CallSiteSplitting.cpp 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
//===- CallSiteSplitting.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a transformation that tries to split a call-site to pass
// more constrained arguments if its argument is predicated in the control flow
// so that we can expose better context to the later passes (e.g, inliner, jump
// threading, or IPA-CP based function cloning, etc.).
// As of now we support two cases :
//
// 1) Try to a split call-site with constrained arguments, if any constraints
// on any argument can be found by following the single predecessors of the
// all site's predecessors. Currently this pass only handles call-sites with 2
// predecessors. For example, in the code below, we try to split the call-site
// since we can predicate the argument(ptr) based on the OR condition.
//
// Split from :
//   if (!ptr || c)
//     callee(ptr);
// to :
//   if (!ptr)
//     callee(null)         // set the known constant value
//   else if (c)
//     callee(nonnull ptr)  // set non-null attribute in the argument
//
// 2) We can also split a call-site based on constant incoming values of a PHI
// For example,
// from :
//   Header:
//    %c = icmp eq i32 %i1, %i2
//    br i1 %c, label %Tail, label %TBB
//   TBB:
//    br label Tail%
//   Tail:
//    %p = phi i32 [ 0, %Header], [ 1, %TBB]
//    call void @bar(i32 %p)
// to
//   Header:
//    %c = icmp eq i32 %i1, %i2
//    br i1 %c, label %Tail-split0, label %TBB
//   TBB:
//    br label %Tail-split1
//   Tail-split0:
//    call void @bar(i32 0)
//    br label %Tail
//   Tail-split1:
//    call void @bar(i32 1)
//    br label %Tail
//   Tail:
//    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "callsite-splitting"

STATISTIC(NumCallSiteSplit, "Number of call-site split");

/// Only allow instructions before a call, if their CodeSize cost is below
/// DuplicationThreshold. Those instructions need to be duplicated in all
/// split blocks.
static cl::opt<unsigned>
    DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
                         cl::desc("Only allow instructions before a call, if "
                                  "their cost is below DuplicationThreshold"),
                         cl::init(5));

static void addNonNullAttribute(CallBase &CB, Value *Op) {
  unsigned ArgNo = 0;
  for (auto &I : CB.args()) {
    if (&*I == Op)
      CB.addParamAttr(ArgNo, Attribute::NonNull);
    ++ArgNo;
  }
}

static void setConstantInArgument(CallBase &CB, Value *Op,
                                  Constant *ConstValue) {
  unsigned ArgNo = 0;
  for (auto &I : CB.args()) {
    if (&*I == Op) {
      // It is possible we have already added the non-null attribute to the
      // parameter by using an earlier constraining condition.
      CB.removeParamAttr(ArgNo, Attribute::NonNull);
      CB.setArgOperand(ArgNo, ConstValue);
    }
    ++ArgNo;
  }
}

static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) {
  assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
  Value *Op0 = Cmp->getOperand(0);
  unsigned ArgNo = 0;
  for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) {
    // Don't consider constant or arguments that are already known non-null.
    if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull))
      continue;

    if (*I == Op0)
      return true;
  }
  return false;
}

typedef std::pair<ICmpInst *, unsigned> ConditionTy;
typedef SmallVector<ConditionTy, 2> ConditionsTy;

/// If From has a conditional jump to To, add the condition to Conditions,
/// if it is relevant to any argument at CB.
static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To,
                            ConditionsTy &Conditions) {
  auto *BI = dyn_cast<BranchInst>(From->getTerminator());
  if (!BI || !BI->isConditional())
    return;

  CmpInst::Predicate Pred;
  Value *Cond = BI->getCondition();
  if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
    return;

  ICmpInst *Cmp = cast<ICmpInst>(Cond);
  if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
    if (isCondRelevantToAnyCallArgument(Cmp, CB))
      Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
                                     ? Pred
                                     : Cmp->getInversePredicate()});
}

