CorrelatedValuePropagation.cpp 32.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Correlated Value Propagation pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "correlated-value-propagation"

STATISTIC(NumPhis,      "Number of phis propagated");
STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
STATISTIC(NumSelects,   "Number of selects propagated");
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
STATISTIC(NumCmps,      "Number of comparisons propagated");
STATISTIC(NumReturns,   "Number of return values propagated");
STATISTIC(NumDeadCases, "Number of switch cases removed");
STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
STATISTIC(NumUDivs,     "Number of udivs whose width was decreased");
STATISTIC(NumAShrs,     "Number of ashr converted to lshr");
STATISTIC(NumSRems,     "Number of srem converted to urem");
STATISTIC(NumSExt,      "Number of sext converted to zext");
STATISTIC(NumAnd,       "Number of ands removed");
STATISTIC(NumNW,        "Number of no-wrap deductions");
STATISTIC(NumNSW,       "Number of no-signed-wrap deductions");
STATISTIC(NumNUW,       "Number of no-unsigned-wrap deductions");
STATISTIC(NumAddNW,     "Number of no-wrap deductions for add");
STATISTIC(NumAddNSW,    "Number of no-signed-wrap deductions for add");
STATISTIC(NumAddNUW,    "Number of no-unsigned-wrap deductions for add");
STATISTIC(NumSubNW,     "Number of no-wrap deductions for sub");
STATISTIC(NumSubNSW,    "Number of no-signed-wrap deductions for sub");
STATISTIC(NumSubNUW,    "Number of no-unsigned-wrap deductions for sub");
STATISTIC(NumMulNW,     "Number of no-wrap deductions for mul");
STATISTIC(NumMulNSW,    "Number of no-signed-wrap deductions for mul");
STATISTIC(NumMulNUW,    "Number of no-unsigned-wrap deductions for mul");
STATISTIC(NumShlNW,     "Number of no-wrap deductions for shl");
STATISTIC(NumShlNSW,    "Number of no-signed-wrap deductions for shl");
STATISTIC(NumShlNUW,    "Number of no-unsigned-wrap deductions for shl");
STATISTIC(NumOverflows, "Number of overflow checks removed");
STATISTIC(NumSaturating,
    "Number of saturating arithmetics converted to normal arithmetics");

static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(false));

namespace {

  class CorrelatedValuePropagation : public FunctionPass {
  public:
    static char ID;

    CorrelatedValuePropagation(): FunctionPass(ID) {
     initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addRequired<LazyValueInfoWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<LazyValueInfoWrapperPass>();
    }
  };

} // end anonymous namespace

char CorrelatedValuePropagation::ID = 0;

INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)

// Public interface to the Value Propagation pass
Pass *llvm::createCorrelatedValuePropagationPass() {
  return new CorrelatedValuePropagation();
}

static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
  if (S->getType()->isVectorTy()) return false;
  if (isa<Constant>(S->getCondition())) return false;

  Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S);
  if (!C) return false;

  ConstantInt *CI = dyn_cast<ConstantInt>(C);
  if (!CI) return false;

  Value *ReplaceWith = CI->isOne() ? S->getTrueValue() : S->getFalseValue();
  S->replaceAllUsesWith(ReplaceWith);
  S->eraseFromParent();

  ++NumSelects;

  return true;
}

/// Try to simplify a phi with constant incoming values that match the edge
/// values of a non-constant value on all other edges:
/// bb0:
///   %isnull = icmp eq i8* %x, null
///   br i1 %isnull, label %bb2, label %bb1
/// bb1:
///   br label %bb2
/// bb2:
///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
/// -->
///   %r = %x
static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
                                   DominatorTree *DT) {
  // Collect incoming constants and initialize possible common value.
  SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
  Value *CommonValue = nullptr;
  for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
      IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
    } else if (!CommonValue) {
      // The potential common value is initialized to the first non-constant.
      CommonValue = Incoming;
    } else if (Incoming != CommonValue) {
      // There can be only one non-constant common value.
      return false;
    }
  }

  if (!CommonValue || IncomingConstants.empty())
    return false;

