InstCombineSelect.cpp 114 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
//===- InstCombineSelect.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitSelect function.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include <cassert>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

static Value *createMinMax(InstCombiner::BuilderTy &Builder,
                           SelectPatternFlavor SPF, Value *A, Value *B) {
  CmpInst::Predicate Pred = getMinMaxPred(SPF);
  assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
  return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
}

/// Replace a select operand based on an equality comparison with the identity
/// constant of a binop.
static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
                                            const TargetLibraryInfo &TLI,
                                            InstCombiner &IC) {
  // The select condition must be an equality compare with a constant operand.
  Value *X;
  Constant *C;
  CmpInst::Predicate Pred;
  if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
    return nullptr;

  bool IsEq;
  if (ICmpInst::isEquality(Pred))
    IsEq = Pred == ICmpInst::ICMP_EQ;
  else if (Pred == FCmpInst::FCMP_OEQ)
    IsEq = true;
  else if (Pred == FCmpInst::FCMP_UNE)
    IsEq = false;
  else
    return nullptr;

  // A select operand must be a binop.
  BinaryOperator *BO;
  if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
    return nullptr;

  // The compare constant must be the identity constant for that binop.
  // If this a floating-point compare with 0.0, any zero constant will do.
  Type *Ty = BO->getType();
  Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
  if (IdC != C) {
    if (!IdC || !CmpInst::isFPPredicate(Pred))
      return nullptr;
    if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
      return nullptr;
  }

  // Last, match the compare variable operand with a binop operand.
  Value *Y;
  if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
    return nullptr;
  if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
    return nullptr;

  // +0.0 compares equal to -0.0, and so it does not behave as required for this
  // transform. Bail out if we can not exclude that possibility.
  if (isa<FPMathOperator>(BO))
    if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
      return nullptr;

  // BO = binop Y, X
  // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
  // =>
  // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
  return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
}

/// This folds:
///  select (icmp eq (and X, C1)), TC, FC
///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
/// To something like:
///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
/// Or:
///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
/// With some variations depending if FC is larger than TC, or the shift
/// isn't needed, or the bit widths don't match.
static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
                                InstCombiner::BuilderTy &Builder) {
  const APInt *SelTC, *SelFC;
  if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
      !match(Sel.getFalseValue(), m_APInt(SelFC)))
    return nullptr;

  // If this is a vector select, we need a vector compare.
  Type *SelType = Sel.getType();
  if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
    return nullptr;

  Value *V;
  APInt AndMask;
  bool CreateAnd = false;
  ICmpInst::Predicate Pred = Cmp->getPredicate();
  if (ICmpInst::isEquality(Pred)) {
    if (!match(Cmp->getOperand(1), m_Zero()))
      return nullptr;

    V = Cmp->getOperand(0);
    const APInt *AndRHS;
    if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
      return nullptr;

    AndMask = *AndRHS;
  } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
                                  Pred, V, AndMask)) {
    assert(ICmpInst::isEquality(Pred) && "Not equality test?");
    if (!AndMask.isPowerOf2())
      return nullptr;

    CreateAnd = true;
  } else {
    return nullptr;
  }

  // In general, when both constants are non-zero, we would need an offset to
  // replace the select. This would require more instructions than we started
  // with. But there's one special-case that we handle here because it can
  // simplify/reduce the instructions.
  APInt TC = *SelTC;
  APInt FC = *SelFC;
  if (!TC.isNullValue() && !FC.isNullValue()) {
    // If the select constants differ by exactly one bit and that's the same
    // bit that is masked and checked by the select condition, the select can
    // be replaced by bitwise logic to set/clear one bit of the constant result.
    if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
      return nullptr;
    if (CreateAnd) {
      // If we have to create an 'and', then we must kill the cmp to not
      // increase the instruction count.
      if (!Cmp->hasOneUse())
        return nullptr;
      V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
    }
    bool ExtraBitInTC = TC.ugt(FC);
    if (Pred == ICmpInst::ICMP_EQ) {
      // If the masked bit in V is clear, clear or set the bit in the result:
      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
      Constant *C = ConstantInt::get(SelType, TC);
      return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
    }
    if (Pred == ICmpInst::ICMP_NE) {
      // If the masked bit in V is set, set or clear the bit in the result:
      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
      Constant *C = ConstantInt::get(SelType, FC);
      return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
    }
    llvm_unreachable("Only expecting equality predicates");
  }

  // Make sure one of the select arms is a power-of-2.
  if (!TC.isPowerOf2() && !FC.isPowerOf2())
    return nullptr;

  // Determine which shift is needed to transform result of the 'and' into the
  // desired result.
  const APInt &ValC = !TC.isNullValue() ? TC : FC;
  unsigned ValZeros = ValC.logBase2();
  unsigned AndZeros = AndMask.logBase2();

  // Insert the 'and' instruction on the input to the truncate.
  if (CreateAnd)
    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));

  // If types don't match, we can still convert the select by introducing a zext
  // or a trunc of the 'and'.
  if (ValZeros > AndZeros) {
    V = Builder.CreateZExtOrTrunc(V, SelType);
    V = Builder.CreateShl(V, ValZeros - AndZeros);
  } else if (ValZeros < AndZeros) {
    V = Builder.CreateLShr(V, AndZeros - ValZeros);
    V = Builder.CreateZExtOrTrunc(V, SelType);
  } else {
    V = Builder.CreateZExtOrTrunc(V, SelType);
  }

  // Okay, now we know that everything is set up, we just don't know whether we
  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
  bool ShouldNotVal = !TC.isNullValue();
  ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
  if (ShouldNotVal)
    V = Builder.CreateXor(V, ValC);

  return V;
}

/// We want to turn code that looks like this:
///   %C = or %A, %B
///   %D = select %cond, %C, %A
/// into:
///   %C = select %cond, %B, 0
///   %D = or %A, %C
///
/// Assuming that the specified instruction is an operand to the select, return
/// a bitmask indicating which operands of this instruction are foldable if they
/// equal the other incoming value of the select.
static unsigned getSelectFoldableOperands(BinaryOperator *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    return 3;              // Can fold through either operand.
  case Instruction::Sub:   // Can only fold on the amount subtracted.
  case Instruction::Shl:   // Can only fold on the shift amount.
  case Instruction::LShr:
  case Instruction::AShr:
    return 1;
  default:
    return 0;              // Cannot fold
  }
}

/// For the same transformation as the previous function, return the identity
/// constant that goes into the select.
static APInt getSelectFoldableConstant(BinaryOperator *I) {
  switch (I->getOpcode()) {
  default: llvm_unreachable("This cannot happen!");
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return APInt::getNullValue(I->getType()->getScalarSizeInBits());
  case Instruction::And:
    return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
  case Instruction::Mul:
    return APInt(I->getType()->getScalarSizeInBits(), 1);
  }
}

/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
                                          Instruction *FI) {
  // Don't break up min/max patterns. The hasOneUse checks below prevent that
  // for most cases, but vector min/max with bitcasts can be transformed. If the
  // one-use restrictions are eased for other patterns, we still don't want to
  // obfuscate min/max.
  if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
       match(&SI, m_SMax(m_Value(), m_Value())) ||
       match(&SI, m_UMin(m_Value(), m_Value())) ||
       match(&SI, m_UMax(m_Value(), m_Value()))))
    return nullptr;

  // If this is a cast from the same type, merge.
  Value *Cond = SI.getCondition();
  Type *CondTy = Cond->getType();
  if (TI->getNumOperands() == 1 && TI->isCast()) {
    Type *FIOpndTy = FI->getOperand(0)->getType();
    if (TI->getOperand(0)->getType() != FIOpndTy)
      return nullptr;

    // The select condition may be a vector. We may only change the operand
    // type if the vector width remains the same (and matches the condition).
    if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
      if (!FIOpndTy->isVectorTy())
        return nullptr;
      if (CondVTy->getNumElements() !=
          cast<VectorType>(FIOpndTy)->getNumElements())
        return nullptr;

      // TODO: If the backend knew how to deal with casts better, we could
      // remove this limitation. For now, there's too much potential to create
      // worse codegen by promoting the select ahead of size-altering casts
      // (PR28160).
      //
      // Note that ValueTracking's matchSelectPattern() looks through casts
      // without checking 'hasOneUse' when it matches min/max patterns, so this
      // transform may end up happening anyway.
      if (TI->getOpcode() != Instruction::BitCast &&
          (!TI->hasOneUse() || !FI->hasOneUse()))
        return nullptr;
    } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
      // TODO: The one-use restrictions for a scalar select could be eased if
      // the fold of a select in visitLoadInst() was enhanced to match a pattern
      // that includes a cast.
      return nullptr;
    }

    // Fold this by inserting a select from the input values.
    Value *NewSI =
        Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
                             SI.getName() + ".v", &SI);
    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
                            TI->getType());
  }

  // Cond ? -X : -Y --> -(Cond ? X : Y)
  Value *X, *Y;
  if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
      (TI->hasOneUse() || FI->hasOneUse())) {
    Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
    return UnaryOperator::CreateFNegFMF(NewSel, TI);
  }

  // Only handle binary operators (including two-operand getelementptr) with
  // one-use here. As with the cast case above, it may be possible to relax the
  // one-use constraint, but that needs be examined carefully since it may not
  // reduce the total number of instructions.
  if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
      (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
      !TI->hasOneUse() || !FI->hasOneUse())
    return nullptr;

  // Figure out if the operations have any operands in common.
  Value *MatchOp, *OtherOpT, *OtherOpF;
  bool MatchIsOpZero;
  if (TI->getOperand(0) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = false;
  } else if (!TI->isCommutative()) {
    return nullptr;
  } else if (TI->getOperand(0) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else {
    return nullptr;
  }

  // If the select condition is a vector, the operands of the original select's
  // operands also must be vectors. This may not be the case for getelementptr
  // for example.
  if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
                               !OtherOpF->getType()->isVectorTy()))
    return nullptr;

