GVN.cpp 100 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs global value numbering to eliminate fully redundant
// instructions.  It also performs simple dead load elimination.
//
// Note that this pass does the value numbering itself; it does not use the
// ValueNumbering analysis passes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/VNCoercion.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::gvn;
using namespace llvm::VNCoercion;
using namespace PatternMatch;

#define DEBUG_TYPE "gvn"

STATISTIC(NumGVNInstr,  "Number of instructions deleted");
STATISTIC(NumGVNLoad,   "Number of loads deleted");
STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
STATISTIC(NumGVNBlocks, "Number of blocks merged");
STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
STATISTIC(NumGVNEqProp, "Number of equalities propagated");
STATISTIC(NumPRELoad,   "Number of loads PRE'd");

static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
                                            cl::init(true));
static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));

// Maximum allowed recursion depth.
static cl::opt<uint32_t>
MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
                cl::desc("Max recurse depth in GVN (default = 1000)"));

static cl::opt<uint32_t> MaxNumDeps(
    "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
    cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));

struct llvm::GVN::Expression {
  uint32_t opcode;
  bool commutative = false;
  Type *type = nullptr;
  SmallVector<uint32_t, 4> varargs;

  Expression(uint32_t o = ~2U) : opcode(o) {}

  bool operator==(const Expression &other) const {
    if (opcode != other.opcode)
      return false;
    if (opcode == ~0U || opcode == ~1U)
      return true;
    if (type != other.type)
      return false;
    if (varargs != other.varargs)
      return false;
    return true;
  }

  friend hash_code hash_value(const Expression &Value) {
    return hash_combine(
        Value.opcode, Value.type,
        hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
  }
};

namespace llvm {

template <> struct DenseMapInfo<GVN::Expression> {
  static inline GVN::Expression getEmptyKey() { return ~0U; }
  static inline GVN::Expression getTombstoneKey() { return ~1U; }

  static unsigned getHashValue(const GVN::Expression &e) {
    using llvm::hash_value;

    return static_cast<unsigned>(hash_value(e));
  }

  static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
    return LHS == RHS;
  }
};

} // end namespace llvm

/// Represents a particular available value that we know how to materialize.
/// Materialization of an AvailableValue never fails.  An AvailableValue is
/// implicitly associated with a rematerialization point which is the
/// location of the instruction from which it was formed.
struct llvm::gvn::AvailableValue {
  enum ValType {
    SimpleVal, // A simple offsetted value that is accessed.
    LoadVal,   // A value produced by a load.
    MemIntrin, // A memory intrinsic which is loaded from.
    UndefVal   // A UndefValue representing a value from dead block (which
               // is not yet physically removed from the CFG).
  };

  /// V - The value that is live out of the block.
  PointerIntPair<Value *, 2, ValType> Val;

  /// Offset - The byte offset in Val that is interesting for the load query.
  unsigned Offset = 0;

  static AvailableValue get(Value *V, unsigned Offset = 0) {
    AvailableValue Res;
    Res.Val.setPointer(V);
    Res.Val.setInt(SimpleVal);
    Res.Offset = Offset;
    return Res;
  }

  static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
    AvailableValue Res;
    Res.Val.setPointer(MI);
    Res.Val.setInt(MemIntrin);
    Res.Offset = Offset;
    return Res;
  }

  static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
    AvailableValue Res;
    Res.Val.setPointer(LI);
    Res.Val.setInt(LoadVal);
    Res.Offset = Offset;
    return Res;
  }

  static AvailableValue getUndef() {
    AvailableValue Res;
    Res.Val.setPointer(nullptr);
    Res.Val.setInt(UndefVal);
    Res.Offset = 0;
    return Res;
  }

  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
  bool isUndefValue() const { return Val.getInt() == UndefVal; }

  Value *getSimpleValue() const {
    assert(isSimpleValue() && "Wrong accessor");
    return Val.getPointer();
  }

  LoadInst *getCoercedLoadValue() const {
    assert(isCoercedLoadValue() && "Wrong accessor");
    return cast<LoadInst>(Val.getPointer());
  }

  MemIntrinsic *getMemIntrinValue() const {
    assert(isMemIntrinValue() && "Wrong accessor");
    return cast<MemIntrinsic>(Val.getPointer());
  }

  /// Emit code at the specified insertion point to adjust the value defined
  /// here to the specified type. This handles various coercion cases.
  Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
                                  GVN &gvn) const;
};

/// Represents an AvailableValue which can be rematerialized at the end of
/// the associated BasicBlock.
struct llvm::gvn::AvailableValueInBlock {
  /// BB - The basic block in question.
  BasicBlock *BB = nullptr;

  /// AV - The actual available value
  AvailableValue AV;

  static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
    AvailableValueInBlock Res;
    Res.BB = BB;
    Res.AV = std::move(AV);
    return Res;
  }

  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
                                   unsigned Offset = 0) {
    return get(BB, AvailableValue::get(V, Offset));
  }

  static AvailableValueInBlock getUndef(BasicBlock *BB) {
    return get(BB, AvailableValue::getUndef());
  }

  /// Emit code at the end of this block to adjust the value defined here to
  /// the specified type. This handles various coercion cases.
  Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
    return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
  }
};

//===----------------------------------------------------------------------===//
//                     ValueTable Internal Functions
//===----------------------------------------------------------------------===//

GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
  Expression e;
  e.type = I->getType();
  e.opcode = I->getOpcode();
  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
       OI != OE; ++OI)
    e.varargs.push_back(lookupOrAdd(*OI));
  if (I->isCommutative()) {
    // Ensure that commutative instructions that only differ by a permutation
    // of their operands get the same value number by sorting the operand value
    // numbers.  Since all commutative instructions have two operands it is more
    // efficient to sort by hand rather than using, say, std::sort.
    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    if (e.varargs[0] > e.varargs[1])
      std::swap(e.varargs[0], e.varargs[1]);
    e.commutative = true;
  }

  if (auto *C = dyn_cast<CmpInst>(I)) {
    // Sort the operand value numbers so x<y and y>x get the same value number.
    CmpInst::Predicate Predicate = C->getPredicate();
    if (e.varargs[0] > e.varargs[1]) {
      std::swap(e.varargs[0], e.varargs[1]);
      Predicate = CmpInst::getSwappedPredicate(Predicate);
    }
    e.opcode = (C->getOpcode() << 8) | Predicate;
    e.commutative = true;
  } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
    e.varargs.append(E->idx_begin(), E->idx_end());
  } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
    ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
    e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
  }

  return e;
}

GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
                                               CmpInst::Predicate Predicate,
                                               Value *LHS, Value *RHS) {
  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
         "Not a comparison!");
  Expression e;
  e.type = CmpInst::makeCmpResultType(LHS->getType());
  e.varargs.push_back(lookupOrAdd(LHS));
  e.varargs.push_back(lookupOrAdd(RHS));

  // Sort the operand value numbers so x<y and y>x get the same value number.
  if (e.varargs[0] > e.varargs[1]) {
    std::swap(e.varargs[0], e.varargs[1]);
    Predicate = CmpInst::getSwappedPredicate(Predicate);
  }
  e.opcode = (Opcode << 8) | Predicate;
  e.commutative = true;
  return e;
}

GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
  assert(EI && "Not an ExtractValueInst?");
  Expression e;
  e.type = EI->getType();
  e.opcode = 0;

  WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
  if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
    // EI is an extract from one of our with.overflow intrinsics. Synthesize
    // a semantically equivalent expression instead of an extract value
    // expression.
    e.opcode = WO->getBinaryOp();
    e.varargs.push_back(lookupOrAdd(WO->getLHS()));
    e.varargs.push_back(lookupOrAdd(WO->getRHS()));
    return e;
  }

  // Not a recognised intrinsic. Fall back to producing an extract value
  // expression.
  e.opcode = EI->getOpcode();
  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
       OI != OE; ++OI)
    e.varargs.push_back(lookupOrAdd(*OI));

  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
         II != IE; ++II)
    e.varargs.push_back(*II);

  return e;
}

//===----------------------------------------------------------------------===//
//                     ValueTable External Functions
//===----------------------------------------------------------------------===//

GVN::ValueTable::ValueTable() = default;
GVN::ValueTable::ValueTable(const ValueTable &) = default;
GVN::ValueTable::ValueTable(ValueTable &&) = default;
GVN::ValueTable::~ValueTable() = default;
GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default;

/// add - Insert a value into the table with a specified value number.
void GVN::ValueTable::add(Value *V, uint32_t num) {
  valueNumbering.insert(std::make_pair(V, num));
  if (PHINode *PN = dyn_cast<PHINode>(V))
    NumberingPhi[num] = PN;
}

uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
  if (AA->doesNotAccessMemory(C)) {
    Expression exp = createExpr(C);
    uint32_t e = assignExpNewValueNum(exp).first;
    valueNumbering[C] = e;
    return e;
  } else if (MD && AA->onlyReadsMemory(C)) {
    Expression exp = createExpr(C);
    auto ValNum = assignExpNewValueNum(exp);
    if (ValNum.second) {
      valueNumbering[C] = ValNum.first;
      return ValNum.first;
    }

    MemDepResult local_dep = MD->getDependency(C);

    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
      valueNumbering[C] =  nextValueNumber;
      return nextValueNumber++;
    }

    if (local_dep.isDef()) {
      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());

      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
        valueNumbering[C] = nextValueNumber;
        return nextValueNumber++;
      }

      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
        uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
        uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
        if (c_vn != cd_vn) {
          valueNumbering[C] = nextValueNumber;
          return nextValueNumber++;
        }
      }

      uint32_t v = lookupOrAdd(local_cdep);
      valueNumbering[C] = v;
      return v;
    }