  // The common value must be valid in all incoming blocks.
  BasicBlock *ToBB = P->getParent();
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
    if (!DT->dominates(CommonInst, ToBB))
      return false;

  // We have a phi with exactly 1 variable incoming value and 1 or more constant
  // incoming values. See if all constant incoming values can be mapped back to
  // the same incoming variable value.
  for (auto &IncomingConstant : IncomingConstants) {
    Constant *C = IncomingConstant.first;
    BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
    if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
      return false;
  }

  // All constant incoming values map to the same variable along the incoming
  // edges of the phi. The phi is unnecessary. However, we must drop all
  // poison-generating flags to ensure that no poison is propagated to the phi
  // location by performing this substitution.
  // Warning: If the underlying analysis changes, this may not be enough to
  //          guarantee that poison is not propagated.
  // TODO: We may be able to re-infer flags by re-analyzing the instruction.
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
    CommonInst->dropPoisonGeneratingFlags();
  P->replaceAllUsesWith(CommonValue);
  P->eraseFromParent();
  ++NumPhiCommon;
  return true;
}

static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
                       const SimplifyQuery &SQ) {
  bool Changed = false;

  BasicBlock *BB = P->getParent();
  for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (isa<Constant>(Incoming)) continue;

    Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);

    // Look if the incoming value is a select with a scalar condition for which
    // LVI can tells us the value. In that case replace the incoming value with
    // the appropriate value of the select. This often allows us to remove the
    // select later.
    if (!V) {
      SelectInst *SI = dyn_cast<SelectInst>(Incoming);
      if (!SI) continue;

      Value *Condition = SI->getCondition();
      if (!Condition->getType()->isVectorTy()) {
        if (Constant *C = LVI->getConstantOnEdge(
                Condition, P->getIncomingBlock(i), BB, P)) {
          if (C->isOneValue()) {
            V = SI->getTrueValue();
          } else if (C->isZeroValue()) {
            V = SI->getFalseValue();
          }
          // Once LVI learns to handle vector types, we could also add support
          // for vector type constants that are not all zeroes or all ones.
        }
      }

      // Look if the select has a constant but LVI tells us that the incoming
      // value can never be that constant. In that case replace the incoming
      // value with the other value of the select. This often allows us to
      // remove the select later.
      if (!V) {
        Constant *C = dyn_cast<Constant>(SI->getFalseValue());
        if (!C) continue;

        if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
              P->getIncomingBlock(i), BB, P) !=
            LazyValueInfo::False)
          continue;
        V = SI->getTrueValue();
      }

      LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
    }

    P->setIncomingValue(i, V);
    Changed = true;
  }

  if (Value *V = SimplifyInstruction(P, SQ)) {
    P->replaceAllUsesWith(V);
    P->eraseFromParent();
    Changed = true;
  }

  if (!Changed)
    Changed = simplifyCommonValuePhi(P, LVI, DT);

  if (Changed)
    ++NumPhis;

  return Changed;
}

static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
  Value *Pointer = nullptr;
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    Pointer = L->getPointerOperand();
  else
    Pointer = cast<StoreInst>(I)->getPointerOperand();

  if (isa<Constant>(Pointer)) return false;

  Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
  if (!C) return false;

  ++NumMemAccess;
  I->replaceUsesOfWith(Pointer, C);
  return true;
}

/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove this comparison. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
  Value *Op0 = Cmp->getOperand(0);
  auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
  if (!C)
    return false;

  // As a policy choice, we choose not to waste compile time on anything where
  // the comparison is testing local values.  While LVI can sometimes reason
  // about such cases, it's not its primary purpose.  We do make sure to do
  // the block local query for uses from terminator instructions, but that's
  // handled in the code for each terminator. As an exception, we allow phi
  // nodes, for which LVI can thread the condition into predecessors.
  auto *I = dyn_cast<Instruction>(Op0);
  if (I && I->getParent() == Cmp->getParent() && !isa<PHINode>(I))
    return false;

  LazyValueInfo::Tristate Result =
      LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp);
  if (Result == LazyValueInfo::Unknown)
    return false;

  ++NumCmps;
  Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
  Cmp->replaceAllUsesWith(TorF);
  Cmp->eraseFromParent();
  return true;
}