/// Record ICmp conditions relevant to any argument in CB following Pred's
/// single predecessors. If there are conflicting conditions along a path, like
/// x == 1 and x == 0, the first condition will be used. We stop once we reach
/// an edge to StopAt.
static void recordConditions(CallBase &CB, BasicBlock *Pred,
                             ConditionsTy &Conditions, BasicBlock *StopAt) {
  BasicBlock *From = Pred;
  BasicBlock *To = Pred;
  SmallPtrSet<BasicBlock *, 4> Visited;
  while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
         (From = From->getSinglePredecessor())) {
    recordCondition(CB, From, To, Conditions);
    Visited.insert(From);
    To = From;
  }
}

static void addConditions(CallBase &CB, const ConditionsTy &Conditions) {
  for (auto &Cond : Conditions) {
    Value *Arg = Cond.first->getOperand(0);
    Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
    if (Cond.second == ICmpInst::ICMP_EQ)
      setConstantInArgument(CB, Arg, ConstVal);
    else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
      assert(Cond.second == ICmpInst::ICMP_NE);
      addNonNullAttribute(CB, Arg);
    }
  }
}

static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
  SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
  assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
  return Preds;
}

static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) {
  if (CB.isConvergent() || CB.cannotDuplicate())
    return false;

  // FIXME: As of now we handle only CallInst. InvokeInst could be handled
  // without too much effort.
  if (!isa<CallInst>(CB))
    return false;

  BasicBlock *CallSiteBB = CB.getParent();
  // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
  SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
  if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
      isa<IndirectBrInst>(Preds[1]->getTerminator()))
    return false;

  // BasicBlock::canSplitPredecessors is more aggressive, so checking for
  // BasicBlock::isEHPad as well.
  if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
    return false;

  // Allow splitting a call-site only when the CodeSize cost of the
  // instructions before the call is less then DuplicationThreshold. The
  // instructions before the call will be duplicated in the split blocks and
  // corresponding uses will be updated.
  unsigned Cost = 0;
  for (auto &InstBeforeCall :
       llvm::make_range(CallSiteBB->begin(), CB.getIterator())) {
    Cost += TTI.getInstructionCost(&InstBeforeCall,
                                   TargetTransformInfo::TCK_CodeSize);
    if (Cost >= DuplicationThreshold)
      return false;
  }

  return true;
}

static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
                                         Value *V) {
  Instruction *Copy = I->clone();
  Copy->setName(I->getName());
  Copy->insertBefore(Before);
  if (V)
    Copy->setOperand(0, V);
  return Copy;
}

/// Copy mandatory `musttail` return sequence that follows original `CI`, and
/// link it up to `NewCI` value instead:
///
///   * (optional) `bitcast NewCI to ...`
///   * `ret bitcast or NewCI`
///
/// Insert this sequence right before `SplitBB`'s terminator, which will be
/// cleaned up later in `splitCallSite` below.
static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
                               Instruction *NewCI) {
  bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
  auto II = std::next(CI->getIterator());

  BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
  if (BCI)
    ++II;

  ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
  assert(RI && "`musttail` call must be followed by `ret` instruction");

  Instruction *TI = SplitBB->getTerminator();
  Value *V = NewCI;
  if (BCI)
    V = cloneInstForMustTail(BCI, TI, V);
  cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);

  // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
  // that prevents doing this now.
}

/// For each (predecessor, conditions from predecessors) pair, it will split the
/// basic block containing the call site, hook it up to the predecessor and
/// replace the call instruction with new call instructions, which contain
/// constraints based on the conditions from their predecessors.
/// For example, in the IR below with an OR condition, the call-site can
/// be split. In this case, Preds for Tail is [(Header, a == null),
/// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
/// CallInst1, which has constraints based on the conditions from Head and
/// CallInst2, which has constraints based on the conditions coming from TBB.
///
/// From :
///
///   Header:
///     %c = icmp eq i32* %a, null
///     br i1 %c %Tail, %TBB
///   TBB:
///     %c2 = icmp eq i32* %b, null
///     br i1 %c %Tail, %End
///   Tail:
///     %ca = call i1  @callee (i32* %a, i32* %b)
///
///  to :
///
///   Header:                          // PredBB1 is Header
///     %c = icmp eq i32* %a, null
///     br i1 %c %Tail-split1, %TBB
///   TBB:                             // PredBB2 is TBB
///     %c2 = icmp eq i32* %b, null
///     br i1 %c %Tail-split2, %End
///   Tail-split1:
///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
///    br %Tail
///   Tail-split2:
///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
///    br %Tail
///   Tail:
///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
///
/// Note that in case any arguments at the call-site are constrained by its
/// predecessors, new call-sites with more constrained arguments will be
/// created in createCallSitesOnPredicatedArgument().
static void splitCallSite(
    CallBase &CB,
    const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
    DomTreeUpdater &DTU) {
  BasicBlock *TailBB = CB.getParent();
  bool IsMustTailCall = CB.isMustTailCall();