    // Non-local case.
    const MemoryDependenceResults::NonLocalDepInfo &deps =
        MD->getNonLocalCallDependency(C);
    // FIXME: Move the checking logic to MemDep!
    CallInst* cdep = nullptr;

    // Check to see if we have a single dominating call instruction that is
    // identical to C.
    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
      const NonLocalDepEntry *I = &deps[i];
      if (I->getResult().isNonLocal())
        continue;

      // We don't handle non-definitions.  If we already have a call, reject
      // instruction dependencies.
      if (!I->getResult().isDef() || cdep != nullptr) {
        cdep = nullptr;
        break;
      }

      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
      // FIXME: All duplicated with non-local case.
      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
        cdep = NonLocalDepCall;
        continue;
      }

      cdep = nullptr;
      break;
    }

    if (!cdep) {
      valueNumbering[C] = nextValueNumber;
      return nextValueNumber++;
    }

    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
      valueNumbering[C] = nextValueNumber;
      return nextValueNumber++;
    }
    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
      uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
      uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
      if (c_vn != cd_vn) {
        valueNumbering[C] = nextValueNumber;
        return nextValueNumber++;
      }
    }

    uint32_t v = lookupOrAdd(cdep);
    valueNumbering[C] = v;
    return v;
  } else {
    valueNumbering[C] = nextValueNumber;
    return nextValueNumber++;
  }
}

/// Returns true if a value number exists for the specified value.
bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }

/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
  if (VI != valueNumbering.end())
    return VI->second;

  if (!isa<Instruction>(V)) {
    valueNumbering[V] = nextValueNumber;
    return nextValueNumber++;
  }

  Instruction* I = cast<Instruction>(V);
  Expression exp;
  switch (I->getOpcode()) {
    case Instruction::Call:
      return lookupOrAddCall(cast<CallInst>(I));
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::AddrSpaceCast:
    case Instruction::BitCast:
    case Instruction::Select:
    case Instruction::Freeze:
    case Instruction::ExtractElement:
    case Instruction::InsertElement:
    case Instruction::ShuffleVector:
    case Instruction::InsertValue:
    case Instruction::GetElementPtr:
      exp = createExpr(I);
      break;
    case Instruction::ExtractValue:
      exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
      break;
    case Instruction::PHI:
      valueNumbering[V] = nextValueNumber;
      NumberingPhi[nextValueNumber] = cast<PHINode>(V);
      return nextValueNumber++;
    default:
      valueNumbering[V] = nextValueNumber;
      return nextValueNumber++;
  }

  uint32_t e = assignExpNewValueNum(exp).first;
  valueNumbering[V] = e;
  return e;
}

/// Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
  if (Verify) {
    assert(VI != valueNumbering.end() && "Value not numbered?");
    return VI->second;
  }
  return (VI != valueNumbering.end()) ? VI->second : 0;
}

/// Returns the value number of the given comparison,
/// assigning it a new number if it did not have one before.  Useful when
/// we deduced the result of a comparison, but don't immediately have an
/// instruction realizing that comparison to hand.
uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
                                         CmpInst::Predicate Predicate,
                                         Value *LHS, Value *RHS) {
  Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
  return assignExpNewValueNum(exp).first;
}

/// Remove all entries from the ValueTable.
void GVN::ValueTable::clear() {
  valueNumbering.clear();
  expressionNumbering.clear();
  NumberingPhi.clear();
  PhiTranslateTable.clear();
  nextValueNumber = 1;
  Expressions.clear();
  ExprIdx.clear();
  nextExprNumber = 0;
}

/// Remove a value from the value numbering.
void GVN::ValueTable::erase(Value *V) {
  uint32_t Num = valueNumbering.lookup(V);
  valueNumbering.erase(V);
  // If V is PHINode, V <--> value number is an one-to-one mapping.
  if (isa<PHINode>(V))
    NumberingPhi.erase(Num);
}

/// verifyRemoved - Verify that the value is removed from all internal data
/// structures.
void GVN::ValueTable::verifyRemoved(const Value *V) const {
  for (DenseMap<Value*, uint32_t>::const_iterator
         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    assert(I->first != V && "Inst still occurs in value numbering map!");
  }
}

//===----------------------------------------------------------------------===//
//                                GVN Pass
//===----------------------------------------------------------------------===//

bool GVN::isPREEnabled() const {
  return Options.AllowPRE.getValueOr(GVNEnablePRE);
}

bool GVN::isLoadPREEnabled() const {
  return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE);
}

bool GVN::isLoadInLoopPREEnabled() const {
  return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE);
}

bool GVN::isMemDepEnabled() const {
  return Options.AllowMemDep.getValueOr(GVNEnableMemDep);
}

PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
  // FIXME: The order of evaluation of these 'getResult' calls is very
  // significant! Re-ordering these variables will cause GVN when run alone to
  // be less effective! We should fix memdep and basic-aa to not exhibit this
  // behavior, but until then don't change the order here.
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto *MemDep =
      isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  PA.preserve<TargetLibraryAnalysis>();
  if (LI)
    PA.preserve<LoopAnalysis>();
  return PA;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
  errs() << "{\n";
  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
       E = d.end(); I != E; ++I) {
      errs() << I->first << "\n";
      I->second->dump();
  }
  errs() << "}\n";
}
#endif

/// Return true if we can prove that the value
/// we're analyzing is fully available in the specified block.  As we go, keep
/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
/// map is actually a tri-state map with the following values:
///   0) we know the block *is not* fully available.
///   1) we know the block *is* fully available.
///   2) we do not know whether the block is fully available or not, but we are
///      currently speculating that it will be.
///   3) we are speculating for this block and have used that to speculate for
///      other blocks.
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
                            uint32_t RecurseDepth) {
  if (RecurseDepth > MaxRecurseDepth)
    return false;

  // Optimistically assume that the block is fully available and check to see
  // if we already know about this block in one lookup.
  std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
    FullyAvailableBlocks.insert(std::make_pair(BB, 2));

  // If the entry already existed for this block, return the precomputed value.
  if (!IV.second) {
    // If this is a speculative "available" value, mark it as being used for
    // speculation of other blocks.
    if (IV.first->second == 2)
      IV.first->second = 3;
    return IV.first->second != 0;
  }

  // Otherwise, see if it is fully available in all predecessors.
  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);

  // If this block has no predecessors, it isn't live-in here.
  if (PI == PE)
    goto SpeculationFailure;

  for (; PI != PE; ++PI)
    // If the value isn't fully available in one of our predecessors, then it
    // isn't fully available in this block either.  Undo our previous
    // optimistic assumption and bail out.
    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
      goto SpeculationFailure;

  return true;

// If we get here, we found out that this is not, after
// all, a fully-available block.  We have a problem if we speculated on this and
// used the speculation to mark other blocks as available.
SpeculationFailure:
  char &BBVal = FullyAvailableBlocks[BB];

  // If we didn't speculate on this, just return with it set to false.
  if (BBVal == 2) {
    BBVal = 0;
    return false;
  }

  // If we did speculate on this value, we could have blocks set to 1 that are
  // incorrect.  Walk the (transitive) successors of this block and mark them as
  // 0 if set to one.
  SmallVector<BasicBlock*, 32> BBWorklist;
  BBWorklist.push_back(BB);

  do {
    BasicBlock *Entry = BBWorklist.pop_back_val();
    // Note that this sets blocks to 0 (unavailable) if they happen to not
    // already be in FullyAvailableBlocks.  This is safe.
    char &EntryVal = FullyAvailableBlocks[Entry];
    if (EntryVal == 0) continue;  // Already unavailable.

    // Mark as unavailable.
    EntryVal = 0;

    BBWorklist.append(succ_begin(Entry), succ_end(Entry));
  } while (!BBWorklist.empty());

  return false;
}

/// Given a set of loads specified by ValuesPerBlock,
/// construct SSA form, allowing us to eliminate LI.  This returns the value
/// that should be used at LI's definition site.
static Value *ConstructSSAForLoadSet(LoadInst *LI,
                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
                                     GVN &gvn) {
  // Check for the fully redundant, dominating load case.  In this case, we can
  // just use the dominating value directly.
  if (ValuesPerBlock.size() == 1 &&
      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
                                               LI->getParent())) {
    assert(!ValuesPerBlock[0].AV.isUndefValue() &&
           "Dead BB dominate this block");
    return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
  }

  // Otherwise, we have to construct SSA form.
  SmallVector<PHINode*, 8> NewPHIs;
  SSAUpdater SSAUpdate(&NewPHIs);
  SSAUpdate.Initialize(LI->getType(), LI->getName());

  for (const AvailableValueInBlock &AV : ValuesPerBlock) {
    BasicBlock *BB = AV.BB;

    if (SSAUpdate.HasValueForBlock(BB))
      continue;

    // If the value is the load that we will be eliminating, and the block it's
    // available in is the block that the load is in, then don't add it as
    // SSAUpdater will resolve the value to the relevant phi which may let it
    // avoid phi construction entirely if there's actually only one value.
    if (BB == LI->getParent() &&
        ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
         (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
      continue;

    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
  }

  // Perform PHI construction.
  return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
}

Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
                                                Instruction *InsertPt,
                                                GVN &gvn) const {
  Value *Res;
  Type *LoadTy = LI->getType();
  const DataLayout &DL = LI->getModule()->getDataLayout();
  if (isSimpleValue()) {
    Res = getSimpleValue();
    if (Res->getType() != LoadTy) {
      Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);