  // If we reach here, they do have operations in common.
  Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
                                      SI.getName() + ".v", &SI);
  Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
  Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
  if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
    BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
    NewBO->copyIRFlags(TI);
    NewBO->andIRFlags(FI);
    return NewBO;
  }
  if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
    auto *FGEP = cast<GetElementPtrInst>(FI);
    Type *ElementType = TGEP->getResultElementType();
    return TGEP->isInBounds() && FGEP->isInBounds()
               ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
               : GetElementPtrInst::Create(ElementType, Op0, {Op1});
  }
  llvm_unreachable("Expected BinaryOperator or GEP");
  return nullptr;
}

static bool isSelect01(const APInt &C1I, const APInt &C2I) {
  if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
    return false;
  return C1I.isOneValue() || C1I.isAllOnesValue() ||
         C2I.isOneValue() || C2I.isAllOnesValue();
}

/// Try to fold the select into one of the operands to allow further
/// optimization.
Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
                                            Value *FalseVal) {
  // See the comment above GetSelectFoldableOperands for a description of the
  // transformation we are doing here.
  if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
    if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
      if (unsigned SFO = getSelectFoldableOperands(TVI)) {
        unsigned OpToFold = 0;
        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
          OpToFold = 1;
        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
          OpToFold = 2;
        }

        if (OpToFold) {
          APInt CI = getSelectFoldableConstant(TVI);
          Value *OOp = TVI->getOperand(2-OpToFold);
          // Avoid creating select between 2 constants unless it's selecting
          // between 0, 1 and -1.
          const APInt *OOpC;
          bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
          if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
            Value *C = ConstantInt::get(OOp->getType(), CI);
            Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
            NewSel->takeName(TVI);
            BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
                                                        FalseVal, NewSel);
            BO->copyIRFlags(TVI);
            return BO;
          }
        }
      }
    }
  }

  if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
    if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
      if (unsigned SFO = getSelectFoldableOperands(FVI)) {
        unsigned OpToFold = 0;
        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
          OpToFold = 1;
        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
          OpToFold = 2;
        }

        if (OpToFold) {
          APInt CI = getSelectFoldableConstant(FVI);
          Value *OOp = FVI->getOperand(2-OpToFold);
          // Avoid creating select between 2 constants unless it's selecting
          // between 0, 1 and -1.
          const APInt *OOpC;
          bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
          if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
            Value *C = ConstantInt::get(OOp->getType(), CI);
            Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
            NewSel->takeName(FVI);
            BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
                                                        TrueVal, NewSel);
            BO->copyIRFlags(FVI);
            return BO;
          }
        }
      }
    }
  }

  return nullptr;
}

/// We want to turn:
///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
/// into:
///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
/// Note:
///   Z may be 0 if lshr is missing.
/// Worst-case scenario is that we will replace 5 instructions with 5 different
/// instructions, but we got rid of select.
static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
                                         Value *TVal, Value *FVal,
                                         InstCombiner::BuilderTy &Builder) {
  if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
        Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
        match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
    return nullptr;

  // The TrueVal has general form of:  and %B, 1
  Value *B;
  if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
    return nullptr;

  // Where %B may be optionally shifted:  lshr %X, %Z.
  Value *X, *Z;
  const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
  if (!HasShift)
    X = B;

  Value *Y;
  if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
    return nullptr;

  // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
  // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
  Constant *One = ConstantInt::get(SelType, 1);
  Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
  Value *FullMask = Builder.CreateOr(Y, MaskB);
  Value *MaskedX = Builder.CreateAnd(X, FullMask);
  Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
  return new ZExtInst(ICmpNeZero, SelType);
}

/// We want to turn:
///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
/// into:
///   ashr (X, Y)
static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
                                     Value *FalseVal,
                                     InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate Pred = IC->getPredicate();
  Value *CmpLHS = IC->getOperand(0);
  Value *CmpRHS = IC->getOperand(1);
  if (!CmpRHS->getType()->isIntOrIntVectorTy())
    return nullptr;

  Value *X, *Y;
  unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
  if ((Pred != ICmpInst::ICMP_SGT ||
       !match(CmpRHS,
              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
      (Pred != ICmpInst::ICMP_SLT ||
       !match(CmpRHS,
              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
    return nullptr;

  // Canonicalize so that ashr is in FalseVal.
  if (Pred == ICmpInst::ICMP_SLT)
    std::swap(TrueVal, FalseVal);

  if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
      match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
      match(CmpLHS, m_Specific(X))) {
    const auto *Ashr = cast<Instruction>(FalseVal);
    // if lshr is not exact and ashr is, this new ashr must not be exact.
    bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
    return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
  }

  return nullptr;
}

/// We want to turn:
///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
/// into:
///   (or (shl (and X, C1), C3), Y)
/// iff:
///   C1 and C2 are both powers of 2
/// where:
///   C3 = Log(C2) - Log(C1)
///
/// This transform handles cases where:
/// 1. The icmp predicate is inverted
/// 2. The select operands are reversed
/// 3. The magnitude of C2 and C1 are flipped
static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
                                  Value *FalseVal,
                                  InstCombiner::BuilderTy &Builder) {
  // Only handle integer compares. Also, if this is a vector select, we need a
  // vector compare.
  if (!TrueVal->getType()->isIntOrIntVectorTy() ||
      TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
    return nullptr;

  Value *CmpLHS = IC->getOperand(0);
  Value *CmpRHS = IC->getOperand(1);

  Value *V;
  unsigned C1Log;
  bool IsEqualZero;
  bool NeedAnd = false;
  if (IC->isEquality()) {
    if (!match(CmpRHS, m_Zero()))
      return nullptr;

    const APInt *C1;
    if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
      return nullptr;

    V = CmpLHS;
    C1Log = C1->logBase2();
    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
  } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
             IC->getPredicate() == ICmpInst::ICMP_SGT) {
    // We also need to recognize (icmp slt (trunc (X)), 0) and
    // (icmp sgt (trunc (X)), -1).
    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
    if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
        (!IsEqualZero && !match(CmpRHS, m_Zero())))
      return nullptr;

    if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
      return nullptr;

    C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
    NeedAnd = true;
  } else {
    return nullptr;
  }

  const APInt *C2;
  bool OrOnTrueVal = false;
  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
  if (!OrOnFalseVal)
    OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));

  if (!OrOnFalseVal && !OrOnTrueVal)
    return nullptr;

  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;

  unsigned C2Log = C2->logBase2();

  bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
  bool NeedShift = C1Log != C2Log;
  bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
                       V->getType()->getScalarSizeInBits();

  // Make sure we don't create more instructions than we save.
  Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
  if ((NeedShift + NeedXor + NeedZExtTrunc) >
      (IC->hasOneUse() + Or->hasOneUse()))
    return nullptr;

  if (NeedAnd) {
    // Insert the AND instruction on the input to the truncate.
    APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
  }

  if (C2Log > C1Log) {
    V = Builder.CreateZExtOrTrunc(V, Y->getType());
    V = Builder.CreateShl(V, C2Log - C1Log);
  } else if (C1Log > C2Log) {
    V = Builder.CreateLShr(V, C1Log - C2Log);
    V = Builder.CreateZExtOrTrunc(V, Y->getType());
  } else
    V = Builder.CreateZExtOrTrunc(V, Y->getType());

  if (NeedXor)
    V = Builder.CreateXor(V, *C2);

  return Builder.CreateOr(V, Y);
}

/// Canonicalize a set or clear of a masked set of constant bits to
/// select-of-constants form.
static Instruction *foldSetClearBits(SelectInst &Sel,
                                     InstCombiner::BuilderTy &Builder) {
  Value *Cond = Sel.getCondition();
  Value *T = Sel.getTrueValue();
  Value *F = Sel.getFalseValue();
  Type *Ty = Sel.getType();
  Value *X;
  const APInt *NotC, *C;

  // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
  if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
      match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
    Constant *Zero = ConstantInt::getNullValue(Ty);
    Constant *OrC = ConstantInt::get(Ty, *C);
    Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
    return BinaryOperator::CreateOr(T, NewSel);
  }

  // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
  if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
      match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
    Constant *Zero = ConstantInt::getNullValue(Ty);
    Constant *OrC = ConstantInt::get(Ty, *C);
    Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
    return BinaryOperator::CreateOr(F, NewSel);
  }

  return nullptr;
}

/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
/// There are 8 commuted/swapped variants of this pattern.
/// TODO: Also support a - UMIN(a,b) patterns.
static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
                                            const Value *TrueVal,
                                            const Value *FalseVal,
                                            InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate Pred = ICI->getPredicate();
  if (!ICmpInst::isUnsigned(Pred))
    return nullptr;

  // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
  if (match(TrueVal, m_Zero())) {
    Pred = ICmpInst::getInversePredicate(Pred);
    std::swap(TrueVal, FalseVal);
  }
  if (!match(FalseVal, m_Zero()))
    return nullptr;

  Value *A = ICI->getOperand(0);
  Value *B = ICI->getOperand(1);
  if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
    // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
    std::swap(A, B);
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
         "Unexpected isUnsigned predicate!");

  // Ensure the sub is of the form:
  //  (a > b) ? a - b : 0 -> usub.sat(a, b)
  //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
  // Checking for both a-b and a+(-b) as a constant.
  bool IsNegative = false;
  const APInt *C;
  if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
      (match(A, m_APInt(C)) &&
       match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
    IsNegative = true;
  else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
           !(match(B, m_APInt(C)) &&
             match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
    return nullptr;

  // If we are adding a negate and the sub and icmp are used anywhere else, we
  // would end up with more instructions.
  if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
    return nullptr;

  // (a > b) ? a - b : 0 -> usub.sat(a, b)
  // (a > b) ? b - a : 0 -> -usub.sat(a, b)
  Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
  if (IsNegative)
    Result = Builder.CreateNeg(Result);
  return Result;
}

static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
                                       InstCombiner::BuilderTy &Builder) {
  if (!Cmp->hasOneUse())
    return nullptr;

  // Match unsigned saturated add with constant.
  Value *Cmp0 = Cmp->getOperand(0);
  Value *Cmp1 = Cmp->getOperand(1);
  ICmpInst::Predicate Pred = Cmp->getPredicate();
  Value *X;
  const APInt *C, *CmpC;
  if (Pred == ICmpInst::ICMP_ULT &&
      match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
      match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
    // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
    return Builder.CreateBinaryIntrinsic(
        Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
  }

  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
  // There are 8 commuted variants.
  // Canonicalize -1 (saturated result) to true value of the select. Just
  // swapping the compare operands is legal, because the selected value is the
  // same in case of equality, so we can interchange u< and u<=.
  if (match(FVal, m_AllOnes())) {
    std::swap(TVal, FVal);
    std::swap(Cmp0, Cmp1);
  }
  if (!match(TVal, m_AllOnes()))
    return nullptr;

