EarlyCSE.cpp 57.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs a simple dominator tree walk that eliminates trivially
// redundant instructions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/GuardUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <deque>
#include <memory>
#include <utility>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "early-cse"

STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE,      "Number of instructions CSE'd");
STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
STATISTIC(NumDSE,      "Number of trivial dead stores removed");

DEBUG_COUNTER(CSECounter, "early-cse",
              "Controls which instructions are removed");

static cl::opt<unsigned> EarlyCSEMssaOptCap(
    "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
    cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
             "for faster compile. Caps the MemorySSA clobbering calls."));

static cl::opt<bool> EarlyCSEDebugHash(
    "earlycse-debug-hash", cl::init(false), cl::Hidden,
    cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
             "function is well-behaved w.r.t. its isEqual predicate"));

//===----------------------------------------------------------------------===//
// SimpleValue
//===----------------------------------------------------------------------===//

namespace {

/// Struct representing the available values in the scoped hash table.
struct SimpleValue {
  Instruction *Inst;

  SimpleValue(Instruction *I) : Inst(I) {
    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
  }

  bool isSentinel() const {
    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
  }

  static bool canHandle(Instruction *Inst) {
    // This can only handle non-void readnone functions.
    if (CallInst *CI = dyn_cast<CallInst>(Inst))
      return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
    return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
           isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
           isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
           isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
           isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
  }
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<SimpleValue> {
  static inline SimpleValue getEmptyKey() {
    return DenseMapInfo<Instruction *>::getEmptyKey();
  }

  static inline SimpleValue getTombstoneKey() {
    return DenseMapInfo<Instruction *>::getTombstoneKey();
  }

  static unsigned getHashValue(SimpleValue Val);
  static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};

} // end namespace llvm

/// Match a 'select' including an optional 'not's of the condition.
static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
                                           Value *&B,
                                           SelectPatternFlavor &Flavor) {
  // Return false if V is not even a select.
  if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
    return false;

  // Look through a 'not' of the condition operand by swapping A/B.
  Value *CondNot;
  if (match(Cond, m_Not(m_Value(CondNot)))) {
    Cond = CondNot;
    std::swap(A, B);
  }

  // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's
  // more powerful matchSelectPattern() because it may rely on instruction flags
  // such as "nsw". That would be incompatible with the current hashing
  // mechanism that may remove flags to increase the likelihood of CSE.

  // These are the canonical forms of abs(X) and nabs(X) created by instcombine:
  // %N = sub i32 0, %X
  // %C = icmp slt i32 %X, 0
  // %ABS = select i1 %C, i32 %N, i32 %X
  //
  // %N = sub i32 0, %X
  // %C = icmp slt i32 %X, 0
  // %NABS = select i1 %C, i32 %X, i32 %N
  Flavor = SPF_UNKNOWN;
  CmpInst::Predicate Pred;
  if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) &&
      Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) {
    // ABS: B < 0 ? -B : B
    Flavor = SPF_ABS;
    return true;
  }
  if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) &&
      Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) {
    // NABS: A < 0 ? A : -A
    Flavor = SPF_NABS;
    return true;
  }

  if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
    // Check for commuted variants of min/max by swapping predicate.
    // If we do not match the standard or commuted patterns, this is not a
    // recognized form of min/max, but it is still a select, so return true.
    if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
      return true;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  switch (Pred) {
  case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
  case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
  case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
  case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
  default: break;
  }

  return true;
}

static unsigned getHashValueImpl(SimpleValue Val) {
  Instruction *Inst = Val.Inst;
  // Hash in all of the operands as pointers.
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
    Value *LHS = BinOp->getOperand(0);
    Value *RHS = BinOp->getOperand(1);
    if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
      std::swap(LHS, RHS);

    return hash_combine(BinOp->getOpcode(), LHS, RHS);
  }

  if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
    // Compares can be commuted by swapping the comparands and
    // updating the predicate.  Choose the form that has the
    // comparands in sorted order, or in the case of a tie, the
    // one with the lower predicate.
    Value *LHS = CI->getOperand(0);
    Value *RHS = CI->getOperand(1);
    CmpInst::Predicate Pred = CI->getPredicate();
    CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
    if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
      std::swap(LHS, RHS);
      Pred = SwappedPred;
    }
    return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
  }

  // Hash general selects to allow matching commuted true/false operands.
  SelectPatternFlavor SPF;
  Value *Cond, *A, *B;
  if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
    // Hash min/max/abs (cmp + select) to allow for commuted operands.
    // Min/max may also have non-canonical compare predicate (eg, the compare for
    // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
    // compare.
    // TODO: We should also detect FP min/max.
    if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
        SPF == SPF_UMIN || SPF == SPF_UMAX) {
      if (A > B)
        std::swap(A, B);
      return hash_combine(Inst->getOpcode(), SPF, A, B);
    }
    if (SPF == SPF_ABS || SPF == SPF_NABS) {
      // ABS/NABS always puts the input in A and its negation in B.
      return hash_combine(Inst->getOpcode(), SPF, A, B);
    }

    // Hash general selects to allow matching commuted true/false operands.