      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
                        << "  " << *getSimpleValue() << '\n'
                        << *Res << '\n'
                        << "\n\n\n");
    }
  } else if (isCoercedLoadValue()) {
    LoadInst *Load = getCoercedLoadValue();
    if (Load->getType() == LoadTy && Offset == 0) {
      Res = Load;
    } else {
      Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
      // We would like to use gvn.markInstructionForDeletion here, but we can't
      // because the load is already memoized into the leader map table that GVN
      // tracks.  It is potentially possible to remove the load from the table,
      // but then there all of the operations based on it would need to be
      // rehashed.  Just leave the dead load around.
      gvn.getMemDep().removeInstruction(Load);
      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
                        << "  " << *getCoercedLoadValue() << '\n'
                        << *Res << '\n'
                        << "\n\n\n");
    }
  } else if (isMemIntrinValue()) {
    Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
                                 InsertPt, DL);
    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
                      << "  " << *getMemIntrinValue() << '\n'
                      << *Res << '\n'
                      << "\n\n\n");
  } else {
    assert(isUndefValue() && "Should be UndefVal");
    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
    return UndefValue::get(LoadTy);
  }
  assert(Res && "failed to materialize?");
  return Res;
}

static bool isLifetimeStart(const Instruction *Inst) {
  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
    return II->getIntrinsicID() == Intrinsic::lifetime_start;
  return false;
}

/// Try to locate the three instruction involved in a missed
/// load-elimination case that is due to an intervening store.
static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
                                   DominatorTree *DT,
                                   OptimizationRemarkEmitter *ORE) {
  using namespace ore;

  User *OtherAccess = nullptr;

  OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
  R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
    << setExtraArgs();

  for (auto *U : LI->getPointerOperand()->users())
    if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
        DT->dominates(cast<Instruction>(U), LI)) {
      // FIXME: for now give up if there are multiple memory accesses that
      // dominate the load.  We need further analysis to decide which one is
      // that we're forwarding from.
      if (OtherAccess)
        OtherAccess = nullptr;
      else
        OtherAccess = U;
    }

  if (OtherAccess)
    R << " in favor of " << NV("OtherAccess", OtherAccess);

  R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());

  ORE->emit(R);
}

bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
                                  Value *Address, AvailableValue &Res) {
  assert((DepInfo.isDef() || DepInfo.isClobber()) &&
         "expected a local dependence");
  assert(LI->isUnordered() && "rules below are incorrect for ordered access");

  const DataLayout &DL = LI->getModule()->getDataLayout();

  Instruction *DepInst = DepInfo.getInst();
  if (DepInfo.isClobber()) {
    // If the dependence is to a store that writes to a superset of the bits
    // read by the load, we can extract the bits we need for the load from the
    // stored value.
    if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
      // Can't forward from non-atomic to atomic without violating memory model.
      if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
        int Offset =
          analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
        if (Offset != -1) {
          Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
          return true;
        }
      }
    }

    // Check to see if we have something like this:
    //    load i32* P
    //    load i8* (P+1)
    // if we have this, replace the later with an extraction from the former.
    if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
      // If this is a clobber and L is the first instruction in its block, then
      // we have the first instruction in the entry block.
      // Can't forward from non-atomic to atomic without violating memory model.
      if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
        int Offset =
          analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);

        if (Offset != -1) {
          Res = AvailableValue::getLoad(DepLI, Offset);
          return true;
        }
      }
    }

    // If the clobbering value is a memset/memcpy/memmove, see if we can
    // forward a value on from it.
    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
      if (Address && !LI->isAtomic()) {
        int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
                                                      DepMI, DL);
        if (Offset != -1) {
          Res = AvailableValue::getMI(DepMI, Offset);
          return true;
        }
      }
    }
    // Nothing known about this clobber, have to be conservative
    LLVM_DEBUG(
        // fast print dep, using operator<< on instruction is too slow.
        dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
        dbgs() << " is clobbered by " << *DepInst << '\n';);
    if (ORE->allowExtraAnalysis(DEBUG_TYPE))
      reportMayClobberedLoad(LI, DepInfo, DT, ORE);

    return false;
  }
  assert(DepInfo.isDef() && "follows from above");

  // Loading the allocation -> undef.
  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
      isAlignedAllocLikeFn(DepInst, TLI) ||
      // Loading immediately after lifetime begin -> undef.
      isLifetimeStart(DepInst)) {
    Res = AvailableValue::get(UndefValue::get(LI->getType()));
    return true;
  }

  // Loading from calloc (which zero initializes memory) -> zero
  if (isCallocLikeFn(DepInst, TLI)) {
    Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
    return true;
  }

  if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
    // Reject loads and stores that are to the same address but are of
    // different types if we have to. If the stored value is larger or equal to
    // the loaded value, we can reuse it.
    if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
                                         DL))
      return false;

    // Can't forward from non-atomic to atomic without violating memory model.
    if (S->isAtomic() < LI->isAtomic())
      return false;

    Res = AvailableValue::get(S->getValueOperand());
    return true;
  }

  if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
    // If the types mismatch and we can't handle it, reject reuse of the load.
    // If the stored value is larger or equal to the loaded value, we can reuse
    // it.
    if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
      return false;

    // Can't forward from non-atomic to atomic without violating memory model.
    if (LD->isAtomic() < LI->isAtomic())
      return false;

    Res = AvailableValue::getLoad(LD);
    return true;
  }

  // Unknown def - must be conservative
  LLVM_DEBUG(
      // fast print dep, using operator<< on instruction is too slow.
      dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
      dbgs() << " has unknown def " << *DepInst << '\n';);
  return false;
}

void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
                                  AvailValInBlkVect &ValuesPerBlock,
                                  UnavailBlkVect &UnavailableBlocks) {
  // Filter out useless results (non-locals, etc).  Keep track of the blocks
  // where we have a value available in repl, also keep track of whether we see
  // dependencies that produce an unknown value for the load (such as a call
  // that could potentially clobber the load).
  unsigned NumDeps = Deps.size();
  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
    BasicBlock *DepBB = Deps[i].getBB();
    MemDepResult DepInfo = Deps[i].getResult();

    if (DeadBlocks.count(DepBB)) {
      // Dead dependent mem-op disguise as a load evaluating the same value
      // as the load in question.
      ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
      continue;
    }

    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
      UnavailableBlocks.push_back(DepBB);
      continue;
    }

    // The address being loaded in this non-local block may not be the same as
    // the pointer operand of the load if PHI translation occurs.  Make sure
    // to consider the right address.
    Value *Address = Deps[i].getAddress();

    AvailableValue AV;
    if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
      // subtlety: because we know this was a non-local dependency, we know
      // it's safe to materialize anywhere between the instruction within
      // DepInfo and the end of it's block.
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
                                                          std::move(AV)));
    } else {
      UnavailableBlocks.push_back(DepBB);
    }
  }

  assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
         "post condition violation");
}

bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
                         UnavailBlkVect &UnavailableBlocks) {
  // Okay, we have *some* definitions of the value.  This means that the value
  // is available in some of our (transitive) predecessors.  Lets think about
  // doing PRE of this load.  This will involve inserting a new load into the
  // predecessor when it's not available.  We could do this in general, but
  // prefer to not increase code size.  As such, we only do this when we know
  // that we only have to insert *one* load (which means we're basically moving
  // the load, not inserting a new one).

  SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
                                        UnavailableBlocks.end());

  // Let's find the first basic block with more than one predecessor.  Walk
  // backwards through predecessors if needed.
  BasicBlock *LoadBB = LI->getParent();
  BasicBlock *TmpBB = LoadBB;
  bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);

  // Check that there is no implicit control flow instructions above our load in
  // its block. If there is an instruction that doesn't always pass the
  // execution to the following instruction, then moving through it may become
  // invalid. For example:
  //
  // int arr[LEN];
  // int index = ???;
  // ...
  // guard(0 <= index && index < LEN);
  // use(arr[index]);
  //
  // It is illegal to move the array access to any point above the guard,
  // because if the index is out of bounds we should deoptimize rather than
  // access the array.
  // Check that there is no guard in this block above our instruction.
  if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
    return false;
  while (TmpBB->getSinglePredecessor()) {
    TmpBB = TmpBB->getSinglePredecessor();
    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
      return false;
    if (Blockers.count(TmpBB))
      return false;

    // If any of these blocks has more than one successor (i.e. if the edge we
    // just traversed was critical), then there are other paths through this
    // block along which the load may not be anticipated.  Hoisting the load
    // above this block would be adding the load to execution paths along
    // which it was not previously executed.
    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
      return false;

    // Check that there is no implicit control flow in a block above.
    if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
      return false;
  }

  assert(TmpBB);
  LoadBB = TmpBB;

  // Check to see how many predecessors have the loaded value fully
  // available.
  MapVector<BasicBlock *, Value *> PredLoads;
  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
  for (const AvailableValueInBlock &AV : ValuesPerBlock)
    FullyAvailableBlocks[AV.BB] = true;
  for (BasicBlock *UnavailableBB : UnavailableBlocks)
    FullyAvailableBlocks[UnavailableBB] = false;

  SmallVector<BasicBlock *, 4> CriticalEdgePred;
  for (BasicBlock *Pred : predecessors(LoadBB)) {
    // If any predecessor block is an EH pad that does not allow non-PHI
    // instructions before the terminator, we can't PRE the load.
    if (Pred->getTerminator()->isEHPad()) {
      LLVM_DEBUG(
          dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
                 << Pred->getName() << "': " << *LI << '\n');
      return false;
    }