  PHINode *CallPN = nullptr;

  // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
  // split blocks will be terminated right after that so there're no users for
  // this phi in a `TailBB`.
  if (!IsMustTailCall && !CB.use_empty()) {
    CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call");
    CallPN->setDebugLoc(CB.getDebugLoc());
  }

  LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n");

  assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
  // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
  // here.
  ValueToValueMapTy ValueToValueMaps[2];
  for (unsigned i = 0; i < Preds.size(); i++) {
    BasicBlock *PredBB = Preds[i].first;
    BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
        TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i],
        DTU);
    assert(SplitBlock && "Unexpected new basic block split.");

    auto *NewCI =
        cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator()));
    addConditions(*NewCI, Preds[i].second);

    // Handle PHIs used as arguments in the call-site.
    for (PHINode &PN : TailBB->phis()) {
      unsigned ArgNo = 0;
      for (auto &CI : CB.args()) {
        if (&*CI == &PN) {
          NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
        }
        ++ArgNo;
      }
    }
    LLVM_DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
                      << "\n");
    if (CallPN)
      CallPN->addIncoming(NewCI, SplitBlock);

    // Clone and place bitcast and return instructions before `TI`
    if (IsMustTailCall)
      copyMustTailReturn(SplitBlock, &CB, NewCI);
  }

  NumCallSiteSplit++;

  // FIXME: remove TI in `copyMustTailReturn`
  if (IsMustTailCall) {
    // Remove superfluous `br` terminators from the end of the Split blocks
    // NOTE: Removing terminator removes the SplitBlock from the TailBB's
    // predecessors. Therefore we must get complete list of Splits before
    // attempting removal.
    SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
    assert(Splits.size() == 2 && "Expected exactly 2 splits!");
    for (unsigned i = 0; i < Splits.size(); i++) {
      Splits[i]->getTerminator()->eraseFromParent();
      DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
    }

    // Erase the tail block once done with musttail patching
    DTU.deleteBB(TailBB);
    return;
  }

  auto *OriginalBegin = &*TailBB->begin();
  // Replace users of the original call with a PHI mering call-sites split.
  if (CallPN) {
    CallPN->insertBefore(OriginalBegin);
    CB.replaceAllUsesWith(CallPN);
  }

  // Remove instructions moved to split blocks from TailBB, from the duplicated
  // call instruction to the beginning of the basic block. If an instruction
  // has any uses, add a new PHI node to combine the values coming from the
  // split blocks. The new PHI nodes are placed before the first original
  // instruction, so we do not end up deleting them. By using reverse-order, we
  // do not introduce unnecessary PHI nodes for def-use chains from the call
  // instruction to the beginning of the block.
  auto I = CB.getReverseIterator();
  while (I != TailBB->rend()) {
    Instruction *CurrentI = &*I++;
    if (!CurrentI->use_empty()) {
      // If an existing PHI has users after the call, there is no need to create
      // a new one.
      if (isa<PHINode>(CurrentI))
        continue;
      PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
      NewPN->setDebugLoc(CurrentI->getDebugLoc());
      for (auto &Mapping : ValueToValueMaps)
        NewPN->addIncoming(Mapping[CurrentI],
                           cast<Instruction>(Mapping[CurrentI])->getParent());
      NewPN->insertBefore(&*TailBB->begin());
      CurrentI->replaceAllUsesWith(NewPN);
    }
    CurrentI->eraseFromParent();
    // We are done once we handled the first original instruction in TailBB.
    if (CurrentI == OriginalBegin)
      break;
  }
}

// Return true if the call-site has an argument which is a PHI with only
// constant incoming values.
static bool isPredicatedOnPHI(CallBase &CB) {
  BasicBlock *Parent = CB.getParent();
  if (&CB != Parent->getFirstNonPHIOrDbg())
    return false;

  for (auto &PN : Parent->phis()) {
    for (auto &Arg : CB.args()) {
      if (&*Arg != &PN)
        continue;
      assert(PN.getNumIncomingValues() == 2 &&
             "Unexpected number of incoming values");
      if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1))
        return false;
      if (PN.getIncomingValue(0) == PN.getIncomingValue(1))
        continue;
      if (isa<Constant>(PN.getIncomingValue(0)) &&
          isa<Constant>(PN.getIncomingValue(1)))
        return true;
    }
  }
  return false;
}

using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;

// Check if any of the arguments in CS are predicated on a PHI node and return
// the set of predecessors we should use for splitting.
static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) {
  if (!isPredicatedOnPHI(CB))
    return {};

  auto Preds = getTwoPredecessors(CB.getParent());
  return {{Preds[0], {}}, {Preds[1], {}}};
}

// Checks if any of the arguments in CS are predicated in a predecessor and
// returns a list of predecessors with the conditions that hold on their edges
// to CS.
static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB,
                                                        DomTreeUpdater &DTU) {
  auto Preds = getTwoPredecessors(CB.getParent());
  if (Preds[0] == Preds[1])
    return {};

  // We can stop recording conditions once we reached the immediate dominator
  // for the block containing the call site. Conditions in predecessors of the
  // that node will be the same for all paths to the call site and splitting
  // is not beneficial.
  assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
  auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent());
  BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;

  SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
  for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
    ConditionsTy Conditions;
    // Record condition on edge BB(CS) <- Pred
    recordCondition(CB, Pred, CB.getParent(), Conditions);
    // Record conditions following Pred's single predecessors.
    recordConditions(CB, Pred, Conditions, StopAt);
    PredsCS.push_back({Pred, Conditions});
  }

  if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
        return P.second.empty();
      }))
    return {};

  return PredsCS;
}

static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI,
                               DomTreeUpdater &DTU) {
  // Check if we can split the call site.
  if (!CB.arg_size() || !canSplitCallSite(CB, TTI))
    return false;

  auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU);
  if (PredsWithConds.empty())
    PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB);
  if (PredsWithConds.empty())
    return false;

  splitCallSite(CB, PredsWithConds, DTU);
  return true;
}

static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
                                TargetTransformInfo &TTI, DominatorTree &DT) {

  DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
  bool Changed = false;
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
    BasicBlock &BB = *BI++;
    auto II = BB.getFirstNonPHIOrDbg()->getIterator();
    auto IE = BB.getTerminator()->getIterator();
    // Iterate until we reach the terminator instruction. tryToSplitCallSite
    // can replace BB's terminator in case BB is a successor of itself. In that
    // case, IE will be invalidated and we also have to check the current
    // terminator.
    while (II != IE && &*II != BB.getTerminator()) {
      CallBase *CB = dyn_cast<CallBase>(&*II++);
      if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI))
        continue;

      Function *Callee = CB->getCalledFunction();
      if (!Callee || Callee->isDeclaration())
        continue;

      // Successful musttail call-site splits result in erased CI and erased BB.
      // Check if such path is possible before attempting the splitting.
      bool IsMustTail = CB->isMustTailCall();

      Changed |= tryToSplitCallSite(*CB, TTI, DTU);

      // There're no interesting instructions after this. The call site
      // itself might have been erased on splitting.
      if (IsMustTail)
        break;
    }
  }
  return Changed;
}

namespace {
struct CallSiteSplittingLegacyPass : public FunctionPass {
  static char ID;
  CallSiteSplittingLegacyPass() : FunctionPass(ID) {
    initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    return doCallSiteSplitting(F, TLI, TTI, DT);
  }
};
} // namespace

char CallSiteSplittingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
                      "Call-site splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
                    "Call-site splitting", false, false)
FunctionPass *llvm::createCallSiteSplittingPass() {
  return new CallSiteSplittingLegacyPass();
}

PreservedAnalyses CallSiteSplittingPass::run(Function &F,
                                             FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);

  if (!doCallSiteSplitting(F, TLI, TTI, DT))
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}