    // If we do not have a compare as the condition, just hash in the condition.
    CmpInst::Predicate Pred;
    Value *X, *Y;
    if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
      return hash_combine(Inst->getOpcode(), Cond, A, B);

    // Similar to cmp normalization (above) - canonicalize the predicate value:
    // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
    if (CmpInst::getInversePredicate(Pred) < Pred) {
      Pred = CmpInst::getInversePredicate(Pred);
      std::swap(A, B);
    }
    return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
  }

  if (CastInst *CI = dyn_cast<CastInst>(Inst))
    return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));

  if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
    return hash_combine(FI->getOpcode(), FI->getOperand(0));

  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
    return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
                        hash_combine_range(EVI->idx_begin(), EVI->idx_end()));

  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
    return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
                        IVI->getOperand(1),
                        hash_combine_range(IVI->idx_begin(), IVI->idx_end()));

  assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
          isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
          isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
          isa<FreezeInst>(Inst)) &&
         "Invalid/unknown instruction");

  // Mix in the opcode.
  return hash_combine(
      Inst->getOpcode(),
      hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}

unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
#ifndef NDEBUG
  // If -earlycse-debug-hash was specified, return a constant -- this
  // will force all hashing to collide, so we'll exhaustively search
  // the table for a match, and the assertion in isEqual will fire if
  // there's a bug causing equal keys to hash differently.
  if (EarlyCSEDebugHash)
    return 0;
#endif
  return getHashValueImpl(Val);
}

static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;

  if (LHS.isSentinel() || RHS.isSentinel())
    return LHSI == RHSI;

  if (LHSI->getOpcode() != RHSI->getOpcode())
    return false;
  if (LHSI->isIdenticalToWhenDefined(RHSI))
    return true;

  // If we're not strictly identical, we still might be a commutable instruction
  if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
    if (!LHSBinOp->isCommutative())
      return false;

    assert(isa<BinaryOperator>(RHSI) &&
           "same opcode, but different instruction type?");
    BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);

    // Commuted equality
    return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
           LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
  }
  if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
    assert(isa<CmpInst>(RHSI) &&
           "same opcode, but different instruction type?");
    CmpInst *RHSCmp = cast<CmpInst>(RHSI);
    // Commuted equality
    return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
           LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
           LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
  }

  // Min/max/abs can occur with commuted operands, non-canonical predicates,
  // and/or non-canonical operands.
  // Selects can be non-trivially equivalent via inverted conditions and swaps.
  SelectPatternFlavor LSPF, RSPF;
  Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
  if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
      matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
    if (LSPF == RSPF) {
      // TODO: We should also detect FP min/max.
      if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
          LSPF == SPF_UMIN || LSPF == SPF_UMAX)
        return ((LHSA == RHSA && LHSB == RHSB) ||
                (LHSA == RHSB && LHSB == RHSA));

      if (LSPF == SPF_ABS || LSPF == SPF_NABS) {
        // Abs results are placed in a defined order by matchSelectPattern.
        return LHSA == RHSA && LHSB == RHSB;
      }

      // select Cond, A, B <--> select not(Cond), B, A
      if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
        return true;
    }

    // If the true/false operands are swapped and the conditions are compares
    // with inverted predicates, the selects are equal:
    // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
    //
    // This also handles patterns with a double-negation in the sense of not +
    // inverse, because we looked through a 'not' in the matching function and
    // swapped A/B:
    // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
    //
    // This intentionally does NOT handle patterns with a double-negation in
    // the sense of not + not, because doing so could result in values
    // comparing
    // as equal that hash differently in the min/max/abs cases like:
    // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
    //   ^ hashes as min                  ^ would not hash as min
    // In the context of the EarlyCSE pass, however, such cases never reach
    // this code, as we simplify the double-negation before hashing the second
    // select (and so still succeed at CSEing them).
    if (LHSA == RHSB && LHSB == RHSA) {
      CmpInst::Predicate PredL, PredR;
      Value *X, *Y;
      if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
          match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
          CmpInst::getInversePredicate(PredL) == PredR)
        return true;
    }
  }

  return false;
}

bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
  // These comparisons are nontrivial, so assert that equality implies
  // hash equality (DenseMap demands this as an invariant).
  bool Result = isEqualImpl(LHS, RHS);
  assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
         getHashValueImpl(LHS) == getHashValueImpl(RHS));
  return Result;
}

//===----------------------------------------------------------------------===//
// CallValue
//===----------------------------------------------------------------------===//

namespace {

/// Struct representing the available call values in the scoped hash
/// table.
struct CallValue {
  Instruction *Inst;

  CallValue(Instruction *I) : Inst(I) {
    assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
  }

  bool isSentinel() const {
    return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
           Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
  }

  static bool canHandle(Instruction *Inst) {
    // Don't value number anything that returns void.
    if (Inst->getType()->isVoidTy())
      return false;

    CallInst *CI = dyn_cast<CallInst>(Inst);
    if (!CI || !CI->onlyReadsMemory())
      return false;
    return true;
  }
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<CallValue> {
  static inline CallValue getEmptyKey() {
    return DenseMapInfo<Instruction *>::getEmptyKey();
  }

  static inline CallValue getTombstoneKey() {
    return DenseMapInfo<Instruction *>::getTombstoneKey();
  }

  static unsigned getHashValue(CallValue Val);
  static bool isEqual(CallValue LHS, CallValue RHS);
};