    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
      continue;
    }

    if (Pred->getTerminator()->getNumSuccessors() != 1) {
      if (isa<IndirectBrInst>(Pred->getTerminator())) {
        LLVM_DEBUG(
            dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
                   << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      // FIXME: Can we support the fallthrough edge?
      if (isa<CallBrInst>(Pred->getTerminator())) {
        LLVM_DEBUG(
            dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
                   << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      if (LoadBB->isEHPad()) {
        LLVM_DEBUG(
            dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
                   << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      CriticalEdgePred.push_back(Pred);
    } else {
      // Only add the predecessors that will not be split for now.
      PredLoads[Pred] = nullptr;
    }
  }

  // Decide whether PRE is profitable for this load.
  unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
  assert(NumUnavailablePreds != 0 &&
         "Fully available value should already be eliminated!");

  // If this load is unavailable in multiple predecessors, reject it.
  // FIXME: If we could restructure the CFG, we could make a common pred with
  // all the preds that don't have an available LI and insert a new load into
  // that one block.
  if (NumUnavailablePreds != 1)
      return false;

  // Split critical edges, and update the unavailable predecessors accordingly.
  for (BasicBlock *OrigPred : CriticalEdgePred) {
    BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
    assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
    PredLoads[NewPred] = nullptr;
    LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
                      << LoadBB->getName() << '\n');
  }

  // Check if the load can safely be moved to all the unavailable predecessors.
  bool CanDoPRE = true;
  const DataLayout &DL = LI->getModule()->getDataLayout();
  SmallVector<Instruction*, 8> NewInsts;
  for (auto &PredLoad : PredLoads) {
    BasicBlock *UnavailablePred = PredLoad.first;

    // Do PHI translation to get its value in the predecessor if necessary.  The
    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
    // We do the translation for each edge we skipped by going from LI's block
    // to LoadBB, otherwise we might miss pieces needing translation.

    // If all preds have a single successor, then we know it is safe to insert
    // the load on the pred (?!?), so we can insert code to materialize the
    // pointer if it is not available.
    Value *LoadPtr = LI->getPointerOperand();
    BasicBlock *Cur = LI->getParent();
    while (Cur != LoadBB) {
      PHITransAddr Address(LoadPtr, DL, AC);
      LoadPtr = Address.PHITranslateWithInsertion(
          Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
      if (!LoadPtr) {
        CanDoPRE = false;
        break;
      }
      Cur = Cur->getSinglePredecessor();
    }

    if (LoadPtr) {
      PHITransAddr Address(LoadPtr, DL, AC);
      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
                                                  NewInsts);
    }
    // If we couldn't find or insert a computation of this phi translated value,
    // we fail PRE.
    if (!LoadPtr) {
      LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
                        << *LI->getPointerOperand() << "\n");
      CanDoPRE = false;
      break;
    }

    PredLoad.second = LoadPtr;
  }

  if (!CanDoPRE) {
    while (!NewInsts.empty()) {
      // Erase instructions generated by the failed PHI translation before
      // trying to number them. PHI translation might insert instructions
      // in basic blocks other than the current one, and we delete them
      // directly, as markInstructionForDeletion only allows removing from the
      // current basic block.
      NewInsts.pop_back_val()->eraseFromParent();
    }
    // HINT: Don't revert the edge-splitting as following transformation may
    // also need to split these critical edges.
    return !CriticalEdgePred.empty();
  }

  // Okay, we can eliminate this load by inserting a reload in the predecessor
  // and using PHI construction to get the value in the other predecessors, do
  // it.
  LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
  LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
             << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
             << '\n');

  // Assign value numbers to the new instructions.
  for (Instruction *I : NewInsts) {
    // Instructions that have been inserted in predecessor(s) to materialize
    // the load address do not retain their original debug locations. Doing
    // so could lead to confusing (but correct) source attributions.
    if (const DebugLoc &DL = I->getDebugLoc())
      I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));

    // FIXME: We really _ought_ to insert these value numbers into their
    // parent's availability map.  However, in doing so, we risk getting into
    // ordering issues.  If a block hasn't been processed yet, we would be
    // marking a value as AVAIL-IN, which isn't what we intend.
    VN.lookupOrAdd(I);
  }

  for (const auto &PredLoad : PredLoads) {
    BasicBlock *UnavailablePred = PredLoad.first;
    Value *LoadPtr = PredLoad.second;

    auto *NewLoad = new LoadInst(
        LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(),
        LI->getAlign(), LI->getOrdering(), LI->getSyncScopeID(),
        UnavailablePred->getTerminator());
    NewLoad->setDebugLoc(LI->getDebugLoc());

    // Transfer the old load's AA tags to the new load.
    AAMDNodes Tags;
    LI->getAAMetadata(Tags);
    if (Tags)
      NewLoad->setAAMetadata(Tags);

    if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
      NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
    if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
      NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
    if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
      NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);

    // We do not propagate the old load's debug location, because the new
    // load now lives in a different BB, and we want to avoid a jumpy line
    // table.
    // FIXME: How do we retain source locations without causing poor debugging
    // behavior?

    // Add the newly created load.
    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
                                                        NewLoad));
    MD->invalidateCachedPointerInfo(LoadPtr);
    LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
  }

  // Perform PHI construction.
  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
  LI->replaceAllUsesWith(V);
  if (isa<PHINode>(V))
    V->takeName(LI);
  if (Instruction *I = dyn_cast<Instruction>(V))
    I->setDebugLoc(LI->getDebugLoc());
  if (V->getType()->isPtrOrPtrVectorTy())
    MD->invalidateCachedPointerInfo(V);
  markInstructionForDeletion(LI);
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
           << "load eliminated by PRE";
  });
  ++NumPRELoad;
  return true;
}

static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
                           OptimizationRemarkEmitter *ORE) {
  using namespace ore;

  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
           << "load of type " << NV("Type", LI->getType()) << " eliminated"
           << setExtraArgs() << " in favor of "
           << NV("InfavorOfValue", AvailableValue);
  });
}

/// Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI) {
  // non-local speculations are not allowed under asan.
  if (LI->getParent()->getParent()->hasFnAttribute(
          Attribute::SanitizeAddress) ||
      LI->getParent()->getParent()->hasFnAttribute(
          Attribute::SanitizeHWAddress))
    return false;

  // Step 1: Find the non-local dependencies of the load.
  LoadDepVect Deps;
  MD->getNonLocalPointerDependency(LI, Deps);

  // If we had to process more than one hundred blocks to find the
  // dependencies, this load isn't worth worrying about.  Optimizing
  // it will be too expensive.
  unsigned NumDeps = Deps.size();
  if (NumDeps > MaxNumDeps)
    return false;

  // If we had a phi translation failure, we'll have a single entry which is a
  // clobber in the current block.  Reject this early.
  if (NumDeps == 1 &&
      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
    LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
               dbgs() << " has unknown dependencies\n";);
    return false;
  }

  // If this load follows a GEP, see if we can PRE the indices before analyzing.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
    for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
                                        OE = GEP->idx_end();
         OI != OE; ++OI)
      if (Instruction *I = dyn_cast<Instruction>(OI->get()))
        performScalarPRE(I);
  }

  // Step 2: Analyze the availability of the load
  AvailValInBlkVect ValuesPerBlock;
  UnavailBlkVect UnavailableBlocks;
  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);

  // If we have no predecessors that produce a known value for this load, exit
  // early.
  if (ValuesPerBlock.empty())
    return false;

  // Step 3: Eliminate fully redundancy.
  //
  // If all of the instructions we depend on produce a known value for this
  // load, then it is fully redundant and we can use PHI insertion to compute
  // its value.  Insert PHIs and remove the fully redundant value now.
  if (UnavailableBlocks.empty()) {
    LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');

    // Perform PHI construction.
    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
    LI->replaceAllUsesWith(V);

    if (isa<PHINode>(V))
      V->takeName(LI);
    if (Instruction *I = dyn_cast<Instruction>(V))
      // If instruction I has debug info, then we should not update it.
      // Also, if I has a null DebugLoc, then it is still potentially incorrect
      // to propagate LI's DebugLoc because LI may not post-dominate I.
      if (LI->getDebugLoc() && LI->getParent() == I->getParent())
        I->setDebugLoc(LI->getDebugLoc());
    if (V->getType()->isPtrOrPtrVectorTy())
      MD->invalidateCachedPointerInfo(V);
    markInstructionForDeletion(LI);
    ++NumGVNLoad;
    reportLoadElim(LI, V, ORE);
    return true;
  }

  // Step 4: Eliminate partial redundancy.
  if (!isPREEnabled() || !isLoadPREEnabled())
    return false;
  if (!isLoadInLoopPREEnabled() && this->LI &&
      this->LI->getLoopFor(LI->getParent()))
    return false;

  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
}

static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
  if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
    return true;

  // Floating point comparisons can be equal, but not equivalent.  Cases:
  // NaNs for unordered operators
  // +0.0 vs 0.0 for all operators
  if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
      (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
       Cmp->getFastMathFlags().noNaNs())) {
      Value *LHS = Cmp->getOperand(0);
      Value *RHS = Cmp->getOperand(1);
      // If we can prove either side non-zero, then equality must imply
      // equivalence.
      // FIXME: We should do this optimization if 'no signed zeros' is
      // applicable via an instruction-level fast-math-flag or some other
      // indicator that relaxed FP semantics are being used.
      if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
        return true;
      if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
        return true;;
      // TODO: Handle vector floating point constants
  }
  return false;
}

static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
  if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
    return true;

