GVNSink.cpp 30 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
//===- GVNSink.cpp - sink expressions into successors ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file GVNSink.cpp
/// This pass attempts to sink instructions into successors, reducing static
/// instruction count and enabling if-conversion.
///
/// We use a variant of global value numbering to decide what can be sunk.
/// Consider:
///
/// [ %a1 = add i32 %b, 1  ]   [ %c1 = add i32 %d, 1  ]
/// [ %a2 = xor i32 %a1, 1 ]   [ %c2 = xor i32 %c1, 1 ]
///                  \           /
///            [ %e = phi i32 %a2, %c2 ]
///            [ add i32 %e, 4         ]
///
///
/// GVN would number %a1 and %c1 differently because they compute different
/// results - the VN of an instruction is a function of its opcode and the
/// transitive closure of its operands. This is the key property for hoisting
/// and CSE.
///
/// What we want when sinking however is for a numbering that is a function of
/// the *uses* of an instruction, which allows us to answer the question "if I
/// replace %a1 with %c1, will it contribute in an equivalent way to all
/// successive instructions?". The PostValueTable class in GVN provides this
/// mapping.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "gvn-sink"

STATISTIC(NumRemoved, "Number of instructions removed");

namespace llvm {
namespace GVNExpression {

LLVM_DUMP_METHOD void Expression::dump() const {
  print(dbgs());
  dbgs() << "\n";
}

} // end namespace GVNExpression
} // end namespace llvm

namespace {

static bool isMemoryInst(const Instruction *I) {
  return isa<LoadInst>(I) || isa<StoreInst>(I) ||
         (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
         (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
}

/// Iterates through instructions in a set of blocks in reverse order from the
/// first non-terminator. For example (assume all blocks have size n):
///   LockstepReverseIterator I([B1, B2, B3]);
///   *I-- = [B1[n], B2[n], B3[n]];
///   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
///   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
///   ...
///
/// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
/// to
/// determine which blocks are still going and the order they appear in the
/// list returned by operator*.
class LockstepReverseIterator {
  ArrayRef<BasicBlock *> Blocks;
  SmallSetVector<BasicBlock *, 4> ActiveBlocks;
  SmallVector<Instruction *, 4> Insts;
  bool Fail;

public:
  LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
    reset();
  }

  void reset() {
    Fail = false;
    ActiveBlocks.clear();
    for (BasicBlock *BB : Blocks)
      ActiveBlocks.insert(BB);
    Insts.clear();
    for (BasicBlock *BB : Blocks) {
      if (BB->size() <= 1) {
        // Block wasn't big enough - only contained a terminator.
        ActiveBlocks.remove(BB);
        continue;
      }
      Insts.push_back(BB->getTerminator()->getPrevNode());
    }
    if (Insts.empty())
      Fail = true;
  }

  bool isValid() const { return !Fail; }
  ArrayRef<Instruction *> operator*() const { return Insts; }

  // Note: This needs to return a SmallSetVector as the elements of
  // ActiveBlocks will be later copied to Blocks using std::copy. The
  // resultant order of elements in Blocks needs to be deterministic.
  // Using SmallPtrSet instead causes non-deterministic order while
  // copying. And we cannot simply sort Blocks as they need to match the
  // corresponding Values.
  SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }

  void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
    for (auto II = Insts.begin(); II != Insts.end();) {
      if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
          Blocks.end()) {
        ActiveBlocks.remove((*II)->getParent());
        II = Insts.erase(II);
      } else {
        ++II;
      }
    }
  }

  void operator--() {
    if (Fail)
      return;
    SmallVector<Instruction *, 4> NewInsts;
    for (auto *Inst : Insts) {
      if (Inst == &Inst->getParent()->front())
        ActiveBlocks.remove(Inst->getParent());
      else
        NewInsts.push_back(Inst->getPrevNode());
    }
    if (NewInsts.empty()) {
      Fail = true;
      return;
    }
    Insts = NewInsts;
  }
};