} // end namespace llvm

unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
  Instruction *Inst = Val.Inst;

  // gc.relocate is 'special' call: its second and third operands are
  // not real values, but indices into statepoint's argument list.
  // Get values they point to.
  if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
    return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
                        GCR->getBasePtr(), GCR->getDerivedPtr());

  // Hash all of the operands as pointers and mix in the opcode.
  return hash_combine(
      Inst->getOpcode(),
      hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}

bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
  Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
  if (LHS.isSentinel() || RHS.isSentinel())
    return LHSI == RHSI;

  // See comment above in `getHashValue()`.
  if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
    if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
      return GCR1->getOperand(0) == GCR2->getOperand(0) &&
             GCR1->getBasePtr() == GCR2->getBasePtr() &&
             GCR1->getDerivedPtr() == GCR2->getDerivedPtr();

  return LHSI->isIdenticalTo(RHSI);
}

//===----------------------------------------------------------------------===//
// EarlyCSE implementation
//===----------------------------------------------------------------------===//

namespace {

/// A simple and fast domtree-based CSE pass.
///
/// This pass does a simple depth-first walk over the dominator tree,
/// eliminating trivially redundant instructions and using instsimplify to
/// canonicalize things as it goes. It is intended to be fast and catch obvious
/// cases so that instcombine and other passes are more effective. It is
/// expected that a later pass of GVN will catch the interesting/hard cases.
class EarlyCSE {
public:
  const TargetLibraryInfo &TLI;
  const TargetTransformInfo &TTI;
  DominatorTree &DT;
  AssumptionCache &AC;
  const SimplifyQuery SQ;
  MemorySSA *MSSA;
  std::unique_ptr<MemorySSAUpdater> MSSAUpdater;

  using AllocatorTy =
      RecyclingAllocator<BumpPtrAllocator,
                         ScopedHashTableVal<SimpleValue, Value *>>;
  using ScopedHTType =
      ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
                      AllocatorTy>;

  /// A scoped hash table of the current values of all of our simple
  /// scalar expressions.
  ///
  /// As we walk down the domtree, we look to see if instructions are in this:
  /// if so, we replace them with what we find, otherwise we insert them so
  /// that dominated values can succeed in their lookup.
  ScopedHTType AvailableValues;

  /// A scoped hash table of the current values of previously encountered
  /// memory locations.
  ///
  /// This allows us to get efficient access to dominating loads or stores when
  /// we have a fully redundant load.  In addition to the most recent load, we
  /// keep track of a generation count of the read, which is compared against
  /// the current generation count.  The current generation count is incremented
  /// after every possibly writing memory operation, which ensures that we only
  /// CSE loads with other loads that have no intervening store.  Ordering
  /// events (such as fences or atomic instructions) increment the generation
  /// count as well; essentially, we model these as writes to all possible
  /// locations.  Note that atomic and/or volatile loads and stores can be
  /// present the table; it is the responsibility of the consumer to inspect
  /// the atomicity/volatility if needed.
  struct LoadValue {
    Instruction *DefInst = nullptr;
    unsigned Generation = 0;
    int MatchingId = -1;
    bool IsAtomic = false;

    LoadValue() = default;
    LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
              bool IsAtomic)
        : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
          IsAtomic(IsAtomic) {}
  };

  using LoadMapAllocator =
      RecyclingAllocator<BumpPtrAllocator,
                         ScopedHashTableVal<Value *, LoadValue>>;
  using LoadHTType =
      ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
                      LoadMapAllocator>;

  LoadHTType AvailableLoads;

  // A scoped hash table mapping memory locations (represented as typed
  // addresses) to generation numbers at which that memory location became
  // (henceforth indefinitely) invariant.
  using InvariantMapAllocator =
      RecyclingAllocator<BumpPtrAllocator,
                         ScopedHashTableVal<MemoryLocation, unsigned>>;
  using InvariantHTType =
      ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
                      InvariantMapAllocator>;
  InvariantHTType AvailableInvariants;

  /// A scoped hash table of the current values of read-only call
  /// values.
  ///
  /// It uses the same generation count as loads.
  using CallHTType =
      ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
  CallHTType AvailableCalls;

  /// This is the current generation of the memory value.
  unsigned CurrentGeneration = 0;

  /// Set up the EarlyCSE runner for a particular function.
  EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
           const TargetTransformInfo &TTI, DominatorTree &DT,
           AssumptionCache &AC, MemorySSA *MSSA)
      : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
        MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}

  bool run();

private:
  unsigned ClobberCounter = 0;
  // Almost a POD, but needs to call the constructors for the scoped hash
  // tables so that a new scope gets pushed on. These are RAII so that the
  // scope gets popped when the NodeScope is destroyed.
  class NodeScope {
  public:
    NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
              InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
      : Scope(AvailableValues), LoadScope(AvailableLoads),
        InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
    NodeScope(const NodeScope &) = delete;
    NodeScope &operator=(const NodeScope &) = delete;

  private:
    ScopedHTType::ScopeTy Scope;
    LoadHTType::ScopeTy LoadScope;
    InvariantHTType::ScopeTy InvariantScope;
    CallHTType::ScopeTy CallScope;
  };