  // Floating point comparisons can be equal, but not equivelent.  Cases:
  // NaNs for unordered operators
  // +0.0 vs 0.0 for all operators
  if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
       Cmp->getFastMathFlags().noNaNs()) ||
      Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
      Value *LHS = Cmp->getOperand(0);
      Value *RHS = Cmp->getOperand(1);
      // If we can prove either side non-zero, then equality must imply
      // equivalence.
      // FIXME: We should do this optimization if 'no signed zeros' is
      // applicable via an instruction-level fast-math-flag or some other
      // indicator that relaxed FP semantics are being used.
      if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
        return true;
      if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
        return true;;
      // TODO: Handle vector floating point constants
  }
  return false;
}


static bool hasUsersIn(Value *V, BasicBlock *BB) {
  for (User *U : V->users())
    if (isa<Instruction>(U) &&
        cast<Instruction>(U)->getParent() == BB)
      return true;
  return false;
}

bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
  assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
         "This function can only be called with llvm.assume intrinsic");
  Value *V = IntrinsicI->getArgOperand(0);

  if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
    if (Cond->isZero()) {
      Type *Int8Ty = Type::getInt8Ty(V->getContext());
      // Insert a new store to null instruction before the load to indicate that
      // this code is not reachable.  FIXME: We could insert unreachable
      // instruction directly because we can modify the CFG.
      new StoreInst(UndefValue::get(Int8Ty),
                    Constant::getNullValue(Int8Ty->getPointerTo()),
                    IntrinsicI);
    }
    if (isAssumeWithEmptyBundle(*IntrinsicI))
      markInstructionForDeletion(IntrinsicI);
    return false;
  } else if (isa<Constant>(V)) {
    // If it's not false, and constant, it must evaluate to true. This means our
    // assume is assume(true), and thus, pointless, and we don't want to do
    // anything more here.
    return false;
  }

  Constant *True = ConstantInt::getTrue(V->getContext());
  bool Changed = false;

  for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
    BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);

    // This property is only true in dominated successors, propagateEquality
    // will check dominance for us.
    Changed |= propagateEquality(V, True, Edge, false);
  }

  // We can replace assume value with true, which covers cases like this:
  // call void @llvm.assume(i1 %cmp)
  // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
  ReplaceOperandsWithMap[V] = True;

  // If we find an equality fact, canonicalize all dominated uses in this block
  // to one of the two values.  We heuristically choice the "oldest" of the
  // two where age is determined by value number. (Note that propagateEquality
  // above handles the cross block case.)
  //
  // Key case to cover are:
  // 1)
  // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
  // call void @llvm.assume(i1 %cmp)
  // ret float %0 ; will change it to ret float 3.000000e+00
  // 2)
  // %load = load float, float* %addr
  // %cmp = fcmp oeq float %load, %0
  // call void @llvm.assume(i1 %cmp)
  // ret float %load ; will change it to ret float %0
  if (auto *CmpI = dyn_cast<CmpInst>(V)) {
    if (impliesEquivalanceIfTrue(CmpI)) {
      Value *CmpLHS = CmpI->getOperand(0);
      Value *CmpRHS = CmpI->getOperand(1);
      // Heuristically pick the better replacement -- the choice of heuristic
      // isn't terribly important here, but the fact we canonicalize on some
      // replacement is for exposing other simplifications.
      // TODO: pull this out as a helper function and reuse w/existing
      // (slightly different) logic.
      if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
        std::swap(CmpLHS, CmpRHS);
      if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
        std::swap(CmpLHS, CmpRHS);
      if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
          (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
        // Move the 'oldest' value to the right-hand side, using the value
        // number as a proxy for age.
        uint32_t LVN = VN.lookupOrAdd(CmpLHS);
        uint32_t RVN = VN.lookupOrAdd(CmpRHS);
        if (LVN < RVN)
          std::swap(CmpLHS, CmpRHS);
      }

      // Handle degenerate case where we either haven't pruned a dead path or a
      // removed a trivial assume yet.
      if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
        return Changed;

      LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
                 << *CmpLHS << " with "
                 << *CmpRHS << " in block "
                 << IntrinsicI->getParent()->getName() << "\n");


      // Setup the replacement map - this handles uses within the same block
      if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
        ReplaceOperandsWithMap[CmpLHS] = CmpRHS;

      // NOTE: The non-block local cases are handled by the call to
      // propagateEquality above; this block is just about handling the block
      // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
      // isn't duplicated for the block local case, can we share it somehow?
    }
  }
  return Changed;
}

static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
  patchReplacementInstruction(I, Repl);
  I->replaceAllUsesWith(Repl);
}

/// Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L) {
  if (!MD)
    return false;

  // This code hasn't been audited for ordered or volatile memory access
  if (!L->isUnordered())
    return false;

  if (L->use_empty()) {
    markInstructionForDeletion(L);
    return true;
  }

  // ... to a pointer that has been loaded from before...
  MemDepResult Dep = MD->getDependency(L);

  // If it is defined in another block, try harder.
  if (Dep.isNonLocal())
    return processNonLocalLoad(L);

  // Only handle the local case below
  if (!Dep.isDef() && !Dep.isClobber()) {
    // This might be a NonFuncLocal or an Unknown
    LLVM_DEBUG(
        // fast print dep, using operator<< on instruction is too slow.
        dbgs() << "GVN: load "; L->printAsOperand(dbgs());
        dbgs() << " has unknown dependence\n";);
    return false;
  }

  AvailableValue AV;
  if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
    Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);

    // Replace the load!
    patchAndReplaceAllUsesWith(L, AvailableValue);
    markInstructionForDeletion(L);
    ++NumGVNLoad;
    reportLoadElim(L, AvailableValue, ORE);
    // Tell MDA to rexamine the reused pointer since we might have more
    // information after forwarding it.
    if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
      MD->invalidateCachedPointerInfo(AvailableValue);
    return true;
  }

  return false;
}

/// Return a pair the first field showing the value number of \p Exp and the
/// second field showing whether it is a value number newly created.
std::pair<uint32_t, bool>
GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
  uint32_t &e = expressionNumbering[Exp];
  bool CreateNewValNum = !e;
  if (CreateNewValNum) {
    Expressions.push_back(Exp);
    if (ExprIdx.size() < nextValueNumber + 1)
      ExprIdx.resize(nextValueNumber * 2);
    e = nextValueNumber;
    ExprIdx[nextValueNumber++] = nextExprNumber++;
  }
  return {e, CreateNewValNum};
}

/// Return whether all the values related with the same \p num are
/// defined in \p BB.
bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
                                     GVN &Gvn) {
  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
  while (Vals && Vals->BB == BB)
    Vals = Vals->Next;
  return !Vals;
}

/// Wrap phiTranslateImpl to provide caching functionality.
uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
                                       const BasicBlock *PhiBlock, uint32_t Num,
                                       GVN &Gvn) {
  auto FindRes = PhiTranslateTable.find({Num, Pred});
  if (FindRes != PhiTranslateTable.end())
    return FindRes->second;
  uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
  PhiTranslateTable.insert({{Num, Pred}, NewNum});
  return NewNum;
}

// Return true if the value number \p Num and NewNum have equal value.
// Return false if the result is unknown.
bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
                                       const BasicBlock *Pred,
                                       const BasicBlock *PhiBlock, GVN &Gvn) {
  CallInst *Call = nullptr;
  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
  while (Vals) {
    Call = dyn_cast<CallInst>(Vals->Val);
    if (Call && Call->getParent() == PhiBlock)
      break;
    Vals = Vals->Next;
  }

  if (AA->doesNotAccessMemory(Call))
    return true;

  if (!MD || !AA->onlyReadsMemory(Call))
    return false;

  MemDepResult local_dep = MD->getDependency(Call);
  if (!local_dep.isNonLocal())
    return false;

  const MemoryDependenceResults::NonLocalDepInfo &deps =
      MD->getNonLocalCallDependency(Call);

  // Check to see if the Call has no function local clobber.
  for (unsigned i = 0; i < deps.size(); i++) {
    if (deps[i].getResult().isNonFuncLocal())
      return true;
  }
  return false;
}

/// Translate value number \p Num using phis, so that it has the values of
/// the phis in BB.
uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
                                           const BasicBlock *PhiBlock,
                                           uint32_t Num, GVN &Gvn) {
  if (PHINode *PN = NumberingPhi[Num]) {
    for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
      if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
        if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
          return TransVal;
    }
    return Num;
  }

  // If there is any value related with Num is defined in a BB other than
  // PhiBlock, it cannot depend on a phi in PhiBlock without going through
  // a backedge. We can do an early exit in that case to save compile time.
  if (!areAllValsInBB(Num, PhiBlock, Gvn))
    return Num;

  if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
    return Num;
  Expression Exp = Expressions[ExprIdx[Num]];

  for (unsigned i = 0; i < Exp.varargs.size(); i++) {
    // For InsertValue and ExtractValue, some varargs are index numbers
    // instead of value numbers. Those index numbers should not be
    // translated.
    if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
        (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
        (i > 1 && Exp.opcode == Instruction::ShuffleVector))
      continue;
    Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
  }

  if (Exp.commutative) {
    assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
    if (Exp.varargs[0] > Exp.varargs[1]) {
      std::swap(Exp.varargs[0], Exp.varargs[1]);
      uint32_t Opcode = Exp.opcode >> 8;
      if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
        Exp.opcode = (Opcode << 8) |
                     CmpInst::getSwappedPredicate(
                         static_cast<CmpInst::Predicate>(Exp.opcode & 255));
    }
  }

  if (uint32_t NewNum = expressionNumbering[Exp]) {
    if (Exp.opcode == Instruction::Call && NewNum != Num)
      return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
    return NewNum;
  }
  return Num;
}

/// Erase stale entry from phiTranslate cache so phiTranslate can be computed
/// again.
void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
                                               const BasicBlock &CurrBlock) {
  for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
    auto FindRes = PhiTranslateTable.find({Num, Pred});
    if (FindRes != PhiTranslateTable.end())
      PhiTranslateTable.erase(FindRes);
  }
}

