithoutWritesBefore(I)) {
        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
              MSSAU, SE, ORE);
        HoistedInstructions.push_back(&I);
        Changed = true;
        continue;
      }

      if (PHINode *PN = dyn_cast<PHINode>(&I)) {
        if (CFH.canHoistPHI(PN)) {
          // Redirect incoming blocks first to ensure that we create hoisted
          // versions of those blocks before we hoist the phi.
          for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
            PN->setIncomingBlock(
                i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
          hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
                MSSAU, SE, ORE);
          assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
          Changed = true;
          continue;
        }
      }

      // Remember possibly hoistable branches so we can actually hoist them
      // later if needed.
      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
        CFH.registerPossiblyHoistableBranch(BI);
    }
  }

  // If we hoisted instructions to a conditional block they may not dominate
  // their uses that weren't hoisted (such as phis where some operands are not
  // loop invariant). If so make them unconditional by moving them to their
  // immediate dominator. We iterate through the instructions in reverse order
  // which ensures that when we rehoist an instruction we rehoist its operands,
  // and also keep track of where in the block we are rehoisting to to make sure
  // that we rehoist instructions before the instructions that use them.
  Instruction *HoistPoint = nullptr;
  if (ControlFlowHoisting) {
    for (Instruction *I : reverse(HoistedInstructions)) {
      if (!llvm::all_of(I->uses(),
                        [&](Use &U) { return DT->dominates(I, U); })) {
        BasicBlock *Dominator =
            DT->getNode(I->getParent())->getIDom()->getBlock();
        if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
          if (HoistPoint)
            assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
                   "New hoist point expected to dominate old hoist point");
          HoistPoint = Dominator->getTerminator();
        }
        LLVM_DEBUG(dbgs() << "LICM rehoisting to "
                          << HoistPoint->getParent()->getName()
                          << ": " << *I << "\n");
        moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
        HoistPoint = I;
        Changed = true;
      }
    }
  }
  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

    // Now that we've finished hoisting make sure that LI and DT are still
    // valid.
#ifdef EXPENSIVE_CHECKS
  if (Changed) {
    assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
           "Dominator tree verification failed");
    LI->verify(*DT);
  }
#endif

  return Changed;
}

// Return true if LI is invariant within scope of the loop. LI is invariant if
// CurLoop is dominated by an invariant.start representing the same memory
// location and size as the memory location LI loads from, and also the
// invariant.start has no uses.
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
                                  Loop *CurLoop) {
  Value *Addr = LI->getOperand(0);
  const DataLayout &DL = LI->getModule()->getDataLayout();
  const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());

  // if the type is i8 addrspace(x)*, we know this is the type of
  // llvm.invariant.start operand
  auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
                                     LI->getPointerAddressSpace());
  unsigned BitcastsVisited = 0;
  // Look through bitcasts until we reach the i8* type (this is invariant.start
  // operand type).
  while (Addr->getType() != PtrInt8Ty) {
    auto *BC = dyn_cast<BitCastInst>(Addr);
    // Avoid traversing high number of bitcast uses.
    if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
      return false;
    Addr = BC->getOperand(0);
  }

  unsigned UsesVisited = 0;
  // Traverse all uses of the load operand value, to see if invariant.start is
  // one of the uses, and whether it dominates the load instruction.
  for (auto *U : Addr->users()) {
    // Avoid traversing for Load operand with high number of users.
    if (++UsesVisited > MaxNumUsesTraversed)
      return false;
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
    // If there are escaping uses of invariant.start instruction, the load maybe
    // non-invariant.
    if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
        !II->use_empty())
      continue;
    unsigned InvariantSizeInBits =
        cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
    // Confirm the invariant.start location size contains the load operand size
    // in bits. Also, the invariant.start should dominate the load, and we
    // should not hoist the load out of a loop that contains this dominating
    // invariant.start.
    if (LocSizeInBits <= InvariantSizeInBits &&
        DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
      return true;
  }

  return false;
}

namespace {
/// Return true if-and-only-if we know how to (mechanically) both hoist and
/// sink a given instruction out of a loop.  Does not address legality
/// concerns such as aliasing or speculation safety.
bool isHoistableAndSinkableInst(Instruction &I) {
  // Only these instructions are hoistable/sinkable.
  return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
          isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
          isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
          isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
          isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
          isa<InsertValueInst>(I) || isa<FreezeInst>(I));
}
/// Return true if all of the alias sets within this AST are known not to
/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
                const Loop *L) {
  if (CurAST) {
    for (AliasSet &AS : *CurAST) {
      if (!AS.isForwardingAliasSet() && AS.isMod()) {
        return false;
      }
    }
    return true;
  } else { /*MSSAU*/
    for (auto *BB : L->getBlocks())
      if (MSSAU->getMemorySSA()->getBlockDefs(BB))
        return false;
    return true;
  }
}

/// Return true if I is the only Instruction with a MemoryAccess in L.
bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
                        const MemorySSAUpdater *MSSAU) {
  for (auto *BB : L->getBlocks())
    if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
      int NotAPhi = 0;
      for (const auto &Acc : *Accs) {
        if (isa<MemoryPhi>(&Acc))
          continue;
        const auto *MUD = cast<MemoryUseOrDef>(&Acc);
        if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
          return false;
      }
    }
  return true;
}
}

bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
                              Loop *CurLoop, AliasSetTracker *CurAST,
                              MemorySSAUpdater *MSSAU,
                              bool TargetExecutesOncePerLoop,
                              SinkAndHoistLICMFlags *Flags,
                              OptimizationRemarkEmitter *ORE) {
  // If we don't understand the instruction, bail early.
  if (!isHoistableAndSinkableInst(I))
    return false;

  MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
  if (MSSA)
    assert(Flags != nullptr && "Flags cannot be null.");

  // Loads have extra constraints we have to verify before we can hoist them.
  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    if (!LI->isUnordered())
      return false; // Don't sink/hoist volatile or ordered atomic loads!

    // Loads from constant memory are always safe to move, even if they end up
    // in the same alias set as something that ends up being modified.
    if (AA->pointsToConstantMemory(LI->getOperand(0)))
      return true;
    if (LI->hasMetadata(LLVMContext::MD_invariant_load))
      return true;

    if (LI->isAtomic() && !TargetExecutesOncePerLoop)
      return false; // Don't risk duplicating unordered loads

    // This checks for an invariant.start dominating the load.
    if (isLoadInvariantInLoop(LI, DT, CurLoop))
      return true;

    bool Invalidated;
    if (CurAST)
      Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
                                             CurLoop, AA);
    else
      Invalidated = pointerInvalidatedByLoopWithMSSA(
          MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
    // Check loop-invariant address because this may also be a sinkable load
    // whose address is not necessarily loop-invariant.
    if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
               << "failed to move load with loop-invariant address "
                  "because the loop may invalidate its value";
      });

    return !Invalidated;
  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
    // Don't sink or hoist dbg info; it's legal, but not useful.
    if (isa<DbgInfoIntrinsic>(I))
      return false;

    // Don't sink calls which can throw.
    if (CI->mayThrow())
      return false;

    using namespace PatternMatch;
    if (match(CI, m_Intrinsic<Intrinsic::assume>()))
      // Assumes don't actually alias anything or throw
      return true;

    if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
      // Widenable conditions don't actually alias anything or throw
      return true;

    // Handle simple cases by querying alias analysis.
    FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
    if (Behavior == FMRB_DoesNotAccessMemory)
      return true;
    if (AAResults::onlyReadsMemory(Behavior)) {
      // A readonly argmemonly function only reads from memory pointed to by
      // it's arguments with arbitrary offsets.  If we can prove there are no
      // writes to this memory in the loop, we can hoist or sink.
      if (AAResults::onlyAccessesArgPointees(Behavior)) {
        // TODO: expand to writeable arguments
        for (Value *Op : CI->arg_operands())
          if (Op->getType()->isPointerTy()) {
            bool Invalidated;
            if (CurAST)
              Invalidated = pointerInvalidatedByLoop(
                  MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
                  CurAST, CurLoop, AA);
            else
              Invalidated = pointerInvalidatedByLoopWithMSSA(
                  MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
                  *Flags);
            if (Invalidated)
              return false;
          }
        return true;
      }

      // If this call only reads from memory and there are no writes to memory
      // in the loop, we can hoist or sink the call as appropriate.
      if (isReadOnly(CurAST, MSSAU, CurLoop))
        return true;
    }

    // FIXME: This should use mod/ref information to see if we can hoist or
    // sink the call.

    return false;
  } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
    // Fences alias (most) everything to provide ordering.  For the moment,
    // just give up if there are any other memory operations in the loop.
    if (CurAST) {
      auto Begin = CurAST->begin();
      assert(Begin != CurAST->end() && "must contain FI");
      if (std::next(Begin) != CurAST->end())
        // constant memory for instance, TODO: handle better
        return false;
      auto *UniqueI = Begin->getUniqueInstruction();
      if (!UniqueI)
        // other memory op, give up
        return false;
      (void)FI; // suppress unused variable warning
      assert(UniqueI == FI && "AS must contain FI");
      return true;
    } else // MSSAU
      return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
  } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
    if (!SI->isUnordered())
      return false; // Don't sink/hoist volatile or ordered atomic store!

    // We can only hoist a store that we can prove writes a value which is not
    // read or overwritten within the loop.  For those cases, we fallback to
    // load store promotion instead.  TODO: We can extend this to cases where
    // there is exactly one write to the location and that write dominates an
    // arbitrary number of reads in the loop.
    if (CurAST) {
      auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));

      if (AS.isRef() || !AS.isMustAlias())
        // Quick exit test, handled by the full path below as well.
        return false;
      auto *UniqueI = AS.getUniqueInstruction();
      if (!UniqueI)
        // other memory op, give up
        return false;
      assert(UniqueI == SI && "AS must contain SI");
      return true;
    } else { // MSSAU
      if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
        return true;
      // If there are more accesses than the Promotion cap, give up, we're not
      // walking a list that long.
      if (Flags->NoOfMemAccTooLarge)
        return false;
      // Check store only if there's still "quota" to check clobber.
      if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
        return false;
      // If there are interfering Uses (i.e. their defining access is in the
      // loop), or ordered loads (stored as Defs!), don't move this store.
      // Could do better here, but this is conservatively correct.
      // TODO: Cache set of Uses on the first walk in runOnLoop, update when
      // moving accesses. Can also extend to dominating uses.
      auto *SIMD = MSSA->getMemoryAccess(SI);
      for (auto *BB : CurLoop->getBlocks())
        if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
          for (const auto &MA : *Accesses)
            if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
              auto *MD = MU->getDefiningAccess();
              if (!MSSA->isLiveOnEntryDef(MD) &&
                  CurLoop->contains(MD->getBlock()))
                return false;
              // Disable hoisting past potentially interfering loads. Optimized
              // Uses may point to an access outside the loop, as getClobbering
              // checks the previous iteration when walking the backedge.
              // FIXME: More precise: no Uses that alias SI.
              if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
                return false;
            } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
              if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
                (void)LI; // Silence warning.
                assert(!LI->isUnordered() && "Expected unordered load");
                return false;
              }
              // Any call, while it may not be clobbering SI, it may be a use.
              if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
                // Check if the call may read from the memory locattion written
                // to by SI. Check CI's attributes and arguments; the number of
                // such checks performed is limited above by NoOfMemAccTooLarge.
                ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
                if (isModOrRefSet(MRI))
                  return false;
              }
            }
        }

      auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
      Flags->LicmMssaOptCounter++;
      // If there are no clobbering Defs in the loop, store is safe to hoist.
      return MSSA->isLiveOnEntryDef(Source) ||
             !CurLoop->contains(Source->getBlock());
    }
  }

  assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");

  // We've established mechanical ability and aliasing, it's up to the caller
  // to check fault safety
  return true;
}

/// Returns true if a PHINode is a trivially replaceable with an
/// Instruction.
/// This is true when all incoming values are that instruction.
/// This pattern occurs most often with LCSSA PHI nodes.
///
static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
  for (const Value *IncValue : PN.incoming_values())
    if (IncValue != &I)
      return false;

  return true;
}

/// Return true if the instruction is free in the loop.
static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
                         const TargetTransformInfo *TTI) {

  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
    if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
        TargetTransformInfo::TCC_Free)
      return false;
    // For a GEP, we cannot simply use getUserCost because currently it
    // optimistically assume that a GEP will fold into addressing mode
    // regardless of its users.
    const BasicBlock *BB = GEP->getParent();
    for (const User *U : GEP->users()) {
      const Instruction *UI = cast<Instruction>(U);
      if (CurLoop->contains(UI) &&
          (BB != UI->getParent() ||
           (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
        return false;
    }
    return true;
  } else
    return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
           TargetTransformInfo::TCC_Free;
}

/// Return true if the only users of this instruction are outside of
/// the loop. If this is true, we can sink the instruction to the exit
/// blocks of the loop.
///
/// We also return true if the instruction could be folded away in lowering.
/// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
                                  const LoopSafetyInfo *SafetyInfo,
                                  TargetTransformInfo *TTI, bool &FreeInLoop) {
  const auto &BlockColors = SafetyInfo->getBlockColors();
  bool IsFree = isFreeInLoop(I, CurLoop, TTI);
  for (const User *U : I.users()) {
    const Instruction *UI = cast<Instruction>(U);
    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
      const BasicBlock *BB = PN->getParent();
      // We cannot sink uses in catchswitches.
      if (isa<CatchSwitchInst>(BB->getTerminator()))
        return false;

      // We need to sink a callsite to a unique funclet.  Avoid sinking if the
      // phi use is too muddled.
      if (isa<CallInst>(I))
        if (!BlockColors.empty() &&
            BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
          return false;
    }

    if (CurLoop->contains(UI)) {
      if (IsFree) {
        FreeInLoop = true;
        continue;
      }
      return false;
    }
  }
  return true;
}

static Instruction *cloneInstructionInExitBlock(
    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
  Instruction *New;
  if (auto *CI = dyn_cast<CallInst>(&I)) {
    const auto &BlockColors = SafetyInfo->getBlockColors();

    // Sinking call-sites need to be handled differently from other
    // instructions.  The cloned call-site needs a funclet bundle operand
    // appropriate for its location in the CFG.
    SmallVector<OperandBundleDef, 1> OpBundles;
    for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
         BundleIdx != BundleEnd; ++BundleIdx) {
      OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
      if (Bundle.getTagID() == LLVMContext::OB_funclet)
        continue;

      OpBundles.emplace_back(Bundle);
    }

    if (!BlockColors.empty()) {
      const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
      assert(CV.size() == 1 && "non-unique color for exit block!");
      BasicBlock *BBColor = CV.front();
      Instruction *EHPad = BBColor->getFirstNonPHI();
      if (EHPad->isEHPad())
        OpBundles.emplace_back("funclet", EHPad);
    }

    New = CallInst::Create(CI, OpBundles);
  } else {
    New = I.clone();
  }

  ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
  if (!I.getName().empty())
    New->setName(I.getName() + ".le");

  if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
    // Create a new MemoryAccess and let MemorySSA set its defining access.
    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
        New, nullptr, New->getParent(), MemorySSA::Beginning);
    if (NewMemAcc) {
      if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
        MSSAU->insertDef(MemDef, /*RenameUses=*/true);
      else {
        auto *MemUse = cast<MemoryUse>(NewMemAcc);
        MSSAU->insertUse(MemUse, /*RenameUses=*/true);
      }
    }
  }