  // Contains all the needed information to create a stack for doing a depth
  // first traversal of the tree. This includes scopes for values, loads, and
  // calls as well as the generation. There is a child iterator so that the
  // children do not need to be store separately.
  class StackNode {
  public:
    StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
              InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
              unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
              DomTreeNode::const_iterator end)
        : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
          EndIter(end),
          Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
                 AvailableCalls)
          {}
    StackNode(const StackNode &) = delete;
    StackNode &operator=(const StackNode &) = delete;

    // Accessors.
    unsigned currentGeneration() { return CurrentGeneration; }
    unsigned childGeneration() { return ChildGeneration; }
    void childGeneration(unsigned generation) { ChildGeneration = generation; }
    DomTreeNode *node() { return Node; }
    DomTreeNode::const_iterator childIter() { return ChildIter; }

    DomTreeNode *nextChild() {
      DomTreeNode *child = *ChildIter;
      ++ChildIter;
      return child;
    }

    DomTreeNode::const_iterator end() { return EndIter; }
    bool isProcessed() { return Processed; }
    void process() { Processed = true; }

  private:
    unsigned CurrentGeneration;
    unsigned ChildGeneration;
    DomTreeNode *Node;
    DomTreeNode::const_iterator ChildIter;
    DomTreeNode::const_iterator EndIter;
    NodeScope Scopes;
    bool Processed = false;
  };

  /// Wrapper class to handle memory instructions, including loads,
  /// stores and intrinsic loads and stores defined by the target.
  class ParseMemoryInst {
  public:
    ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
      : Inst(Inst) {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
        if (TTI.getTgtMemIntrinsic(II, Info))
          IsTargetMemInst = true;
    }

    bool isLoad() const {
      if (IsTargetMemInst) return Info.ReadMem;
      return isa<LoadInst>(Inst);
    }

    bool isStore() const {
      if (IsTargetMemInst) return Info.WriteMem;
      return isa<StoreInst>(Inst);
    }

    bool isAtomic() const {
      if (IsTargetMemInst)
        return Info.Ordering != AtomicOrdering::NotAtomic;
      return Inst->isAtomic();
    }

    bool isUnordered() const {
      if (IsTargetMemInst)
        return Info.isUnordered();

      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
        return LI->isUnordered();
      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
        return SI->isUnordered();
      }
      // Conservative answer
      return !Inst->isAtomic();
    }

    bool isVolatile() const {
      if (IsTargetMemInst)
        return Info.IsVolatile;

      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
        return LI->isVolatile();
      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
        return SI->isVolatile();
      }
      // Conservative answer
      return true;
    }

    bool isInvariantLoad() const {
      if (auto *LI = dyn_cast<LoadInst>(Inst))
        return LI->hasMetadata(LLVMContext::MD_invariant_load);
      return false;
    }

    bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
      return (getPointerOperand() == Inst.getPointerOperand() &&
              getMatchingId() == Inst.getMatchingId());
    }

    bool isValid() const { return getPointerOperand() != nullptr; }

    // For regular (non-intrinsic) loads/stores, this is set to -1. For
    // intrinsic loads/stores, the id is retrieved from the corresponding
    // field in the MemIntrinsicInfo structure.  That field contains
    // non-negative values only.
    int getMatchingId() const {
      if (IsTargetMemInst) return Info.MatchingId;
      return -1;
    }

    Value *getPointerOperand() const {
      if (IsTargetMemInst) return Info.PtrVal;
      return getLoadStorePointerOperand(Inst);
    }

    bool mayReadFromMemory() const {
      if (IsTargetMemInst) return Info.ReadMem;
      return Inst->mayReadFromMemory();
    }

    bool mayWriteToMemory() const {
      if (IsTargetMemInst) return Info.WriteMem;
      return Inst->mayWriteToMemory();
    }

  private:
    bool IsTargetMemInst = false;
    MemIntrinsicInfo Info;
    Instruction *Inst;
  };

  bool processNode(DomTreeNode *Node);

  bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
                             const BasicBlock *BB, const BasicBlock *Pred);

  Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
    if (auto *LI = dyn_cast<LoadInst>(Inst))
      return LI;
    if (auto *SI = dyn_cast<StoreInst>(Inst))
      return SI->getValueOperand();
    assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
    return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
                                                 ExpectedType);
  }

  /// Return true if the instruction is known to only operate on memory
  /// provably invariant in the given "generation".
  bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);

  bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
                           Instruction *EarlierInst, Instruction *LaterInst);

  void removeMSSA(Instruction &Inst) {
    if (!MSSA)
      return;
    if (VerifyMemorySSA)
      MSSA->verifyMemorySSA();
    // Removing a store here can leave MemorySSA in an unoptimized state by
    // creating MemoryPhis that have identical arguments and by creating
    // MemoryUses whose defining access is not an actual clobber. The phi case
    // is handled by MemorySSA when passing OptimizePhis = true to
    // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
    // by MemorySSA's getClobberingMemoryAccess.
    MSSAUpdater->removeMemoryAccess(&Inst, true);
  }
};