// In order to find a leader for a given value number at a
// specific basic block, we first obtain the list of all Values for that number,
// and then scan the list to find one whose block dominates the block in
// question.  This is fast because dominator tree queries consist of only
// a few comparisons of DFS numbers.
Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
  LeaderTableEntry Vals = LeaderTable[num];
  if (!Vals.Val) return nullptr;

  Value *Val = nullptr;
  if (DT->dominates(Vals.BB, BB)) {
    Val = Vals.Val;
    if (isa<Constant>(Val)) return Val;
  }

  LeaderTableEntry* Next = Vals.Next;
  while (Next) {
    if (DT->dominates(Next->BB, BB)) {
      if (isa<Constant>(Next->Val)) return Next->Val;
      if (!Val) Val = Next->Val;
    }

    Next = Next->Next;
  }

  return Val;
}

/// There is an edge from 'Src' to 'Dst'.  Return
/// true if every path from the entry block to 'Dst' passes via this edge.  In
/// particular 'Dst' must not be reachable via another edge from 'Src'.
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
                                       DominatorTree *DT) {
  // While in theory it is interesting to consider the case in which Dst has
  // more than one predecessor, because Dst might be part of a loop which is
  // only reachable from Src, in practice it is pointless since at the time
  // GVN runs all such loops have preheaders, which means that Dst will have
  // been changed to have only one predecessor, namely Src.
  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
  assert((!Pred || Pred == E.getStart()) &&
         "No edge between these basic blocks!");
  return Pred != nullptr;
}

void GVN::assignBlockRPONumber(Function &F) {
  BlockRPONumber.clear();
  uint32_t NextBlockNumber = 1;
  ReversePostOrderTraversal<Function *> RPOT(&F);
  for (BasicBlock *BB : RPOT)
    BlockRPONumber[BB] = NextBlockNumber++;
  InvalidBlockRPONumbers = false;
}

bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
  bool Changed = false;
  for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
    Value *Operand = Instr->getOperand(OpNum);
    auto it = ReplaceOperandsWithMap.find(Operand);
    if (it != ReplaceOperandsWithMap.end()) {
      LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
                        << *it->second << " in instruction " << *Instr << '\n');
      Instr->setOperand(OpNum, it->second);
      Changed = true;
    }
  }
  return Changed;
}

/// The given values are known to be equal in every block
/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
/// 'RHS' everywhere in the scope.  Returns whether a change was made.
/// If DominatesByEdge is false, then it means that we will propagate the RHS
/// value starting from the end of Root.Start.
bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
                            bool DominatesByEdge) {
  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
  Worklist.push_back(std::make_pair(LHS, RHS));
  bool Changed = false;
  // For speed, compute a conservative fast approximation to
  // DT->dominates(Root, Root.getEnd());
  const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);

  while (!Worklist.empty()) {
    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
    LHS = Item.first; RHS = Item.second;

    if (LHS == RHS)
      continue;
    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");

    // Don't try to propagate equalities between constants.
    if (isa<Constant>(LHS) && isa<Constant>(RHS))
      continue;

    // Prefer a constant on the right-hand side, or an Argument if no constants.
    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
      std::swap(LHS, RHS);
    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");

    // If there is no obvious reason to prefer the left-hand side over the
    // right-hand side, ensure the longest lived term is on the right-hand side,
    // so the shortest lived term will be replaced by the longest lived.
    // This tends to expose more simplifications.
    uint32_t LVN = VN.lookupOrAdd(LHS);
    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
      // Move the 'oldest' value to the right-hand side, using the value number
      // as a proxy for age.
      uint32_t RVN = VN.lookupOrAdd(RHS);
      if (LVN < RVN) {
        std::swap(LHS, RHS);
        LVN = RVN;
      }
    }

    // If value numbering later sees that an instruction in the scope is equal
    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
    // the invariant that instructions only occur in the leader table for their
    // own value number (this is used by removeFromLeaderTable), do not do this
    // if RHS is an instruction (if an instruction in the scope is morphed into
    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
    // using the leader table is about compiling faster, not optimizing better).
    // The leader table only tracks basic blocks, not edges. Only add to if we
    // have the simple case where the edge dominates the end.
    if (RootDominatesEnd && !isa<Instruction>(RHS))
      addToLeaderTable(LVN, RHS, Root.getEnd());

    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
    // LHS always has at least one use that is not dominated by Root, this will
    // never do anything if LHS has only one use.
    if (!LHS->hasOneUse()) {
      unsigned NumReplacements =
          DominatesByEdge
              ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
              : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());

      Changed |= NumReplacements > 0;
      NumGVNEqProp += NumReplacements;
      // Cached information for anything that uses LHS will be invalid.
      if (MD)
        MD->invalidateCachedPointerInfo(LHS);
    }

    // Now try to deduce additional equalities from this one. For example, if
    // the known equality was "(A != B)" == "false" then it follows that A and B
    // are equal in the scope. Only boolean equalities with an explicit true or
    // false RHS are currently supported.
    if (!RHS->getType()->isIntegerTy(1))
      // Not a boolean equality - bail out.
      continue;
    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
    if (!CI)
      // RHS neither 'true' nor 'false' - bail out.
      continue;
    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
    bool isKnownTrue = CI->isMinusOne();
    bool isKnownFalse = !isKnownTrue;

    // If "A && B" is known true then both A and B are known true.  If "A || B"
    // is known false then both A and B are known false.
    Value *A, *B;
    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
      Worklist.push_back(std::make_pair(A, RHS));
      Worklist.push_back(std::make_pair(B, RHS));
      continue;
    }

    // If we are propagating an equality like "(A == B)" == "true" then also
    // propagate the equality A == B.  When propagating a comparison such as
    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
    if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);

      // If "A == B" is known true, or "A != B" is known false, then replace
      // A with B everywhere in the scope.  For floating point operations, we
      // have to be careful since equality does not always imply equivalance.
      if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
          (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
        Worklist.push_back(std::make_pair(Op0, Op1));

      // If "A >= B" is known true, replace "A < B" with false everywhere.
      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
      // Since we don't have the instruction "A < B" immediately to hand, work
      // out the value number that it would have and use that to find an
      // appropriate instruction (if any).
      uint32_t NextNum = VN.getNextUnusedValueNumber();
      uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
      // If the number we were assigned was brand new then there is no point in
      // looking for an instruction realizing it: there cannot be one!
      if (Num < NextNum) {
        Value *NotCmp = findLeader(Root.getEnd(), Num);
        if (NotCmp && isa<Instruction>(NotCmp)) {
          unsigned NumReplacements =
              DominatesByEdge
                  ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
                  : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
                                             Root.getStart());
          Changed |= NumReplacements > 0;
          NumGVNEqProp += NumReplacements;
          // Cached information for anything that uses NotCmp will be invalid.
          if (MD)
            MD->invalidateCachedPointerInfo(NotCmp);
        }
      }
      // Ensure that any instruction in scope that gets the "A < B" value number
      // is replaced with false.
      // The leader table only tracks basic blocks, not edges. Only add to if we
      // have the simple case where the edge dominates the end.
      if (RootDominatesEnd)
        addToLeaderTable(Num, NotVal, Root.getEnd());

      continue;
    }
  }

  return Changed;
}

/// When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I) {
  // Ignore dbg info intrinsics.
  if (isa<DbgInfoIntrinsic>(I))
    return false;

  // If the instruction can be easily simplified then do so now in preference
  // to value numbering it.  Value numbering often exposes redundancies, for
  // example if it determines that %y is equal to %x then the instruction
  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
  const DataLayout &DL = I->getModule()->getDataLayout();
  if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
    bool Changed = false;
    if (!I->use_empty()) {
      I->replaceAllUsesWith(V);
      Changed = true;
    }
    if (isInstructionTriviallyDead(I, TLI)) {
      markInstructionForDeletion(I);
      Changed = true;
    }
    if (Changed) {
      if (MD && V->getType()->isPtrOrPtrVectorTy())
        MD->invalidateCachedPointerInfo(V);
      ++NumGVNSimpl;
      return true;
    }
  }

  if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
    if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
      return processAssumeIntrinsic(IntrinsicI);

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    if (processLoad(LI))
      return true;

    unsigned Num = VN.lookupOrAdd(LI);
    addToLeaderTable(Num, LI, LI->getParent());
    return false;
  }

  // For conditional branches, we can perform simple conditional propagation on
  // the condition value itself.
  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
    if (!BI->isConditional())
      return false;

    if (isa<Constant>(BI->getCondition()))
      return processFoldableCondBr(BI);

    Value *BranchCond = BI->getCondition();
    BasicBlock *TrueSucc = BI->getSuccessor(0);
    BasicBlock *FalseSucc = BI->getSuccessor(1);
    // Avoid multiple edges early.
    if (TrueSucc == FalseSucc)
      return false;

    BasicBlock *Parent = BI->getParent();
    bool Changed = false;

    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
    BasicBlockEdge TrueE(Parent, TrueSucc);
    Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);

    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
    BasicBlockEdge FalseE(Parent, FalseSucc);
    Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);

    return Changed;
  }

  // For switches, propagate the case values into the case destinations.
  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
    Value *SwitchCond = SI->getCondition();
    BasicBlock *Parent = SI->getParent();
    bool Changed = false;

    // Remember how many outgoing edges there are to every successor.
    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
      ++SwitchEdges[SI->getSuccessor(i)];

    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
         i != e; ++i) {
      BasicBlock *Dst = i->getCaseSuccessor();
      // If there is only a single edge, propagate the case value into it.
      if (SwitchEdges.lookup(Dst) == 1) {
        BasicBlockEdge E(Parent, Dst);
        Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
      }
    }
    return Changed;
  }