/// Simplify a switch instruction by removing cases which can never fire. If the
/// uselessness of a case could be determined locally then constant propagation
/// would already have figured it out. Instead, walk the predecessors and
/// statically evaluate cases based on information available on that edge. Cases
/// that cannot fire no matter what the incoming edge can safely be removed. If
/// a case fires on every incoming edge then the entire switch can be removed
/// and replaced with a branch to the case destination.
static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
                          DominatorTree *DT) {
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
  Value *Cond = I->getCondition();
  BasicBlock *BB = I->getParent();

  // If the condition was defined in same block as the switch then LazyValueInfo
  // currently won't say anything useful about it, though in theory it could.
  if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
    return false;

  // If the switch is unreachable then trying to improve it is a waste of time.
  pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
  if (PB == PE) return false;

  // Analyse each switch case in turn.
  bool Changed = false;
  DenseMap<BasicBlock*, int> SuccessorsCount;
  for (auto *Succ : successors(BB))
    SuccessorsCount[Succ]++;

  { // Scope for SwitchInstProfUpdateWrapper. It must not live during
    // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
    SwitchInstProfUpdateWrapper SI(*I);

    for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
      ConstantInt *Case = CI->getCaseValue();

      // Check to see if the switch condition is equal to/not equal to the case
      // value on every incoming edge, equal/not equal being the same each time.
      LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
      for (pred_iterator PI = PB; PI != PE; ++PI) {
        // Is the switch condition equal to the case value?
        LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
                                                                Cond, Case, *PI,
                                                                BB, SI);
        // Give up on this case if nothing is known.
        if (Value == LazyValueInfo::Unknown) {
          State = LazyValueInfo::Unknown;
          break;
        }

        // If this was the first edge to be visited, record that all other edges
        // need to give the same result.
        if (PI == PB) {
          State = Value;
          continue;
        }

        // If this case is known to fire for some edges and known not to fire for
        // others then there is nothing we can do - give up.
        if (Value != State) {
          State = LazyValueInfo::Unknown;
          break;
        }
      }

      if (State == LazyValueInfo::False) {
        // This case never fires - remove it.
        BasicBlock *Succ = CI->getCaseSuccessor();
        Succ->removePredecessor(BB);
        CI = SI.removeCase(CI);
        CE = SI->case_end();

        // The condition can be modified by removePredecessor's PHI simplification
        // logic.
        Cond = SI->getCondition();

        ++NumDeadCases;
        Changed = true;
        if (--SuccessorsCount[Succ] == 0)
          DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
        continue;
      }
      if (State == LazyValueInfo::True) {
        // This case always fires.  Arrange for the switch to be turned into an
        // unconditional branch by replacing the switch condition with the case
        // value.
        SI->setCondition(Case);
        NumDeadCases += SI->getNumCases();
        Changed = true;
        break;
      }

      // Increment the case iterator since we didn't delete it.
      ++CI;
    }
  }

  if (Changed)
    // If the switch has been simplified to the point where it can be replaced
    // by a branch then do so now.
    ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
                           /*TLI = */ nullptr, &DTU);
  return Changed;
}

// See if we can prove that the given binary op intrinsic will not overflow.
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
  ConstantRange LRange = LVI->getConstantRange(
      BO->getLHS(), BO->getParent(), BO);
  ConstantRange RRange = LVI->getConstantRange(
      BO->getRHS(), BO->getParent(), BO);
  ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
      BO->getBinaryOp(), RRange, BO->getNoWrapKind());
  return NWRegion.contains(LRange);
}

static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
                                       bool NewNSW, bool NewNUW) {
  Statistic *OpcNW, *OpcNSW, *OpcNUW;
  switch (Opcode) {
  case Instruction::Add:
    OpcNW = &NumAddNW;
    OpcNSW = &NumAddNSW;
    OpcNUW = &NumAddNUW;
    break;
  case Instruction::Sub:
    OpcNW = &NumSubNW;
    OpcNSW = &NumSubNSW;
    OpcNUW = &NumSubNUW;
    break;
  case Instruction::Mul:
    OpcNW = &NumMulNW;
    OpcNSW = &NumMulNSW;
    OpcNUW = &NumMulNUW;
    break;
  case Instruction::Shl:
    OpcNW = &NumShlNW;
    OpcNSW = &NumShlNSW;
    OpcNUW = &NumShlNUW;
    break;
  default:
    llvm_unreachable("Will not be called with other binops");
  }