//===----------------------------------------------------------------------===//

/// Candidate solution for sinking. There may be different ways to
/// sink instructions, differing in the number of instructions sunk,
/// the number of predecessors sunk from and the number of PHIs
/// required.
struct SinkingInstructionCandidate {
  unsigned NumBlocks;
  unsigned NumInstructions;
  unsigned NumPHIs;
  unsigned NumMemoryInsts;
  int Cost = -1;
  SmallVector<BasicBlock *, 4> Blocks;

  void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
    unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
    unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
    Cost = (NumInstructions * (NumBlocks - 1)) -
           (NumExtraPHIs *
            NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
           - SplitEdgeCost;
  }

  bool operator>(const SinkingInstructionCandidate &Other) const {
    return Cost > Other.Cost;
  }
};

#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
  OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
     << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
  return OS;
}
#endif

//===----------------------------------------------------------------------===//

/// Describes a PHI node that may or may not exist. These track the PHIs
/// that must be created if we sunk a sequence of instructions. It provides
/// a hash function for efficient equality comparisons.
class ModelledPHI {
  SmallVector<Value *, 4> Values;
  SmallVector<BasicBlock *, 4> Blocks;

public:
  ModelledPHI() = default;

  ModelledPHI(const PHINode *PN) {
    // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
    SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
      Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
    llvm::sort(Ops);
    for (auto &P : Ops) {
      Blocks.push_back(P.first);
      Values.push_back(P.second);
    }
  }

  /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
  /// without the same ID.
  /// \note This is specifically for DenseMapInfo - do not use this!
  static ModelledPHI createDummy(size_t ID) {
    ModelledPHI M;
    M.Values.push_back(reinterpret_cast<Value*>(ID));
    return M;
  }

  /// Create a PHI from an array of incoming values and incoming blocks.
  template <typename VArray, typename BArray>
  ModelledPHI(const VArray &V, const BArray &B) {
    llvm::copy(V, std::back_inserter(Values));
    llvm::copy(B, std::back_inserter(Blocks));
  }

  /// Create a PHI from [I[OpNum] for I in Insts].
  template <typename BArray>
  ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
    llvm::copy(B, std::back_inserter(Blocks));
    for (auto *I : Insts)
      Values.push_back(I->getOperand(OpNum));
  }

  /// Restrict the PHI's contents down to only \c NewBlocks.
  /// \c NewBlocks must be a subset of \c this->Blocks.
  void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
    auto BI = Blocks.begin();
    auto VI = Values.begin();
    while (BI != Blocks.end()) {
      assert(VI != Values.end());
      if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
          NewBlocks.end()) {
        BI = Blocks.erase(BI);
        VI = Values.erase(VI);
      } else {
        ++BI;
        ++VI;
      }
    }
    assert(Blocks.size() == NewBlocks.size());
  }

  ArrayRef<Value *> getValues() const { return Values; }

  bool areAllIncomingValuesSame() const {
    return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
  }

  bool areAllIncomingValuesSameType() const {
    return llvm::all_of(
        Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
  }

  bool areAnyIncomingValuesConstant() const {
    return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
  }

  // Hash functor
  unsigned hash() const {
      return (unsigned)hash_combine_range(Values.begin(), Values.end());
  }

  bool operator==(const ModelledPHI &Other) const {
    return Values == Other.Values && Blocks == Other.Blocks;
  }
};

template <typename ModelledPHI> struct DenseMapInfo {
  static inline ModelledPHI &getEmptyKey() {
    static ModelledPHI Dummy = ModelledPHI::createDummy(0);
    return Dummy;
  }

  static inline ModelledPHI &getTombstoneKey() {
    static ModelledPHI Dummy = ModelledPHI::createDummy(1);
    return Dummy;
  }

  static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }

  static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
    return LHS == RHS;
  }
};

using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;

//===----------------------------------------------------------------------===//
//                             ValueTable
//===----------------------------------------------------------------------===//
// This is a value number table where the value number is a function of the
// *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
// that the program would be equivalent if we replaced A with PHI(A, B).
//===----------------------------------------------------------------------===//