  // Instructions with void type don't return a value, so there's
  // no point in trying to find redundancies in them.
  if (I->getType()->isVoidTy())
    return false;

  uint32_t NextNum = VN.getNextUnusedValueNumber();
  unsigned Num = VN.lookupOrAdd(I);

  // Allocations are always uniquely numbered, so we can save time and memory
  // by fast failing them.
  if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
    addToLeaderTable(Num, I, I->getParent());
    return false;
  }

  // If the number we were assigned was a brand new VN, then we don't
  // need to do a lookup to see if the number already exists
  // somewhere in the domtree: it can't!
  if (Num >= NextNum) {
    addToLeaderTable(Num, I, I->getParent());
    return false;
  }

  // Perform fast-path value-number based elimination of values inherited from
  // dominators.
  Value *Repl = findLeader(I->getParent(), Num);
  if (!Repl) {
    // Failure, just remember this instance for future use.
    addToLeaderTable(Num, I, I->getParent());
    return false;
  } else if (Repl == I) {
    // If I was the result of a shortcut PRE, it might already be in the table
    // and the best replacement for itself. Nothing to do.
    return false;
  }

  // Remove it!
  patchAndReplaceAllUsesWith(I, Repl);
  if (MD && Repl->getType()->isPtrOrPtrVectorTy())
    MD->invalidateCachedPointerInfo(Repl);
  markInstructionForDeletion(I);
  return true;
}

/// runOnFunction - This is the main transformation entry point for a function.
bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
                  const TargetLibraryInfo &RunTLI, AAResults &RunAA,
                  MemoryDependenceResults *RunMD, LoopInfo *LI,
                  OptimizationRemarkEmitter *RunORE) {
  AC = &RunAC;
  DT = &RunDT;
  VN.setDomTree(DT);
  TLI = &RunTLI;
  VN.setAliasAnalysis(&RunAA);
  MD = RunMD;
  ImplicitControlFlowTracking ImplicitCFT;
  ICF = &ImplicitCFT;
  this->LI = LI;
  VN.setMemDep(MD);
  ORE = RunORE;
  InvalidBlockRPONumbers = true;

  bool Changed = false;
  bool ShouldContinue = true;

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  // Merge unconditional branches, allowing PRE to catch more
  // optimization opportunities.
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
    BasicBlock *BB = &*FI++;

    bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
    if (removedBlock)
      ++NumGVNBlocks;

    Changed |= removedBlock;
  }

  unsigned Iteration = 0;
  while (ShouldContinue) {
    LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
    ShouldContinue = iterateOnFunction(F);
    Changed |= ShouldContinue;
    ++Iteration;
  }

  if (isPREEnabled()) {
    // Fabricate val-num for dead-code in order to suppress assertion in
    // performPRE().
    assignValNumForDeadCode();
    bool PREChanged = true;
    while (PREChanged) {
      PREChanged = performPRE(F);
      Changed |= PREChanged;
    }
  }

  // FIXME: Should perform GVN again after PRE does something.  PRE can move
  // computations into blocks where they become fully redundant.  Note that
  // we can't do this until PRE's critical edge splitting updates memdep.
  // Actually, when this happens, we should just fully integrate PRE into GVN.

  cleanupGlobalSets();
  // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
  // iteration.
  DeadBlocks.clear();

  return Changed;
}

bool GVN::processBlock(BasicBlock *BB) {
  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
  // (and incrementing BI before processing an instruction).
  assert(InstrsToErase.empty() &&
         "We expect InstrsToErase to be empty across iterations");
  if (DeadBlocks.count(BB))
    return false;

  // Clearing map before every BB because it can be used only for single BB.
  ReplaceOperandsWithMap.clear();
  bool ChangedFunction = false;

  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
       BI != BE;) {
    if (!ReplaceOperandsWithMap.empty())
      ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
    ChangedFunction |= processInstruction(&*BI);

    if (InstrsToErase.empty()) {
      ++BI;
      continue;
    }

    // If we need some instructions deleted, do it now.
    NumGVNInstr += InstrsToErase.size();

    // Avoid iterator invalidation.
    bool AtStart = BI == BB->begin();
    if (!AtStart)
      --BI;

    for (auto *I : InstrsToErase) {
      assert(I->getParent() == BB && "Removing instruction from wrong block?");
      LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
      salvageKnowledge(I, AC);
      salvageDebugInfo(*I);
      if (MD) MD->removeInstruction(I);
      LLVM_DEBUG(verifyRemoved(I));
      ICF->removeInstruction(I);
      I->eraseFromParent();
    }
    InstrsToErase.clear();

    if (AtStart)
      BI = BB->begin();
    else
      ++BI;
  }

  return ChangedFunction;
}

// Instantiate an expression in a predecessor that lacked it.
bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
                                    BasicBlock *Curr, unsigned int ValNo) {
  // Because we are going top-down through the block, all value numbers
  // will be available in the predecessor by the time we need them.  Any
  // that weren't originally present will have been instantiated earlier
  // in this loop.
  bool success = true;
  for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
    Value *Op = Instr->getOperand(i);
    if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
      continue;
    // This could be a newly inserted instruction, in which case, we won't
    // find a value number, and should give up before we hurt ourselves.
    // FIXME: Rewrite the infrastructure to let it easier to value number
    // and process newly inserted instructions.
    if (!VN.exists(Op)) {
      success = false;
      break;
    }
    uint32_t TValNo =
        VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
    if (Value *V = findLeader(Pred, TValNo)) {
      Instr->setOperand(i, V);
    } else {
      success = false;
      break;
    }
  }

  // Fail out if we encounter an operand that is not available in
  // the PRE predecessor.  This is typically because of loads which
  // are not value numbered precisely.
  if (!success)
    return false;

  Instr->insertBefore(Pred->getTerminator());
  Instr->setName(Instr->getName() + ".pre");
  Instr->setDebugLoc(Instr->getDebugLoc());

  unsigned Num = VN.lookupOrAdd(Instr);
  VN.add(Instr, Num);

  // Update the availability map to include the new instruction.
  addToLeaderTable(Num, Instr, Pred);
  return true;
}

bool GVN::performScalarPRE(Instruction *CurInst) {
  if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
      isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
      CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
      isa<DbgInfoIntrinsic>(CurInst))
    return false;

  // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
  // sinking the compare again, and it would force the code generator to
  // move the i1 from processor flags or predicate registers into a general
  // purpose register.
  if (isa<CmpInst>(CurInst))
    return false;

  // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
  // sinking the addressing mode computation back to its uses. Extending the
  // GEP's live range increases the register pressure, and therefore it can
  // introduce unnecessary spills.
  //
  // This doesn't prevent Load PRE. PHI translation will make the GEP available
  // to the load by moving it to the predecessor block if necessary.
  if (isa<GetElementPtrInst>(CurInst))
    return false;

  // We don't currently value number ANY inline asm calls.
  if (auto *CallB = dyn_cast<CallBase>(CurInst))
    if (CallB->isInlineAsm())
      return false;

  uint32_t ValNo = VN.lookup(CurInst);

  // Look for the predecessors for PRE opportunities.  We're
  // only trying to solve the basic diamond case, where
  // a value is computed in the successor and one predecessor,
  // but not the other.  We also explicitly disallow cases
  // where the successor is its own predecessor, because they're
  // more complicated to get right.
  unsigned NumWith = 0;
  unsigned NumWithout = 0;
  BasicBlock *PREPred = nullptr;
  BasicBlock *CurrentBlock = CurInst->getParent();

  // Update the RPO numbers for this function.
  if (InvalidBlockRPONumbers)
    assignBlockRPONumber(*CurrentBlock->getParent());

  SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
  for (BasicBlock *P : predecessors(CurrentBlock)) {
    // We're not interested in PRE where blocks with predecessors that are
    // not reachable.
    if (!DT->isReachableFromEntry(P)) {
      NumWithout = 2;
      break;
    }
    // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
    // when CurInst has operand defined in CurrentBlock (so it may be defined
    // by phi in the loop header).
    assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
           "Invalid BlockRPONumber map.");
    if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
        llvm::any_of(CurInst->operands(), [&](const Use &U) {
          if (auto *Inst = dyn_cast<Instruction>(U.get()))
            return Inst->getParent() == CurrentBlock;
          return false;
        })) {
      NumWithout = 2;
      break;
    }

    uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
    Value *predV = findLeader(P, TValNo);
    if (!predV) {
      predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
      PREPred = P;
      ++NumWithout;
    } else if (predV == CurInst) {
      /* CurInst dominates this predecessor. */
      NumWithout = 2;
      break;
    } else {
      predMap.push_back(std::make_pair(predV, P));
      ++NumWith;
    }
  }

  // Don't do PRE when it might increase code size, i.e. when
  // we would need to insert instructions in more than one pred.
  if (NumWithout > 1 || NumWith == 0)
    return false;

  // We may have a case where all predecessors have the instruction,
  // and we just need to insert a phi node. Otherwise, perform
  // insertion.
  Instruction *PREInstr = nullptr;

  if (NumWithout != 0) {
    if (!isSafeToSpeculativelyExecute(CurInst)) {
      // It is only valid to insert a new instruction if the current instruction
      // is always executed. An instruction with implicit control flow could
      // prevent us from doing it. If we cannot speculate the execution, then
      // PRE should be prohibited.
      if (ICF->isDominatedByICFIFromSameBlock(CurInst))
        return false;
    }

    // Don't do PRE across indirect branch.
    if (isa<IndirectBrInst>(PREPred->getTerminator()))
      return false;

    // Don't do PRE across callbr.
    // FIXME: Can we do this across the fallthrough edge?
    if (isa<CallBrInst>(PREPred->getTerminator()))
      return false;