  auto *Inst = dyn_cast<Instruction>(V);
  if (NewNSW) {
    ++NumNW;
    ++*OpcNW;
    ++NumNSW;
    ++*OpcNSW;
    if (Inst)
      Inst->setHasNoSignedWrap();
  }
  if (NewNUW) {
    ++NumNW;
    ++*OpcNW;
    ++NumNUW;
    ++*OpcNUW;
    if (Inst)
      Inst->setHasNoUnsignedWrap();
  }
}

static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);

// Rewrite this with.overflow intrinsic as non-overflowing.
static void processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
  IRBuilder<> B(WO);
  Instruction::BinaryOps Opcode = WO->getBinaryOp();
  bool NSW = WO->isSigned();
  bool NUW = !WO->isSigned();

  Value *NewOp =
      B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
  setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);

  StructType *ST = cast<StructType>(WO->getType());
  Constant *Struct = ConstantStruct::get(ST,
      { UndefValue::get(ST->getElementType(0)),
        ConstantInt::getFalse(ST->getElementType(1)) });
  Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
  WO->replaceAllUsesWith(NewI);
  WO->eraseFromParent();
  ++NumOverflows;

  // See if we can infer the other no-wrap too.
  if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
    processBinOp(BO, LVI);
}

static void processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
  Instruction::BinaryOps Opcode = SI->getBinaryOp();
  bool NSW = SI->isSigned();
  bool NUW = !SI->isSigned();
  BinaryOperator *BinOp = BinaryOperator::Create(
      Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
  BinOp->setDebugLoc(SI->getDebugLoc());
  setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);

  SI->replaceAllUsesWith(BinOp);
  SI->eraseFromParent();
  ++NumSaturating;

  // See if we can infer the other no-wrap too.
  if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
    processBinOp(BO, LVI);
}

/// Infer nonnull attributes for the arguments at the specified callsite.
static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
  SmallVector<unsigned, 4> ArgNos;
  unsigned ArgNo = 0;

  if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
    if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
      processOverflowIntrinsic(WO, LVI);
      return true;
    }
  }

  if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
    if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
      processSaturatingInst(SI, LVI);
      return true;
    }
  }

  // Deopt bundle operands are intended to capture state with minimal
  // perturbance of the code otherwise.  If we can find a constant value for
  // any such operand and remove a use of the original value, that's
  // desireable since it may allow further optimization of that value (e.g. via
  // single use rules in instcombine).  Since deopt uses tend to,
  // idiomatically, appear along rare conditional paths, it's reasonable likely
  // we may have a conditional fact with which LVI can fold.
  if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
    bool Progress = false;
    for (const Use &ConstU : DeoptBundle->Inputs) {
      Use &U = const_cast<Use&>(ConstU);
      Value *V = U.get();
      if (V->getType()->isVectorTy()) continue;
      if (isa<Constant>(V)) continue;

      Constant *C = LVI->getConstant(V, CB.getParent(), &CB);
      if (!C) continue;
      U.set(C);
      Progress = true;
    }
    if (Progress)
      return true;
  }

  for (Value *V : CB.args()) {
    PointerType *Type = dyn_cast<PointerType>(V->getType());
    // Try to mark pointer typed parameters as non-null.  We skip the
    // relatively expensive analysis for constants which are obviously either
    // null or non-null to start with.
    if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
        !isa<Constant>(V) &&
        LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
                            ConstantPointerNull::get(Type),
                            &CB) == LazyValueInfo::False)
      ArgNos.push_back(ArgNo);
    ArgNo++;
  }

  assert(ArgNo == CB.arg_size() && "sanity check");

  if (ArgNos.empty())
    return false;