} // end anonymous namespace

/// Determine if the memory referenced by LaterInst is from the same heap
/// version as EarlierInst.
/// This is currently called in two scenarios:
///
///   load p
///   ...
///   load p
///
/// and
///
///   x = load p
///   ...
///   store x, p
///
/// in both cases we want to verify that there are no possible writes to the
/// memory referenced by p between the earlier and later instruction.
bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
                                   unsigned LaterGeneration,
                                   Instruction *EarlierInst,
                                   Instruction *LaterInst) {
  // Check the simple memory generation tracking first.
  if (EarlierGeneration == LaterGeneration)
    return true;

  if (!MSSA)
    return false;

  // If MemorySSA has determined that one of EarlierInst or LaterInst does not
  // read/write memory, then we can safely return true here.
  // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
  // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
  // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
  // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
  // with the default optimization pipeline.
  auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
  if (!EarlierMA)
    return true;
  auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
  if (!LaterMA)
    return true;

  // Since we know LaterDef dominates LaterInst and EarlierInst dominates
  // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
  // EarlierInst and LaterInst and neither can any other write that potentially
  // clobbers LaterInst.
  MemoryAccess *LaterDef;
  if (ClobberCounter < EarlyCSEMssaOptCap) {
    LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
    ClobberCounter++;
  } else
    LaterDef = LaterMA->getDefiningAccess();

  return MSSA->dominates(LaterDef, EarlierMA);
}

bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
  // A location loaded from with an invariant_load is assumed to *never* change
  // within the visible scope of the compilation.
  if (auto *LI = dyn_cast<LoadInst>(I))
    if (LI->hasMetadata(LLVMContext::MD_invariant_load))
      return true;

  auto MemLocOpt = MemoryLocation::getOrNone(I);
  if (!MemLocOpt)
    // "target" intrinsic forms of loads aren't currently known to
    // MemoryLocation::get.  TODO
    return false;
  MemoryLocation MemLoc = *MemLocOpt;
  if (!AvailableInvariants.count(MemLoc))
    return false;

  // Is the generation at which this became invariant older than the
  // current one?
  return AvailableInvariants.lookup(MemLoc) <= GenAt;
}

bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
                                     const BranchInst *BI, const BasicBlock *BB,
                                     const BasicBlock *Pred) {
  assert(BI->isConditional() && "Should be a conditional branch!");
  assert(BI->getCondition() == CondInst && "Wrong condition?");
  assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
  auto *TorF = (BI->getSuccessor(0) == BB)
                   ? ConstantInt::getTrue(BB->getContext())
                   : ConstantInt::getFalse(BB->getContext());
  auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
      return BOp->getOpcode() == Opcode;
    return false;
  };
  // If the condition is AND operation, we can propagate its operands into the
  // true branch. If it is OR operation, we can propagate them into the false
  // branch.
  unsigned PropagateOpcode =
      (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;

  bool MadeChanges = false;
  SmallVector<Instruction *, 4> WorkList;
  SmallPtrSet<Instruction *, 4> Visited;
  WorkList.push_back(CondInst);
  while (!WorkList.empty()) {
    Instruction *Curr = WorkList.pop_back_val();

    AvailableValues.insert(Curr, TorF);
    LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
                      << Curr->getName() << "' as " << *TorF << " in "
                      << BB->getName() << "\n");
    if (!DebugCounter::shouldExecute(CSECounter)) {
      LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
    } else {
      // Replace all dominated uses with the known value.
      if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
                                                    BasicBlockEdge(Pred, BB))) {
        NumCSECVP += Count;
        MadeChanges = true;
      }
    }

    if (MatchBinOp(Curr, PropagateOpcode))
      for (auto &Op : cast<BinaryOperator>(Curr)->operands())
        if (Instruction *OPI = dyn_cast<Instruction>(Op))
          if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
            WorkList.push_back(OPI);
  }

  return MadeChanges;
}

bool EarlyCSE::processNode(DomTreeNode *Node) {
  bool Changed = false;
  BasicBlock *BB = Node->getBlock();

  // If this block has a single predecessor, then the predecessor is the parent
  // of the domtree node and all of the live out memory values are still current
  // in this block.  If this block has multiple predecessors, then they could
  // have invalidated the live-out memory values of our parent value.  For now,
  // just be conservative and invalidate memory if this block has multiple
  // predecessors.
  if (!BB->getSinglePredecessor())
    ++CurrentGeneration;

  // If this node has a single predecessor which ends in a conditional branch,
  // we can infer the value of the branch condition given that we took this
  // path.  We need the single predecessor to ensure there's not another path
  // which reaches this block where the condition might hold a different
  // value.  Since we're adding this to the scoped hash table (like any other
  // def), it will have been popped if we encounter a future merge block.
  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
    if (BI && BI->isConditional()) {
      auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
      if (CondInst && SimpleValue::canHandle(CondInst))
        Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
    }
  }

  /// LastStore - Keep track of the last non-volatile store that we saw... for
  /// as long as there in no instruction that reads memory.  If we see a store
  /// to the same location, we delete the dead store.  This zaps trivial dead
  /// stores which can occur in bitfield code among other things.
  Instruction *LastStore = nullptr;