    // We can't do PRE safely on a critical edge, so instead we schedule
    // the edge to be split and perform the PRE the next time we iterate
    // on the function.
    unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
    if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
      toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
      return false;
    }
    // We need to insert somewhere, so let's give it a shot
    PREInstr = CurInst->clone();
    if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
      // If we failed insertion, make sure we remove the instruction.
      LLVM_DEBUG(verifyRemoved(PREInstr));
      PREInstr->deleteValue();
      return false;
    }
  }

  // Either we should have filled in the PRE instruction, or we should
  // not have needed insertions.
  assert(PREInstr != nullptr || NumWithout == 0);

  ++NumGVNPRE;

  // Create a PHI to make the value available in this block.
  PHINode *Phi =
      PHINode::Create(CurInst->getType(), predMap.size(),
                      CurInst->getName() + ".pre-phi", &CurrentBlock->front());
  for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
    if (Value *V = predMap[i].first) {
      // If we use an existing value in this phi, we have to patch the original
      // value because the phi will be used to replace a later value.
      patchReplacementInstruction(CurInst, V);
      Phi->addIncoming(V, predMap[i].second);
    } else
      Phi->addIncoming(PREInstr, PREPred);
  }

  VN.add(Phi, ValNo);
  // After creating a new PHI for ValNo, the phi translate result for ValNo will
  // be changed, so erase the related stale entries in phi translate cache.
  VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
  addToLeaderTable(ValNo, Phi, CurrentBlock);
  Phi->setDebugLoc(CurInst->getDebugLoc());
  CurInst->replaceAllUsesWith(Phi);
  if (MD && Phi->getType()->isPtrOrPtrVectorTy())
    MD->invalidateCachedPointerInfo(Phi);
  VN.erase(CurInst);
  removeFromLeaderTable(ValNo, CurInst, CurrentBlock);

  LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
  if (MD)
    MD->removeInstruction(CurInst);
  LLVM_DEBUG(verifyRemoved(CurInst));
  // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
  // some assertion failures.
  ICF->removeInstruction(CurInst);
  CurInst->eraseFromParent();
  ++NumGVNInstr;

  return true;
}

/// Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function &F) {
  bool Changed = false;
  for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
    // Nothing to PRE in the entry block.
    if (CurrentBlock == &F.getEntryBlock())
      continue;

    // Don't perform PRE on an EH pad.
    if (CurrentBlock->isEHPad())
      continue;

    for (BasicBlock::iterator BI = CurrentBlock->begin(),
                              BE = CurrentBlock->end();
         BI != BE;) {
      Instruction *CurInst = &*BI++;
      Changed |= performScalarPRE(CurInst);
    }
  }

  if (splitCriticalEdges())
    Changed = true;

  return Changed;
}

/// Split the critical edge connecting the given two blocks, and return
/// the block inserted to the critical edge.
BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
  // GVN does not require loop-simplify, do not try to preserve it if it is not
  // possible.
  BasicBlock *BB = SplitCriticalEdge(
      Pred, Succ,
      CriticalEdgeSplittingOptions(DT, LI).unsetPreserveLoopSimplify());
  if (MD)
    MD->invalidateCachedPredecessors();
  InvalidBlockRPONumbers = true;
  return BB;
}

/// Split critical edges found during the previous
/// iteration that may enable further optimization.
bool GVN::splitCriticalEdges() {
  if (toSplit.empty())
    return false;
  do {
    std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
    SplitCriticalEdge(Edge.first, Edge.second,
                      CriticalEdgeSplittingOptions(DT, LI));
  } while (!toSplit.empty());
  if (MD) MD->invalidateCachedPredecessors();
  InvalidBlockRPONumbers = true;
  return true;
}

/// Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) {
  cleanupGlobalSets();

  // Top-down walk of the dominator tree
  bool Changed = false;
  // Needed for value numbering with phi construction to work.
  // RPOT walks the graph in its constructor and will not be invalidated during
  // processBlock.
  ReversePostOrderTraversal<Function *> RPOT(&F);

  for (BasicBlock *BB : RPOT)
    Changed |= processBlock(BB);

  return Changed;
}

void GVN::cleanupGlobalSets() {
  VN.clear();
  LeaderTable.clear();
  BlockRPONumber.clear();
  TableAllocator.Reset();
  ICF->clear();
  InvalidBlockRPONumbers = true;
}

/// Verify that the specified instruction does not occur in our
/// internal data structures.
void GVN::verifyRemoved(const Instruction *Inst) const {
  VN.verifyRemoved(Inst);

  // Walk through the value number scope to make sure the instruction isn't
  // ferreted away in it.
  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
    const LeaderTableEntry *Node = &I->second;
    assert(Node->Val != Inst && "Inst still in value numbering scope!");

    while (Node->Next) {
      Node = Node->Next;
      assert(Node->Val != Inst && "Inst still in value numbering scope!");
    }
  }
}

/// BB is declared dead, which implied other blocks become dead as well. This
/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
/// live successors, update their phi nodes by replacing the operands
/// corresponding to dead blocks with UndefVal.
void GVN::addDeadBlock(BasicBlock *BB) {
  SmallVector<BasicBlock *, 4> NewDead;
  SmallSetVector<BasicBlock *, 4> DF;

  NewDead.push_back(BB);
  while (!NewDead.empty()) {
    BasicBlock *D = NewDead.pop_back_val();
    if (DeadBlocks.count(D))
      continue;

    // All blocks dominated by D are dead.
    SmallVector<BasicBlock *, 8> Dom;
    DT->getDescendants(D, Dom);
    DeadBlocks.insert(Dom.begin(), Dom.end());

    // Figure out the dominance-frontier(D).
    for (BasicBlock *B : Dom) {
      for (BasicBlock *S : successors(B)) {
        if (DeadBlocks.count(S))
          continue;

        bool AllPredDead = true;
        for (BasicBlock *P : predecessors(S))
          if (!DeadBlocks.count(P)) {
            AllPredDead = false;
            break;
          }

        if (!AllPredDead) {
          // S could be proved dead later on. That is why we don't update phi
          // operands at this moment.
          DF.insert(S);
        } else {
          // While S is not dominated by D, it is dead by now. This could take
          // place if S already have a dead predecessor before D is declared
          // dead.
          NewDead.push_back(S);
        }
      }
    }
  }

  // For the dead blocks' live successors, update their phi nodes by replacing
  // the operands corresponding to dead blocks with UndefVal.
  for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
        I != E; I++) {
    BasicBlock *B = *I;
    if (DeadBlocks.count(B))
      continue;

    // First, split the critical edges. This might also create additional blocks
    // to preserve LoopSimplify form and adjust edges accordingly.
    SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
    for (BasicBlock *P : Preds) {
      if (!DeadBlocks.count(P))
        continue;

      if (llvm::any_of(successors(P),
                       [B](BasicBlock *Succ) { return Succ == B; }) &&
          isCriticalEdge(P->getTerminator(), B)) {
        if (BasicBlock *S = splitCriticalEdges(P, B))
          DeadBlocks.insert(P = S);
      }
    }

    // Now undef the incoming values from the dead predecessors.
    for (BasicBlock *P : predecessors(B)) {
      if (!DeadBlocks.count(P))
        continue;
      for (PHINode &Phi : B->phis()) {
        Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
        if (MD)
          MD->invalidateCachedPointerInfo(&Phi);
      }
    }
  }
}

// If the given branch is recognized as a foldable branch (i.e. conditional
// branch with constant condition), it will perform following analyses and
// transformation.
//  1) If the dead out-coming edge is a critical-edge, split it. Let
//     R be the target of the dead out-coming edge.
//  1) Identify the set of dead blocks implied by the branch's dead outcoming
//     edge. The result of this step will be {X| X is dominated by R}
//  2) Identify those blocks which haves at least one dead predecessor. The
//     result of this step will be dominance-frontier(R).
//  3) Update the PHIs in DF(R) by replacing the operands corresponding to
//     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
//
// Return true iff *NEW* dead code are found.
bool GVN::processFoldableCondBr(BranchInst *BI) {
  if (!BI || BI->isUnconditional())
    return false;

  // If a branch has two identical successors, we cannot declare either dead.
  if (BI->getSuccessor(0) == BI->getSuccessor(1))
    return false;

  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
  if (!Cond)
    return false;

  BasicBlock *DeadRoot =
      Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
  if (DeadBlocks.count(DeadRoot))
    return false;

  if (!DeadRoot->getSinglePredecessor())
    DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);

  addDeadBlock(DeadRoot);
  return true;
}

// performPRE() will trigger assert if it comes across an instruction without
// associated val-num. As it normally has far more live instructions than dead
// instructions, it makes more sense just to "fabricate" a val-number for the
// dead code than checking if instruction involved is dead or not.
void GVN::assignValNumForDeadCode() {
  for (BasicBlock *BB : DeadBlocks) {
    for (Instruction &Inst : *BB) {
      unsigned ValNum = VN.lookupOrAdd(&Inst);
      addToLeaderTable(ValNum, &Inst, BB);
    }
  }
}

class llvm::gvn::GVNLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
      : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
    initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();

    return Impl.runImpl(
        F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
        getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
        getAnalysis<AAResultsWrapperPass>().getAAResults(),
        Impl.isMemDepEnabled()
            ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
            : nullptr,
        LIWP ? &LIWP->getLoopInfo() : nullptr,
        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    if (Impl.isMemDepEnabled())
      AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();

    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  }

private:
  GVN Impl;
};

char GVNLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)

// The public interface to this file...
FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
  return new GVNLegacyPass(NoMemDepAnalysis);
}