  AttributeList AS = CB.getAttributes();
  LLVMContext &Ctx = CB.getContext();
  AS = AS.addParamAttribute(Ctx, ArgNos,
                            Attribute::get(Ctx, Attribute::NonNull));
  CB.setAttributes(AS);

  return true;
}

static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) {
  Constant *Zero = ConstantInt::get(SDI->getType(), 0);
  for (Value *O : SDI->operands()) {
    auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI);
    if (Result != LazyValueInfo::True)
      return false;
  }
  return true;
}

/// Try to shrink a udiv/urem's width down to the smallest power of two that's
/// sufficient to contain its operands.
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
  assert(Instr->getOpcode() == Instruction::UDiv ||
         Instr->getOpcode() == Instruction::URem);
  if (Instr->getType()->isVectorTy())
    return false;

  // Find the smallest power of two bitwidth that's sufficient to hold Instr's
  // operands.
  auto OrigWidth = Instr->getType()->getIntegerBitWidth();
  ConstantRange OperandRange(OrigWidth, /*isFullSet=*/false);
  for (Value *Operand : Instr->operands()) {
    OperandRange = OperandRange.unionWith(
        LVI->getConstantRange(Operand, Instr->getParent()));
  }
  // Don't shrink below 8 bits wide.
  unsigned NewWidth = std::max<unsigned>(
      PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8);
  // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
  // two.
  if (NewWidth >= OrigWidth)
    return false;

  ++NumUDivs;
  IRBuilder<> B{Instr};
  auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
  auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
                                     Instr->getName() + ".lhs.trunc");
  auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
                                     Instr->getName() + ".rhs.trunc");
  auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
  auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
  if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
    if (BinOp->getOpcode() == Instruction::UDiv)
      BinOp->setIsExact(Instr->isExact());

  Instr->replaceAllUsesWith(Zext);
  Instr->eraseFromParent();
  return true;
}

static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI))
    return false;

  ++NumSRems;
  auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  // Try to process our new urem.
  processUDivOrURem(BO, LVI);

  return true;
}

/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove the both operands of this SDiv are
/// positive.  If this is the case, replace the SDiv with a UDiv. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI))
    return false;

  ++NumSDivs;
  auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  BO->setIsExact(SDI->isExact());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  // Try to simplify our new udiv.
  processUDivOrURem(BO, LVI);

  return true;
}

static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy())
    return false;

  Constant *Zero = ConstantInt::get(SDI->getType(), 0);
  if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) !=
      LazyValueInfo::True)
    return false;

  ++NumAShrs;
  auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  BO->setIsExact(SDI->isExact());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  return true;
}

static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy())
    return false;

  Value *Base = SDI->getOperand(0);

  Constant *Zero = ConstantInt::get(Base->getType(), 0);
  if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, Base, Zero, SDI) !=
      LazyValueInfo::True)
    return false;

  ++NumSExt;
  auto *ZExt =
      CastInst::CreateZExtOrBitCast(Base, SDI->getType(), SDI->getName(), SDI);
  ZExt->setDebugLoc(SDI->getDebugLoc());
  SDI->replaceAllUsesWith(ZExt);
  SDI->eraseFromParent();

  return true;
}

static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
  using OBO = OverflowingBinaryOperator;

  if (DontAddNoWrapFlags)
    return false;

  if (BinOp->getType()->isVectorTy())
    return false;

  bool NSW = BinOp->hasNoSignedWrap();
  bool NUW = BinOp->hasNoUnsignedWrap();
  if (NSW && NUW)
    return false;

  BasicBlock *BB = BinOp->getParent();

  Instruction::BinaryOps Opcode = BinOp->getOpcode();
  Value *LHS = BinOp->getOperand(0);
  Value *RHS = BinOp->getOperand(1);

  ConstantRange LRange = LVI->getConstantRange(LHS, BB, BinOp);
  ConstantRange RRange = LVI->getConstantRange(RHS, BB, BinOp);

  bool Changed = false;
  bool NewNUW = false, NewNSW = false;
  if (!NUW) {
    ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
        Opcode, RRange, OBO::NoUnsignedWrap);
    NewNUW = NUWRange.contains(LRange);
    Changed |= NewNUW;
  }
  if (!NSW) {
    ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
        Opcode, RRange, OBO::NoSignedWrap);
    NewNSW = NSWRange.contains(LRange);
    Changed |= NewNSW;
  }

  setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);

  return Changed;
}

static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
  if (BinOp->getType()->isVectorTy())
    return false;

  // Pattern match (and lhs, C) where C includes a superset of bits which might
  // be set in lhs.  This is a common truncation idiom created by instcombine.
  BasicBlock *BB = BinOp->getParent();
  Value *LHS = BinOp->getOperand(0);
  ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
  if (!RHS || !RHS->getValue().isMask())
    return false;

  // We can only replace the AND with LHS based on range info if the range does
  // not include undef.
  ConstantRange LRange =
      LVI->getConstantRange(LHS, BB, BinOp, /*UndefAllowed=*/false);
  if (!LRange.getUnsignedMax().ule(RHS->getValue()))
    return false;

  BinOp->replaceAllUsesWith(LHS);
  BinOp->eraseFromParent();
  NumAnd++;
  return true;
}


static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
  if (Constant *C = LVI->getConstant(V, At->getParent(), At))
    return C;

  // TODO: The following really should be sunk inside LVI's core algorithm, or
  // at least the outer shims around such.
  auto *C = dyn_cast<CmpInst>(V);
  if (!C) return nullptr;

  Value *Op0 = C->getOperand(0);
  Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
  if (!Op1) return nullptr;

  LazyValueInfo::Tristate Result =
    LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
  if (Result == LazyValueInfo::Unknown)
    return nullptr;

  return (Result == LazyValueInfo::True) ?
    ConstantInt::getTrue(C->getContext()) :
    ConstantInt::getFalse(C->getContext());
}

static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
                    const SimplifyQuery &SQ) {
  bool FnChanged = false;
  // Visiting in a pre-order depth-first traversal causes us to simplify early
  // blocks before querying later blocks (which require us to analyze early
  // blocks).  Eagerly simplifying shallow blocks means there is strictly less
  // work to do for deep blocks.  This also means we don't visit unreachable
  // blocks.
  for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
    bool BBChanged = false;
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
      Instruction *II = &*BI++;
      switch (II->getOpcode()) {
      case Instruction::Select:
        BBChanged |= processSelect(cast<SelectInst>(II), LVI);
        break;
      case Instruction::PHI:
        BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ);
        break;
      case Instruction::ICmp:
      case Instruction::FCmp:
        BBChanged |= processCmp(cast<CmpInst>(II), LVI);
        break;
      case Instruction::Load:
      case Instruction::Store:
        BBChanged |= processMemAccess(II, LVI);
        break;
      case Instruction::Call:
      case Instruction::Invoke:
        BBChanged |= processCallSite(cast<CallBase>(*II), LVI);
        break;
      case Instruction::SRem:
        BBChanged |= processSRem(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::SDiv:
        BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::UDiv:
      case Instruction::URem:
        BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::AShr:
        BBChanged |= processAShr(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::SExt:
        BBChanged |= processSExt(cast<SExtInst>(II), LVI);
        break;
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::Mul:
      case Instruction::Shl:
        BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::And:
        BBChanged |= processAnd(cast<BinaryOperator>(II), LVI);
        break;
      }
    }

    Instruction *Term = BB->getTerminator();
    switch (Term->getOpcode()) {
    case Instruction::Switch:
      BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
      break;
    case Instruction::Ret: {
      auto *RI = cast<ReturnInst>(Term);
      // Try to determine the return value if we can.  This is mainly here to
      // simplify the writing of unit tests, but also helps to enable IPO by
      // constant folding the return values of callees.
      auto *RetVal = RI->getReturnValue();
      if (!RetVal) break; // handle "ret void"
      if (isa<Constant>(RetVal)) break; // nothing to do
      if (auto *C = getConstantAt(RetVal, RI, LVI)) {
        ++NumReturns;
        RI->replaceUsesOfWith(RetVal, C);
        BBChanged = true;
      }
    }
    }

    FnChanged |= BBChanged;
  }

  return FnChanged;
}

bool CorrelatedValuePropagation::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
}

PreservedAnalyses
CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);

  bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LazyValueAnalysis>();
  return PA;
}