  // Canonicalize predicate to 'ULT'.
  if (Pred == ICmpInst::ICMP_UGT) {
    Pred = ICmpInst::ICMP_ULT;
    std::swap(Cmp0, Cmp1);
  }
  if (Pred != ICmpInst::ICMP_ULT)
    return nullptr;

  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
  Value *Y;
  if (match(Cmp0, m_Not(m_Value(X))) &&
      match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
    // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
    // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
  }
  // The 'not' op may be included in the sum but not the compare.
  X = Cmp0;
  Y = Cmp1;
  if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
    // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
    // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
    BinaryOperator *BO = cast<BinaryOperator>(FVal);
    return Builder.CreateBinaryIntrinsic(
        Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
  }
  // The overflow may be detected via the add wrapping round.
  if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
      match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
    // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
    // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
  }

  return nullptr;
}

/// Fold the following code sequence:
/// \code
///   int a = ctlz(x & -x);
//    x ? 31 - a : a;
/// \code
///
/// into:
///   cttz(x)
static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
                                         Value *FalseVal,
                                         InstCombiner::BuilderTy &Builder) {
  unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
  if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
    return nullptr;

  if (ICI->getPredicate() == ICmpInst::ICMP_NE)
    std::swap(TrueVal, FalseVal);

  if (!match(FalseVal,
             m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
    return nullptr;

  if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
    return nullptr;

  Value *X = ICI->getOperand(0);
  auto *II = cast<IntrinsicInst>(TrueVal);
  if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
    return nullptr;

  Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
                                          II->getType());
  return CallInst::Create(F, {X, II->getArgOperand(1)});
}

/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
///
/// For example, we can fold the following code sequence:
/// \code
///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
///   %1 = icmp ne i32 %x, 0
///   %2 = select i1 %1, i32 %0, i32 32
/// \code
///
/// into:
///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
                                 InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate Pred = ICI->getPredicate();
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);

  // Check if the condition value compares a value for equality against zero.
  if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
    return nullptr;

  Value *SelectArg = FalseVal;
  Value *ValueOnZero = TrueVal;
  if (Pred == ICmpInst::ICMP_NE)
    std::swap(SelectArg, ValueOnZero);

  // Skip zero extend/truncate.
  Value *Count = nullptr;
  if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
      !match(SelectArg, m_Trunc(m_Value(Count))))
    Count = SelectArg;

  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
  // input to the cttz/ctlz is used as LHS for the compare instruction.
  if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
      !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
    return nullptr;

  IntrinsicInst *II = cast<IntrinsicInst>(Count);

  // Check if the value propagated on zero is a constant number equal to the
  // sizeof in bits of 'Count'.
  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
  if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
    // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
    // true to false on this flag, so we can replace it for all users.
    II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
    return SelectArg;
  }

  // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
  // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
  // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
  if (II->hasOneUse() && SelectArg->hasOneUse() &&
      !match(II->getArgOperand(1), m_One()))
    II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));

  return nullptr;
}

/// Return true if we find and adjust an icmp+select pattern where the compare
/// is with a constant that can be incremented or decremented to match the
/// minimum or maximum idiom.
static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  Value *CmpLHS = Cmp.getOperand(0);
  Value *CmpRHS = Cmp.getOperand(1);
  Value *TrueVal = Sel.getTrueValue();
  Value *FalseVal = Sel.getFalseValue();

  // We may move or edit the compare, so make sure the select is the only user.
  const APInt *CmpC;
  if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
    return false;

  // These transforms only work for selects of integers or vector selects of
  // integer vectors.
  Type *SelTy = Sel.getType();
  auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
  if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
    return false;

  Constant *AdjustedRHS;
  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
  else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
  else
    return false;

  // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
  // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
      (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
    ; // Nothing to do here. Values match without any sign/zero extension.
  }
  // Types do not match. Instead of calculating this with mixed types, promote
  // all to the larger type. This enables scalar evolution to analyze this
  // expression.
  else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
    Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);

    // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
      CmpLHS = TrueVal;
      AdjustedRHS = SextRHS;
    } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
               SextRHS == TrueVal) {
      CmpLHS = FalseVal;
      AdjustedRHS = SextRHS;
    } else if (Cmp.isUnsigned()) {
      Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
      // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
      // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
      // zext + signed compare cannot be changed:
      //    0xff <s 0x00, but 0x00ff >s 0x0000
      if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
        CmpLHS = TrueVal;
        AdjustedRHS = ZextRHS;
      } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
                 ZextRHS == TrueVal) {
        CmpLHS = FalseVal;
        AdjustedRHS = ZextRHS;
      } else {
        return false;
      }
    } else {
      return false;
    }
  } else {
    return false;
  }

  Pred = ICmpInst::getSwappedPredicate(Pred);
  CmpRHS = AdjustedRHS;
  std::swap(FalseVal, TrueVal);
  Cmp.setPredicate(Pred);
  Cmp.setOperand(0, CmpLHS);
  Cmp.setOperand(1, CmpRHS);
  Sel.setOperand(1, TrueVal);
  Sel.setOperand(2, FalseVal);
  Sel.swapProfMetadata();

  // Move the compare instruction right before the select instruction. Otherwise
  // the sext/zext value may be defined after the compare instruction uses it.
  Cmp.moveBefore(&Sel);

  return true;
}

/// If this is an integer min/max (icmp + select) with a constant operand,
/// create the canonical icmp for the min/max operation and canonicalize the
/// constant to the 'false' operand of the select:
/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
/// Note: if C1 != C2, this will change the icmp constant to the existing
/// constant operand of the select.
static Instruction *
canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
                               InstCombiner &IC) {
  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
    return nullptr;

  // Canonicalize the compare predicate based on whether we have min or max.
  Value *LHS, *RHS;
  SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
  if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
    return nullptr;

  // Is this already canonical?
  ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
  if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
      Cmp.getPredicate() == CanonicalPred)
    return nullptr;

  // Bail out on unsimplified X-0 operand (due to some worklist management bug),
  // as this may cause an infinite combine loop. Let the sub be folded first.
  if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
      match(RHS, m_Sub(m_Value(), m_Zero())))
    return nullptr;

  // Create the canonical compare and plug it into the select.
  IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));

  // If the select operands did not change, we're done.
  if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
    return &Sel;

  // If we are swapping the select operands, swap the metadata too.
  assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
         "Unexpected results from matchSelectPattern");
  Sel.swapValues();
  Sel.swapProfMetadata();
  return &Sel;
}

/// There are many select variants for each of ABS/NABS.
/// In matchSelectPattern(), there are different compare constants, compare
/// predicates/operands and select operands.
/// In isKnownNegation(), there are different formats of negated operands.
/// Canonicalize all these variants to 1 pattern.
/// This makes CSE more likely.
static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
                                        InstCombiner &IC) {
  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
    return nullptr;

  // Choose a sign-bit check for the compare (likely simpler for codegen).
  // ABS:  (X <s 0) ? -X : X
  // NABS: (X <s 0) ? X : -X
  Value *LHS, *RHS;
  SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
  if (SPF != SelectPatternFlavor::SPF_ABS &&
      SPF != SelectPatternFlavor::SPF_NABS)
    return nullptr;

  Value *TVal = Sel.getTrueValue();
  Value *FVal = Sel.getFalseValue();
  assert(isKnownNegation(TVal, FVal) &&
         "Unexpected result from matchSelectPattern");

  // The compare may use the negated abs()/nabs() operand, or it may use
  // negation in non-canonical form such as: sub A, B.
  bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
                          match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));

  bool CmpCanonicalized = !CmpUsesNegatedOp &&
                          match(Cmp.getOperand(1), m_ZeroInt()) &&
                          Cmp.getPredicate() == ICmpInst::ICMP_SLT;
  bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));

  // Is this already canonical?
  if (CmpCanonicalized && RHSCanonicalized)
    return nullptr;

  // If RHS is not canonical but is used by other instructions, don't
  // canonicalize it and potentially increase the instruction count.
  if (!RHSCanonicalized)
    if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
      return nullptr;

  // Create the canonical compare: icmp slt LHS 0.
  if (!CmpCanonicalized) {
    Cmp.setPredicate(ICmpInst::ICMP_SLT);
    Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
    if (CmpUsesNegatedOp)
      Cmp.setOperand(0, LHS);
  }

  // Create the canonical RHS: RHS = sub (0, LHS).
  if (!RHSCanonicalized) {
    assert(RHS->hasOneUse() && "RHS use number is not right");
    RHS = IC.Builder.CreateNeg(LHS);
    if (TVal == LHS) {
      // Replace false value.
      IC.replaceOperand(Sel, 2, RHS);
      FVal = RHS;
    } else {
      // Replace true value.
      IC.replaceOperand(Sel, 1, RHS);
      TVal = RHS;
    }
  }

  // If the select operands do not change, we're done.
  if (SPF == SelectPatternFlavor::SPF_NABS) {
    if (TVal == LHS)
      return &Sel;
    assert(FVal == LHS && "Unexpected results from matchSelectPattern");
  } else {
    if (FVal == LHS)
      return &Sel;
    assert(TVal == LHS && "Unexpected results from matchSelectPattern");
  }

  // We are swapping the select operands, so swap the metadata too.
  Sel.swapValues();
  Sel.swapProfMetadata();
  return &Sel;
}

/// If we have a select with an equality comparison, then we know the value in
/// one of the arms of the select. See if substituting this value into an arm
/// and simplifying the result yields the same value as the other arm.
///
/// To make this transform safe, we must drop poison-generating flags
/// (nsw, etc) if we simplified to a binop because the select may be guarding
/// that poison from propagating. If the existing binop already had no
/// poison-generating flags, then this transform can be done by instsimplify.
///
/// Consider:
///   %cmp = icmp eq i32 %x, 2147483647
///   %add = add nsw i32 %x, 1
///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
///
/// We can't replace %sel with %add unless we strip away the flags.
/// TODO: Wrapping flags could be preserved in some cases with better analysis.
static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
                                         const SimplifyQuery &Q) {
  if (!Cmp.isEquality())
    return nullptr;

  // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
  Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
  if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
    std::swap(TrueVal, FalseVal);

  auto *FalseInst = dyn_cast<Instruction>(FalseVal);
  if (!FalseInst)
    return nullptr;