  // See if any instructions in the block can be eliminated.  If so, do it.  If
  // not, add them to AvailableValues.
  for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
    // Dead instructions should just be removed.
    if (isInstructionTriviallyDead(&Inst, &TLI)) {
      LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
      if (!DebugCounter::shouldExecute(CSECounter)) {
        LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
        continue;
      }

      salvageKnowledge(&Inst, &AC);
      salvageDebugInfo(Inst);
      removeMSSA(Inst);
      Inst.eraseFromParent();
      Changed = true;
      ++NumSimplify;
      continue;
    }

    // Skip assume intrinsics, they don't really have side effects (although
    // they're marked as such to ensure preservation of control dependencies),
    // and this pass will not bother with its removal. However, we should mark
    // its condition as true for all dominated blocks.
    if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) {
      auto *CondI =
          dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0));
      if (CondI && SimpleValue::canHandle(CondI)) {
        LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
                          << '\n');
        AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
      } else
        LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
      continue;
    }

    // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
    if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
      LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
      continue;
    }

    // We can skip all invariant.start intrinsics since they only read memory,
    // and we can forward values across it. For invariant starts without
    // invariant ends, we can use the fact that the invariantness never ends to
    // start a scope in the current generaton which is true for all future
    // generations.  Also, we dont need to consume the last store since the
    // semantics of invariant.start allow us to perform   DSE of the last
    // store, if there was a store following invariant.start. Consider:
    //
    // store 30, i8* p
    // invariant.start(p)
    // store 40, i8* p
    // We can DSE the store to 30, since the store 40 to invariant location p
    // causes undefined behaviour.
    if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
      // If there are any uses, the scope might end.
      if (!Inst.use_empty())
        continue;
      MemoryLocation MemLoc =
          MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
      // Don't start a scope if we already have a better one pushed
      if (!AvailableInvariants.count(MemLoc))
        AvailableInvariants.insert(MemLoc, CurrentGeneration);
      continue;
    }

    if (isGuard(&Inst)) {
      if (auto *CondI =
              dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
        if (SimpleValue::canHandle(CondI)) {
          // Do we already know the actual value of this condition?
          if (auto *KnownCond = AvailableValues.lookup(CondI)) {
            // Is the condition known to be true?
            if (isa<ConstantInt>(KnownCond) &&
                cast<ConstantInt>(KnownCond)->isOne()) {
              LLVM_DEBUG(dbgs()
                         << "EarlyCSE removing guard: " << Inst << '\n');
              salvageKnowledge(&Inst, &AC);
              removeMSSA(Inst);
              Inst.eraseFromParent();
              Changed = true;
              continue;
            } else
              // Use the known value if it wasn't true.
              cast<CallInst>(Inst).setArgOperand(0, KnownCond);
          }
          // The condition we're on guarding here is true for all dominated
          // locations.
          AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
        }
      }

      // Guard intrinsics read all memory, but don't write any memory.
      // Accordingly, don't update the generation but consume the last store (to
      // avoid an incorrect DSE).
      LastStore = nullptr;
      continue;
    }

    // If the instruction can be simplified (e.g. X+0 = X) then replace it with
    // its simpler value.
    if (Value *V = SimplifyInstruction(&Inst, SQ)) {
      LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
                        << '\n');
      if (!DebugCounter::shouldExecute(CSECounter)) {
        LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
      } else {
        bool Killed = false;
        if (!Inst.use_empty()) {
          Inst.replaceAllUsesWith(V);
          Changed = true;
        }
        if (isInstructionTriviallyDead(&Inst, &TLI)) {
          salvageKnowledge(&Inst, &AC);
          removeMSSA(Inst);
          Inst.eraseFromParent();
          Changed = true;
          Killed = true;
        }
        if (Changed)
          ++NumSimplify;
        if (Killed)
          continue;
      }
    }

    // If this is a simple instruction that we can value number, process it.
    if (SimpleValue::canHandle(&Inst)) {
      // See if the instruction has an available value.  If so, use it.
      if (Value *V = AvailableValues.lookup(&Inst)) {
        LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
                          << '\n');
        if (!DebugCounter::shouldExecute(CSECounter)) {
          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
          continue;
        }
        if (auto *I = dyn_cast<Instruction>(V))
          I->andIRFlags(&Inst);
        Inst.replaceAllUsesWith(V);
        salvageKnowledge(&Inst, &AC);
        removeMSSA(Inst);
        Inst.eraseFromParent();
        Changed = true;
        ++NumCSE;
        continue;
      }

      // Otherwise, just remember that this value is available.
      AvailableValues.insert(&Inst, &Inst);
      continue;
    }

    ParseMemoryInst MemInst(&Inst, TTI);
    // If this is a non-volatile load, process it.
    if (MemInst.isValid() && MemInst.isLoad()) {
      // (conservatively) we can't peak past the ordering implied by this
      // operation, but we can add this load to our set of available values
      if (MemInst.isVolatile() || !MemInst.isUnordered()) {
        LastStore = nullptr;
        ++CurrentGeneration;
      }

      if (MemInst.isInvariantLoad()) {
        // If we pass an invariant load, we know that memory location is
        // indefinitely constant from the moment of first dereferenceability.
        // We conservatively treat the invariant_load as that moment.  If we
        // pass a invariant load after already establishing a scope, don't
        // restart it since we want to preserve the earliest point seen.
        auto MemLoc = MemoryLocation::get(&Inst);
        if (!AvailableInvariants.count(MemLoc))
          AvailableInvariants.insert(MemLoc, CurrentGeneration);
      }