/// A GVN expression describing how an instruction is used. The operands
/// field of BasicExpression is used to store uses, not operands.
///
/// This class also contains fields for discriminators used when determining
/// equivalence of instructions with sideeffects.
class InstructionUseExpr : public GVNExpression::BasicExpression {
  unsigned MemoryUseOrder = -1;
  bool Volatile = false;
  ArrayRef<int> ShuffleMask;

public:
  InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
                     BumpPtrAllocator &A)
      : GVNExpression::BasicExpression(I->getNumUses()) {
    allocateOperands(R, A);
    setOpcode(I->getOpcode());
    setType(I->getType());

    if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
      ShuffleMask = SVI->getShuffleMask().copy(A);

    for (auto &U : I->uses())
      op_push_back(U.getUser());
    llvm::sort(op_begin(), op_end());
  }

  void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
  void setVolatile(bool V) { Volatile = V; }

  hash_code getHashValue() const override {
    return hash_combine(GVNExpression::BasicExpression::getHashValue(),
                        MemoryUseOrder, Volatile, ShuffleMask);
  }

  template <typename Function> hash_code getHashValue(Function MapFn) {
    hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile,
                               ShuffleMask);
    for (auto *V : operands())
      H = hash_combine(H, MapFn(V));
    return H;
  }
};

class ValueTable {
  DenseMap<Value *, uint32_t> ValueNumbering;
  DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
  DenseMap<size_t, uint32_t> HashNumbering;
  BumpPtrAllocator Allocator;
  ArrayRecycler<Value *> Recycler;
  uint32_t nextValueNumber = 1;

  /// Create an expression for I based on its opcode and its uses. If I
  /// touches or reads memory, the expression is also based upon its memory
  /// order - see \c getMemoryUseOrder().
  InstructionUseExpr *createExpr(Instruction *I) {
    InstructionUseExpr *E =
        new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
    if (isMemoryInst(I))
      E->setMemoryUseOrder(getMemoryUseOrder(I));

    if (CmpInst *C = dyn_cast<CmpInst>(I)) {
      CmpInst::Predicate Predicate = C->getPredicate();
      E->setOpcode((C->getOpcode() << 8) | Predicate);
    }
    return E;
  }

  /// Helper to compute the value number for a memory instruction
  /// (LoadInst/StoreInst), including checking the memory ordering and
  /// volatility.
  template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
    if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
      return nullptr;
    InstructionUseExpr *E = createExpr(I);
    E->setVolatile(I->isVolatile());
    return E;
  }

public:
  ValueTable() = default;

  /// Returns the value number for the specified value, assigning
  /// it a new number if it did not have one before.
  uint32_t lookupOrAdd(Value *V) {
    auto VI = ValueNumbering.find(V);
    if (VI != ValueNumbering.end())
      return VI->second;

    if (!isa<Instruction>(V)) {
      ValueNumbering[V] = nextValueNumber;
      return nextValueNumber++;
    }

    Instruction *I = cast<Instruction>(V);
    InstructionUseExpr *exp = nullptr;
    switch (I->getOpcode()) {
    case Instruction::Load:
      exp = createMemoryExpr(cast<LoadInst>(I));
      break;
    case Instruction::Store:
      exp = createMemoryExpr(cast<StoreInst>(I));
      break;
    case Instruction::Call:
    case Instruction::Invoke:
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::BitCast:
    case Instruction::AddrSpaceCast:
    case Instruction::Select:
    case Instruction::ExtractElement:
    case Instruction::InsertElement:
    case Instruction::ShuffleVector:
    case Instruction::InsertValue:
    case Instruction::GetElementPtr:
      exp = createExpr(I);
      break;
    default:
      break;
    }

    if (!exp) {
      ValueNumbering[V] = nextValueNumber;
      return nextValueNumber++;
    }

    uint32_t e = ExpressionNumbering[exp];
    if (!e) {
      hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
      auto I = HashNumbering.find(H);
      if (I != HashNumbering.end()) {
        e = I->second;
      } else {
        e = nextValueNumber++;
        HashNumbering[H] = e;
        ExpressionNumbering[exp] = e;
      }
    }
    ValueNumbering[V] = e;
    return e;
  }