  // InstSimplify already performed this fold if it was possible subject to
  // current poison-generating flags. Try the transform again with
  // poison-generating flags temporarily dropped.
  bool WasNUW = false, WasNSW = false, WasExact = false;
  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
    WasNUW = OBO->hasNoUnsignedWrap();
    WasNSW = OBO->hasNoSignedWrap();
    FalseInst->setHasNoUnsignedWrap(false);
    FalseInst->setHasNoSignedWrap(false);
  }
  if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
    WasExact = PEO->isExact();
    FalseInst->setIsExact(false);
  }

  // Try each equivalence substitution possibility.
  // We have an 'EQ' comparison, so the select's false value will propagate.
  // Example:
  // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
  Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
  if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
                             /* AllowRefinement */ false) == TrueVal ||
      SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
                             /* AllowRefinement */ false) == TrueVal) {
    return FalseVal;
  }

  // Restore poison-generating flags if the transform did not apply.
  if (WasNUW)
    FalseInst->setHasNoUnsignedWrap();
  if (WasNSW)
    FalseInst->setHasNoSignedWrap();
  if (WasExact)
    FalseInst->setIsExact();

  return nullptr;
}

// See if this is a pattern like:
//   %old_cmp1 = icmp slt i32 %x, C2
//   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
//   %old_x_offseted = add i32 %x, C1
//   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
//   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
// This can be rewritten as more canonical pattern:
//   %new_cmp1 = icmp slt i32 %x, -C1
//   %new_cmp2 = icmp sge i32 %x, C0-C1
//   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
//   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
// Iff -C1 s<= C2 s<= C0-C1
// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
//      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
                                          InstCombiner::BuilderTy &Builder) {
  Value *X = Sel0.getTrueValue();
  Value *Sel1 = Sel0.getFalseValue();

  // First match the condition of the outermost select.
  // Said condition must be one-use.
  if (!Cmp0.hasOneUse())
    return nullptr;
  Value *Cmp00 = Cmp0.getOperand(0);
  Constant *C0;
  if (!match(Cmp0.getOperand(1),
             m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
    return nullptr;
  // Canonicalize Cmp0 into the form we expect.
  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
  switch (Cmp0.getPredicate()) {
  case ICmpInst::Predicate::ICMP_ULT:
    break; // Great!
  case ICmpInst::Predicate::ICMP_ULE:
    // We'd have to increment C0 by one, and for that it must not have all-ones
    // element, but then it would have been canonicalized to 'ult' before
    // we get here. So we can't do anything useful with 'ule'.
    return nullptr;
  case ICmpInst::Predicate::ICMP_UGT:
    // We want to canonicalize it to 'ult', so we'll need to increment C0,
    // which again means it must not have any all-ones elements.
    if (!match(C0,
               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
                                  APInt::getAllOnesValue(
                                      C0->getType()->getScalarSizeInBits()))))
      return nullptr; // Can't do, have all-ones element[s].
    C0 = AddOne(C0);
    std::swap(X, Sel1);
    break;
  case ICmpInst::Predicate::ICMP_UGE:
    // The only way we'd get this predicate if this `icmp` has extra uses,
    // but then we won't be able to do this fold.
    return nullptr;
  default:
    return nullptr; // Unknown predicate.
  }

  // Now that we've canonicalized the ICmp, we know the X we expect;
  // the select in other hand should be one-use.
  if (!Sel1->hasOneUse())
    return nullptr;

  // We now can finish matching the condition of the outermost select:
  // it should either be the X itself, or an addition of some constant to X.
  Constant *C1;
  if (Cmp00 == X)
    C1 = ConstantInt::getNullValue(Sel0.getType());
  else if (!match(Cmp00,
                  m_Add(m_Specific(X),
                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
    return nullptr;

  Value *Cmp1;
  ICmpInst::Predicate Pred1;
  Constant *C2;
  Value *ReplacementLow, *ReplacementHigh;
  if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
                            m_Value(ReplacementHigh))) ||
      !match(Cmp1,
             m_ICmp(Pred1, m_Specific(X),
                    m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
    return nullptr;

  if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
    return nullptr; // Not enough one-use instructions for the fold.
  // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
  //        two comparisons we'll need to build.

  // Canonicalize Cmp1 into the form we expect.
  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
  switch (Pred1) {
  case ICmpInst::Predicate::ICMP_SLT:
    break;
  case ICmpInst::Predicate::ICMP_SLE:
    // We'd have to increment C2 by one, and for that it must not have signed
    // max element, but then it would have been canonicalized to 'slt' before
    // we get here. So we can't do anything useful with 'sle'.
    return nullptr;
  case ICmpInst::Predicate::ICMP_SGT:
    // We want to canonicalize it to 'slt', so we'll need to increment C2,
    // which again means it must not have any signed max elements.
    if (!match(C2,
               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
                                  APInt::getSignedMaxValue(
                                      C2->getType()->getScalarSizeInBits()))))
      return nullptr; // Can't do, have signed max element[s].
    C2 = AddOne(C2);
    LLVM_FALLTHROUGH;
  case ICmpInst::Predicate::ICMP_SGE:
    // Also non-canonical, but here we don't need to change C2,
    // so we don't have any restrictions on C2, so we can just handle it.
    std::swap(ReplacementLow, ReplacementHigh);
    break;
  default:
    return nullptr; // Unknown predicate.
  }

  // The thresholds of this clamp-like pattern.
  auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
  auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);

  // The fold has a precondition 1: C2 s>= ThresholdLow
  auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
                                         ThresholdLowIncl);
  if (!match(Precond1, m_One()))
    return nullptr;
  // The fold has a precondition 2: C2 s<= ThresholdHigh
  auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
                                         ThresholdHighExcl);
  if (!match(Precond2, m_One()))
    return nullptr;

  // All good, finally emit the new pattern.
  Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
  Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
  Value *MaybeReplacedLow =
      Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
  Instruction *MaybeReplacedHigh =
      SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);

  return MaybeReplacedHigh;
}

// If we have
//  %cmp = icmp [canonical predicate] i32 %x, C0
//  %r = select i1 %cmp, i32 %y, i32 C1
// Where C0 != C1 and %x may be different from %y, see if the constant that we
// will have if we flip the strictness of the predicate (i.e. without changing
// the result) is identical to the C1 in select. If it matches we can change
// original comparison to one with swapped predicate, reuse the constant,
// and swap the hands of select.
static Instruction *
tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
                                         InstCombiner &IC) {
  ICmpInst::Predicate Pred;
  Value *X;
  Constant *C0;
  if (!match(&Cmp, m_OneUse(m_ICmp(
                       Pred, m_Value(X),
                       m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
    return nullptr;

  // If comparison predicate is non-relational, we won't be able to do anything.
  if (ICmpInst::isEquality(Pred))
    return nullptr;

  // If comparison predicate is non-canonical, then we certainly won't be able
  // to make it canonical; canonicalizeCmpWithConstant() already tried.
  if (!isCanonicalPredicate(Pred))
    return nullptr;

  // If the [input] type of comparison and select type are different, lets abort
  // for now. We could try to compare constants with trunc/[zs]ext though.
  if (C0->getType() != Sel.getType())
    return nullptr;

  // FIXME: are there any magic icmp predicate+constant pairs we must not touch?

  Value *SelVal0, *SelVal1; // We do not care which one is from where.
  match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
  // At least one of these values we are selecting between must be a constant
  // else we'll never succeed.
  if (!match(SelVal0, m_AnyIntegralConstant()) &&
      !match(SelVal1, m_AnyIntegralConstant()))
    return nullptr;

  // Does this constant C match any of the `select` values?
  auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
    return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
  };

  // If C0 *already* matches true/false value of select, we are done.
  if (MatchesSelectValue(C0))
    return nullptr;

  // Check the constant we'd have with flipped-strictness predicate.
  auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
  if (!FlippedStrictness)
    return nullptr;

  // If said constant doesn't match either, then there is no hope,
  if (!MatchesSelectValue(FlippedStrictness->second))
    return nullptr;

  // It matched! Lets insert the new comparison just before select.
  InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
  IC.Builder.SetInsertPoint(&Sel);

  Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
  Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
                                        Cmp.getName() + ".inv");
  IC.replaceOperand(Sel, 0, NewCmp);
  Sel.swapValues();
  Sel.swapProfMetadata();

  return &Sel;
}

/// Visit a SelectInst that has an ICmpInst as its first operand.
Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
                                                  ICmpInst *ICI) {
  if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
    return replaceInstUsesWith(SI, V);

  if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
    return NewSel;

  if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
    return NewAbs;

  if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
    return NewAbs;

  if (Instruction *NewSel =
          tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
    return NewSel;

  bool Changed = adjustMinMax(SI, *ICI);

  if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
    return replaceInstUsesWith(SI, V);

  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();
  ICmpInst::Predicate Pred = ICI->getPredicate();
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);
  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
      SI.setOperand(1, CmpRHS);
      Changed = true;
    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
      SI.setOperand(2, CmpRHS);
      Changed = true;
    }
  }

  // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
  // decomposeBitTestICmp() might help.
  {
    unsigned BitWidth =
        DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
    APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
    Value *X;
    const APInt *Y, *C;
    bool TrueWhenUnset;
    bool IsBitTest = false;
    if (ICmpInst::isEquality(Pred) &&
        match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
        match(CmpRHS, m_Zero())) {
      IsBitTest = true;
      TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
    } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
      X = CmpLHS;
      Y = &MinSignedValue;
      IsBitTest = true;
      TrueWhenUnset = false;
    } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
      X = CmpLHS;
      Y = &MinSignedValue;
      IsBitTest = true;
      TrueWhenUnset = true;
    }
    if (IsBitTest) {
      Value *V = nullptr;
      // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
      if (TrueWhenUnset && TrueVal == X &&
          match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder.CreateAnd(X, ~(*Y));
      // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
      else if (!TrueWhenUnset && FalseVal == X &&
               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder.CreateAnd(X, ~(*Y));
      // (X & Y) == 0 ? X ^ Y : X  --> X | Y
      else if (TrueWhenUnset && FalseVal == X &&
               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder.CreateOr(X, *Y);
      // (X & Y) != 0 ? X : X ^ Y  --> X | Y
      else if (!TrueWhenUnset && TrueVal == X &&
               match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder.CreateOr(X, *Y);

      if (V)
        return replaceInstUsesWith(SI, V);
    }
  }

  if (Instruction *V =
          foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
    return V;

  if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
    return V;

  if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
    return replaceInstUsesWith(SI, V);

  if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
    return replaceInstUsesWith(SI, V);