      // If we have an available version of this load, and if it is the right
      // generation or the load is known to be from an invariant location,
      // replace this instruction.
      //
      // If either the dominating load or the current load are invariant, then
      // we can assume the current load loads the same value as the dominating
      // load.
      LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
      if (InVal.DefInst != nullptr &&
          InVal.MatchingId == MemInst.getMatchingId() &&
          // We don't yet handle removing loads with ordering of any kind.
          !MemInst.isVolatile() && MemInst.isUnordered() &&
          // We can't replace an atomic load with one which isn't also atomic.
          InVal.IsAtomic >= MemInst.isAtomic() &&
          (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
           isSameMemGeneration(InVal.Generation, CurrentGeneration,
                               InVal.DefInst, &Inst))) {
        Value *Op = getOrCreateResult(InVal.DefInst, Inst.getType());
        if (Op != nullptr) {
          LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
                            << "  to: " << *InVal.DefInst << '\n');
          if (!DebugCounter::shouldExecute(CSECounter)) {
            LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
            continue;
          }
          if (!Inst.use_empty())
            Inst.replaceAllUsesWith(Op);
          salvageKnowledge(&Inst, &AC);
          removeMSSA(Inst);
          Inst.eraseFromParent();
          Changed = true;
          ++NumCSELoad;
          continue;
        }
      }

      // Otherwise, remember that we have this instruction.
      AvailableLoads.insert(MemInst.getPointerOperand(),
                            LoadValue(&Inst, CurrentGeneration,
                                      MemInst.getMatchingId(),
                                      MemInst.isAtomic()));
      LastStore = nullptr;
      continue;
    }

    // If this instruction may read from memory or throw (and potentially read
    // from memory in the exception handler), forget LastStore.  Load/store
    // intrinsics will indicate both a read and a write to memory.  The target
    // may override this (e.g. so that a store intrinsic does not read from
    // memory, and thus will be treated the same as a regular store for
    // commoning purposes).
    if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
        !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
      LastStore = nullptr;

    // If this is a read-only call, process it.
    if (CallValue::canHandle(&Inst)) {
      // If we have an available version of this call, and if it is the right
      // generation, replace this instruction.
      std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
      if (InVal.first != nullptr &&
          isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
                              &Inst)) {
        LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
                          << "  to: " << *InVal.first << '\n');
        if (!DebugCounter::shouldExecute(CSECounter)) {
          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
          continue;
        }
        if (!Inst.use_empty())
          Inst.replaceAllUsesWith(InVal.first);
        salvageKnowledge(&Inst, &AC);
        removeMSSA(Inst);
        Inst.eraseFromParent();
        Changed = true;
        ++NumCSECall;
        continue;
      }

      // Otherwise, remember that we have this instruction.
      AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
      continue;
    }

    // A release fence requires that all stores complete before it, but does
    // not prevent the reordering of following loads 'before' the fence.  As a
    // result, we don't need to consider it as writing to memory and don't need
    // to advance the generation.  We do need to prevent DSE across the fence,
    // but that's handled above.
    if (auto *FI = dyn_cast<FenceInst>(&Inst))
      if (FI->getOrdering() == AtomicOrdering::Release) {
        assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
        continue;
      }

    // write back DSE - If we write back the same value we just loaded from
    // the same location and haven't passed any intervening writes or ordering
    // operations, we can remove the write.  The primary benefit is in allowing
    // the available load table to remain valid and value forward past where
    // the store originally was.
    if (MemInst.isValid() && MemInst.isStore()) {
      LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
      if (InVal.DefInst &&
          InVal.DefInst == getOrCreateResult(&Inst, InVal.DefInst->getType()) &&
          InVal.MatchingId == MemInst.getMatchingId() &&
          // We don't yet handle removing stores with ordering of any kind.
          !MemInst.isVolatile() && MemInst.isUnordered() &&
          (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
           isSameMemGeneration(InVal.Generation, CurrentGeneration,
                               InVal.DefInst, &Inst))) {
        // It is okay to have a LastStore to a different pointer here if MemorySSA
        // tells us that the load and store are from the same memory generation.
        // In that case, LastStore should keep its present value since we're
        // removing the current store.
        assert((!LastStore ||
                ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
                    MemInst.getPointerOperand() ||
                MSSA) &&
               "can't have an intervening store if not using MemorySSA!");
        LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
        if (!DebugCounter::shouldExecute(CSECounter)) {
          LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
          continue;
        }
        salvageKnowledge(&Inst, &AC);
        removeMSSA(Inst);
        Inst.eraseFromParent();
        Changed = true;
        ++NumDSE;
        // We can avoid incrementing the generation count since we were able
        // to eliminate this store.
        continue;
      }
    }