  /// Returns the value number of the specified value. Fails if the value has
  /// not yet been numbered.
  uint32_t lookup(Value *V) const {
    auto VI = ValueNumbering.find(V);
    assert(VI != ValueNumbering.end() && "Value not numbered?");
    return VI->second;
  }

  /// Removes all value numberings and resets the value table.
  void clear() {
    ValueNumbering.clear();
    ExpressionNumbering.clear();
    HashNumbering.clear();
    Recycler.clear(Allocator);
    nextValueNumber = 1;
  }

  /// \c Inst uses or touches memory. Return an ID describing the memory state
  /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
  /// the exact same memory operations happen after I1 and I2.
  ///
  /// This is a very hard problem in general, so we use domain-specific
  /// knowledge that we only ever check for equivalence between blocks sharing a
  /// single immediate successor that is common, and when determining if I1 ==
  /// I2 we will have already determined that next(I1) == next(I2). This
  /// inductive property allows us to simply return the value number of the next
  /// instruction that defines memory.
  uint32_t getMemoryUseOrder(Instruction *Inst) {
    auto *BB = Inst->getParent();
    for (auto I = std::next(Inst->getIterator()), E = BB->end();
         I != E && !I->isTerminator(); ++I) {
      if (!isMemoryInst(&*I))
        continue;
      if (isa<LoadInst>(&*I))
        continue;
      CallInst *CI = dyn_cast<CallInst>(&*I);
      if (CI && CI->onlyReadsMemory())
        continue;
      InvokeInst *II = dyn_cast<InvokeInst>(&*I);
      if (II && II->onlyReadsMemory())
        continue;
      return lookupOrAdd(&*I);
    }
    return 0;
  }
};

//===----------------------------------------------------------------------===//

class GVNSink {
public:
  GVNSink() = default;

  bool run(Function &F) {
    LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
                      << "\n");

    unsigned NumSunk = 0;
    ReversePostOrderTraversal<Function*> RPOT(&F);
    for (auto *N : RPOT)
      NumSunk += sinkBB(N);

    return NumSunk > 0;
  }

private:
  ValueTable VN;

  bool shouldAvoidSinkingInstruction(Instruction *I) {
    // These instructions may change or break semantics if moved.
    if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
        I->getType()->isTokenTy())
      return true;
    return false;
  }

  /// The main heuristic function. Analyze the set of instructions pointed to by
  /// LRI and return a candidate solution if these instructions can be sunk, or
  /// None otherwise.
  Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
      LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
      ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);

  /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
  void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
                          SmallPtrSetImpl<Value *> &PHIContents) {
    for (PHINode &PN : BB->phis()) {
      auto MPHI = ModelledPHI(&PN);
      PHIs.insert(MPHI);
      for (auto *V : MPHI.getValues())
        PHIContents.insert(V);
    }
  }

  /// The main instruction sinking driver. Set up state and try and sink
  /// instructions into BBEnd from its predecessors.
  unsigned sinkBB(BasicBlock *BBEnd);

  /// Perform the actual mechanics of sinking an instruction from Blocks into
  /// BBEnd, which is their only successor.
  void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);

  /// Remove PHIs that all have the same incoming value.
  void foldPointlessPHINodes(BasicBlock *BB) {
    auto I = BB->begin();
    while (PHINode *PN = dyn_cast<PHINode>(I++)) {
      if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
            return V == PN->getIncomingValue(0);
          }))
        continue;
      if (PN->getIncomingValue(0) != PN)
        PN->replaceAllUsesWith(PN->getIncomingValue(0));
      else
        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
      PN->eraseFromParent();
    }
  }
};

Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
  LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
  ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
  auto Insts = *LRI;
  LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
                                                                  : Insts) {
    I->dump();
  } dbgs() << " ]\n";);