  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
    return replaceInstUsesWith(SI, V);

  if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
    return replaceInstUsesWith(SI, V);

  if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
    return replaceInstUsesWith(SI, V);

  return Changed ? &SI : nullptr;
}

/// SI is a select whose condition is a PHI node (but the two may be in
/// different blocks). See if the true/false values (V) are live in all of the
/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
///
///   X = phi [ C1, BB1], [C2, BB2]
///   Y = add
///   Z = select X, Y, 0
///
/// because Y is not live in BB1/BB2.
static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
                                                   const SelectInst &SI) {
  // If the value is a non-instruction value like a constant or argument, it
  // can always be mapped.
  const Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return true;

  // If V is a PHI node defined in the same block as the condition PHI, we can
  // map the arguments.
  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());

  if (const PHINode *VP = dyn_cast<PHINode>(I))
    if (VP->getParent() == CondPHI->getParent())
      return true;

  // Otherwise, if the PHI and select are defined in the same block and if V is
  // defined in a different block, then we can transform it.
  if (SI.getParent() == CondPHI->getParent() &&
      I->getParent() != CondPHI->getParent())
    return true;

  // Otherwise we have a 'hard' case and we can't tell without doing more
  // detailed dominator based analysis, punt.
  return false;
}

/// We have an SPF (e.g. a min or max) of an SPF of the form:
///   SPF2(SPF1(A, B), C)
Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
                                        SelectPatternFlavor SPF1,
                                        Value *A, Value *B,
                                        Instruction &Outer,
                                        SelectPatternFlavor SPF2, Value *C) {
  if (Outer.getType() != Inner->getType())
    return nullptr;

  if (C == A || C == B) {
    // MAX(MAX(A, B), B) -> MAX(A, B)
    // MIN(MIN(a, b), a) -> MIN(a, b)
    // TODO: This could be done in instsimplify.
    if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
      return replaceInstUsesWith(Outer, Inner);

    // MAX(MIN(a, b), a) -> a
    // MIN(MAX(a, b), a) -> a
    // TODO: This could be done in instsimplify.
    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
      return replaceInstUsesWith(Outer, C);
  }

  if (SPF1 == SPF2) {
    const APInt *CB, *CC;
    if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
      // MIN(MIN(A, 23), 97) -> MIN(A, 23)
      // MAX(MAX(A, 97), 23) -> MAX(A, 97)
      // TODO: This could be done in instsimplify.
      if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
          (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
          (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
          (SPF1 == SPF_SMAX && CB->sge(*CC)))
        return replaceInstUsesWith(Outer, Inner);

      // MIN(MIN(A, 97), 23) -> MIN(A, 23)
      // MAX(MAX(A, 23), 97) -> MAX(A, 97)
      if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
          (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
          (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
          (SPF1 == SPF_SMAX && CB->slt(*CC))) {
        Outer.replaceUsesOfWith(Inner, A);
        return &Outer;
      }
    }
  }

  // max(max(A, B), min(A, B)) --> max(A, B)
  // min(min(A, B), max(A, B)) --> min(A, B)
  // TODO: This could be done in instsimplify.
  if (SPF1 == SPF2 &&
      ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
       (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
       (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
       (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
    return replaceInstUsesWith(Outer, Inner);

  // ABS(ABS(X)) -> ABS(X)
  // NABS(NABS(X)) -> NABS(X)
  // TODO: This could be done in instsimplify.
  if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
    return replaceInstUsesWith(Outer, Inner);
  }

  // ABS(NABS(X)) -> ABS(X)
  // NABS(ABS(X)) -> NABS(X)
  if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
      (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
    SelectInst *SI = cast<SelectInst>(Inner);
    Value *NewSI =
        Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
                             SI->getTrueValue(), SI->getName(), SI);
    return replaceInstUsesWith(Outer, NewSI);
  }

  auto IsFreeOrProfitableToInvert =
      [&](Value *V, Value *&NotV, bool &ElidesXor) {
    if (match(V, m_Not(m_Value(NotV)))) {
      // If V has at most 2 uses then we can get rid of the xor operation
      // entirely.
      ElidesXor |= !V->hasNUsesOrMore(3);
      return true;
    }

    if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
      NotV = nullptr;
      return true;
    }

    return false;
  };

  Value *NotA, *NotB, *NotC;
  bool ElidesXor = false;

  // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
  // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
  // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
  // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
  //
  // This transform is performance neutral if we can elide at least one xor from
  // the set of three operands, since we'll be tacking on an xor at the very
  // end.
  if (SelectPatternResult::isMinOrMax(SPF1) &&
      SelectPatternResult::isMinOrMax(SPF2) &&
      IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
      IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
      IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
    if (!NotA)
      NotA = Builder.CreateNot(A);
    if (!NotB)
      NotB = Builder.CreateNot(B);
    if (!NotC)
      NotC = Builder.CreateNot(C);

    Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
                                   NotB);
    Value *NewOuter = Builder.CreateNot(
        createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
    return replaceInstUsesWith(Outer, NewOuter);
  }

  return nullptr;
}

/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
/// This is even legal for FP.
static Instruction *foldAddSubSelect(SelectInst &SI,
                                     InstCombiner::BuilderTy &Builder) {
  Value *CondVal = SI.getCondition();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();
  auto *TI = dyn_cast<Instruction>(TrueVal);
  auto *FI = dyn_cast<Instruction>(FalseVal);
  if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
    return nullptr;

  Instruction *AddOp = nullptr, *SubOp = nullptr;
  if ((TI->getOpcode() == Instruction::Sub &&
       FI->getOpcode() == Instruction::Add) ||
      (TI->getOpcode() == Instruction::FSub &&
       FI->getOpcode() == Instruction::FAdd)) {
    AddOp = FI;
    SubOp = TI;
  } else if ((FI->getOpcode() == Instruction::Sub &&
              TI->getOpcode() == Instruction::Add) ||
             (FI->getOpcode() == Instruction::FSub &&
              TI->getOpcode() == Instruction::FAdd)) {
    AddOp = TI;
    SubOp = FI;
  }

  if (AddOp) {
    Value *OtherAddOp = nullptr;
    if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
      OtherAddOp = AddOp->getOperand(1);
    } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
      OtherAddOp = AddOp->getOperand(0);
    }

    if (OtherAddOp) {
      // So at this point we know we have (Y -> OtherAddOp):
      //        select C, (add X, Y), (sub X, Z)
      Value *NegVal; // Compute -Z
      if (SI.getType()->isFPOrFPVectorTy()) {
        NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
        if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
          FastMathFlags Flags = AddOp->getFastMathFlags();
          Flags &= SubOp->getFastMathFlags();
          NegInst->setFastMathFlags(Flags);
        }
      } else {
        NegVal = Builder.CreateNeg(SubOp->getOperand(1));
      }

      Value *NewTrueOp = OtherAddOp;
      Value *NewFalseOp = NegVal;
      if (AddOp != TI)
        std::swap(NewTrueOp, NewFalseOp);
      Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
                                           SI.getName() + ".p", &SI);

      if (SI.getType()->isFPOrFPVectorTy()) {
        Instruction *RI =
            BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);

        FastMathFlags Flags = AddOp->getFastMathFlags();
        Flags &= SubOp->getFastMathFlags();
        RI->setFastMathFlags(Flags);
        return RI;
      } else
        return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    }
  }
  return nullptr;
}

/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
/// Along with a number of patterns similar to:
/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
static Instruction *
foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
  Value *CondVal = SI.getCondition();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  WithOverflowInst *II;
  if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
      !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
    return nullptr;

  Value *X = II->getLHS();
  Value *Y = II->getRHS();

  auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
    Type *Ty = Limit->getType();

    ICmpInst::Predicate Pred;
    Value *TrueVal, *FalseVal, *Op;
    const APInt *C;
    if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
                               m_Value(TrueVal), m_Value(FalseVal))))
      return false;

    auto IsZeroOrOne = [](const APInt &C) {
      return C.isNullValue() || C.isOneValue();
    };
    auto IsMinMax = [&](Value *Min, Value *Max) {
      APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
      APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
      return match(Min, m_SpecificInt(MinVal)) &&
             match(Max, m_SpecificInt(MaxVal));
    };

    if (Op != X && Op != Y)
      return false;

    if (IsAdd) {
      // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
      // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
      // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
      // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
      if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
          IsMinMax(TrueVal, FalseVal))
        return true;
      // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
      // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
      // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
      // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
      if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
          IsMinMax(FalseVal, TrueVal))
        return true;
    } else {
      // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
      // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
      if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
          IsMinMax(TrueVal, FalseVal))
        return true;
      // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
      // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
      if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
          IsMinMax(FalseVal, TrueVal))
        return true;
      // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
      // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
      if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
          IsMinMax(FalseVal, TrueVal))
        return true;
      // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
      // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
      if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
          IsMinMax(TrueVal, FalseVal))
        return true;
    }

    return false;
  };

  Intrinsic::ID NewIntrinsicID;
  if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
      match(TrueVal, m_AllOnes()))
    // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
    NewIntrinsicID = Intrinsic::uadd_sat;
  else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
           match(TrueVal, m_Zero()))
    // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
    NewIntrinsicID = Intrinsic::usub_sat;
  else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
           IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
    // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
    // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
    NewIntrinsicID = Intrinsic::sadd_sat;
  else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
           IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
    // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
    // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
    NewIntrinsicID = Intrinsic::ssub_sat;
  else
    return nullptr;

  Function *F =
      Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
  return CallInst::Create(F, {X, Y});
}

Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
  Constant *C;
  if (!match(Sel.getTrueValue(), m_Constant(C)) &&
      !match(Sel.getFalseValue(), m_Constant(C)))
    return nullptr;

  Instruction *ExtInst;
  if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
      !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
    return nullptr;

  auto ExtOpcode = ExtInst->getOpcode();
  if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
    return nullptr;