  // Build LCSSA PHI nodes for any in-loop operands. Note that this is
  // particularly cheap because we can rip off the PHI node that we're
  // replacing for the number and blocks of the predecessors.
  // OPT: If this shows up in a profile, we can instead finish sinking all
  // invariant instructions, and then walk their operands to re-establish
  // LCSSA. That will eliminate creating PHI nodes just to nuke them when
  // sinking bottom-up.
  for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
       ++OI)
    if (Instruction *OInst = dyn_cast<Instruction>(*OI))
      if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
        if (!OLoop->contains(&PN)) {
          PHINode *OpPN =
              PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
                              OInst->getName() + ".lcssa", &ExitBlock.front());
          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
            OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
          *OI = OpPN;
        }
  return New;
}

static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
                             AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
  if (AST)
    AST->deleteValue(&I);
  if (MSSAU)
    MSSAU->removeMemoryAccess(&I);
  SafetyInfo.removeInstruction(&I);
  I.eraseFromParent();
}

static void moveInstructionBefore(Instruction &I, Instruction &Dest,
                                  ICFLoopSafetyInfo &SafetyInfo,
                                  MemorySSAUpdater *MSSAU,
                                  ScalarEvolution *SE) {
  SafetyInfo.removeInstruction(&I);
  SafetyInfo.insertInstructionTo(&I, Dest.getParent());
  I.moveBefore(&Dest);
  if (MSSAU)
    if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
            MSSAU->getMemorySSA()->getMemoryAccess(&I)))
      MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
                         MemorySSA::BeforeTerminator);
  if (SE)
    SE->forgetValue(&I);
}

static Instruction *sinkThroughTriviallyReplaceablePHI(
    PHINode *TPN, Instruction *I, LoopInfo *LI,
    SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
    const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
    MemorySSAUpdater *MSSAU) {
  assert(isTriviallyReplaceablePHI(*TPN, *I) &&
         "Expect only trivially replaceable PHI");
  BasicBlock *ExitBlock = TPN->getParent();
  Instruction *New;
  auto It = SunkCopies.find(ExitBlock);
  if (It != SunkCopies.end())
    New = It->second;
  else
    New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
        *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
  return New;
}

static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
  BasicBlock *BB = PN->getParent();
  if (!BB->canSplitPredecessors())
    return false;
  // It's not impossible to split EHPad blocks, but if BlockColors already exist
  // it require updating BlockColors for all offspring blocks accordingly. By
  // skipping such corner case, we can make updating BlockColors after splitting
  // predecessor fairly simple.
  if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
    return false;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *BBPred = *PI;
    if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
        isa<CallBrInst>(BBPred->getTerminator()))
      return false;
  }
  return true;
}

static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
                                        LoopInfo *LI, const Loop *CurLoop,
                                        LoopSafetyInfo *SafetyInfo,
                                        MemorySSAUpdater *MSSAU) {
#ifndef NDEBUG
  SmallVector<BasicBlock *, 32> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
                                             ExitBlocks.end());
#endif
  BasicBlock *ExitBB = PN->getParent();
  assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");

  // Split predecessors of the loop exit to make instructions in the loop are
  // exposed to exit blocks through trivially replaceable PHIs while keeping the
  // loop in the canonical form where each predecessor of each exit block should
  // be contained within the loop. For example, this will convert the loop below
  // from
  //
  // LB1:
  //   %v1 =
  //   br %LE, %LB2
  // LB2:
  //   %v2 =
  //   br %LE, %LB1
  // LE:
  //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
  //
  // to
  //
  // LB1:
  //   %v1 =
  //   br %LE.split, %LB2
  // LB2:
  //   %v2 =
  //   br %LE.split2, %LB1
  // LE.split:
  //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
  //   br %LE
  // LE.split2:
  //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
  //   br %LE
  // LE:
  //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
  //
  const auto &BlockColors = SafetyInfo->getBlockColors();
  SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
  while (!PredBBs.empty()) {
    BasicBlock *PredBB = *PredBBs.begin();
    assert(CurLoop->contains(PredBB) &&
           "Expect all predecessors are in the loop");
    if (PN->getBasicBlockIndex(PredBB) >= 0) {
      BasicBlock *NewPred = SplitBlockPredecessors(
          ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
      // Since we do not allow splitting EH-block with BlockColors in
      // canSplitPredecessors(), we can simply assign predecessor's color to
      // the new block.
      if (!BlockColors.empty())
        // Grab a reference to the ColorVector to be inserted before getting the
        // reference to the vector we are copying because inserting the new
        // element in BlockColors might cause the map to be reallocated.
        SafetyInfo->copyColors(NewPred, PredBB);
    }
    PredBBs.remove(PredBB);
  }
}

/// When an instruction is found to only be used outside of the loop, this
/// function moves it to the exit blocks and patches up SSA form as needed.
/// This method is guaranteed to remove the original instruction from its
/// position, and may either delete it or move it to outside of the loop.
///
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
                 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
                 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
  LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
           << "sinking " << ore::NV("Inst", &I);
  });
  bool Changed = false;
  if (isa<LoadInst>(I))
    ++NumMovedLoads;
  else if (isa<CallInst>(I))
    ++NumMovedCalls;
  ++NumSunk;

  // Iterate over users to be ready for actual sinking. Replace users via
  // unreachable blocks with undef and make all user PHIs trivially replaceable.
  SmallPtrSet<Instruction *, 8> VisitedUsers;
  for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
    auto *User = cast<Instruction>(*UI);
    Use &U = UI.getUse();
    ++UI;

    if (VisitedUsers.count(User) || CurLoop->contains(User))
      continue;

    if (!DT->isReachableFromEntry(User->getParent())) {
      U = UndefValue::get(I.getType());
      Changed = true;
      continue;
    }

    // The user must be a PHI node.
    PHINode *PN = cast<PHINode>(User);

    // Surprisingly, instructions can be used outside of loops without any
    // exits.  This can only happen in PHI nodes if the incoming block is
    // unreachable.
    BasicBlock *BB = PN->getIncomingBlock(U);
    if (!DT->isReachableFromEntry(BB)) {
      U = UndefValue::get(I.getType());
      Changed = true;
      continue;
    }

    VisitedUsers.insert(PN);
    if (isTriviallyReplaceablePHI(*PN, I))
      continue;

    if (!canSplitPredecessors(PN, SafetyInfo))
      return Changed;

    // Split predecessors of the PHI so that we can make users trivially
    // replaceable.
    splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);

    // Should rebuild the iterators, as they may be invalidated by
    // splitPredecessorsOfLoopExit().
    UI = I.user_begin();
    UE = I.user_end();
  }

  if (VisitedUsers.empty())
    return Changed;

#ifndef NDEBUG
  SmallVector<BasicBlock *, 32> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
                                             ExitBlocks.end());
#endif

  // Clones of this instruction. Don't create more than one per exit block!
  SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;

  // If this instruction is only used outside of the loop, then all users are
  // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
  // the instruction.
  SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
  for (auto *UI : Users) {
    auto *User = cast<Instruction>(UI);

    if (CurLoop->contains(User))
      continue;

    PHINode *PN = cast<PHINode>(User);
    assert(ExitBlockSet.count(PN->getParent()) &&
           "The LCSSA PHI is not in an exit block!");
    // The PHI must be trivially replaceable.
    Instruction *New = sinkThroughTriviallyReplaceablePHI(
        PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
    PN->replaceAllUsesWith(New);
    eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
    Changed = true;
  }
  return Changed;
}

/// When an instruction is found to only use loop invariant operands that
/// is safe to hoist, this instruction is called to do the dirty work.
///
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
                  OptimizationRemarkEmitter *ORE) {
  LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
                    << "\n");
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
                                                         << ore::NV("Inst", &I);
  });

  // Metadata can be dependent on conditions we are hoisting above.
  // Conservatively strip all metadata on the instruction unless we were
  // guaranteed to execute I if we entered the loop, in which case the metadata
  // is valid in the loop preheader.
  if (I.hasMetadataOtherThanDebugLoc() &&
      // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
      // time in isGuaranteedToExecute if we don't actually have anything to
      // drop.  It is a compile time optimization, not required for correctness.
      !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
    I.dropUnknownNonDebugMetadata();

  if (isa<PHINode>(I))
    // Move the new node to the end of the phi list in the destination block.
    moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
  else
    // Move the new node to the destination block, before its terminator.
    moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);

  // Apply line 0 debug locations when we are moving instructions to different
  // basic blocks because we want to avoid jumpy line tables.
  if (const DebugLoc &DL = I.getDebugLoc())
    I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));

  if (isa<LoadInst>(I))
    ++NumMovedLoads;
  else if (isa<CallInst>(I))
    ++NumMovedCalls;
  ++NumHoisted;
}

/// Only sink or hoist an instruction if it is not a trapping instruction,
/// or if the instruction is known not to trap when moved to the preheader.
/// or if it is a trapping instruction and is guaranteed to execute.
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
                                           const DominatorTree *DT,
                                           const Loop *CurLoop,
                                           const LoopSafetyInfo *SafetyInfo,
                                           OptimizationRemarkEmitter *ORE,
                                           const Instruction *CtxI) {
  if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
    return true;

  bool GuaranteedToExecute =
      SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);

  if (!GuaranteedToExecute) {
    auto *LI = dyn_cast<LoadInst>(&Inst);
    if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
               << "failed to hoist load with loop-invariant address "
                  "because load is conditionally executed";
      });
  }

  return GuaranteedToExecute;
}

namespace {
class LoopPromoter : public LoadAndStorePromoter {
  Value *SomePtr; // Designated pointer to store to.
  const SmallSetVector<Value *, 8> &PointerMustAliases;
  SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
  SmallVectorImpl<Instruction *> &LoopInsertPts;
  SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
  PredIteratorCache &PredCache;
  AliasSetTracker &AST;
  MemorySSAUpdater *MSSAU;
  LoopInfo &LI;
  DebugLoc DL;
  int Alignment;
  bool UnorderedAtomic;
  AAMDNodes AATags;
  ICFLoopSafetyInfo &SafetyInfo;

  Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
    if (Instruction *I = dyn_cast<Instruction>(V))
      if (Loop *L = LI.getLoopFor(I->getParent()))
        if (!L->contains(BB)) {
          // We need to create an LCSSA PHI node for the incoming value and
          // store that.
          PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
                                        I->getName() + ".lcssa", &BB->front());
          for (BasicBlock *Pred : PredCache.get(BB))
            PN->addIncoming(I, Pred);
          return PN;
        }
    return V;
  }

public:
  LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
               const SmallSetVector<Value *, 8> &PMA,
               SmallVectorImpl<BasicBlock *> &LEB,
               SmallVectorImpl<Instruction *> &LIP,
               SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
               AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
               DebugLoc dl, int alignment, bool UnorderedAtomic,
               const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
      : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
        LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
        PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
        Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
        SafetyInfo(SafetyInfo) {}

  bool isInstInList(Instruction *I,
                    const SmallVectorImpl<Instruction *> &) const override {
    Value *Ptr;
    if (LoadInst *LI = dyn_cast<LoadInst>(I))
      Ptr = LI->getOperand(0);
    else
      Ptr = cast<StoreInst>(I)->getPointerOperand();
    return PointerMustAliases.count(Ptr);
  }

  void doExtraRewritesBeforeFinalDeletion() override {
    // Insert stores after in the loop exit blocks.  Each exit block gets a
    // store of the live-out values that feed them.  Since we've already told
    // the SSA updater about the defs in the loop and the preheader
    // definition, it is all set and we can start using it.
    for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
      BasicBlock *ExitBlock = LoopExitBlocks[i];
      Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
      LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
      Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
      Instruction *InsertPos = LoopInsertPts[i];
      StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
      if (UnorderedAtomic)
        NewSI->setOrdering(AtomicOrdering::Unordered);
      NewSI->setAlignment(Align(Alignment));
      NewSI->setDebugLoc(DL);
      if (AATags)
        NewSI->setAAMetadata(AATags);

      if (MSSAU) {
        MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
        MemoryAccess *NewMemAcc;
        if (!MSSAInsertPoint) {
          NewMemAcc = MSSAU->createMemoryAccessInBB(
              NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
        } else {
          NewMemAcc =
              MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
        }
        MSSAInsertPts[i] = NewMemAcc;
        MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
        // FIXME: true for safety, false may still be correct.
      }
    }
  }

  void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
    // Update alias analysis.
    AST.copyValue(LI, V);
  }
  void instructionDeleted(Instruction *I) const override {
    SafetyInfo.removeInstruction(I);
    AST.deleteValue(I);
    if (MSSAU)
      MSSAU->removeMemoryAccess(I);
  }
};


/// Return true iff we can prove that a caller of this function can not inspect
/// the contents of the provided object in a well defined program.
bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
  if (isa<AllocaInst>(Object))
    // Since the alloca goes out of scope, we know the caller can't retain a
    // reference to it and be well defined.  Thus, we don't need to check for
    // capture.
    return true;

  // For all other objects we need to know that the caller can't possibly
  // have gotten a reference to the object.  There are two components of
  // that:
  //   1) Object can't be escaped by this function.  This is what
  //      PointerMayBeCaptured checks.
  //   2) Object can't have been captured at definition site.  For this, we
  //      need to know the return value is noalias.  At the moment, we use a
  //      weaker condition and handle only AllocLikeFunctions (which are
  //      known to be noalias).  TODO
  return isAllocLikeFn(Object, TLI) &&
    !PointerMayBeCaptured(Object, true, true);
}

} // namespace

/// Try to promote memory values to scalars by sinking stores out of the
/// loop and moving loads to before the loop.  We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant.
///
bool llvm::promoteLoopAccessesToScalars(
    const SmallSetVector<Value *, 8> &PointerMustAliases,
    SmallVectorImpl<BasicBlock *> &ExitBlocks,
    SmallVectorImpl<Instruction *> &InsertPts,
    SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
    LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
    Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
    ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
  // Verify inputs.
  assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
         CurAST != nullptr && SafetyInfo != nullptr &&
         "Unexpected Input to promoteLoopAccessesToScalars");

  Value *SomePtr = *PointerMustAliases.begin();
  BasicBlock *Preheader = CurLoop->getLoopPreheader();

  // It is not safe to promote a load/store from the loop if the load/store is
  // conditional.  For example, turning:
  //
  //    for () { if (c) *P += 1; }
  //
  // into:
  //
  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
  //
  // is not safe, because *P may only be valid to access if 'c' is true.
  //
  // The safety property divides into two parts:
  // p1) The memory may not be dereferenceable on entry to the loop.  In this
  //    case, we can't insert the required load in the preheader.
  // p2) The memory model does not allow us to insert a store along any dynamic
  //    path which did not originally have one.
  //
  // If at least one store is guaranteed to execute, both properties are
  // satisfied, and promotion is legal.
  //
  // This, however, is not a necessary condition. Even if no store/load is
  // guaranteed to execute, we can still establish these properties.
  // We can establish (p1) by proving that hoisting the load into the preheader
  // is safe (i.e. proving dereferenceability on all paths through the loop). We
  // can use any access within the alias set to prove dereferenceability,
  // since they're all must alias.
  //
  // There are two ways establish (p2):
  // a) Prove the location is thread-local. In this case the memory model
  // requirement does not apply, and stores are safe to insert.
  // b) Prove a store dominates every exit block. In this case, if an exit
  // blocks is reached, the original dynamic path would have taken us through
  // the store, so inserting a store into the exit block is safe. Note that this
  // is different from the store being guaranteed to execute. For instance,
  // if an exception is thrown on the first iteration of the loop, the original
  // store is never executed, but the exit blocks are not executed either.

  bool DereferenceableInPH = false;
  bool SafeToInsertStore = false;

  SmallVector<Instruction *, 64> LoopUses;

  // We start with an alignment of one and try to find instructions that allow
  // us to prove better alignment.
  Align Alignment;
  // Keep track of which types of access we see
  bool SawUnorderedAtomic = false;
  bool SawNotAtomic = false;
  AAMDNodes AATags;

  const DataLayout &MDL = Preheader->getModule()->getDataLayout();

  bool IsKnownThreadLocalObject = false;
  if (SafetyInfo->anyBlockMayThrow()) {
    // If a loop can throw, we have to insert a store along each unwind edge.
    // That said, we can't actually make the unwind edge explicit. Therefore,
    // we have to prove that the store is dead along the unwind edge.  We do
    // this by proving that the caller can't have a reference to the object
    // after return and thus can't possibly load from the object.
    Value *Object = GetUnderlyingObject(SomePtr, MDL);
    if (!isKnownNonEscaping(Object, TLI))
      return false;
    // Subtlety: Alloca's aren't visible to callers, but *are* potentially
    // visible to other threads if captured and used during their lifetimes.
    IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
  }

  // Check that all of the pointers in the alias set have the same type.  We
  // cannot (yet) promote a memory location that is loaded and stored in
  // different sizes.  While we are at it, collect alignment and AA info.
  for (Value *ASIV : PointerMustAliases) {
    // Check that all of the pointers in the alias set have the same type.  We
    // cannot (yet) promote a memory location that is loaded and stored in
    // different sizes.
    if (SomePtr->getType() != ASIV->getType())
      return false;

    for (User *U : ASIV->users()) {
      // Ignore instructions that are outside the loop.
      Instruction *UI = dyn_cast<Instruction>(U);
      if (!UI || !CurLoop->contains(UI))
        continue;

      // If there is an non-load/store instruction in the loop, we can't promote
      // it.
      if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
        if (!Load->isUnordered())
          return false;

        SawUnorderedAtomic |= Load->isAtomic();
        SawNotAtomic |= !Load->isAtomic();

        Align InstAlignment = Load->getAlign();

        // Note that proving a load safe to speculate requires proving
        // sufficient alignment at the target location.  Proving it guaranteed
        // to execute does as well.  Thus we can increase our guaranteed
        // alignment as well. 
        if (!DereferenceableInPH || (InstAlignment > Alignment))
          if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
                                             ORE, Preheader->getTerminator())) {
            DereferenceableInPH = true;
            Alignment = std::max(Alignment, InstAlignment);
          }
      } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
        // Stores *of* the pointer are not interesting, only stores *to* the
        // pointer.
        if (UI->getOperand(1) != ASIV)
          continue;
        if (!Store->isUnordered())
          return false;

        SawUnorderedAtomic |= Store->isAtomic();
        SawNotAtomic |= !Store->isAtomic();

        // If the store is guaranteed to execute, both properties are satisfied.
        // We may want to check if a store is guaranteed to execute even if we
        // already know that promotion is safe, since it may have higher
        // alignment than any other guaranteed stores, in which case we can
        // raise the alignment on the promoted store.
        Align InstAlignment = Store->getAlign();

        if (!DereferenceableInPH || !SafeToInsertStore ||
            (InstAlignment > Alignment)) {
          if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
            DereferenceableInPH = true;
            SafeToInsertStore = true;
            Alignment = std::max(Alignment, InstAlignment);
          }
        }

        // If a store dominates all exit blocks, it is safe to sink.
        // As explained above, if an exit block was executed, a dominating
        // store must have been executed at least once, so we are not
        // introducing stores on paths that did not have them.
        // Note that this only looks at explicit exit blocks. If we ever
        // start sinking stores into unwind edges (see above), this will break.
        if (!SafeToInsertStore)
          SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
            return DT->dominates(Store->getParent(), Exit);
          });

        // If the store is not guaranteed to execute, we may still get
        // deref info through it.
        if (!DereferenceableInPH) {
          DereferenceableInPH = isDereferenceableAndAlignedPointer(
              Store->getPointerOperand(), Store->getValueOperand()->getType(),
              Store->getAlign(), MDL, Preheader->getTerminator(), DT);
        }
      } else
        return false; // Not a load or store.

      // Merge the AA tags.
      if (LoopUses.empty()) {
        // On the first load/store, just take its AA tags.
        UI->getAAMetadata(AATags);
      } else if (AATags) {
        UI->getAAMetadata(AATags, /* Merge = */ true);
      }

      LoopUses.push_back(UI);
    }
  }

  // If we found both an unordered atomic instruction and a non-atomic memory
  // access, bail.  We can't blindly promote non-atomic to atomic since we
  // might not be able to lower the result.  We can't downgrade since that
  // would violate memory model.  Also, align 0 is an error for atomics.
  if (SawUnorderedAtomic && SawNotAtomic)
    return false;

  // If we're inserting an atomic load in the preheader, we must be able to
  // lower it.  We're only guaranteed to be able to lower naturally aligned
  // atomics.
  auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
  if (SawUnorderedAtomic &&
      Alignment < MDL.getTypeStoreSize(SomePtrElemType))
    return false;

  // If we couldn't prove we can hoist the load, bail.
  if (!DereferenceableInPH)
    return false;

  // We know we can hoist the load, but don't have a guaranteed store.
  // Check whether the location is thread-local. If it is, then we can insert
  // stores along paths which originally didn't have them without violating the
  // memory model.
  if (!SafeToInsertStore) {
    if (IsKnownThreadLocalObject)
      SafeToInsertStore = true;
    else {
      Value *Object = GetUnderlyingObject(SomePtr, MDL);
      SafeToInsertStore =
          (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
          !PointerMayBeCaptured(Object, true, true);
    }
  }

  // If we've still failed to prove we can sink the store, give up.
  if (!SafeToInsertStore)
    return false;

  // Otherwise, this is safe to promote, lets do it!
  LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
                    << '\n');
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
                              LoopUses[0])
           << "Moving accesses to memory location out of the loop";
  });
  ++NumPromoted;

  // Look at all the loop uses, and try to merge their locations.
  std::vector<const DILocation *> LoopUsesLocs;
  for (auto U : LoopUses)
    LoopUsesLocs.push_back(U->getDebugLoc().get());
  auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));

  // We use the SSAUpdater interface to insert phi nodes as required.
  SmallVector<PHINode *, 16> NewPHIs;
  SSAUpdater SSA(&NewPHIs);
  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
                        InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
                        Alignment.value(), SawUnorderedAtomic, AATags,
                        *SafetyInfo);

  // Set up the preheader to have a definition of the value.  It is the live-out
  // value from the preheader that uses in the loop will use.
  LoadInst *PreheaderLoad = new LoadInst(
      SomePtr->getType()->getPointerElementType(), SomePtr,
      SomePtr->getName() + ".promoted", Preheader->getTerminator());
  if (SawUnorderedAtomic)
    PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
  PreheaderLoad->setAlignment(Alignment);
  PreheaderLoad->setDebugLoc(DebugLoc());
  if (AATags)
    PreheaderLoad->setAAMetadata(AATags);
  SSA.AddAvailableValue(Preheader, PreheaderLoad);

  if (MSSAU) {
    MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
        PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
    MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
    MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  // Rewrite all the loads in the loop and remember all the definitions from
  // stores in the loop.
  Promoter.run(LoopUses);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();
  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
  if (PreheaderLoad->use_empty())
    eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);

  return true;
}

/// Returns an owning pointer to an alias set which incorporates aliasing info
/// from L and all subloops of L.
std::unique_ptr<AliasSetTracker>
LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
                                                 AAResults *AA) {
  auto CurAST = std::make_unique<AliasSetTracker>(*AA);

  // Add everything from all the sub loops.
  for (Loop *InnerL : L->getSubLoops())
    for (BasicBlock *BB : InnerL->blocks())
      CurAST->add(*BB);

  // And merge in this loop (without anything from inner loops).
  for (BasicBlock *BB : L->blocks())
    if (LI->getLoopFor(BB) == L)
      CurAST->add(*BB);

  return CurAST;
}

std::unique_ptr<AliasSetTracker>
LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
    Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
  auto *MSSA = MSSAU->getMemorySSA();
  auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
  CurAST->addAllInstructionsInLoopUsingMSSA();
  return CurAST;
}

static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
                                     AliasSetTracker *CurAST, Loop *CurLoop,
                                     AAResults *AA) {
  // First check to see if any of the basic blocks in CurLoop invalidate *V.
  bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();

  if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
    return isInvalidatedAccordingToAST;

  // Check with a diagnostic analysis if we can refine the information above.
  // This is to identify the limitations of using the AST.
  // The alias set mechanism used by LICM has a major weakness in that it
  // combines all things which may alias into a single set *before* asking
  // modref questions. As a result, a single readonly call within a loop will
  // collapse all loads and stores into a single alias set and report
  // invalidation if the loop contains any store. For example, readonly calls
  // with deopt states have this form and create a general alias set with all
  // loads and stores.  In order to get any LICM in loops containing possible
  // deopt states we need a more precise invalidation of checking the mod ref
  // info of each instruction within the loop and LI. This has a complexity of
  // O(N^2), so currently, it is used only as a diagnostic tool since the
  // default value of LICMN2Threshold is zero.

  // Don't look at nested loops.
  if (CurLoop->begin() != CurLoop->end())
    return true;

  int N = 0;
  for (BasicBlock *BB : CurLoop->getBlocks())
    for (Instruction &I : *BB) {
      if (N >= LICMN2Theshold) {
        LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
                          << *(MemLoc.Ptr) << "\n");
        return true;
      }
      N++;
      auto Res = AA->getModRefInfo(&I, MemLoc);
      if (isModSet(Res)) {
        LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
                          << *(MemLoc.Ptr) << "\n");
        return true;
      }
    }
  LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
  return false;
}

static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
                                             Loop *CurLoop,
                                             SinkAndHoistLICMFlags &Flags) {
  // For hoisting, use the walker to determine safety
  if (!Flags.IsSink) {
    MemoryAccess *Source;
    // See declaration of SetLicmMssaOptCap for usage details.
    if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
      Source = MU->getDefiningAccess();
    else {
      Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
      Flags.LicmMssaOptCounter++;
    }
    return !MSSA->isLiveOnEntryDef(Source) &&
           CurLoop->contains(Source->getBlock());
  }

  // For sinking, we'd need to check all Defs below this use. The getClobbering
  // call will look on the backedge of the loop, but will check aliasing with
  // the instructions on the previous iteration.
  // For example:
  // for (i ... )
  //   load a[i] ( Use (LoE)
  //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
  //   i++;
  // The load sees no clobbering inside the loop, as the backedge alias check
  // does phi translation, and will check aliasing against store a[i-1].
  // However sinking the load outside the loop, below the store is incorrect.

  // For now, only sink if there are no Defs in the loop, and the existing ones
  // precede the use and are in the same block.
  // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
  // needs PostDominatorTreeAnalysis.
  // FIXME: More precise: no Defs that alias this Use.
  if (Flags.NoOfMemAccTooLarge)
    return true;
  for (auto *BB : CurLoop->getBlocks())
    if (auto *Accesses = MSSA->getBlockDefs(BB))
      for (const auto &MA : *Accesses)
        if (const auto *MD = dyn_cast<MemoryDef>(&MA))
          if (MU->getBlock() != MD->getBlock() ||
              !MSSA->locallyDominates(MD, MU))
            return true;
  return false;
}

/// Little predicate that returns true if the specified basic block is in
/// a subloop of the current one, not the current one itself.
///
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
  assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
  return LI->getLoopFor(BB) != CurLoop;
}