    // Okay, this isn't something we can CSE at all.  Check to see if it is
    // something that could modify memory.  If so, our available memory values
    // cannot be used so bump the generation count.
    if (Inst.mayWriteToMemory()) {
      ++CurrentGeneration;

      if (MemInst.isValid() && MemInst.isStore()) {
        // We do a trivial form of DSE if there are two stores to the same
        // location with no intervening loads.  Delete the earlier store.
        // At the moment, we don't remove ordered stores, but do remove
        // unordered atomic stores.  There's no special requirement (for
        // unordered atomics) about removing atomic stores only in favor of
        // other atomic stores since we were going to execute the non-atomic
        // one anyway and the atomic one might never have become visible.
        if (LastStore) {
          ParseMemoryInst LastStoreMemInst(LastStore, TTI);
          assert(LastStoreMemInst.isUnordered() &&
                 !LastStoreMemInst.isVolatile() &&
                 "Violated invariant");
          if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
            LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
                              << "  due to: " << Inst << '\n');
            if (!DebugCounter::shouldExecute(CSECounter)) {
              LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
            } else {
              salvageKnowledge(&Inst, &AC);
              removeMSSA(*LastStore);
              LastStore->eraseFromParent();
              Changed = true;
              ++NumDSE;
              LastStore = nullptr;
            }
          }
          // fallthrough - we can exploit information about this store
        }

        // Okay, we just invalidated anything we knew about loaded values.  Try
        // to salvage *something* by remembering that the stored value is a live
        // version of the pointer.  It is safe to forward from volatile stores
        // to non-volatile loads, so we don't have to check for volatility of
        // the store.
        AvailableLoads.insert(MemInst.getPointerOperand(),
                              LoadValue(&Inst, CurrentGeneration,
                                        MemInst.getMatchingId(),
                                        MemInst.isAtomic()));

        // Remember that this was the last unordered store we saw for DSE. We
        // don't yet handle DSE on ordered or volatile stores since we don't
        // have a good way to model the ordering requirement for following
        // passes  once the store is removed.  We could insert a fence, but
        // since fences are slightly stronger than stores in their ordering,
        // it's not clear this is a profitable transform. Another option would
        // be to merge the ordering with that of the post dominating store.
        if (MemInst.isUnordered() && !MemInst.isVolatile())
          LastStore = &Inst;
        else
          LastStore = nullptr;
      }
    }
  }

  return Changed;
}

bool EarlyCSE::run() {
  // Note, deque is being used here because there is significant performance
  // gains over vector when the container becomes very large due to the
  // specific access patterns. For more information see the mailing list
  // discussion on this:
  // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
  std::deque<StackNode *> nodesToProcess;

  bool Changed = false;

  // Process the root node.
  nodesToProcess.push_back(new StackNode(
      AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
      CurrentGeneration, DT.getRootNode(),
      DT.getRootNode()->begin(), DT.getRootNode()->end()));

  assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");

  // Process the stack.
  while (!nodesToProcess.empty()) {
    // Grab the first item off the stack. Set the current generation, remove
    // the node from the stack, and process it.
    StackNode *NodeToProcess = nodesToProcess.back();

    // Initialize class members.
    CurrentGeneration = NodeToProcess->currentGeneration();

    // Check if the node needs to be processed.
    if (!NodeToProcess->isProcessed()) {
      // Process the node.
      Changed |= processNode(NodeToProcess->node());
      NodeToProcess->childGeneration(CurrentGeneration);
      NodeToProcess->process();
    } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
      // Push the next child onto the stack.
      DomTreeNode *child = NodeToProcess->nextChild();
      nodesToProcess.push_back(
          new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
                        AvailableCalls, NodeToProcess->childGeneration(),
                        child, child->begin(), child->end()));
    } else {
      // It has been processed, and there are no more children to process,
      // so delete it and pop it off the stack.
      delete NodeToProcess;
      nodesToProcess.pop_back();
    }
  } // while (!nodes...)

  return Changed;
}

PreservedAnalyses EarlyCSEPass::run(Function &F,
                                    FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto *MSSA =
      UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;

  EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);

  if (!CSE.run())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  if (UseMemorySSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

namespace {

/// A simple and fast domtree-based CSE pass.
///
/// This pass does a simple depth-first walk over the dominator tree,
/// eliminating trivially redundant instructions and using instsimplify to
/// canonicalize things as it goes. It is intended to be fast and catch obvious
/// cases so that instcombine and other passes are more effective. It is
/// expected that a later pass of GVN will catch the interesting/hard cases.
template<bool UseMemorySSA>
class EarlyCSELegacyCommonPass : public FunctionPass {
public:
  static char ID;

  EarlyCSELegacyCommonPass() : FunctionPass(ID) {
    if (UseMemorySSA)
      initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
    else
      initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    auto *MSSA =
        UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;

    EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);

    return CSE.run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    if (UseMemorySSA) {
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    }
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;

template<>
char EarlyCSELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)

using EarlyCSEMemSSALegacyPass =
    EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;

template<>
char EarlyCSEMemSSALegacyPass::ID = 0;

FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
  if (UseMemorySSA)
    return new EarlyCSEMemSSALegacyPass();
  else
    return new EarlyCSELegacyPass();
}

INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
                      "Early CSE w/ MemorySSA", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
                    "Early CSE w/ MemorySSA", false, false)