  // If we are extending from a boolean type or if we can create a select that
  // has the same size operands as its condition, try to narrow the select.
  Value *X = ExtInst->getOperand(0);
  Type *SmallType = X->getType();
  Value *Cond = Sel.getCondition();
  auto *Cmp = dyn_cast<CmpInst>(Cond);
  if (!SmallType->isIntOrIntVectorTy(1) &&
      (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
    return nullptr;

  // If the constant is the same after truncation to the smaller type and
  // extension to the original type, we can narrow the select.
  Type *SelType = Sel.getType();
  Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
  Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
  if (ExtC == C && ExtInst->hasOneUse()) {
    Value *TruncCVal = cast<Value>(TruncC);
    if (ExtInst == Sel.getFalseValue())
      std::swap(X, TruncCVal);

    // select Cond, (ext X), C --> ext(select Cond, X, C')
    // select Cond, C, (ext X) --> ext(select Cond, C', X)
    Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
    return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
  }

  // If one arm of the select is the extend of the condition, replace that arm
  // with the extension of the appropriate known bool value.
  if (Cond == X) {
    if (ExtInst == Sel.getTrueValue()) {
      // select X, (sext X), C --> select X, -1, C
      // select X, (zext X), C --> select X,  1, C
      Constant *One = ConstantInt::getTrue(SmallType);
      Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
      return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
    } else {
      // select X, C, (sext X) --> select X, C, 0
      // select X, C, (zext X) --> select X, C, 0
      Constant *Zero = ConstantInt::getNullValue(SelType);
      return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
    }
  }

  return nullptr;
}

/// Try to transform a vector select with a constant condition vector into a
/// shuffle for easier combining with other shuffles and insert/extract.
static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
  Value *CondVal = SI.getCondition();
  Constant *CondC;
  if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
    return nullptr;

  unsigned NumElts = cast<VectorType>(CondVal->getType())->getNumElements();
  SmallVector<int, 16> Mask;
  Mask.reserve(NumElts);
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *Elt = CondC->getAggregateElement(i);
    if (!Elt)
      return nullptr;

    if (Elt->isOneValue()) {
      // If the select condition element is true, choose from the 1st vector.
      Mask.push_back(i);
    } else if (Elt->isNullValue()) {
      // If the select condition element is false, choose from the 2nd vector.
      Mask.push_back(i + NumElts);
    } else if (isa<UndefValue>(Elt)) {
      // Undef in a select condition (choose one of the operands) does not mean
      // the same thing as undef in a shuffle mask (any value is acceptable), so
      // give up.
      return nullptr;
    } else {
      // Bail out on a constant expression.
      return nullptr;
    }
  }

  return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
}

/// If we have a select of vectors with a scalar condition, try to convert that
/// to a vector select by splatting the condition. A splat may get folded with
/// other operations in IR and having all operands of a select be vector types
/// is likely better for vector codegen.
static Instruction *canonicalizeScalarSelectOfVecs(
    SelectInst &Sel, InstCombiner &IC) {
  auto *Ty = dyn_cast<VectorType>(Sel.getType());
  if (!Ty)
    return nullptr;

  // We can replace a single-use extract with constant index.
  Value *Cond = Sel.getCondition();
  if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
    return nullptr;

  // select (extelt V, Index), T, F --> select (splat V, Index), T, F
  // Splatting the extracted condition reduces code (we could directly create a
  // splat shuffle of the source vector to eliminate the intermediate step).
  unsigned NumElts = Ty->getNumElements();
  return IC.replaceOperand(Sel, 0, IC.Builder.CreateVectorSplat(NumElts, Cond));
}

/// Reuse bitcasted operands between a compare and select:
/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
                                          InstCombiner::BuilderTy &Builder) {
  Value *Cond = Sel.getCondition();
  Value *TVal = Sel.getTrueValue();
  Value *FVal = Sel.getFalseValue();

  CmpInst::Predicate Pred;
  Value *A, *B;
  if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
    return nullptr;

  // The select condition is a compare instruction. If the select's true/false
  // values are already the same as the compare operands, there's nothing to do.
  if (TVal == A || TVal == B || FVal == A || FVal == B)
    return nullptr;

  Value *C, *D;
  if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
    return nullptr;

  // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
  Value *TSrc, *FSrc;
  if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
      !match(FVal, m_BitCast(m_Value(FSrc))))
    return nullptr;

  // If the select true/false values are *different bitcasts* of the same source
  // operands, make the select operands the same as the compare operands and
  // cast the result. This is the canonical select form for min/max.
  Value *NewSel;
  if (TSrc == C && FSrc == D) {
    // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
    // bitcast (select (cmp A, B), A, B)
    NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
  } else if (TSrc == D && FSrc == C) {
    // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
    // bitcast (select (cmp A, B), B, A)
    NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
  } else {
    return nullptr;
  }
  return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
}

/// Try to eliminate select instructions that test the returned flag of cmpxchg
/// instructions.
///
/// If a select instruction tests the returned flag of a cmpxchg instruction and
/// selects between the returned value of the cmpxchg instruction its compare
/// operand, the result of the select will always be equal to its false value.
/// For example:
///
///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
///   %1 = extractvalue { i64, i1 } %0, 1
///   %2 = extractvalue { i64, i1 } %0, 0
///   %3 = select i1 %1, i64 %compare, i64 %2
///   ret i64 %3
///
/// The returned value of the cmpxchg instruction (%2) is the original value
/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
/// must have been equal to %compare. Thus, the result of the select is always
/// equal to %2, and the code can be simplified to:
///
///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
///   %1 = extractvalue { i64, i1 } %0, 0
///   ret i64 %1
///
static Value *foldSelectCmpXchg(SelectInst &SI) {
  // A helper that determines if V is an extractvalue instruction whose
  // aggregate operand is a cmpxchg instruction and whose single index is equal
  // to I. If such conditions are true, the helper returns the cmpxchg
  // instruction; otherwise, a nullptr is returned.
  auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
    auto *Extract = dyn_cast<ExtractValueInst>(V);
    if (!Extract)
      return nullptr;
    if (Extract->getIndices()[0] != I)
      return nullptr;
    return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
  };

  // If the select has a single user, and this user is a select instruction that
  // we can simplify, skip the cmpxchg simplification for now.
  if (SI.hasOneUse())
    if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
      if (Select->getCondition() == SI.getCondition())
        if (Select->getFalseValue() == SI.getTrueValue() ||
            Select->getTrueValue() == SI.getFalseValue())
          return nullptr;

  // Ensure the select condition is the returned flag of a cmpxchg instruction.
  auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
  if (!CmpXchg)
    return nullptr;

  // Check the true value case: The true value of the select is the returned
  // value of the same cmpxchg used by the condition, and the false value is the
  // cmpxchg instruction's compare operand.
  if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
    if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
      return SI.getFalseValue();

  // Check the false value case: The false value of the select is the returned
  // value of the same cmpxchg used by the condition, and the true value is the
  // cmpxchg instruction's compare operand.
  if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
    if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
      return SI.getFalseValue();

  return nullptr;
}

static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
                                       Value *Y,
                                       InstCombiner::BuilderTy &Builder) {
  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
  bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
                    SPF == SelectPatternFlavor::SPF_UMAX;
  // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
  // the constant value check to an assert.
  Value *A;
  const APInt *C1, *C2;
  if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
      match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
    // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
    // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
    Value *NewMinMax = createMinMax(Builder, SPF, A,
                                    ConstantInt::get(X->getType(), *C2 - *C1));
    return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
                                     ConstantInt::get(X->getType(), *C1));
  }

  if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
      match(Y, m_APInt(C2)) && X->hasNUses(2)) {
    bool Overflow;
    APInt Diff = C2->ssub_ov(*C1, Overflow);
    if (!Overflow) {
      // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
      // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
      Value *NewMinMax = createMinMax(Builder, SPF, A,
                                      ConstantInt::get(X->getType(), Diff));
      return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
                                       ConstantInt::get(X->getType(), *C1));
    }
  }

  return nullptr;
}

/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
  Type *Ty = MinMax1.getType();

  // We are looking for a tree of:
  // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
  // Where the min and max could be reversed
  Instruction *MinMax2;
  BinaryOperator *AddSub;
  const APInt *MinValue, *MaxValue;
  if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
    if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
      return nullptr;
  } else if (match(&MinMax1,
                   m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
    if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
      return nullptr;
  } else
    return nullptr;

  // Check that the constants clamp a saturate, and that the new type would be
  // sensible to convert to.
  if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
    return nullptr;
  // In what bitwidth can this be treated as saturating arithmetics?
  unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
  // FIXME: This isn't quite right for vectors, but using the scalar type is a
  // good first approximation for what should be done there.
  if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
    return nullptr;

  // Also make sure that the number of uses is as expected. The "3"s are for the
  // the two items of min/max (the compare and the select).
  if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
    return nullptr;

  // Create the new type (which can be a vector type)
  Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
  // Match the two extends from the add/sub
  Value *A, *B;
  if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
    return nullptr;
  // And check the incoming values are of a type smaller than or equal to the
  // size of the saturation. Otherwise the higher bits can cause different
  // results.
  if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
      B->getType()->getScalarSizeInBits() > NewBitWidth)
    return nullptr;

  Intrinsic::ID IntrinsicID;
  if (AddSub->getOpcode() == Instruction::Add)
    IntrinsicID = Intrinsic::sadd_sat;
  else if (AddSub->getOpcode() == Instruction::Sub)
    IntrinsicID = Intrinsic::ssub_sat;
  else
    return nullptr;

  // Finally create and return the sat intrinsic, truncated to the new type
  Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
  Value *AT = Builder.CreateSExt(A, NewTy);
  Value *BT = Builder.CreateSExt(B, NewTy);
  Value *Sat = Builder.CreateCall(F, {AT, BT});
  return CastInst::Create(Instruction::SExt, Sat, Ty);
}

/// Reduce a sequence of min/max with a common operand.
static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
                                        Value *RHS,
                                        InstCombiner::BuilderTy &Builder) {
  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
  // TODO: Allow FP min/max with nnan/nsz.
  if (!LHS->getType()->isIntOrIntVectorTy())
    return nullptr;

  // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
  Value *A, *B, *C, *D;
  SelectPatternResult L = matchSelectPattern(LHS, A, B);
  SelectPatternResult R = matchSelectPattern(RHS, C, D);
  if (SPF != L.Flavor || L.Flavor != R.Flavor)
    return nullptr;

  // Look for a common operand. The use checks are different than usual because
  // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
  // the select.
  Value *MinMaxOp = nullptr;
  Value *ThirdOp = nullptr;
  if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
    // If the LHS is only used in this chain and the RHS is used outside of it,
    // reuse the RHS min/max because that will eliminate the LHS.
    if (D == A || C == A) {
      // min(min(a, b), min(c, a)) --> min(min(c, a), b)
      // min(min(a, b), min(a, d)) --> min(min(a, d), b)
      MinMaxOp = RHS;
      ThirdOp = B;
    } else if (D == B || C == B) {
      // min(min(a, b), min(c, b)) --> min(min(c, b), a)
      // min(min(a, b), min(b, d)) --> min(min(b, d), a)
      MinMaxOp = RHS;
      ThirdOp = A;
    }
  } else if (!RHS->hasNUsesOrMore(3)) {
    // Reuse the LHS. This will eliminate the RHS.
    if (D == A || D == B) {
      // min(min(a, b), min(c, a)) --> min(min(a, b), c)
      // min(min(a, b), min(c, b)) --> min(min(a, b), c)
      MinMaxOp = LHS;
      ThirdOp = C;
    } else if (C == A || C == B) {
      // min(min(a, b), min(b, d)) --> min(min(a, b), d)
      // min(min(a, b), min(c, b)) --> min(min(a, b), d)
      MinMaxOp = LHS;
      ThirdOp = D;
    }
  }
  if (!MinMaxOp || !ThirdOp)
    return nullptr;

  CmpInst::Predicate P = getMinMaxPred(SPF);
  Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
  return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
}

/// Try to reduce a rotate pattern that includes a compare and select into a
/// funnel shift intrinsic. Example:
/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
///              --> call llvm.fshl.i32(a, a, b)
static Instruction *foldSelectRotate(SelectInst &Sel) {
  // The false value of the select must be a rotate of the true value.
  Value *Or0, *Or1;
  if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
    return nullptr;

  Value *TVal = Sel.getTrueValue();
  Value *SA0, *SA1;
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
    return nullptr;

  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
  if (ShiftOpcode0 == ShiftOpcode1)
    return nullptr;

  // We have one of these patterns so far:
  // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
  // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
  // This must be a power-of-2 rotate for a bitmasking transform to be valid.
  unsigned Width = Sel.getType()->getScalarSizeInBits();
  if (!isPowerOf2_32(Width))
    return nullptr;

  // Check the shift amounts to see if they are an opposite pair.
  Value *ShAmt;
  if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
    ShAmt = SA0;
  else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
    ShAmt = SA1;
  else
    return nullptr;

  // Finally, see if the select is filtering out a shift-by-zero.
  Value *Cond = Sel.getCondition();
  ICmpInst::Predicate Pred;
  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
      Pred != ICmpInst::ICMP_EQ)
    return nullptr;

  // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
  // Convert to funnel shift intrinsic.
  bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
                (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
  Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
  return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
}

static Instruction *foldSelectToCopysign(SelectInst &Sel,
                                         InstCombiner::BuilderTy &Builder) {
  Value *Cond = Sel.getCondition();
  Value *TVal = Sel.getTrueValue();
  Value *FVal = Sel.getFalseValue();
  Type *SelType = Sel.getType();

  // Match select ?, TC, FC where the constants are equal but negated.
  // TODO: Generalize to handle a negated variable operand?
  const APFloat *TC, *FC;
  if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
      !abs(*TC).bitwiseIsEqual(abs(*FC)))
    return nullptr;

  assert(TC != FC && "Expected equal select arms to simplify");

  Value *X;
  const APInt *C;
  bool IsTrueIfSignSet;
  ICmpInst::Predicate Pred;
  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
      !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType)
    return nullptr;

  // If needed, negate the value that will be the sign argument of the copysign:
  // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
  // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
  // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
  // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
  if (IsTrueIfSignSet ^ TC->isNegative())
    X = Builder.CreateFNegFMF(X, &Sel);

  // Canonicalize the magnitude argument as the positive constant since we do
  // not care about its sign.
  Value *MagArg = TC->isNegative() ? FVal : TVal;
  Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
                                          Sel.getType());
  Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
  CopySign->setFastMathFlags(Sel.getFastMathFlags());
  return CopySign;
}

Instruction *InstCombiner::foldVectorSelect(SelectInst &Sel) {
  auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
  if (!VecTy)
    return nullptr;

  unsigned NumElts = VecTy->getNumElements();
  APInt UndefElts(NumElts, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts));
  if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
    if (V != &Sel)
      return replaceInstUsesWith(Sel, V);
    return &Sel;
  }

  // A select of a "select shuffle" with a common operand can be rearranged
  // to select followed by "select shuffle". Because of poison, this only works
  // in the case of a shuffle with no undefined mask elements.
  Value *Cond = Sel.getCondition();
  Value *TVal = Sel.getTrueValue();
  Value *FVal = Sel.getFalseValue();
  Value *X, *Y;
  ArrayRef<int> Mask;
  if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
      !is_contained(Mask, UndefMaskElem) &&
      cast<ShuffleVectorInst>(TVal)->isSelect()) {
    if (X == FVal) {
      // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
      Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
      return new ShuffleVectorInst(X, NewSel, Mask);
    }
    if (Y == FVal) {
      // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
      Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
      return new ShuffleVectorInst(NewSel, Y, Mask);
    }
  }
  if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
      !is_contained(Mask, UndefMaskElem) &&
      cast<ShuffleVectorInst>(FVal)->isSelect()) {
    if (X == TVal) {
      // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
      Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
      return new ShuffleVectorInst(X, NewSel, Mask);
    }
    if (Y == TVal) {
      // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
      Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
      return new ShuffleVectorInst(NewSel, Y, Mask);
    }
  }

  return nullptr;
}

static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
                                        const DominatorTree &DT,
                                        InstCombiner::BuilderTy &Builder) {
  // Find the block's immediate dominator that ends with a conditional branch
  // that matches select's condition (maybe inverted).
  auto *IDomNode = DT[BB]->getIDom();
  if (!IDomNode)
    return nullptr;
  BasicBlock *IDom = IDomNode->getBlock();

  Value *Cond = Sel.getCondition();
  Value *IfTrue, *IfFalse;
  BasicBlock *TrueSucc, *FalseSucc;
  if (match(IDom->getTerminator(),
            m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
                 m_BasicBlock(FalseSucc)))) {
    IfTrue = Sel.getTrueValue();
    IfFalse = Sel.getFalseValue();
  } else if (match(IDom->getTerminator(),
                   m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
                        m_BasicBlock(FalseSucc)))) {
    IfTrue = Sel.getFalseValue();
    IfFalse = Sel.getTrueValue();
  } else
    return nullptr;

  // Make sure the branches are actually different.
  if (TrueSucc == FalseSucc)
    return nullptr;

  // We want to replace select %cond, %a, %b with a phi that takes value %a
  // for all incoming edges that are dominated by condition `%cond == true`,
  // and value %b for edges dominated by condition `%cond == false`. If %a
  // or %b are also phis from the same basic block, we can go further and take
  // their incoming values from the corresponding blocks.
  BasicBlockEdge TrueEdge(IDom, TrueSucc);
  BasicBlockEdge FalseEdge(IDom, FalseSucc);
  DenseMap<BasicBlock *, Value *> Inputs;
  for (auto *Pred : predecessors(BB)) {
    // Check implication.
    BasicBlockEdge Incoming(Pred, BB);
    if (DT.dominates(TrueEdge, Incoming))
      Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
    else if (DT.dominates(FalseEdge, Incoming))
      Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
    else
      return nullptr;
    // Check availability.
    if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
      if (!DT.dominates(Insn, Pred->getTerminator()))
        return nullptr;
  }

  Builder.SetInsertPoint(&*BB->begin());
  auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
  for (auto *Pred : predecessors(BB))
    PN->addIncoming(Inputs[Pred], Pred);
  PN->takeName(&Sel);
  return PN;
}

static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
                                    InstCombiner::BuilderTy &Builder) {
  // Try to replace this select with Phi in one of these blocks.
  SmallSetVector<BasicBlock *, 4> CandidateBlocks;
  CandidateBlocks.insert(Sel.getParent());
  for (Value *V : Sel.operands())
    if (auto *I = dyn_cast<Instruction>(V))
      CandidateBlocks.insert(I->getParent());

  for (BasicBlock *BB : CandidateBlocks)
    if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
      return PN;
  return nullptr;
}

Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
  Value *CondVal = SI.getCondition();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();
  Type *SelType = SI.getType();

  // FIXME: Remove this workaround when freeze related patches are done.
  // For select with undef operand which feeds into an equality comparison,
  // don't simplify it so loop unswitch can know the equality comparison
  // may have an undef operand. This is a workaround for PR31652 caused by
  // descrepancy about branch on undef between LoopUnswitch and GVN.
  if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
    if (llvm::any_of(SI.users(), [&](User *U) {
          ICmpInst *CI = dyn_cast<ICmpInst>(U);
          if (CI && CI->isEquality())
            return true;
          return false;
        })) {
      return nullptr;
    }
  }

  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
                                    SQ.getWithInstruction(&SI)))
    return replaceInstUsesWith(SI, V);

  if (Instruction *I = canonicalizeSelectToShuffle(SI))
    return I;

  if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
    return I;

  CmpInst::Predicate Pred;

  if (SelType->isIntOrIntVectorTy(1) &&
      TrueVal->getType() == CondVal->getType()) {
    if (match(TrueVal, m_One())) {
      // Change: A = select B, true, C --> A = or B, C
      return BinaryOperator::CreateOr(CondVal, FalseVal);
    }
    if (match(TrueVal, m_Zero())) {
      // Change: A = select B, false, C --> A = and !B, C
      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
      return BinaryOperator::CreateAnd(NotCond, FalseVal);
    }
    if (match(FalseVal, m_Zero())) {
      // Change: A = select B, C, false --> A = and B, C
      return BinaryOperator::CreateAnd(CondVal, TrueVal);
    }
    if (match(FalseVal, m_One())) {
      // Change: A = select B, C, true --> A = or !B, C
      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
      return BinaryOperator::CreateOr(NotCond, TrueVal);
    }

    // select a, a, b  -> a | b
    // select a, b, a  -> a & b
    if (CondVal == TrueVal)
      return BinaryOperator::CreateOr(CondVal, FalseVal);
    if (CondVal == FalseVal)
      return BinaryOperator::CreateAnd(CondVal, TrueVal);

    // select a, ~a, b -> (~a) & b
    // select a, b, ~a -> (~a) | b
    if (match(TrueVal, m_Not(m_Specific(CondVal))))
      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    if (match(FalseVal, m_Not(m_Specific(CondVal))))
      return BinaryOperator::CreateOr(TrueVal, FalseVal);
  }

  // Selecting between two integer or vector splat integer constants?
  //
  // Note that we don't handle a scalar select of vectors:
  // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
  // because that may need 3 instructions to splat the condition value:
  // extend, insertelement, shufflevector.
  if (SelType->isIntOrIntVectorTy() &&
      CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
    // select C, 1, 0 -> zext C to int
    if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
      return new ZExtInst(CondVal, SelType);

    // select C, -1, 0 -> sext C to int
    if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
      return new SExtInst(CondVal, SelType);

    // select C, 0, 1 -> zext !C to int
    if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
      return new ZExtInst(NotCond, SelType);
    }

    // select C, 0, -1 -> sext !C to int
    if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
      return new SExtInst(NotCond, SelType);
    }
  }

  // See if we are selecting two values based on a comparison of the two values.
  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
    if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
        (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
      // Canonicalize to use ordered comparisons by swapping the select
      // operands.
      //
      // e.g.
      // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
      if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
        FCmpInst::Predicate InvPred = FCI->getInversePredicate();
        IRBuilder<>::FastMathFlagGuard FMFG(Builder);
        // FIXME: The FMF should propagate from the select, not the fcmp.
        Builder.setFastMathFlags(FCI->getFastMathFlags());
        Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
                                            FCI->getName() + ".inv");
        Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
        return replaceInstUsesWith(SI, NewSel);
      }

      // NOTE: if we wanted to, this is where to detect MIN/MAX
    }
  }

  // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
  // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
  // also require nnan because we do not want to unintentionally change the
  // sign of a NaN value.
  // FIXME: These folds should test/propagate FMF from the select, not the
  //        fsub or fneg.
  // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
  Instruction *FSub;
  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
      match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
      match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
      (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
    return replaceInstUsesWith(SI, Fabs);
  }
  // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
      match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
      match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
      (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
    return replaceInstUsesWith(SI, Fabs);
  }
  // With nnan and nsz:
  // (X <  +/-0.0) ? -X : X --> fabs(X)
  // (X <= +/-0.0) ? -X : X --> fabs(X)
  Instruction *FNeg;
  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
      match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
      match(TrueVal, m_Instruction(FNeg)) &&
      FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
      (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
       Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
    return replaceInstUsesWith(SI, Fabs);
  }
  // With nnan and nsz:
  // (X >  +/-0.0) ? X : -X --> fabs(X)
  // (X >= +/-0.0) ? X : -X --> fabs(X)
  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
      match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
      match(FalseVal, m_Instruction(FNeg)) &&
      FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
      (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
       Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
    return replaceInstUsesWith(SI, Fabs);
  }

  // See if we are selecting two values based on a comparison of the two values.
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
      return Result;

  if (Instruction *Add = foldAddSubSelect(SI, Builder))
    return Add;
  if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
    return Add;
  if (Instruction *Or = foldSetClearBits(SI, Builder))
    return Or;

  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
  auto *TI = dyn_cast<Instruction>(TrueVal);
  auto *FI = dyn_cast<Instruction>(FalseVal);
  if (TI && FI && TI->getOpcode() == FI->getOpcode())
    if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
      return IV;

  if (Instruction *I = foldSelectExtConst(SI))
    return I;

  // See if we can fold the select into one of our operands.
  if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
    if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
      return FoldI;

    Value *LHS, *RHS;
    Instruction::CastOps CastOp;
    SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
    auto SPF = SPR.Flavor;
    if (SPF) {
      Value *LHS2, *RHS2;
      if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
        if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
                                          RHS2, SI, SPF, RHS))
          return R;
      if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
        if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
                                          RHS2, SI, SPF, LHS))
          return R;
      // TODO.
      // ABS(-X) -> ABS(X)
    }

    if (SelectPatternResult::isMinOrMax(SPF)) {
      // Canonicalize so that
      // - type casts are outside select patterns.
      // - float clamp is transformed to min/max pattern

      bool IsCastNeeded = LHS->getType() != SelType;
      Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
      Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
      if (IsCastNeeded ||
          (LHS->getType()->isFPOrFPVectorTy() &&
           ((CmpLHS != LHS && CmpLHS != RHS) ||
            (CmpRHS != LHS && CmpRHS != RHS)))) {
        CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);

        Value *Cmp;
        if (CmpInst::isIntPredicate(MinMaxPred)) {
          Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
        } else {
          IRBuilder<>::FastMathFlagGuard FMFG(Builder);
          auto FMF =
              cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
          Builder.setFastMathFlags(FMF);
          Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
        }

        Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
        if (!IsCastNeeded)
          return replaceInstUsesWith(SI, NewSI);

        Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
        return replaceInstUsesWith(SI, NewCast);
      }

      // MAX(~a, ~b) -> ~MIN(a, b)
      // MAX(~a, C)  -> ~MIN(a, ~C)
      // MIN(~a, ~b) -> ~MAX(a, b)
      // MIN(~a, C)  -> ~MAX(a, ~C)
      auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
        Value *A;
        if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
            !isFreeToInvert(A, A->hasOneUse()) &&
            // Passing false to only consider m_Not and constants.
            isFreeToInvert(Y, false)) {
          Value *B = Builder.CreateNot(Y);
          Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
                                          A, B);
          // Copy the profile metadata.
          if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
            cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
            // Swap the metadata if the operands are swapped.
            if (X == SI.getFalseValue() && Y == SI.getTrueValue())
              cast<SelectInst>(NewMinMax)->swapProfMetadata();
          }

          return BinaryOperator::CreateNot(NewMinMax);
        }

        return nullptr;
      };

      if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
        return I;
      if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
        return I;

      if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
        return I;

      if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
        return I;
      if (Instruction *I = matchSAddSubSat(SI))
        return I;
    }
  }

  // Canonicalize select of FP values where NaN and -0.0 are not valid as
  // minnum/maxnum intrinsics.
  if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
    Value *X, *Y;
    if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
      return replaceInstUsesWith(
          SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));

    if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
      return replaceInstUsesWith(
          SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
  }

  // See if we can fold the select into a phi node if the condition is a select.
  if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
    // The true/false values have to be live in the PHI predecessor's blocks.
    if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
        canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
      if (Instruction *NV = foldOpIntoPhi(SI, PN))
        return NV;

  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    if (TrueSI->getCondition()->getType() == CondVal->getType()) {
      // select(C, select(C, a, b), c) -> select(C, a, c)
      if (TrueSI->getCondition() == CondVal) {
        if (SI.getTrueValue() == TrueSI->getTrueValue())
          return nullptr;
        return replaceOperand(SI, 1, TrueSI->getTrueValue());
      }
      // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
      // We choose this as normal form to enable folding on the And and shortening
      // paths for the values (this helps GetUnderlyingObjects() for example).
      if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
        Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
        replaceOperand(SI, 0, And);
        replaceOperand(SI, 1, TrueSI->getTrueValue());
        return &SI;
      }
    }
  }
  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    if (FalseSI->getCondition()->getType() == CondVal->getType()) {
      // select(C, a, select(C, b, c)) -> select(C, a, c)
      if (FalseSI->getCondition() == CondVal) {
        if (SI.getFalseValue() == FalseSI->getFalseValue())
          return nullptr;
        return replaceOperand(SI, 2, FalseSI->getFalseValue());
      }
      // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
      if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
        Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
        replaceOperand(SI, 0, Or);
        replaceOperand(SI, 2, FalseSI->getFalseValue());
        return &SI;
      }
    }
  }

  auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
    // The select might be preventing a division by 0.
    switch (BO->getOpcode()) {
    default:
      return true;
    case Instruction::SRem:
    case Instruction::URem:
    case Instruction::SDiv:
    case Instruction::UDiv:
      return false;
    }
  };

  // Try to simplify a binop sandwiched between 2 selects with the same
  // condition.
  // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
  BinaryOperator *TrueBO;
  if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
      canMergeSelectThroughBinop(TrueBO)) {
    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
      if (TrueBOSI->getCondition() == CondVal) {
        replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
        Worklist.push(TrueBO);
        return &SI;
      }
    }
    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
      if (TrueBOSI->getCondition() == CondVal) {
        replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
        Worklist.push(TrueBO);
        return &SI;
      }
    }
  }

  // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
  BinaryOperator *FalseBO;
  if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
      canMergeSelectThroughBinop(FalseBO)) {
    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
      if (FalseBOSI->getCondition() == CondVal) {
        replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
        Worklist.push(FalseBO);
        return &SI;
      }
    }
    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
      if (FalseBOSI->getCondition() == CondVal) {
        replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
        Worklist.push(FalseBO);
        return &SI;
      }
    }
  }

  Value *NotCond;
  if (match(CondVal, m_Not(m_Value(NotCond)))) {
    replaceOperand(SI, 0, NotCond);
    SI.swapValues();
    SI.swapProfMetadata();
    return &SI;
  }

  if (Instruction *I = foldVectorSelect(SI))
    return I;

  // If we can compute the condition, there's no need for a select.
  // Like the above fold, we are attempting to reduce compile-time cost by
  // putting this fold here with limitations rather than in InstSimplify.
  // The motivation for this call into value tracking is to take advantage of
  // the assumption cache, so make sure that is populated.
  if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
    KnownBits Known(1);
    computeKnownBits(CondVal, Known, 0, &SI);
    if (Known.One.isOneValue())
      return replaceInstUsesWith(SI, TrueVal);
    if (Known.Zero.isOneValue())
      return replaceInstUsesWith(SI, FalseVal);
  }

  if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
    return BitCastSel;

  // Simplify selects that test the returned flag of cmpxchg instructions.
  if (Value *V = foldSelectCmpXchg(SI))
    return replaceInstUsesWith(SI, V);

  if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
    return Select;

  if (Instruction *Rot = foldSelectRotate(SI))
    return Rot;

  if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
    return Copysign;

  if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
    return replaceInstUsesWith(SI, PN);

  return nullptr;
}