ADCE.cpp 24.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Aggressive Dead Code Elimination pass.  This pass
// optimistically assumes that all instructions are dead until proven otherwise,
// allowing it to eliminate dead computations that other DCE passes do not
// catch, particularly involving loop computations.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <cstddef>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "adce"

STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");

// This is a temporary option until we change the interface to this pass based
// on optimization level.
static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
                                           cl::init(true), cl::Hidden);

// This option enables removing of may-be-infinite loops which have no other
// effect.
static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
                                 cl::Hidden);

namespace {

/// Information about Instructions
struct InstInfoType {
  /// True if the associated instruction is live.
  bool Live = false;

  /// Quick access to information for block containing associated Instruction.
  struct BlockInfoType *Block = nullptr;
};

/// Information about basic blocks relevant to dead code elimination.
struct BlockInfoType {
  /// True when this block contains a live instructions.
  bool Live = false;

  /// True when this block ends in an unconditional branch.
  bool UnconditionalBranch = false;

  /// True when this block is known to have live PHI nodes.
  bool HasLivePhiNodes = false;

  /// Control dependence sources need to be live for this block.
  bool CFLive = false;

  /// Quick access to the LiveInfo for the terminator,
  /// holds the value &InstInfo[Terminator]
  InstInfoType *TerminatorLiveInfo = nullptr;

  /// Corresponding BasicBlock.
  BasicBlock *BB = nullptr;

  /// Cache of BB->getTerminator().
  Instruction *Terminator = nullptr;

  /// Post-order numbering of reverse control flow graph.
  unsigned PostOrder;

  bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
};

class AggressiveDeadCodeElimination {
  Function &F;

  // ADCE does not use DominatorTree per se, but it updates it to preserve the
  // analysis.
  DominatorTree *DT;
  PostDominatorTree &PDT;

  /// Mapping of blocks to associated information, an element in BlockInfoVec.
  /// Use MapVector to get deterministic iteration order.
  MapVector<BasicBlock *, BlockInfoType> BlockInfo;
  bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }

  /// Mapping of instructions to associated information.
  DenseMap<Instruction *, InstInfoType> InstInfo;
  bool isLive(Instruction *I) { return InstInfo[I].Live; }

  /// Instructions known to be live where we need to mark
  /// reaching definitions as live.
  SmallVector<Instruction *, 128> Worklist;

  /// Debug info scopes around a live instruction.
  SmallPtrSet<const Metadata *, 32> AliveScopes;

  /// Set of blocks with not known to have live terminators.
  SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;

  /// The set of blocks which we have determined whose control
  /// dependence sources must be live and which have not had
  /// those dependences analyzed.
  SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;

  /// Set up auxiliary data structures for Instructions and BasicBlocks and
  /// initialize the Worklist to the set of must-be-live Instruscions.
  void initialize();

  /// Return true for operations which are always treated as live.
  bool isAlwaysLive(Instruction &I);

  /// Return true for instrumentation instructions for value profiling.
  bool isInstrumentsConstant(Instruction &I);

  /// Propagate liveness to reaching definitions.
  void markLiveInstructions();

  /// Mark an instruction as live.
  void markLive(Instruction *I);

  /// Mark a block as live.
  void markLive(BlockInfoType &BB);
  void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }

  /// Mark terminators of control predecessors of a PHI node live.
  void markPhiLive(PHINode *PN);

  /// Record the Debug Scopes which surround live debug information.
  void collectLiveScopes(const DILocalScope &LS);
  void collectLiveScopes(const DILocation &DL);

  /// Analyze dead branches to find those whose branches are the sources
  /// of control dependences impacting a live block. Those branches are
  /// marked live.
  void markLiveBranchesFromControlDependences();

  /// Remove instructions not marked live, return if any instruction was
  /// removed.
  bool removeDeadInstructions();

  /// Identify connected sections of the control flow graph which have
  /// dead terminators and rewrite the control flow graph to remove them.
  bool updateDeadRegions();

  /// Set the BlockInfo::PostOrder field based on a post-order
  /// numbering of the reverse control flow graph.
  void computeReversePostOrder();

  /// Make the terminator of this block an unconditional branch to \p Target.
  void makeUnconditional(BasicBlock *BB, BasicBlock *Target);

public:
  AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
                                PostDominatorTree &PDT)
      : F(F), DT(DT), PDT(PDT) {}

  bool performDeadCodeElimination();
};

} // end anonymous namespace

bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
  initialize();
  markLiveInstructions();
  return removeDeadInstructions();
}

static bool isUnconditionalBranch(Instruction *Term) {
  auto *BR = dyn_cast<BranchInst>(Term);
  return BR && BR->isUnconditional();
}

void AggressiveDeadCodeElimination::initialize() {
  auto NumBlocks = F.size();

  // We will have an entry in the map for each block so we grow the
  // structure to twice that size to keep the load factor low in the hash table.
  BlockInfo.reserve(NumBlocks);
  size_t NumInsts = 0;

  // Iterate over blocks and initialize BlockInfoVec entries, count
  // instructions to size the InstInfo hash table.
  for (auto &BB : F) {
    NumInsts += BB.size();
    auto &Info = BlockInfo[&BB];
    Info.BB = &BB;
    Info.Terminator = BB.getTerminator();
    Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
  }

  // Initialize instruction map and set pointers to block info.
  InstInfo.reserve(NumInsts);
  for (auto &BBInfo : BlockInfo)
    for (Instruction &I : *BBInfo.second.BB)
      InstInfo[&I].Block = &BBInfo.second;

  // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
  // add any more elements to either after this point.
  for (auto &BBInfo : BlockInfo)
    BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];

  // Collect the set of "root" instructions that are known live.
  for (Instruction &I : instructions(F))
    if (isAlwaysLive(I))
      markLive(&I);

  if (!RemoveControlFlowFlag)
    return;

  if (!RemoveLoops) {
    // This stores state for the depth-first iterator. In addition
    // to recording which nodes have been visited we also record whether
    // a node is currently on the "stack" of active ancestors of the current
    // node.
    using StatusMap = DenseMap<BasicBlock *, bool>;

    class DFState : public StatusMap {
    public:
      std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
        return StatusMap::insert(std::make_pair(BB, true));
      }

      // Invoked after we have visited all children of a node.
      void completed(BasicBlock *BB) { (*this)[BB] = false; }

      // Return true if \p BB is currently on the active stack
      // of ancestors.
      bool onStack(BasicBlock *BB) {
        auto Iter = find(BB);
        return Iter != end() && Iter->second;
      }
    } State;

    State.reserve(F.size());
    // Iterate over blocks in depth-first pre-order and
    // treat all edges to a block already seen as loop back edges
    // and mark the branch live it if there is a back edge.
    for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
      Instruction *Term = BB->getTerminator();
      if (isLive(Term))
        continue;

      for (auto *Succ : successors(BB))
        if (State.onStack(Succ)) {
          // back edge....
          markLive(Term);
          break;
        }
    }
  }

  // Mark blocks live if there is no path from the block to a
  // return of the function.
  // We do this by seeing which of the postdomtree root children exit the
  // program, and for all others, mark the subtree live.
  for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
    auto *BB = PDTChild->getBlock();
    auto &Info = BlockInfo[BB];
    // Real function return
    if (isa<ReturnInst>(Info.Terminator)) {
      LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
                        << '\n';);
      continue;
    }

    // This child is something else, like an infinite loop.
    for (auto DFNode : depth_first(PDTChild))
      markLive(BlockInfo[DFNode->getBlock()].Terminator);
  }

  // Treat the entry block as always live
  auto *BB = &F.getEntryBlock();
  auto &EntryInfo = BlockInfo[BB];
  EntryInfo.Live = true;
  if (EntryInfo.UnconditionalBranch)
    markLive(EntryInfo.Terminator);

  // Build initial collection of blocks with dead terminators
  for (auto &BBInfo : BlockInfo)
    if (!BBInfo.second.terminatorIsLive())
      BlocksWithDeadTerminators.insert(BBInfo.second.BB);
}

bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
  // TODO -- use llvm::isInstructionTriviallyDead
  if (I.isEHPad() || I.mayHaveSideEffects()) {
    // Skip any value profile instrumentation calls if they are
    // instrumenting constants.
    if (isInstrumentsConstant(I))
      return false;
    return true;
  }
  if (!I.isTerminator())
    return false;
  if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
    return false;
  return true;
}

// Check if this instruction is a runtime call for value profiling and
// if it's instrumenting a constant.
bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
  // TODO -- move this test into llvm::isInstructionTriviallyDead
  if (CallInst *CI = dyn_cast<CallInst>(&I))
    if (Function *Callee = CI->getCalledFunction())
      if (Callee->getName().equals(getInstrProfValueProfFuncName()))
        if (isa<Constant>(CI->getArgOperand(0)))
          return true;
  return false;
}

void AggressiveDeadCodeElimination::markLiveInstructions() {
  // Propagate liveness backwards to operands.
  do {
    // Worklist holds newly discovered live instructions
    // where we need to mark the inputs as live.
    while (!Worklist.empty()) {
      Instruction *LiveInst = Worklist.pop_back_val();
      LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););

      for (Use &OI : LiveInst->operands())
        if (Instruction *Inst = dyn_cast<Instruction>(OI))
          markLive(Inst);

      if (auto *PN = dyn_cast<PHINode>(LiveInst))
        markPhiLive(PN);
    }

    // After data flow liveness has been identified, examine which branch
    // decisions are required to determine live instructions are executed.
    markLiveBranchesFromControlDependences();

  } while (!Worklist.empty());
}

void AggressiveDeadCodeElimination::markLive(Instruction *I) {
  auto &Info = InstInfo[I];
  if (Info.Live)
    return;

  LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
  Info.Live = true;
  Worklist.push_back(I);

  // Collect the live debug info scopes attached to this instruction.
  if (const DILocation *DL = I->getDebugLoc())
    collectLiveScopes(*DL);

  // Mark the containing block live
  auto &BBInfo = *Info.Block;
  if (BBInfo.Terminator == I) {
    BlocksWithDeadTerminators.remove(BBInfo.BB);
    // For live terminators, mark destination blocks
    // live to preserve this control flow edges.
    if (!BBInfo.UnconditionalBranch)
      for (auto *BB : successors(I->getParent()))
        markLive(BB);
  }
  markLive(BBInfo);
}

void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
  if (BBInfo.Live)
    return;
  LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
  BBInfo.Live = true;
  if (!BBInfo.CFLive) {
    BBInfo.CFLive = true;
    NewLiveBlocks.insert(BBInfo.BB);
  }

  // Mark unconditional branches at the end of live
  // blocks as live since there is no work to do for them later
  if (BBInfo.UnconditionalBranch)
    markLive(BBInfo.Terminator);
}

void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
  if (!AliveScopes.insert(&LS).second)
    return;

  if (isa<DISubprogram>(LS))
    return;

  // Tail-recurse through the scope chain.
  collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
}

void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
  // Even though DILocations are not scopes, shove them into AliveScopes so we
  // don't revisit them.
  if (!AliveScopes.insert(&DL).second)
    return;

  // Collect live scopes from the scope chain.
  collectLiveScopes(*DL.getScope());

  // Tail-recurse through the inlined-at chain.
  if (const DILocation *IA = DL.getInlinedAt())
    collectLiveScopes(*IA);
}

void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
  auto &Info = BlockInfo[PN->getParent()];
  // Only need to check this once per block.
  if (Info.HasLivePhiNodes)
    return;
  Info.HasLivePhiNodes = true;

  // If a predecessor block is not live, mark it as control-flow live
  // which will trigger marking live branches upon which
  // that block is control dependent.
  for (auto *PredBB : predecessors(Info.BB)) {
    auto &Info = BlockInfo[PredBB];
    if (!Info.CFLive) {
      Info.CFLive = true;
      NewLiveBlocks.insert(PredBB);
    }
  }
}

void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
  if (BlocksWithDeadTerminators.empty())
    return;

  LLVM_DEBUG({
    dbgs() << "new live blocks:\n";
    for (auto *BB : NewLiveBlocks)
      dbgs() << "\t" << BB->getName() << '\n';
    dbgs() << "dead terminator blocks:\n";
    for (auto *BB : BlocksWithDeadTerminators)
      dbgs() << "\t" << BB->getName() << '\n';
  });

  // The dominance frontier of a live block X in the reverse
  // control graph is the set of blocks upon which X is control
  // dependent. The following sequence computes the set of blocks
  // which currently have dead terminators that are control
  // dependence sources of a block which is in NewLiveBlocks.

  const SmallPtrSet<BasicBlock *, 16> BWDT{
      BlocksWithDeadTerminators.begin(),
      BlocksWithDeadTerminators.end()
  };
  SmallVector<BasicBlock *, 32> IDFBlocks;
  ReverseIDFCalculator IDFs(PDT);
  IDFs.setDefiningBlocks(NewLiveBlocks);
  IDFs.setLiveInBlocks(BWDT);
  IDFs.calculate(IDFBlocks);
  NewLiveBlocks.clear();

  // Dead terminators which control live blocks are now marked live.
  for (auto *BB : IDFBlocks) {
    LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
    markLive(BB->getTerminator());
  }
}

//===----------------------------------------------------------------------===//
//
//  Routines to update the CFG and SSA information before removing dead code.
//
//===----------------------------------------------------------------------===//
bool AggressiveDeadCodeElimination::removeDeadInstructions() {
  // Updates control and dataflow around dead blocks
  bool RegionsUpdated = updateDeadRegions();

  LLVM_DEBUG({
    for (Instruction &I : instructions(F)) {
      // Check if the instruction is alive.
      if (isLive(&I))
        continue;

      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
        // Check if the scope of this variable location is alive.
        if (AliveScopes.count(DII->getDebugLoc()->getScope()))
          continue;

        // If intrinsic is pointing at a live SSA value, there may be an
        // earlier optimization bug: if we know the location of the variable,
        // why isn't the scope of the location alive?
        if (Value *V = DII->getVariableLocation())
          if (Instruction *II = dyn_cast<Instruction>(V))
            if (isLive(II))
              dbgs() << "Dropping debug info for " << *DII << "\n";
      }
    }
  });

  // The inverse of the live set is the dead set.  These are those instructions
  // that have no side effects and do not influence the control flow or return
  // value of the function, and may therefore be deleted safely.
  // NOTE: We reuse the Worklist vector here for memory efficiency.
  for (Instruction &I : instructions(F)) {
    // Check if the instruction is alive.
    if (isLive(&I))
      continue;

    if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
      // Check if the scope of this variable location is alive.
      if (AliveScopes.count(DII->getDebugLoc()->getScope()))
        continue;

      // Fallthrough and drop the intrinsic.
    }

    // Prepare to delete.
    Worklist.push_back(&I);
    I.dropAllReferences();
  }

  for (Instruction *&I : Worklist) {
    ++NumRemoved;
    I->eraseFromParent();
  }

  return !Worklist.empty() || RegionsUpdated;
}

// A dead region is the set of dead blocks with a common live post-dominator.
bool AggressiveDeadCodeElimination::updateDeadRegions() {
  LLVM_DEBUG({
    dbgs() << "final dead terminator blocks: " << '\n';
    for (auto *BB : BlocksWithDeadTerminators)
      dbgs() << '\t' << BB->getName()
             << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
  });

  // Don't compute the post ordering unless we needed it.
  bool HavePostOrder = false;
  bool Changed = false;

  for (auto *BB : BlocksWithDeadTerminators) {
    auto &Info = BlockInfo[BB];
    if (Info.UnconditionalBranch) {
      InstInfo[Info.Terminator].Live = true;
      continue;
    }

    if (!HavePostOrder) {
      computeReversePostOrder();
      HavePostOrder = true;
    }

    // Add an unconditional branch to the successor closest to the
    // end of the function which insures a path to the exit for each
    // live edge.
    BlockInfoType *PreferredSucc = nullptr;
    for (auto *Succ : successors(BB)) {
      auto *Info = &BlockInfo[Succ];
      if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
        PreferredSucc = Info;
    }
    assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
           "Failed to find safe successor for dead branch");

    // Collect removed successors to update the (Post)DominatorTrees.
    SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
    bool First = true;
    for (auto *Succ : successors(BB)) {
      if (!First || Succ != PreferredSucc->BB) {
        Succ->removePredecessor(BB);
        RemovedSuccessors.insert(Succ);
      } else
        First = false;
    }
    makeUnconditional(BB, PreferredSucc->BB);

    // Inform the dominators about the deleted CFG edges.
    SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
    for (auto *Succ : RemovedSuccessors) {
      // It might have happened that the same successor appeared multiple times
      // and the CFG edge wasn't really removed.
      if (Succ != PreferredSucc->BB) {
        LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
                          << BB->getName() << " -> " << Succ->getName()
                          << "\n");
        DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
      }
    }

    DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
        .applyUpdates(DeletedEdges);

    NumBranchesRemoved += 1;
    Changed = true;
  }

  return Changed;
}

// reverse top-sort order
void AggressiveDeadCodeElimination::computeReversePostOrder() {
  // This provides a post-order numbering of the reverse control flow graph
  // Note that it is incomplete in the presence of infinite loops but we don't
  // need numbers blocks which don't reach the end of the functions since
  // all branches in those blocks are forced live.

  // For each block without successors, extend the DFS from the block
  // backward through the graph
  SmallPtrSet<BasicBlock*, 16> Visited;
  unsigned PostOrder = 0;
  for (auto &BB : F) {
    if (succ_begin(&BB) != succ_end(&BB))
      continue;
    for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
      BlockInfo[Block].PostOrder = PostOrder++;
  }
}

void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
                                                      BasicBlock *Target) {
  Instruction *PredTerm = BB->getTerminator();
  // Collect the live debug info scopes attached to this instruction.
  if (const DILocation *DL = PredTerm->getDebugLoc())
    collectLiveScopes(*DL);

  // Just mark live an existing unconditional branch
  if (isUnconditionalBranch(PredTerm)) {
    PredTerm->setSuccessor(0, Target);
    InstInfo[PredTerm].Live = true;
    return;
  }
  LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
  NumBranchesRemoved += 1;
  IRBuilder<> Builder(PredTerm);
  auto *NewTerm = Builder.CreateBr(Target);
  InstInfo[NewTerm].Live = true;
  if (const DILocation *DL = PredTerm->getDebugLoc())
    NewTerm->setDebugLoc(DL);

  InstInfo.erase(PredTerm);
  PredTerm->eraseFromParent();
}

//===----------------------------------------------------------------------===//
//
// Pass Manager integration code
//
//===----------------------------------------------------------------------===//
PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
  // ADCE does not need DominatorTree, but require DominatorTree here
  // to update analysis if it is already available.
  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
  auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
  if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  // TODO: We could track if we have actually done CFG changes.
  if (!RemoveControlFlowFlag)
    PA.preserveSet<CFGAnalyses>();
  else {
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<PostDominatorTreeAnalysis>();
  }
  PA.preserve<GlobalsAA>();
  return PA;
}

namespace {

struct ADCELegacyPass : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid

  ADCELegacyPass() : FunctionPass(ID) {
    initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    // ADCE does not need DominatorTree, but require DominatorTree here
    // to update analysis if it is already available.
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    return AggressiveDeadCodeElimination(F, DT, PDT)
        .performDeadCodeElimination();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<PostDominatorTreeWrapperPass>();
    if (!RemoveControlFlowFlag)
      AU.setPreservesCFG();
    else {
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<PostDominatorTreeWrapperPass>();
    }
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

char ADCELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
                      "Aggressive Dead Code Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
                    false, false)

FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }