InstCombineSimplifyDemanded.cpp 70.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains logic for simplifying instructions based on information
// about how they are used.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "instcombine"

namespace {

struct AMDGPUImageDMaskIntrinsic {
  unsigned Intr;
};

#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
#include "InstCombineTables.inc"

} // end anonymous namespace

/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
                                   const APInt &Demanded) {
  assert(I && "No instruction?");
  assert(OpNo < I->getNumOperands() && "Operand index too large");

  // The operand must be a constant integer or splat integer.
  Value *Op = I->getOperand(OpNo);
  const APInt *C;
  if (!match(Op, m_APInt(C)))
    return false;

  // If there are no bits set that aren't demanded, nothing to do.
  if (C->isSubsetOf(Demanded))
    return false;

  // This instruction is producing bits that are not demanded. Shrink the RHS.
  I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));

  return true;
}



/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
/// the instruction has any properties that allow us to simplify its operands.
bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
  KnownBits Known(BitWidth);
  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));

  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
                                     0, &Inst);
  if (!V) return false;
  if (V == &Inst) return true;
  replaceInstUsesWith(Inst, V);
  return true;
}

/// This form of SimplifyDemandedBits simplifies the specified instruction
/// operand if possible, updating it in place. It returns true if it made any
/// change and false otherwise.
bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
                                        const APInt &DemandedMask,
                                        KnownBits &Known,
                                        unsigned Depth) {
  Use &U = I->getOperandUse(OpNo);
  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
                                          Depth, I);
  if (!NewVal) return false;
  if (Instruction* OpInst = dyn_cast<Instruction>(U))
    salvageDebugInfo(*OpInst);
    
  replaceUse(U, NewVal);
  return true;
}


/// This function attempts to replace V with a simpler value based on the
/// demanded bits. When this function is called, it is known that only the bits
/// set in DemandedMask of the result of V are ever used downstream.
/// Consequently, depending on the mask and V, it may be possible to replace V
/// with a constant or one of its operands. In such cases, this function does
/// the replacement and returns true. In all other cases, it returns false after
/// analyzing the expression and setting KnownOne and known to be one in the
/// expression. Known.Zero contains all the bits that are known to be zero in
/// the expression. These are provided to potentially allow the caller (which
/// might recursively be SimplifyDemandedBits itself) to simplify the
/// expression.
/// Known.One and Known.Zero always follow the invariant that:
///   Known.One & Known.Zero == 0.
/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
/// be the same.
///
/// This returns null if it did not change anything and it permits no
/// simplification.  This returns V itself if it did some simplification of V's
/// operands based on the information about what bits are demanded. This returns
/// some other non-null value if it found out that V is equal to another value
/// in the context where the specified bits are demanded, but not for all users.
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
                                             KnownBits &Known, unsigned Depth,
                                             Instruction *CxtI) {
  assert(V != nullptr && "Null pointer of Value???");
  assert(Depth <= 6 && "Limit Search Depth");
  uint32_t BitWidth = DemandedMask.getBitWidth();
  Type *VTy = V->getType();
  assert(
      (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
      Known.getBitWidth() == BitWidth &&
      "Value *V, DemandedMask and Known must have same BitWidth");

  if (isa<Constant>(V)) {
    computeKnownBits(V, Known, Depth, CxtI);
    return nullptr;
  }

  Known.resetAll();
  if (DemandedMask.isNullValue())     // Not demanding any bits from V.
    return UndefValue::get(VTy);

  if (Depth == 6)        // Limit search depth.
    return nullptr;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    computeKnownBits(V, Known, Depth, CxtI);
    return nullptr;        // Only analyze instructions.
  }

  // If there are multiple uses of this value and we aren't at the root, then
  // we can't do any simplifications of the operands, because DemandedMask
  // only reflects the bits demanded by *one* of the users.
  if (Depth != 0 && !I->hasOneUse())
    return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);

  KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);

  // If this is the root being simplified, allow it to have multiple uses,
  // just set the DemandedMask to all bits so that we can try to simplify the
  // operands.  This allows visitTruncInst (for example) to simplify the
  // operand of a trunc without duplicating all the logic below.
  if (Depth == 0 && !V->hasOneUse())
    DemandedMask.setAllBits();

  switch (I->getOpcode()) {
  default:
    computeKnownBits(I, Known, Depth, CxtI);
    break;
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
                             Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    Known = LHSKnown & RHSKnown;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
      return Constant::getIntegerValue(VTy, Known.One);

    // If all of the demanded bits are known 1 on one side, return the other.
    // These bits cannot contribute to the result of the 'and'.
    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
      return I->getOperand(1);

    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
      return I;

    break;
  }
  case Instruction::Or: {
    // If either the LHS or the RHS are One, the result is One.
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
                             Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    Known = LHSKnown | RHSKnown;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
      return Constant::getIntegerValue(VTy, Known.One);

    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'or'.
    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
      return I->getOperand(1);

    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return I;

    break;
  }
  case Instruction::Xor: {
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    Known = LHSKnown ^ RHSKnown;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
      return Constant::getIntegerValue(VTy, Known.One);

    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'xor'.
    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
      return I->getOperand(1);

    // If all of the demanded bits are known to be zero on one side or the
    // other, turn this into an *inclusive* or.
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
      Instruction *Or =
        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
                                 I->getName());
      return InsertNewInstWith(Or, *I);
    }

    // If all of the demanded bits on one side are known, and all of the set
    // bits on that side are also known to be set on the other side, turn this
    // into an AND, as we know the bits will be cleared.
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
        RHSKnown.One.isSubsetOf(LHSKnown.One)) {
      Constant *AndC = Constant::getIntegerValue(VTy,
                                                 ~RHSKnown.One & DemandedMask);
      Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
      return InsertNewInstWith(And, *I);
    }

    // If the RHS is a constant, see if we can simplify it.
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return I;

    // If our LHS is an 'and' and if it has one use, and if any of the bits we
    // are flipping are known to be set, then the xor is just resetting those
    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
    // simplifying both of them.
    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
          isa<ConstantInt>(I->getOperand(1)) &&
          isa<ConstantInt>(LHSInst->getOperand(1)) &&
          (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
        APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);

        Constant *AndC =
          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
        InsertNewInstWith(NewAnd, *I);

        Constant *XorC =
          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
        return InsertNewInstWith(NewXor, *I);
      }

    break;
  }
  case Instruction::Select: {
    Value *LHS, *RHS;
    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
    if (SPF == SPF_UMAX) {
      // UMax(A, C) == A if ...
      // The lowest non-zero bit of DemandMask is higher than the highest
      // non-zero bit of C.
      const APInt *C;
      unsigned CTZ = DemandedMask.countTrailingZeros();
      if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
        return LHS;
    } else if (SPF == SPF_UMIN) {
      // UMin(A, C) == A if ...
      // The lowest non-zero bit of DemandMask is higher than the highest
      // non-one bit of C.
      // This comes from using DeMorgans on the above umax example.
      const APInt *C;
      unsigned CTZ = DemandedMask.countTrailingZeros();
      if (match(RHS, m_APInt(C)) &&
          CTZ >= C->getBitWidth() - C->countLeadingOnes())
        return LHS;
    }

    // If this is a select as part of any other min/max pattern, don't simplify
    // any further in case we break the structure.
    if (SPF != SPF_UNKNOWN)
      return nullptr;

    if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
        SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
      return I;
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");

    // If the operands are constants, see if we can simplify them.
    // This is similar to ShrinkDemandedConstant, but for a select we want to
    // try to keep the selected constants the same as icmp value constants, if
    // we can. This helps not break apart (or helps put back together)
    // canonical patterns like min and max.
    auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
                                         APInt DemandedMask) {
      const APInt *SelC;
      if (!match(I->getOperand(OpNo), m_APInt(SelC)))
        return false;

      // Get the constant out of the ICmp, if there is one.
      const APInt *CmpC;
      ICmpInst::Predicate Pred;
      if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
          CmpC->getBitWidth() != SelC->getBitWidth())
        return ShrinkDemandedConstant(I, OpNo, DemandedMask);

      // If the constant is already the same as the ICmp, leave it as-is.
      if (*CmpC == *SelC)
        return false;
      // If the constants are not already the same, but can be with the demand
      // mask, use the constant value from the ICmp.
      if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
        I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
        return true;
      }
      return ShrinkDemandedConstant(I, OpNo, DemandedMask);
    };
    if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
        CanonicalizeSelectConstant(I, 2, DemandedMask))
      return I;

    // Only known if known in both the LHS and RHS.
    Known.One = RHSKnown.One & LHSKnown.One;
    Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
    break;
  }
  case Instruction::ZExt:
  case Instruction::Trunc: {
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();

    APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
    KnownBits InputKnown(SrcBitWidth);
    if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
      return I;
    assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
    Known = InputKnown.zextOrTrunc(BitWidth);
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    break;
  }
  case Instruction::BitCast:
    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
      return nullptr;  // vector->int or fp->int?

    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
      if (VectorType *SrcVTy =
            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
          // Don't touch a bitcast between vectors of different element counts.
          return nullptr;
      } else
        // Don't touch a scalar-to-vector bitcast.
        return nullptr;
    } else if (I->getOperand(0)->getType()->isVectorTy())
      // Don't touch a vector-to-scalar bitcast.
      return nullptr;

    if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
      return I;
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    break;
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();

    APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);

    // If any of the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    if (DemandedMask.getActiveBits() > SrcBitWidth)
      InputDemandedBits.setBit(SrcBitWidth-1);

    KnownBits InputKnown(SrcBitWidth);
    if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
      return I;

    // If the input sign bit is known zero, or if the NewBits are not demanded
    // convert this into a zero extension.
    if (InputKnown.isNonNegative() ||
        DemandedMask.getActiveBits() <= SrcBitWidth) {
      // Convert to ZExt cast.
      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
      return InsertNewInstWith(NewCast, *I);
     }

    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    Known = InputKnown.sext(BitWidth);
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    break;
  }
  case Instruction::Add:
    if ((DemandedMask & 1) == 0) {
      // If we do not need the low bit, try to convert bool math to logic:
      // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
      Value *X, *Y;
      if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
                           m_OneUse(m_SExt(m_Value(Y))))) &&
          X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
        // Truth table for inputs and output signbits:
        //       X:0 | X:1
        //      ----------
        // Y:0  |  0 | 0 |
        // Y:1  | -1 | 0 |
        //      ----------
        IRBuilderBase::InsertPointGuard Guard(Builder);
        Builder.SetInsertPoint(I);
        Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
        return Builder.CreateSExt(AndNot, VTy);
      }

      // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
      // TODO: Relax the one-use checks because we are removing an instruction?
      if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
                         m_OneUse(m_SExt(m_Value(Y))))) &&
          X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
        // Truth table for inputs and output signbits:
        //       X:0 | X:1
        //      -----------
        // Y:0  | -1 | -1 |
        // Y:1  | -1 |  0 |
        //      -----------
        IRBuilderBase::InsertPointGuard Guard(Builder);
        Builder.SetInsertPoint(I);
        Value *Or = Builder.CreateOr(X, Y);
        return Builder.CreateSExt(Or, VTy);
      }
    }
    LLVM_FALLTHROUGH;
  case Instruction::Sub: {
    /// If the high-bits of an ADD/SUB are not demanded, then we do not care
    /// about the high bits of the operands.
    unsigned NLZ = DemandedMask.countLeadingZeros();
    // Right fill the mask of bits for this ADD/SUB to demand the most
    // significant bit and all those below it.
    APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
    if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
        SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
        ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
        SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
      if (NLZ > 0) {
        // Disable the nsw and nuw flags here: We can no longer guarantee that
        // we won't wrap after simplification. Removing the nsw/nuw flags is
        // legal here because the top bit is not demanded.
        BinaryOperator &BinOP = *cast<BinaryOperator>(I);
        BinOP.setHasNoSignedWrap(false);
        BinOP.setHasNoUnsignedWrap(false);
      }
      return I;
    }

    // If we are known to be adding/subtracting zeros to every bit below
    // the highest demanded bit, we just return the other side.
    if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
      return I->getOperand(0);
    // We can't do this with the LHS for subtraction, unless we are only
    // demanding the LSB.
    if ((I->getOpcode() == Instruction::Add ||
         DemandedFromOps.isOneValue()) &&
        DemandedFromOps.isSubsetOf(LHSKnown.Zero))
      return I->getOperand(1);

    // Otherwise just compute the known bits of the result.
    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
                                        NSW, LHSKnown, RHSKnown);
    break;
  }
  case Instruction::Shl: {
    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      const APInt *ShrAmt;
      if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
        if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
          if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
                                                    DemandedMask, Known))
            return R;

      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));

      // If the shift is NUW/NSW, then it does demand the high bits.
      ShlOperator *IOp = cast<ShlOperator>(I);
      if (IOp->hasNoSignedWrap())
        DemandedMaskIn.setHighBits(ShiftAmt+1);
      else if (IOp->hasNoUnsignedWrap())
        DemandedMaskIn.setHighBits(ShiftAmt);

      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
        return I;
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");

      bool SignBitZero = Known.Zero.isSignBitSet();
      bool SignBitOne = Known.One.isSignBitSet();
      Known.Zero <<= ShiftAmt;
      Known.One  <<= ShiftAmt;
      // low bits known zero.
      if (ShiftAmt)
        Known.Zero.setLowBits(ShiftAmt);

      // If this shift has "nsw" keyword, then the result is either a poison
      // value or has the same sign bit as the first operand.
      if (IOp->hasNoSignedWrap()) {
        if (SignBitZero)
          Known.Zero.setSignBit();
        else if (SignBitOne)
          Known.One.setSignBit();
        if (Known.hasConflict())
          return UndefValue::get(I->getType());
      }
    } else {
      computeKnownBits(I, Known, Depth, CxtI);
    }
    break;
  }
  case Instruction::LShr: {
    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);

      // Unsigned shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));

      // If the shift is exact, then it does demand the low bits (and knows that
      // they are zero).
      if (cast<LShrOperator>(I)->isExact())
        DemandedMaskIn.setLowBits(ShiftAmt);

      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
        return I;
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
      Known.Zero.lshrInPlace(ShiftAmt);
      Known.One.lshrInPlace(ShiftAmt);
      if (ShiftAmt)
        Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
    } else {
      computeKnownBits(I, Known, Depth, CxtI);
    }
    break;
  }
  case Instruction::AShr: {
    // If this is an arithmetic shift right and only the low-bit is set, we can
    // always convert this into a logical shr, even if the shift amount is
    // variable.  The low bit of the shift cannot be an input sign bit unless
    // the shift amount is >= the size of the datatype, which is undefined.
    if (DemandedMask.isOneValue()) {
      // Perform the logical shift right.
      Instruction *NewVal = BinaryOperator::CreateLShr(
                        I->getOperand(0), I->getOperand(1), I->getName());
      return InsertNewInstWith(NewVal, *I);
    }

    // If the sign bit is the only bit demanded by this ashr, then there is no
    // need to do it, the shift doesn't change the high bit.
    if (DemandedMask.isSignMask())
      return I->getOperand(0);

    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);

      // Signed shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
      // If any of the high bits are demanded, we should set the sign bit as
      // demanded.
      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
        DemandedMaskIn.setSignBit();

      // If the shift is exact, then it does demand the low bits (and knows that
      // they are zero).
      if (cast<AShrOperator>(I)->isExact())
        DemandedMaskIn.setLowBits(ShiftAmt);

      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
        return I;

      unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);

      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
      // Compute the new bits that are at the top now plus sign bits.
      APInt HighBits(APInt::getHighBitsSet(
          BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
      Known.Zero.lshrInPlace(ShiftAmt);
      Known.One.lshrInPlace(ShiftAmt);

      // If the input sign bit is known to be zero, or if none of the top bits
      // are demanded, turn this into an unsigned shift right.
      assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
      if (Known.Zero[BitWidth-ShiftAmt-1] ||
          !DemandedMask.intersects(HighBits)) {
        BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
                                                          I->getOperand(1));
        LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
        return InsertNewInstWith(LShr, *I);
      } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
        Known.One |= HighBits;
      }
    } else {
      computeKnownBits(I, Known, Depth, CxtI);
    }
    break;
  }
  case Instruction::UDiv: {
    // UDiv doesn't demand low bits that are zero in the divisor.
    const APInt *SA;
    if (match(I->getOperand(1), m_APInt(SA))) {
      // If the shift is exact, then it does demand the low bits.
      if (cast<UDivOperator>(I)->isExact())
        break;

      // FIXME: Take the demanded mask of the result into account.
      unsigned RHSTrailingZeros = SA->countTrailingZeros();
      APInt DemandedMaskIn =
          APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
        return I;

      // Propagate zero bits from the input.
      Known.Zero.setHighBits(std::min(
          BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
    } else {
      computeKnownBits(I, Known, Depth, CxtI);
    }
    break;
  }
  case Instruction::SRem:
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // X % -1 demands all the bits because we don't want to introduce
      // INT_MIN % -1 (== undef) by accident.
      if (Rem->isMinusOne())
        break;
      APInt RA = Rem->getValue().abs();
      if (RA.isPowerOf2()) {
        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
          return I->getOperand(0);

        APInt LowBits = RA - 1;
        APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
        if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
          return I;

        // The low bits of LHS are unchanged by the srem.
        Known.Zero = LHSKnown.Zero & LowBits;
        Known.One = LHSKnown.One & LowBits;

        // If LHS is non-negative or has all low bits zero, then the upper bits
        // are all zero.
        if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
          Known.Zero |= ~LowBits;

        // If LHS is negative and not all low bits are zero, then the upper bits
        // are all one.
        if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
          Known.One |= ~LowBits;

        assert(!Known.hasConflict() && "Bits known to be one AND zero?");
        break;
      }
    }

    // The sign bit is the LHS's sign bit, except when the result of the
    // remainder is zero.
    if (DemandedMask.isSignBitSet()) {
      computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
      // If it's known zero, our sign bit is also zero.
      if (LHSKnown.isNonNegative())
        Known.makeNonNegative();
    }
    break;
  case Instruction::URem: {
    KnownBits Known2(BitWidth);
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
        SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
      return I;

    unsigned Leaders = Known2.countMinLeadingZeros();
    Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
    break;
  }
  case Instruction::Call: {
    bool KnownBitsComputed = false;
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bswap: {
        // If the only bits demanded come from one byte of the bswap result,
        // just shift the input byte into position to eliminate the bswap.
        unsigned NLZ = DemandedMask.countLeadingZeros();
        unsigned NTZ = DemandedMask.countTrailingZeros();

        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
        // have 14 leading zeros, round to 8.
        NLZ &= ~7;
        NTZ &= ~7;
        // If we need exactly one byte, we can do this transformation.
        if (BitWidth-NLZ-NTZ == 8) {
          unsigned ResultBit = NTZ;
          unsigned InputBit = BitWidth-NTZ-8;

          // Replace this with either a left or right shift to get the byte into
          // the right place.
          Instruction *NewVal;
          if (InputBit > ResultBit)
            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
                    ConstantInt::get(I->getType(), InputBit-ResultBit));
          else
            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
                    ConstantInt::get(I->getType(), ResultBit-InputBit));
          NewVal->takeName(I);
          return InsertNewInstWith(NewVal, *I);
        }
        break;
      }
      case Intrinsic::fshr:
      case Intrinsic::fshl: {
        const APInt *SA;
        if (!match(I->getOperand(2), m_APInt(SA)))
          break;

        // Normalize to funnel shift left. APInt shifts of BitWidth are well-
        // defined, so no need to special-case zero shifts here.
        uint64_t ShiftAmt = SA->urem(BitWidth);
        if (II->getIntrinsicID() == Intrinsic::fshr)
          ShiftAmt = BitWidth - ShiftAmt;

        APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
        APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
        if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
            SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
          return I;

        Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
                     RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
        Known.One = LHSKnown.One.shl(ShiftAmt) |
                    RHSKnown.One.lshr(BitWidth - ShiftAmt);
        KnownBitsComputed = true;
        break;
      }
      case Intrinsic::x86_mmx_pmovmskb:
      case Intrinsic::x86_sse_movmsk_ps:
      case Intrinsic::x86_sse2_movmsk_pd:
      case Intrinsic::x86_sse2_pmovmskb_128:
      case Intrinsic::x86_avx_movmsk_ps_256:
      case Intrinsic::x86_avx_movmsk_pd_256:
      case Intrinsic::x86_avx2_pmovmskb: {
        // MOVMSK copies the vector elements' sign bits to the low bits
        // and zeros the high bits.
        unsigned ArgWidth;
        if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
          ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
        } else {
          auto Arg = II->getArgOperand(0);
          auto ArgType = cast<VectorType>(Arg->getType());
          ArgWidth = ArgType->getNumElements();
        }

        // If we don't need any of low bits then return zero,
        // we know that DemandedMask is non-zero already.
        APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
        if (DemandedElts.isNullValue())
          return ConstantInt::getNullValue(VTy);

        // We know that the upper bits are set to zero.
        Known.Zero.setBitsFrom(ArgWidth);
        KnownBitsComputed = true;
        break;
      }
      case Intrinsic::x86_sse42_crc32_64_64:
        Known.Zero.setBitsFrom(32);
        KnownBitsComputed = true;
        break;
      }
    }

    if (!KnownBitsComputed)
      computeKnownBits(V, Known, Depth, CxtI);
    break;
  }
  }

  // If the client is only demanding bits that we know, return the known
  // constant.
  if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
    return Constant::getIntegerValue(VTy, Known.One);
  return nullptr;
}

/// Helper routine of SimplifyDemandedUseBits. It computes Known
/// bits. It also tries to handle simplifications that can be done based on
/// DemandedMask, but without modifying the Instruction.
Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
                                                     const APInt &DemandedMask,
                                                     KnownBits &Known,
                                                     unsigned Depth,
                                                     Instruction *CxtI) {
  unsigned BitWidth = DemandedMask.getBitWidth();
  Type *ITy = I->getType();

  KnownBits LHSKnown(BitWidth);
  KnownBits RHSKnown(BitWidth);

  // Despite the fact that we can't simplify this instruction in all User's
  // context, we can at least compute the known bits, and we can
  // do simplifications that apply to *just* the one user if we know that
  // this instruction has a simpler value in that context.
  switch (I->getOpcode()) {
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
                     CxtI);

    Known = LHSKnown & RHSKnown;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
      return Constant::getIntegerValue(ITy, Known.One);

    // If all of the demanded bits are known 1 on one side, return the other.
    // These bits cannot contribute to the result of the 'and' in this
    // context.
    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
      return I->getOperand(1);

    break;
  }
  case Instruction::Or: {
    // We can simplify (X|Y) -> X or Y in the user's context if we know that
    // only bits from X or Y are demanded.

    // If either the LHS or the RHS are One, the result is One.
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
                     CxtI);

    Known = LHSKnown | RHSKnown;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
      return Constant::getIntegerValue(ITy, Known.One);

    // If all of the demanded bits are known zero on one side, return the
    // other.  These bits cannot contribute to the result of the 'or' in this
    // context.
    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
      return I->getOperand(1);

    break;
  }
  case Instruction::Xor: {
    // We can simplify (X^Y) -> X or Y in the user's context if we know that
    // only bits from X or Y are demanded.

    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
                     CxtI);

    Known = LHSKnown ^ RHSKnown;

    // If the client is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
      return Constant::getIntegerValue(ITy, Known.One);

    // If all of the demanded bits are known zero on one side, return the
    // other.
    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
      return I->getOperand(0);
    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
      return I->getOperand(1);

    break;
  }
  default:
    // Compute the Known bits to simplify things downstream.
    computeKnownBits(I, Known, Depth, CxtI);

    // If this user is only demanding bits that we know, return the known
    // constant.
    if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
      return Constant::getIntegerValue(ITy, Known.One);

    break;
  }

  return nullptr;
}


/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
/// of "C2-C1".
///
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
/// ..., bn}, without considering the specific value X is holding.
/// This transformation is legal iff one of following conditions is hold:
///  1) All the bit in S are 0, in this case E1 == E2.
///  2) We don't care those bits in S, per the input DemandedMask.
///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
///     rest bits.
///
/// Currently we only test condition 2).
///
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
/// not successful.
Value *
InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
                                         Instruction *Shl, const APInt &ShlOp1,
                                         const APInt &DemandedMask,
                                         KnownBits &Known) {
  if (!ShlOp1 || !ShrOp1)
    return nullptr; // No-op.

  Value *VarX = Shr->getOperand(0);
  Type *Ty = VarX->getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();
  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
    return nullptr; // Undef.

  unsigned ShlAmt = ShlOp1.getZExtValue();
  unsigned ShrAmt = ShrOp1.getZExtValue();

  Known.One.clearAllBits();
  Known.Zero.setLowBits(ShlAmt - 1);
  Known.Zero &= DemandedMask;

  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
  APInt BitMask2(APInt::getAllOnesValue(BitWidth));

  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
                      (BitMask1.ashr(ShrAmt) << ShlAmt);

  if (ShrAmt <= ShlAmt) {
    BitMask2 <<= (ShlAmt - ShrAmt);
  } else {
    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
                        BitMask2.ashr(ShrAmt - ShlAmt);
  }

  // Check if condition-2 (see the comment to this function) is satified.
  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
    if (ShrAmt == ShlAmt)
      return VarX;

    if (!Shr->hasOneUse())
      return nullptr;

    BinaryOperator *New;
    if (ShrAmt < ShlAmt) {
      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
      New = BinaryOperator::CreateShl(VarX, Amt);
      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
    } else {
      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
                     BinaryOperator::CreateAShr(VarX, Amt);
      if (cast<BinaryOperator>(Shr)->isExact())
        New->setIsExact(true);
    }

    return InsertNewInstWith(New, *Shl);
  }

  return nullptr;
}

/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
///
/// Note: This only supports non-TFE/LWE image intrinsic calls; those have
///       struct returns.
Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
                                                           APInt DemandedElts,
                                                           int DMaskIdx) {

  auto *IIVTy = cast<VectorType>(II->getType());
  unsigned VWidth = IIVTy->getNumElements();
  if (VWidth == 1)
    return nullptr;

  IRBuilderBase::InsertPointGuard Guard(Builder);
  Builder.SetInsertPoint(II);

  // Assume the arguments are unchanged and later override them, if needed.
  SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());

  if (DMaskIdx < 0) {
    // Buffer case.

    const unsigned ActiveBits = DemandedElts.getActiveBits();
    const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros();

    // Start assuming the prefix of elements is demanded, but possibly clear
    // some other bits if there are trailing zeros (unused components at front)
    // and update offset.
    DemandedElts = (1 << ActiveBits) - 1;

    if (UnusedComponentsAtFront > 0) {
      static const unsigned InvalidOffsetIdx = 0xf;

      unsigned OffsetIdx;
      switch (II->getIntrinsicID()) {
      case Intrinsic::amdgcn_raw_buffer_load:
        OffsetIdx = 1;
        break;
      case Intrinsic::amdgcn_s_buffer_load:
        // If resulting type is vec3, there is no point in trimming the
        // load with updated offset, as the vec3 would most likely be widened to
        // vec4 anyway during lowering.
        if (ActiveBits == 4 && UnusedComponentsAtFront == 1)
          OffsetIdx = InvalidOffsetIdx;
        else
          OffsetIdx = 1;
        break;
      case Intrinsic::amdgcn_struct_buffer_load:
        OffsetIdx = 2;
        break;
      default:
        // TODO: handle tbuffer* intrinsics.
        OffsetIdx = InvalidOffsetIdx;
        break;
      }

      if (OffsetIdx != InvalidOffsetIdx) {
        // Clear demanded bits and update the offset.
        DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1);
        auto *Offset = II->getArgOperand(OffsetIdx);
        unsigned SingleComponentSizeInBits =
            getDataLayout().getTypeSizeInBits(II->getType()->getScalarType());
        unsigned OffsetAdd =
            UnusedComponentsAtFront * SingleComponentSizeInBits / 8;
        auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd);
        Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal);
      }
    }
  } else {
    // Image case.

    ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
    unsigned DMaskVal = DMask->getZExtValue() & 0xf;

    // Mask off values that are undefined because the dmask doesn't cover them
    DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;

    unsigned NewDMaskVal = 0;
    unsigned OrigLoadIdx = 0;
    for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
      const unsigned Bit = 1 << SrcIdx;
      if (!!(DMaskVal & Bit)) {
        if (!!DemandedElts[OrigLoadIdx])
          NewDMaskVal |= Bit;
        OrigLoadIdx++;
      }
    }

    if (DMaskVal != NewDMaskVal)
      Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal);
  }

  unsigned NewNumElts = DemandedElts.countPopulation();
  if (!NewNumElts)
    return UndefValue::get(II->getType());

  // FIXME: Allow v3i16/v3f16 in buffer and image intrinsics when the types are
  // fully supported.
  if (II->getType()->getScalarSizeInBits() == 16 && NewNumElts == 3)
    return nullptr;

  if (NewNumElts >= VWidth && DemandedElts.isMask()) {
    if (DMaskIdx >= 0)
      II->setArgOperand(DMaskIdx, Args[DMaskIdx]);
    return nullptr;
  }

  // Validate function argument and return types, extracting overloaded types
  // along the way.
  SmallVector<Type *, 6> OverloadTys;
  if (!Intrinsic::getIntrinsicSignature(II->getCalledFunction(), OverloadTys))
    return nullptr;

  Module *M = II->getParent()->getParent()->getParent();
  Type *EltTy = IIVTy->getElementType();
  Type *NewTy =
      (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts);

  OverloadTys[0] = NewTy;
  Function *NewIntrin =
      Intrinsic::getDeclaration(M, II->getIntrinsicID(), OverloadTys);

  CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
  NewCall->takeName(II);
  NewCall->copyMetadata(*II);

  if (NewNumElts == 1) {
    return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
                                       DemandedElts.countTrailingZeros());
  }

  SmallVector<int, 8> EltMask;
  unsigned NewLoadIdx = 0;
  for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
    if (!!DemandedElts[OrigLoadIdx])
      EltMask.push_back(NewLoadIdx++);
    else
      EltMask.push_back(NewNumElts);
  }

  Value *Shuffle =
      Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);

  return Shuffle;
}

/// The specified value produces a vector with any number of elements.
/// This method analyzes which elements of the operand are undef and returns
/// that information in UndefElts.
///
/// DemandedElts contains the set of elements that are actually used by the
/// caller, and by default (AllowMultipleUsers equals false) the value is
/// simplified only if it has a single caller. If AllowMultipleUsers is set
/// to true, DemandedElts refers to the union of sets of elements that are
/// used by all callers.
///
/// If the information about demanded elements can be used to simplify the
/// operation, the operation is simplified, then the resultant value is
/// returned.  This returns null if no change was made.
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
                                                APInt &UndefElts,
                                                unsigned Depth,
                                                bool AllowMultipleUsers) {
  // Cannot analyze scalable type. The number of vector elements is not a
  // compile-time constant.
  if (isa<ScalableVectorType>(V->getType()))
    return nullptr;

  unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
  APInt EltMask(APInt::getAllOnesValue(VWidth));
  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");

  if (isa<UndefValue>(V)) {
    // If the entire vector is undefined, just return this info.
    UndefElts = EltMask;
    return nullptr;
  }

  if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
    UndefElts = EltMask;
    return UndefValue::get(V->getType());
  }

  UndefElts = 0;

  if (auto *C = dyn_cast<Constant>(V)) {
    // Check if this is identity. If so, return 0 since we are not simplifying
    // anything.
    if (DemandedElts.isAllOnesValue())
      return nullptr;

    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    Constant *Undef = UndefValue::get(EltTy);
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0; i != VWidth; ++i) {
      if (!DemandedElts[i]) {   // If not demanded, set to undef.
        Elts.push_back(Undef);
        UndefElts.setBit(i);
        continue;
      }

      Constant *Elt = C->getAggregateElement(i);
      if (!Elt) return nullptr;

      if (isa<UndefValue>(Elt)) {   // Already undef.
        Elts.push_back(Undef);
        UndefElts.setBit(i);
      } else {                               // Otherwise, defined.
        Elts.push_back(Elt);
      }
    }

    // If we changed the constant, return it.
    Constant *NewCV = ConstantVector::get(Elts);
    return NewCV != C ? NewCV : nullptr;
  }

  // Limit search depth.
  if (Depth == 10)
    return nullptr;

  if (!AllowMultipleUsers) {
    // If multiple users are using the root value, proceed with
    // simplification conservatively assuming that all elements
    // are needed.
    if (!V->hasOneUse()) {
      // Quit if we find multiple users of a non-root value though.
      // They'll be handled when it's their turn to be visited by
      // the main instcombine process.
      if (Depth != 0)
        // TODO: Just compute the UndefElts information recursively.
        return nullptr;

      // Conservatively assume that all elements are needed.
      DemandedElts = EltMask;
    }
  }

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return nullptr;        // Only analyze instructions.

  bool MadeChange = false;
  auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
                              APInt Demanded, APInt &Undef) {
    auto *II = dyn_cast<IntrinsicInst>(Inst);
    Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
    if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
      replaceOperand(*Inst, OpNum, V);
      MadeChange = true;
    }
  };

  APInt UndefElts2(VWidth, 0);
  APInt UndefElts3(VWidth, 0);
  switch (I->getOpcode()) {
  default: break;

  case Instruction::GetElementPtr: {
    // The LangRef requires that struct geps have all constant indices.  As
    // such, we can't convert any operand to partial undef.
    auto mayIndexStructType = [](GetElementPtrInst &GEP) {
      for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
           I != E; I++)
        if (I.isStruct())
          return true;;
      return false;
    };
    if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
      break;
    
    // Conservatively track the demanded elements back through any vector
    // operands we may have.  We know there must be at least one, or we
    // wouldn't have a vector result to get here. Note that we intentionally
    // merge the undef bits here since gepping with either an undef base or
    // index results in undef. 
    for (unsigned i = 0; i < I->getNumOperands(); i++) {
      if (isa<UndefValue>(I->getOperand(i))) {
        // If the entire vector is undefined, just return this info.
        UndefElts = EltMask;
        return nullptr;
      }
      if (I->getOperand(i)->getType()->isVectorTy()) {
        APInt UndefEltsOp(VWidth, 0);
        simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
        UndefElts |= UndefEltsOp;
      }
    }

    break;
  }
  case Instruction::InsertElement: {
    // If this is a variable index, we don't know which element it overwrites.
    // demand exactly the same input as we produce.
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
    if (!Idx) {
      // Note that we can't propagate undef elt info, because we don't know
      // which elt is getting updated.
      simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
      break;
    }

    // The element inserted overwrites whatever was there, so the input demanded
    // set is simpler than the output set.
    unsigned IdxNo = Idx->getZExtValue();
    APInt PreInsertDemandedElts = DemandedElts;
    if (IdxNo < VWidth)
      PreInsertDemandedElts.clearBit(IdxNo);

    simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);

    // If this is inserting an element that isn't demanded, remove this
    // insertelement.
    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
      Worklist.push(I);
      return I->getOperand(0);
    }

    // The inserted element is defined.
    UndefElts.clearBit(IdxNo);
    break;
  }
  case Instruction::ShuffleVector: {
    auto *Shuffle = cast<ShuffleVectorInst>(I);
    assert(Shuffle->getOperand(0)->getType() ==
           Shuffle->getOperand(1)->getType() &&
           "Expected shuffle operands to have same type");
    unsigned OpWidth =
        cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
    // Handle trivial case of a splat. Only check the first element of LHS
    // operand.
    if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
        DemandedElts.isAllOnesValue()) {
      if (!isa<UndefValue>(I->getOperand(1))) {
        I->setOperand(1, UndefValue::get(I->getOperand(1)->getType()));
        MadeChange = true;
      }
      APInt LeftDemanded(OpWidth, 1);
      APInt LHSUndefElts(OpWidth, 0);
      simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
      if (LHSUndefElts[0])
        UndefElts = EltMask;
      else
        UndefElts.clearAllBits();
      break;
    }

    APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
    for (unsigned i = 0; i < VWidth; i++) {
      if (DemandedElts[i]) {
        unsigned MaskVal = Shuffle->getMaskValue(i);
        if (MaskVal != -1u) {
          assert(MaskVal < OpWidth * 2 &&
                 "shufflevector mask index out of range!");
          if (MaskVal < OpWidth)
            LeftDemanded.setBit(MaskVal);
          else
            RightDemanded.setBit(MaskVal - OpWidth);
        }
      }
    }

    APInt LHSUndefElts(OpWidth, 0);
    simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);

    APInt RHSUndefElts(OpWidth, 0);
    simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);

    // If this shuffle does not change the vector length and the elements
    // demanded by this shuffle are an identity mask, then this shuffle is
    // unnecessary.
    //
    // We are assuming canonical form for the mask, so the source vector is
    // operand 0 and operand 1 is not used.
    //
    // Note that if an element is demanded and this shuffle mask is undefined
    // for that element, then the shuffle is not considered an identity
    // operation. The shuffle prevents poison from the operand vector from
    // leaking to the result by replacing poison with an undefined value.
    if (VWidth == OpWidth) {
      bool IsIdentityShuffle = true;
      for (unsigned i = 0; i < VWidth; i++) {
        unsigned MaskVal = Shuffle->getMaskValue(i);
        if (DemandedElts[i] && i != MaskVal) {
          IsIdentityShuffle = false;
          break;
        }
      }
      if (IsIdentityShuffle)
        return Shuffle->getOperand(0);
    }

    bool NewUndefElts = false;
    unsigned LHSIdx = -1u, LHSValIdx = -1u;
    unsigned RHSIdx = -1u, RHSValIdx = -1u;
    bool LHSUniform = true;
    bool RHSUniform = true;
    for (unsigned i = 0; i < VWidth; i++) {
      unsigned MaskVal = Shuffle->getMaskValue(i);
      if (MaskVal == -1u) {
        UndefElts.setBit(i);
      } else if (!DemandedElts[i]) {
        NewUndefElts = true;
        UndefElts.setBit(i);
      } else if (MaskVal < OpWidth) {
        if (LHSUndefElts[MaskVal]) {
          NewUndefElts = true;
          UndefElts.setBit(i);
        } else {
          LHSIdx = LHSIdx == -1u ? i : OpWidth;
          LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
          LHSUniform = LHSUniform && (MaskVal == i);
        }
      } else {
        if (RHSUndefElts[MaskVal - OpWidth]) {
          NewUndefElts = true;
          UndefElts.setBit(i);
        } else {
          RHSIdx = RHSIdx == -1u ? i : OpWidth;
          RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
          RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
        }
      }
    }

    // Try to transform shuffle with constant vector and single element from
    // this constant vector to single insertelement instruction.
    // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
    // insertelement V, C[ci], ci-n
    if (OpWidth == Shuffle->getType()->getNumElements()) {
      Value *Op = nullptr;
      Constant *Value = nullptr;
      unsigned Idx = -1u;

      // Find constant vector with the single element in shuffle (LHS or RHS).
      if (LHSIdx < OpWidth && RHSUniform) {
        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
          Op = Shuffle->getOperand(1);
          Value = CV->getOperand(LHSValIdx);
          Idx = LHSIdx;
        }
      }
      if (RHSIdx < OpWidth && LHSUniform) {
        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
          Op = Shuffle->getOperand(0);
          Value = CV->getOperand(RHSValIdx);
          Idx = RHSIdx;
        }
      }
      // Found constant vector with single element - convert to insertelement.
      if (Op && Value) {
        Instruction *New = InsertElementInst::Create(
            Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
            Shuffle->getName());
        InsertNewInstWith(New, *Shuffle);
        return New;
      }
    }
    if (NewUndefElts) {
      // Add additional discovered undefs.
      SmallVector<int, 16> Elts;
      for (unsigned i = 0; i < VWidth; ++i) {
        if (UndefElts[i])
          Elts.push_back(UndefMaskElem);
        else
          Elts.push_back(Shuffle->getMaskValue(i));
      }
      Shuffle->setShuffleMask(Elts);
      MadeChange = true;
    }
    break;
  }
  case Instruction::Select: {
    // If this is a vector select, try to transform the select condition based
    // on the current demanded elements.
    SelectInst *Sel = cast<SelectInst>(I);
    if (Sel->getCondition()->getType()->isVectorTy()) {
      // TODO: We are not doing anything with UndefElts based on this call.
      // It is overwritten below based on the other select operands. If an
      // element of the select condition is known undef, then we are free to
      // choose the output value from either arm of the select. If we know that
      // one of those values is undef, then the output can be undef.
      simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
    }

    // Next, see if we can transform the arms of the select.
    APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
    if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
      for (unsigned i = 0; i < VWidth; i++) {
        // isNullValue() always returns false when called on a ConstantExpr.
        // Skip constant expressions to avoid propagating incorrect information.
        Constant *CElt = CV->getAggregateElement(i);
        if (isa<ConstantExpr>(CElt))
          continue;
        // TODO: If a select condition element is undef, we can demand from
        // either side. If one side is known undef, choosing that side would
        // propagate undef.
        if (CElt->isNullValue())
          DemandedLHS.clearBit(i);
        else
          DemandedRHS.clearBit(i);
      }
    }

    simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
    simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);

    // Output elements are undefined if the element from each arm is undefined.
    // TODO: This can be improved. See comment in select condition handling.
    UndefElts = UndefElts2 & UndefElts3;
    break;
  }
  case Instruction::BitCast: {
    // Vector->vector casts only.
    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
    if (!VTy) break;
    unsigned InVWidth = VTy->getNumElements();
    APInt InputDemandedElts(InVWidth, 0);
    UndefElts2 = APInt(InVWidth, 0);
    unsigned Ratio;

    if (VWidth == InVWidth) {
      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
      // elements as are demanded of us.
      Ratio = 1;
      InputDemandedElts = DemandedElts;
    } else if ((VWidth % InVWidth) == 0) {
      // If the number of elements in the output is a multiple of the number of
      // elements in the input then an input element is live if any of the
      // corresponding output elements are live.
      Ratio = VWidth / InVWidth;
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
        if (DemandedElts[OutIdx])
          InputDemandedElts.setBit(OutIdx / Ratio);
    } else if ((InVWidth % VWidth) == 0) {
      // If the number of elements in the input is a multiple of the number of
      // elements in the output then an input element is live if the
      // corresponding output element is live.
      Ratio = InVWidth / VWidth;
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
        if (DemandedElts[InIdx / Ratio])
          InputDemandedElts.setBit(InIdx);
    } else {
      // Unsupported so far.
      break;
    }

    simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);

    if (VWidth == InVWidth) {
      UndefElts = UndefElts2;
    } else if ((VWidth % InVWidth) == 0) {
      // If the number of elements in the output is a multiple of the number of
      // elements in the input then an output element is undef if the
      // corresponding input element is undef.
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
        if (UndefElts2[OutIdx / Ratio])
          UndefElts.setBit(OutIdx);
    } else if ((InVWidth % VWidth) == 0) {
      // If the number of elements in the input is a multiple of the number of
      // elements in the output then an output element is undef if all of the
      // corresponding input elements are undef.
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
        APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
        if (SubUndef.countPopulation() == Ratio)
          UndefElts.setBit(OutIdx);
      }
    } else {
      llvm_unreachable("Unimp");
    }
    break;
  }
  case Instruction::FPTrunc:
  case Instruction::FPExt:
    simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
    break;

  case Instruction::Call: {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
    if (!II) break;
    switch (II->getIntrinsicID()) {
    case Intrinsic::masked_gather: // fallthrough
    case Intrinsic::masked_load: {
      // Subtlety: If we load from a pointer, the pointer must be valid
      // regardless of whether the element is demanded.  Doing otherwise risks
      // segfaults which didn't exist in the original program.
      APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
        DemandedPassThrough(DemandedElts);
      if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
        for (unsigned i = 0; i < VWidth; i++) {
          Constant *CElt = CV->getAggregateElement(i);
          if (CElt->isNullValue())
            DemandedPtrs.clearBit(i);
          else if (CElt->isAllOnesValue())
            DemandedPassThrough.clearBit(i);
        }
      if (II->getIntrinsicID() == Intrinsic::masked_gather)
        simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
      simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
      
      // Output elements are undefined if the element from both sources are.
      // TODO: can strengthen via mask as well.
      UndefElts = UndefElts2 & UndefElts3;
      break;
    }
    case Intrinsic::x86_xop_vfrcz_ss:
    case Intrinsic::x86_xop_vfrcz_sd:
      // The instructions for these intrinsics are speced to zero upper bits not
      // pass them through like other scalar intrinsics. So we shouldn't just
      // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
      // Instead we should return a zero vector.
      if (!DemandedElts[0]) {
        Worklist.push(II);
        return ConstantAggregateZero::get(II->getType());
      }

      // Only the lower element is used.
      DemandedElts = 1;
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);

      // Only the lower element is undefined. The high elements are zero.
      UndefElts = UndefElts[0];
      break;

    // Unary scalar-as-vector operations that work column-wise.
    case Intrinsic::x86_sse_rcp_ss:
    case Intrinsic::x86_sse_rsqrt_ss:
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.push(II);
        return II->getArgOperand(0);
      }
      // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
      // checks).
      break;

    // Binary scalar-as-vector operations that work column-wise. The high
    // elements come from operand 0. The low element is a function of both
    // operands.
    case Intrinsic::x86_sse_min_ss:
    case Intrinsic::x86_sse_max_ss:
    case Intrinsic::x86_sse_cmp_ss:
    case Intrinsic::x86_sse2_min_sd:
    case Intrinsic::x86_sse2_max_sd:
    case Intrinsic::x86_sse2_cmp_sd: {
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.push(II);
        return II->getArgOperand(0);
      }

      // Only lower element is used for operand 1.
      DemandedElts = 1;
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);

      // Lower element is undefined if both lower elements are undefined.
      // Consider things like undef&0.  The result is known zero, not undef.
      if (!UndefElts2[0])
        UndefElts.clearBit(0);

      break;
    }

    // Binary scalar-as-vector operations that work column-wise. The high
    // elements come from operand 0 and the low element comes from operand 1.
    case Intrinsic::x86_sse41_round_ss:
    case Intrinsic::x86_sse41_round_sd: {
      // Don't use the low element of operand 0.
      APInt DemandedElts2 = DemandedElts;
      DemandedElts2.clearBit(0);
      simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.push(II);
        return II->getArgOperand(0);
      }

      // Only lower element is used for operand 1.
      DemandedElts = 1;
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);

      // Take the high undef elements from operand 0 and take the lower element
      // from operand 1.
      UndefElts.clearBit(0);
      UndefElts |= UndefElts2[0];
      break;
    }

    // Three input scalar-as-vector operations that work column-wise. The high
    // elements come from operand 0 and the low element is a function of all
    // three inputs.
    case Intrinsic::x86_avx512_mask_add_ss_round:
    case Intrinsic::x86_avx512_mask_div_ss_round:
    case Intrinsic::x86_avx512_mask_mul_ss_round:
    case Intrinsic::x86_avx512_mask_sub_ss_round:
    case Intrinsic::x86_avx512_mask_max_ss_round:
    case Intrinsic::x86_avx512_mask_min_ss_round:
    case Intrinsic::x86_avx512_mask_add_sd_round:
    case Intrinsic::x86_avx512_mask_div_sd_round:
    case Intrinsic::x86_avx512_mask_mul_sd_round:
    case Intrinsic::x86_avx512_mask_sub_sd_round:
    case Intrinsic::x86_avx512_mask_max_sd_round:
    case Intrinsic::x86_avx512_mask_min_sd_round:
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);

      // If lowest element of a scalar op isn't used then use Arg0.
      if (!DemandedElts[0]) {
        Worklist.push(II);
        return II->getArgOperand(0);
      }

      // Only lower element is used for operand 1 and 2.
      DemandedElts = 1;
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
      simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);

      // Lower element is undefined if all three lower elements are undefined.
      // Consider things like undef&0.  The result is known zero, not undef.
      if (!UndefElts2[0] || !UndefElts3[0])
        UndefElts.clearBit(0);

      break;

    case Intrinsic::x86_sse2_packssdw_128:
    case Intrinsic::x86_sse2_packsswb_128:
    case Intrinsic::x86_sse2_packuswb_128:
    case Intrinsic::x86_sse41_packusdw:
    case Intrinsic::x86_avx2_packssdw:
    case Intrinsic::x86_avx2_packsswb:
    case Intrinsic::x86_avx2_packusdw:
    case Intrinsic::x86_avx2_packuswb:
    case Intrinsic::x86_avx512_packssdw_512:
    case Intrinsic::x86_avx512_packsswb_512:
    case Intrinsic::x86_avx512_packusdw_512:
    case Intrinsic::x86_avx512_packuswb_512: {
      auto *Ty0 = II->getArgOperand(0)->getType();
      unsigned InnerVWidth = cast<VectorType>(Ty0)->getNumElements();
      assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");

      unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
      unsigned VWidthPerLane = VWidth / NumLanes;
      unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;

      // Per lane, pack the elements of the first input and then the second.
      // e.g.
      // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
      // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
      for (int OpNum = 0; OpNum != 2; ++OpNum) {
        APInt OpDemandedElts(InnerVWidth, 0);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          unsigned LaneIdx = Lane * VWidthPerLane;
          for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
            unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
            if (DemandedElts[Idx])
              OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
          }
        }

        // Demand elements from the operand.
        APInt OpUndefElts(InnerVWidth, 0);
        simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);

        // Pack the operand's UNDEF elements, one lane at a time.
        OpUndefElts = OpUndefElts.zext(VWidth);
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
          APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
          LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
          LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
          UndefElts |= LaneElts;
        }
      }
      break;
    }

    // PSHUFB
    case Intrinsic::x86_ssse3_pshuf_b_128:
    case Intrinsic::x86_avx2_pshuf_b:
    case Intrinsic::x86_avx512_pshuf_b_512:
    // PERMILVAR
    case Intrinsic::x86_avx_vpermilvar_ps:
    case Intrinsic::x86_avx_vpermilvar_ps_256:
    case Intrinsic::x86_avx512_vpermilvar_ps_512:
    case Intrinsic::x86_avx_vpermilvar_pd:
    case Intrinsic::x86_avx_vpermilvar_pd_256:
    case Intrinsic::x86_avx512_vpermilvar_pd_512:
    // PERMV
    case Intrinsic::x86_avx2_permd:
    case Intrinsic::x86_avx2_permps: {
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
      break;
    }

    // SSE4A instructions leave the upper 64-bits of the 128-bit result
    // in an undefined state.
    case Intrinsic::x86_sse4a_extrq:
    case Intrinsic::x86_sse4a_extrqi:
    case Intrinsic::x86_sse4a_insertq:
    case Intrinsic::x86_sse4a_insertqi:
      UndefElts.setHighBits(VWidth / 2);
      break;
    case Intrinsic::amdgcn_buffer_load:
    case Intrinsic::amdgcn_buffer_load_format:
    case Intrinsic::amdgcn_raw_buffer_load:
    case Intrinsic::amdgcn_raw_buffer_load_format:
    case Intrinsic::amdgcn_raw_tbuffer_load:
    case Intrinsic::amdgcn_s_buffer_load:
    case Intrinsic::amdgcn_struct_buffer_load:
    case Intrinsic::amdgcn_struct_buffer_load_format:
    case Intrinsic::amdgcn_struct_tbuffer_load:
    case Intrinsic::amdgcn_tbuffer_load:
      return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
    default: {
      if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
        return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);

      break;
    }
    } // switch on IntrinsicID
    break;
  } // case Call
  } // switch on Opcode

  // TODO: We bail completely on integer div/rem and shifts because they have
  // UB/poison potential, but that should be refined.
  BinaryOperator *BO;
  if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
    simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
    simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);

    // Any change to an instruction with potential poison must clear those flags
    // because we can not guarantee those constraints now. Other analysis may
    // determine that it is safe to re-apply the flags.
    if (MadeChange)
      BO->dropPoisonGeneratingFlags();

    // Output elements are undefined if both are undefined. Consider things
    // like undef & 0. The result is known zero, not undef.
    UndefElts &= UndefElts2;
  }

  // If we've proven all of the lanes undef, return an undef value.
  // TODO: Intersect w/demanded lanes
  if (UndefElts.isAllOnesValue())
    return UndefValue::get(I->getType());;

  return MadeChange ? I : nullptr;
}