  DenseMap<uint32_t, unsigned> VNums;
  for (auto *I : Insts) {
    uint32_t N = VN.lookupOrAdd(I);
    LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
    if (N == ~0U)
      return None;
    VNums[N]++;
  }
  unsigned VNumToSink =
      std::max_element(VNums.begin(), VNums.end(),
                       [](const std::pair<uint32_t, unsigned> &I,
                          const std::pair<uint32_t, unsigned> &J) {
                         return I.second < J.second;
                       })
          ->first;

  if (VNums[VNumToSink] == 1)
    // Can't sink anything!
    return None;

  // Now restrict the number of incoming blocks down to only those with
  // VNumToSink.
  auto &ActivePreds = LRI.getActiveBlocks();
  unsigned InitialActivePredSize = ActivePreds.size();
  SmallVector<Instruction *, 4> NewInsts;
  for (auto *I : Insts) {
    if (VN.lookup(I) != VNumToSink)
      ActivePreds.remove(I->getParent());
    else
      NewInsts.push_back(I);
  }
  for (auto *I : NewInsts)
    if (shouldAvoidSinkingInstruction(I))
      return None;

  // If we've restricted the incoming blocks, restrict all needed PHIs also
  // to that set.
  bool RecomputePHIContents = false;
  if (ActivePreds.size() != InitialActivePredSize) {
    ModelledPHISet NewNeededPHIs;
    for (auto P : NeededPHIs) {
      P.restrictToBlocks(ActivePreds);
      NewNeededPHIs.insert(P);
    }
    NeededPHIs = NewNeededPHIs;
    LRI.restrictToBlocks(ActivePreds);
    RecomputePHIContents = true;
  }

  // The sunk instruction's results.
  ModelledPHI NewPHI(NewInsts, ActivePreds);

  // Does sinking this instruction render previous PHIs redundant?
  if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
    NeededPHIs.erase(NewPHI);
    RecomputePHIContents = true;
  }

  if (RecomputePHIContents) {
    // The needed PHIs have changed, so recompute the set of all needed
    // values.
    PHIContents.clear();
    for (auto &PHI : NeededPHIs)
      PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
  }

  // Is this instruction required by a later PHI that doesn't match this PHI?
  // if so, we can't sink this instruction.
  for (auto *V : NewPHI.getValues())
    if (PHIContents.count(V))
      // V exists in this PHI, but the whole PHI is different to NewPHI
      // (else it would have been removed earlier). We cannot continue
      // because this isn't representable.
      return None;

  // Which operands need PHIs?
  // FIXME: If any of these fail, we should partition up the candidates to
  // try and continue making progress.
  Instruction *I0 = NewInsts[0];

  // If all instructions that are going to participate don't have the same
  // number of operands, we can't do any useful PHI analysis for all operands.
  auto hasDifferentNumOperands = [&I0](Instruction *I) {
    return I->getNumOperands() != I0->getNumOperands();
  };
  if (any_of(NewInsts, hasDifferentNumOperands))
    return None;

  for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
    ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
    if (PHI.areAllIncomingValuesSame())
      continue;
    if (!canReplaceOperandWithVariable(I0, OpNum))
      // We can 't create a PHI from this instruction!
      return None;
    if (NeededPHIs.count(PHI))
      continue;
    if (!PHI.areAllIncomingValuesSameType())
      return None;
    // Don't create indirect calls! The called value is the final operand.
    if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
        PHI.areAnyIncomingValuesConstant())
      return None;

    NeededPHIs.reserve(NeededPHIs.size());
    NeededPHIs.insert(PHI);
    PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
  }

  if (isMemoryInst(NewInsts[0]))
    ++MemoryInstNum;

  SinkingInstructionCandidate Cand;
  Cand.NumInstructions = ++InstNum;
  Cand.NumMemoryInsts = MemoryInstNum;
  Cand.NumBlocks = ActivePreds.size();
  Cand.NumPHIs = NeededPHIs.size();
  for (auto *C : ActivePreds)
    Cand.Blocks.push_back(C);

  return Cand;
}

unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
  LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
             BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
  SmallVector<BasicBlock *, 4> Preds;
  for (auto *B : predecessors(BBEnd)) {
    auto *T = B->getTerminator();
    if (isa<BranchInst>(T) || isa<SwitchInst>(T))
      Preds.push_back(B);
    else
      return 0;
  }
  if (Preds.size() < 2)
    return 0;
  llvm::sort(Preds);

  unsigned NumOrigPreds = Preds.size();
  // We can only sink instructions through unconditional branches.
  for (auto I = Preds.begin(); I != Preds.end();) {
    if ((*I)->getTerminator()->getNumSuccessors() != 1)
      I = Preds.erase(I);
    else
      ++I;
  }

  LockstepReverseIterator LRI(Preds);
  SmallVector<SinkingInstructionCandidate, 4> Candidates;
  unsigned InstNum = 0, MemoryInstNum = 0;
  ModelledPHISet NeededPHIs;
  SmallPtrSet<Value *, 4> PHIContents;
  analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
  unsigned NumOrigPHIs = NeededPHIs.size();

  while (LRI.isValid()) {
    auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
                                             NeededPHIs, PHIContents);
    if (!Cand)
      break;
    Cand->calculateCost(NumOrigPHIs, Preds.size());
    Candidates.emplace_back(*Cand);
    --LRI;
  }

  llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
  LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
                                                         : Candidates) dbgs()
                                                    << "  " << C << "\n";);

  // Pick the top candidate, as long it is positive!
  if (Candidates.empty() || Candidates.front().Cost <= 0)
    return 0;
  auto C = Candidates.front();

  LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
  BasicBlock *InsertBB = BBEnd;
  if (C.Blocks.size() < NumOrigPreds) {
    LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
               BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
    InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
    if (!InsertBB) {
      LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
      // Edge couldn't be split.
      return 0;
    }
  }

  for (unsigned I = 0; I < C.NumInstructions; ++I)
    sinkLastInstruction(C.Blocks, InsertBB);

  return C.NumInstructions;
}

void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
                                  BasicBlock *BBEnd) {
  SmallVector<Instruction *, 4> Insts;
  for (BasicBlock *BB : Blocks)
    Insts.push_back(BB->getTerminator()->getPrevNode());
  Instruction *I0 = Insts.front();

  SmallVector<Value *, 4> NewOperands;
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
    bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
      return I->getOperand(O) != I0->getOperand(O);
    });
    if (!NeedPHI) {
      NewOperands.push_back(I0->getOperand(O));
      continue;
    }

    // Create a new PHI in the successor block and populate it.
    auto *Op = I0->getOperand(O);
    assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
    auto *PN = PHINode::Create(Op->getType(), Insts.size(),
                               Op->getName() + ".sink", &BBEnd->front());
    for (auto *I : Insts)
      PN->addIncoming(I->getOperand(O), I->getParent());
    NewOperands.push_back(PN);
  }

  // Arbitrarily use I0 as the new "common" instruction; remap its operands
  // and move it to the start of the successor block.
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
    I0->getOperandUse(O).set(NewOperands[O]);
  I0->moveBefore(&*BBEnd->getFirstInsertionPt());

  // Update metadata and IR flags.
  for (auto *I : Insts)
    if (I != I0) {
      combineMetadataForCSE(I0, I, true);
      I0->andIRFlags(I);
    }

  for (auto *I : Insts)
    if (I != I0)
      I->replaceAllUsesWith(I0);
  foldPointlessPHINodes(BBEnd);

  // Finally nuke all instructions apart from the common instruction.
  for (auto *I : Insts)
    if (I != I0)
      I->eraseFromParent();

  NumRemoved += Insts.size() - 1;
}

////////////////////////////////////////////////////////////////////////////////
// Pass machinery / boilerplate

class GVNSinkLegacyPass : public FunctionPass {
public:
  static char ID;

  GVNSinkLegacyPass() : FunctionPass(ID) {
    initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    GVNSink G;
    return G.run(F);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
  GVNSink G;
  if (!G.run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  return PA;
}

char GVNSinkLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
                      "Early GVN sinking of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
                    "Early GVN sinking of Expressions", false, false)

FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }