InstCombinePHI.cpp 47.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
//===- InstCombinePHI.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitPHINode function.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "instcombine"

static cl::opt<unsigned>
MaxNumPhis("instcombine-max-num-phis", cl::init(512),
           cl::desc("Maximum number phis to handle in intptr/ptrint folding"));

/// The PHI arguments will be folded into a single operation with a PHI node
/// as input. The debug location of the single operation will be the merged
/// locations of the original PHI node arguments.
void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
  auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
  Inst->setDebugLoc(FirstInst->getDebugLoc());
  // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
  // will be inefficient.
  assert(!isa<CallInst>(Inst));

  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
    auto *I = cast<Instruction>(PN.getIncomingValue(i));
    Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
  }
}

// Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
// If there is an existing pointer typed PHI that produces the same value as PN,
// replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
// PHI node:
//
// Case-1:
// bb1:
//     int_init = PtrToInt(ptr_init)
//     br label %bb2
// bb2:
//    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
//    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
//    ptr_val2 = IntToPtr(int_val)
//    ...
//    use(ptr_val2)
//    ptr_val_inc = ...
//    inc_val_inc = PtrToInt(ptr_val_inc)
//
// ==>
// bb1:
//     br label %bb2
// bb2:
//    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
//    ...
//    use(ptr_val)
//    ptr_val_inc = ...
//
// Case-2:
// bb1:
//    int_ptr = BitCast(ptr_ptr)
//    int_init = Load(int_ptr)
//    br label %bb2
// bb2:
//    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
//    ptr_val2 = IntToPtr(int_val)
//    ...
//    use(ptr_val2)
//    ptr_val_inc = ...
//    inc_val_inc = PtrToInt(ptr_val_inc)
// ==>
// bb1:
//    ptr_init = Load(ptr_ptr)
//    br label %bb2
// bb2:
//    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
//    ...
//    use(ptr_val)
//    ptr_val_inc = ...
//    ...
//
Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
  if (!PN.getType()->isIntegerTy())
    return nullptr;
  if (!PN.hasOneUse())
    return nullptr;

  auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
  if (!IntToPtr)
    return nullptr;

  // Check if the pointer is actually used as pointer:
  auto HasPointerUse = [](Instruction *IIP) {
    for (User *U : IIP->users()) {
      Value *Ptr = nullptr;
      if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
        Ptr = LoadI->getPointerOperand();
      } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
        Ptr = SI->getPointerOperand();
      } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
        Ptr = GI->getPointerOperand();
      }

      if (Ptr && Ptr == IIP)
        return true;
    }
    return false;
  };

  if (!HasPointerUse(IntToPtr))
    return nullptr;

  if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
      DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
    return nullptr;

  SmallVector<Value *, 4> AvailablePtrVals;
  for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
    Value *Arg = PN.getIncomingValue(i);

    // First look backward:
    if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
      AvailablePtrVals.emplace_back(PI->getOperand(0));
      continue;
    }

    // Next look forward:
    Value *ArgIntToPtr = nullptr;
    for (User *U : Arg->users()) {
      if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
          (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
           cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
        ArgIntToPtr = U;
        break;
      }
    }

    if (ArgIntToPtr) {
      AvailablePtrVals.emplace_back(ArgIntToPtr);
      continue;
    }

    // If Arg is defined by a PHI, allow it. This will also create
    // more opportunities iteratively.
    if (isa<PHINode>(Arg)) {
      AvailablePtrVals.emplace_back(Arg);
      continue;
    }

    // For a single use integer load:
    auto *LoadI = dyn_cast<LoadInst>(Arg);
    if (!LoadI)
      return nullptr;

    if (!LoadI->hasOneUse())
      return nullptr;

    // Push the integer typed Load instruction into the available
    // value set, and fix it up later when the pointer typed PHI
    // is synthesized.
    AvailablePtrVals.emplace_back(LoadI);
  }

  // Now search for a matching PHI
  auto *BB = PN.getParent();
  assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
         "Not enough available ptr typed incoming values");
  PHINode *MatchingPtrPHI = nullptr;
  unsigned NumPhis = 0;
  for (auto II = BB->begin(); II != BB->end(); II++, NumPhis++) {
    // FIXME: consider handling this in AggressiveInstCombine
    PHINode *PtrPHI = dyn_cast<PHINode>(II);
    if (!PtrPHI)
      break;
    if (NumPhis > MaxNumPhis)
      return nullptr;
    if (PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
      continue;
    MatchingPtrPHI = PtrPHI;
    for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
      if (AvailablePtrVals[i] !=
          PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
        MatchingPtrPHI = nullptr;
        break;
      }
    }

    if (MatchingPtrPHI)
      break;
  }

  if (MatchingPtrPHI) {
    assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
           "Phi's Type does not match with IntToPtr");
    // The PtrToCast + IntToPtr will be simplified later
    return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
                                            IntToPtr->getOperand(0)->getType());
  }

  // If it requires a conversion for every PHI operand, do not do it.
  if (all_of(AvailablePtrVals, [&](Value *V) {
        return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
      }))
    return nullptr;

  // If any of the operand that requires casting is a terminator
  // instruction, do not do it. Similarly, do not do the transform if the value
  // is PHI in a block with no insertion point, for example, a catchswitch
  // block, since we will not be able to insert a cast after the PHI.
  if (any_of(AvailablePtrVals, [&](Value *V) {
        if (V->getType() == IntToPtr->getType())
          return false;
        auto *Inst = dyn_cast<Instruction>(V);
        if (!Inst)
          return false;
        if (Inst->isTerminator())
          return true;
        auto *BB = Inst->getParent();
        if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
          return true;
        return false;
      }))
    return nullptr;

  PHINode *NewPtrPHI = PHINode::Create(
      IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");

  InsertNewInstBefore(NewPtrPHI, PN);
  SmallDenseMap<Value *, Instruction *> Casts;
  for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
    auto *IncomingBB = PN.getIncomingBlock(i);
    auto *IncomingVal = AvailablePtrVals[i];

    if (IncomingVal->getType() == IntToPtr->getType()) {
      NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
      continue;
    }

#ifndef NDEBUG
    LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
    assert((isa<PHINode>(IncomingVal) ||
            IncomingVal->getType()->isPointerTy() ||
            (LoadI && LoadI->hasOneUse())) &&
           "Can not replace LoadInst with multiple uses");
#endif
    // Need to insert a BitCast.
    // For an integer Load instruction with a single use, the load + IntToPtr
    // cast will be simplified into a pointer load:
    // %v = load i64, i64* %a.ip, align 8
    // %v.cast = inttoptr i64 %v to float **
    // ==>
    // %v.ptrp = bitcast i64 * %a.ip to float **
    // %v.cast = load float *, float ** %v.ptrp, align 8
    Instruction *&CI = Casts[IncomingVal];
    if (!CI) {
      CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
                                            IncomingVal->getName() + ".ptr");
      if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
        BasicBlock::iterator InsertPos(IncomingI);
        InsertPos++;
        BasicBlock *BB = IncomingI->getParent();
        if (isa<PHINode>(IncomingI))
          InsertPos = BB->getFirstInsertionPt();
        assert(InsertPos != BB->end() && "should have checked above");
        InsertNewInstBefore(CI, *InsertPos);
      } else {
        auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
        InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
      }
    }
    NewPtrPHI->addIncoming(CI, IncomingBB);
  }

  // The PtrToCast + IntToPtr will be simplified later
  return CastInst::CreateBitOrPointerCast(NewPtrPHI,
                                          IntToPtr->getOperand(0)->getType());
}

/// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
/// adds all have a single use, turn this into a phi and a single binop.
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
  unsigned Opc = FirstInst->getOpcode();
  Value *LHSVal = FirstInst->getOperand(0);
  Value *RHSVal = FirstInst->getOperand(1);

  Type *LHSType = LHSVal->getType();
  Type *RHSType = RHSVal->getType();

  // Scan to see if all operands are the same opcode, and all have one use.
  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
        // Verify type of the LHS matches so we don't fold cmp's of different
        // types.
        I->getOperand(0)->getType() != LHSType ||
        I->getOperand(1)->getType() != RHSType)
      return nullptr;

    // If they are CmpInst instructions, check their predicates
    if (CmpInst *CI = dyn_cast<CmpInst>(I))
      if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
        return nullptr;

    // Keep track of which operand needs a phi node.
    if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
    if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
  }

  // If both LHS and RHS would need a PHI, don't do this transformation,
  // because it would increase the number of PHIs entering the block,
  // which leads to higher register pressure. This is especially
  // bad when the PHIs are in the header of a loop.
  if (!LHSVal && !RHSVal)
    return nullptr;

  // Otherwise, this is safe to transform!

  Value *InLHS = FirstInst->getOperand(0);
  Value *InRHS = FirstInst->getOperand(1);
  PHINode *NewLHS = nullptr, *NewRHS = nullptr;
  if (!LHSVal) {
    NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
                             FirstInst->getOperand(0)->getName() + ".pn");
    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
    InsertNewInstBefore(NewLHS, PN);
    LHSVal = NewLHS;
  }

  if (!RHSVal) {
    NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
                             FirstInst->getOperand(1)->getName() + ".pn");
    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
    InsertNewInstBefore(NewRHS, PN);
    RHSVal = NewRHS;
  }

  // Add all operands to the new PHIs.
  if (NewLHS || NewRHS) {
    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
      if (NewLHS) {
        Value *NewInLHS = InInst->getOperand(0);
        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
      }
      if (NewRHS) {
        Value *NewInRHS = InInst->getOperand(1);
        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
      }
    }
  }

  if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
    CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
                                     LHSVal, RHSVal);
    PHIArgMergedDebugLoc(NewCI, PN);
    return NewCI;
  }

  BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
  BinaryOperator *NewBinOp =
    BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);

  NewBinOp->copyIRFlags(PN.getIncomingValue(0));

  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
    NewBinOp->andIRFlags(PN.getIncomingValue(i));

  PHIArgMergedDebugLoc(NewBinOp, PN);
  return NewBinOp;
}

Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));

  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
                                        FirstInst->op_end());
  // This is true if all GEP bases are allocas and if all indices into them are
  // constants.
  bool AllBasePointersAreAllocas = true;

  // We don't want to replace this phi if the replacement would require
  // more than one phi, which leads to higher register pressure. This is
  // especially bad when the PHIs are in the header of a loop.
  bool NeededPhi = false;

  bool AllInBounds = true;

  // Scan to see if all operands are the same opcode, and all have one use.
  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
      GEP->getNumOperands() != FirstInst->getNumOperands())
      return nullptr;

    AllInBounds &= GEP->isInBounds();

    // Keep track of whether or not all GEPs are of alloca pointers.
    if (AllBasePointersAreAllocas &&
        (!isa<AllocaInst>(GEP->getOperand(0)) ||
         !GEP->hasAllConstantIndices()))
      AllBasePointersAreAllocas = false;

    // Compare the operand lists.
    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
      if (FirstInst->getOperand(op) == GEP->getOperand(op))
        continue;

      // Don't merge two GEPs when two operands differ (introducing phi nodes)
      // if one of the PHIs has a constant for the index.  The index may be
      // substantially cheaper to compute for the constants, so making it a
      // variable index could pessimize the path.  This also handles the case
      // for struct indices, which must always be constant.
      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
          isa<ConstantInt>(GEP->getOperand(op)))
        return nullptr;

      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
        return nullptr;

      // If we already needed a PHI for an earlier operand, and another operand
      // also requires a PHI, we'd be introducing more PHIs than we're
      // eliminating, which increases register pressure on entry to the PHI's
      // block.
      if (NeededPhi)
        return nullptr;

      FixedOperands[op] = nullptr;  // Needs a PHI.
      NeededPhi = true;
    }
  }

  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
  // bother doing this transformation.  At best, this will just save a bit of
  // offset calculation, but all the predecessors will have to materialize the
  // stack address into a register anyway.  We'd actually rather *clone* the
  // load up into the predecessors so that we have a load of a gep of an alloca,
  // which can usually all be folded into the load.
  if (AllBasePointersAreAllocas)
    return nullptr;

  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
  // that is variable.
  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());

  bool HasAnyPHIs = false;
  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
    Value *FirstOp = FirstInst->getOperand(i);
    PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
                                     FirstOp->getName()+".pn");
    InsertNewInstBefore(NewPN, PN);

    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
    OperandPhis[i] = NewPN;
    FixedOperands[i] = NewPN;
    HasAnyPHIs = true;
  }


  // Add all operands to the new PHIs.
  if (HasAnyPHIs) {
    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
      BasicBlock *InBB = PN.getIncomingBlock(i);

      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
        if (PHINode *OpPhi = OperandPhis[op])
          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
    }
  }

  Value *Base = FixedOperands[0];
  GetElementPtrInst *NewGEP =
      GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
                                makeArrayRef(FixedOperands).slice(1));
  if (AllInBounds) NewGEP->setIsInBounds();
  PHIArgMergedDebugLoc(NewGEP, PN);
  return NewGEP;
}


/// Return true if we know that it is safe to sink the load out of the block
/// that defines it. This means that it must be obvious the value of the load is
/// not changed from the point of the load to the end of the block it is in.
///
/// Finally, it is safe, but not profitable, to sink a load targeting a
/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
/// to a register.
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
  BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();

  for (++BBI; BBI != E; ++BBI)
    if (BBI->mayWriteToMemory())
      return false;

  // Check for non-address taken alloca.  If not address-taken already, it isn't
  // profitable to do this xform.
  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
    bool isAddressTaken = false;
    for (User *U : AI->users()) {
      if (isa<LoadInst>(U)) continue;
      if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
        // If storing TO the alloca, then the address isn't taken.
        if (SI->getOperand(1) == AI) continue;
      }
      isAddressTaken = true;
      break;
    }

    if (!isAddressTaken && AI->isStaticAlloca())
      return false;
  }

  // If this load is a load from a GEP with a constant offset from an alloca,
  // then we don't want to sink it.  In its present form, it will be
  // load [constant stack offset].  Sinking it will cause us to have to
  // materialize the stack addresses in each predecessor in a register only to
  // do a shared load from register in the successor.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
        return false;

  return true;
}

Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));

  // FIXME: This is overconservative; this transform is allowed in some cases
  // for atomic operations.
  if (FirstLI->isAtomic())
    return nullptr;

  // When processing loads, we need to propagate two bits of information to the
  // sunk load: whether it is volatile, and what its alignment is.  We currently
  // don't sink loads when some have their alignment specified and some don't.
  // visitLoadInst will propagate an alignment onto the load when TD is around,
  // and if TD isn't around, we can't handle the mixed case.
  bool isVolatile = FirstLI->isVolatile();
  Align LoadAlignment = FirstLI->getAlign();
  unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();

  // We can't sink the load if the loaded value could be modified between the
  // load and the PHI.
  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
      !isSafeAndProfitableToSinkLoad(FirstLI))
    return nullptr;

  // If the PHI is of volatile loads and the load block has multiple
  // successors, sinking it would remove a load of the volatile value from
  // the path through the other successor.
  if (isVolatile &&
      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
    return nullptr;

  // Check to see if all arguments are the same operation.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
    if (!LI || !LI->hasOneUse())
      return nullptr;

    // We can't sink the load if the loaded value could be modified between
    // the load and the PHI.
    if (LI->isVolatile() != isVolatile ||
        LI->getParent() != PN.getIncomingBlock(i) ||
        LI->getPointerAddressSpace() != LoadAddrSpace ||
        !isSafeAndProfitableToSinkLoad(LI))
      return nullptr;

    LoadAlignment = std::min(LoadAlignment, Align(LI->getAlign()));

    // If the PHI is of volatile loads and the load block has multiple
    // successors, sinking it would remove a load of the volatile value from
    // the path through the other successor.
    if (isVolatile &&
        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
      return nullptr;
  }

  // Okay, they are all the same operation.  Create a new PHI node of the
  // correct type, and PHI together all of the LHS's of the instructions.
  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
                                   PN.getNumIncomingValues(),
                                   PN.getName()+".in");

  Value *InVal = FirstLI->getOperand(0);
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
  LoadInst *NewLI =
      new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment);

  unsigned KnownIDs[] = {
    LLVMContext::MD_tbaa,
    LLVMContext::MD_range,
    LLVMContext::MD_invariant_load,
    LLVMContext::MD_alias_scope,
    LLVMContext::MD_noalias,
    LLVMContext::MD_nonnull,
    LLVMContext::MD_align,
    LLVMContext::MD_dereferenceable,
    LLVMContext::MD_dereferenceable_or_null,
    LLVMContext::MD_access_group,
  };

  for (unsigned ID : KnownIDs)
    NewLI->setMetadata(ID, FirstLI->getMetadata(ID));

  // Add all operands to the new PHI and combine TBAA metadata.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
    combineMetadata(NewLI, LI, KnownIDs, true);
    Value *NewInVal = LI->getOperand(0);
    if (NewInVal != InVal)
      InVal = nullptr;
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
  }

  if (InVal) {
    // The new PHI unions all of the same values together.  This is really
    // common, so we handle it intelligently here for compile-time speed.
    NewLI->setOperand(0, InVal);
    delete NewPN;
  } else {
    InsertNewInstBefore(NewPN, PN);
  }

  // If this was a volatile load that we are merging, make sure to loop through
  // and mark all the input loads as non-volatile.  If we don't do this, we will
  // insert a new volatile load and the old ones will not be deletable.
  if (isVolatile)
    for (Value *IncValue : PN.incoming_values())
      cast<LoadInst>(IncValue)->setVolatile(false);

  PHIArgMergedDebugLoc(NewLI, PN);
  return NewLI;
}

/// TODO: This function could handle other cast types, but then it might
/// require special-casing a cast from the 'i1' type. See the comment in
/// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
  // We cannot create a new instruction after the PHI if the terminator is an
  // EHPad because there is no valid insertion point.
  if (Instruction *TI = Phi.getParent()->getTerminator())
    if (TI->isEHPad())
      return nullptr;

  // Early exit for the common case of a phi with two operands. These are
  // handled elsewhere. See the comment below where we check the count of zexts
  // and constants for more details.
  unsigned NumIncomingValues = Phi.getNumIncomingValues();
  if (NumIncomingValues < 3)
    return nullptr;

  // Find the narrower type specified by the first zext.
  Type *NarrowType = nullptr;
  for (Value *V : Phi.incoming_values()) {
    if (auto *Zext = dyn_cast<ZExtInst>(V)) {
      NarrowType = Zext->getSrcTy();
      break;
    }
  }
  if (!NarrowType)
    return nullptr;

  // Walk the phi operands checking that we only have zexts or constants that
  // we can shrink for free. Store the new operands for the new phi.
  SmallVector<Value *, 4> NewIncoming;
  unsigned NumZexts = 0;
  unsigned NumConsts = 0;
  for (Value *V : Phi.incoming_values()) {
    if (auto *Zext = dyn_cast<ZExtInst>(V)) {
      // All zexts must be identical and have one use.
      if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
        return nullptr;
      NewIncoming.push_back(Zext->getOperand(0));
      NumZexts++;
    } else if (auto *C = dyn_cast<Constant>(V)) {
      // Make sure that constants can fit in the new type.
      Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
      if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
        return nullptr;
      NewIncoming.push_back(Trunc);
      NumConsts++;
    } else {
      // If it's not a cast or a constant, bail out.
      return nullptr;
    }
  }

  // The more common cases of a phi with no constant operands or just one
  // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
  // respectively. foldOpIntoPhi() wants to do the opposite transform that is
  // performed here. It tries to replicate a cast in the phi operand's basic
  // block to expose other folding opportunities. Thus, InstCombine will
  // infinite loop without this check.
  if (NumConsts == 0 || NumZexts < 2)
    return nullptr;

  // All incoming values are zexts or constants that are safe to truncate.
  // Create a new phi node of the narrow type, phi together all of the new
  // operands, and zext the result back to the original type.
  PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
                                    Phi.getName() + ".shrunk");
  for (unsigned i = 0; i != NumIncomingValues; ++i)
    NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));

  InsertNewInstBefore(NewPhi, Phi);
  return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
}

/// If all operands to a PHI node are the same "unary" operator and they all are
/// only used by the PHI, PHI together their inputs, and do the operation once,
/// to the result of the PHI.
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
  // We cannot create a new instruction after the PHI if the terminator is an
  // EHPad because there is no valid insertion point.
  if (Instruction *TI = PN.getParent()->getTerminator())
    if (TI->isEHPad())
      return nullptr;

  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));

  if (isa<GetElementPtrInst>(FirstInst))
    return FoldPHIArgGEPIntoPHI(PN);
  if (isa<LoadInst>(FirstInst))
    return FoldPHIArgLoadIntoPHI(PN);

  // Scan the instruction, looking for input operations that can be folded away.
  // If all input operands to the phi are the same instruction (e.g. a cast from
  // the same type or "+42") we can pull the operation through the PHI, reducing
  // code size and simplifying code.
  Constant *ConstantOp = nullptr;
  Type *CastSrcTy = nullptr;

  if (isa<CastInst>(FirstInst)) {
    CastSrcTy = FirstInst->getOperand(0)->getType();

    // Be careful about transforming integer PHIs.  We don't want to pessimize
    // the code by turning an i32 into an i1293.
    if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
      if (!shouldChangeType(PN.getType(), CastSrcTy))
        return nullptr;
    }
  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
    // Can fold binop, compare or shift here if the RHS is a constant,
    // otherwise call FoldPHIArgBinOpIntoPHI.
    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
    if (!ConstantOp)
      return FoldPHIArgBinOpIntoPHI(PN);
  } else {
    return nullptr;  // Cannot fold this operation.
  }

  // Check to see if all arguments are the same operation.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
    if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
      return nullptr;
    if (CastSrcTy) {
      if (I->getOperand(0)->getType() != CastSrcTy)
        return nullptr;  // Cast operation must match.
    } else if (I->getOperand(1) != ConstantOp) {
      return nullptr;
    }
  }

  // Okay, they are all the same operation.  Create a new PHI node of the
  // correct type, and PHI together all of the LHS's of the instructions.
  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
                                   PN.getNumIncomingValues(),
                                   PN.getName()+".in");

  Value *InVal = FirstInst->getOperand(0);
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));

  // Add all operands to the new PHI.
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
    if (NewInVal != InVal)
      InVal = nullptr;
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
  }

  Value *PhiVal;
  if (InVal) {
    // The new PHI unions all of the same values together.  This is really
    // common, so we handle it intelligently here for compile-time speed.
    PhiVal = InVal;
    delete NewPN;
  } else {
    InsertNewInstBefore(NewPN, PN);
    PhiVal = NewPN;
  }

  // Insert and return the new operation.
  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
    CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
                                       PN.getType());
    PHIArgMergedDebugLoc(NewCI, PN);
    return NewCI;
  }

  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
    BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
    BinOp->copyIRFlags(PN.getIncomingValue(0));

    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
      BinOp->andIRFlags(PN.getIncomingValue(i));

    PHIArgMergedDebugLoc(BinOp, PN);
    return BinOp;
  }

  CmpInst *CIOp = cast<CmpInst>(FirstInst);
  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
                                   PhiVal, ConstantOp);
  PHIArgMergedDebugLoc(NewCI, PN);
  return NewCI;
}

/// Return true if this PHI node is only used by a PHI node cycle that is dead.
static bool DeadPHICycle(PHINode *PN,
                         SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
  if (PN->use_empty()) return true;
  if (!PN->hasOneUse()) return false;

  // Remember this node, and if we find the cycle, return.
  if (!PotentiallyDeadPHIs.insert(PN).second)
    return true;

  // Don't scan crazily complex things.
  if (PotentiallyDeadPHIs.size() == 16)
    return false;

  if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
    return DeadPHICycle(PU, PotentiallyDeadPHIs);

  return false;
}

/// Return true if this phi node is always equal to NonPhiInVal.
/// This happens with mutually cyclic phi nodes like:
///   z = some value; x = phi (y, z); y = phi (x, z)
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
                           SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
  // See if we already saw this PHI node.
  if (!ValueEqualPHIs.insert(PN).second)
    return true;

  // Don't scan crazily complex things.
  if (ValueEqualPHIs.size() == 16)
    return false;

  // Scan the operands to see if they are either phi nodes or are equal to
  // the value.
  for (Value *Op : PN->incoming_values()) {
    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
        return false;
    } else if (Op != NonPhiInVal)
      return false;
  }

  return true;
}

/// Return an existing non-zero constant if this phi node has one, otherwise
/// return constant 1.
static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
  assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
  for (Value *V : PN.operands())
    if (auto *ConstVA = dyn_cast<ConstantInt>(V))
      if (!ConstVA->isZero())
        return ConstVA;
  return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
}

namespace {
struct PHIUsageRecord {
  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
  unsigned Shift;     // The amount shifted.
  Instruction *Inst;  // The trunc instruction.

  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
    : PHIId(pn), Shift(Sh), Inst(User) {}

  bool operator<(const PHIUsageRecord &RHS) const {
    if (PHIId < RHS.PHIId) return true;
    if (PHIId > RHS.PHIId) return false;
    if (Shift < RHS.Shift) return true;
    if (Shift > RHS.Shift) return false;
    return Inst->getType()->getPrimitiveSizeInBits() <
           RHS.Inst->getType()->getPrimitiveSizeInBits();
  }
};

struct LoweredPHIRecord {
  PHINode *PN;        // The PHI that was lowered.
  unsigned Shift;     // The amount shifted.
  unsigned Width;     // The width extracted.

  LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}

  // Ctor form used by DenseMap.
  LoweredPHIRecord(PHINode *pn, unsigned Sh)
    : PN(pn), Shift(Sh), Width(0) {}
};
}

namespace llvm {
  template<>
  struct DenseMapInfo<LoweredPHIRecord> {
    static inline LoweredPHIRecord getEmptyKey() {
      return LoweredPHIRecord(nullptr, 0);
    }
    static inline LoweredPHIRecord getTombstoneKey() {
      return LoweredPHIRecord(nullptr, 1);
    }
    static unsigned getHashValue(const LoweredPHIRecord &Val) {
      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
             (Val.Width>>3);
    }
    static bool isEqual(const LoweredPHIRecord &LHS,
                        const LoweredPHIRecord &RHS) {
      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
             LHS.Width == RHS.Width;
    }
  };
}


/// This is an integer PHI and we know that it has an illegal type: see if it is
/// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
/// the various pieces being extracted. This sort of thing is introduced when
/// SROA promotes an aggregate to large integer values.
///
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
/// inttoptr.  We should produce new PHIs in the right type.
///
Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
  // PHIUsers - Keep track of all of the truncated values extracted from a set
  // of PHIs, along with their offset.  These are the things we want to rewrite.
  SmallVector<PHIUsageRecord, 16> PHIUsers;

  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
  // check the uses of (to ensure they are all extracts).
  SmallVector<PHINode*, 8> PHIsToSlice;
  SmallPtrSet<PHINode*, 8> PHIsInspected;

  PHIsToSlice.push_back(&FirstPhi);
  PHIsInspected.insert(&FirstPhi);

  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
    PHINode *PN = PHIsToSlice[PHIId];

    // Scan the input list of the PHI.  If any input is an invoke, and if the
    // input is defined in the predecessor, then we won't be split the critical
    // edge which is required to insert a truncate.  Because of this, we have to
    // bail out.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
      if (!II) continue;
      if (II->getParent() != PN->getIncomingBlock(i))
        continue;

      // If we have a phi, and if it's directly in the predecessor, then we have
      // a critical edge where we need to put the truncate.  Since we can't
      // split the edge in instcombine, we have to bail out.
      return nullptr;
    }

    for (User *U : PN->users()) {
      Instruction *UserI = cast<Instruction>(U);

      // If the user is a PHI, inspect its uses recursively.
      if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
        if (PHIsInspected.insert(UserPN).second)
          PHIsToSlice.push_back(UserPN);
        continue;
      }

      // Truncates are always ok.
      if (isa<TruncInst>(UserI)) {
        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
        continue;
      }

      // Otherwise it must be a lshr which can only be used by one trunc.
      if (UserI->getOpcode() != Instruction::LShr ||
          !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
          !isa<ConstantInt>(UserI->getOperand(1)))
        return nullptr;

      // Bail on out of range shifts.
      unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
      if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
        return nullptr;

      unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
    }
  }

  // If we have no users, they must be all self uses, just nuke the PHI.
  if (PHIUsers.empty())
    return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));

  // If this phi node is transformable, create new PHIs for all the pieces
  // extracted out of it.  First, sort the users by their offset and size.
  array_pod_sort(PHIUsers.begin(), PHIUsers.end());

  LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
             for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
             << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);

  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
  // hoisted out here to avoid construction/destruction thrashing.
  DenseMap<BasicBlock*, Value*> PredValues;

  // ExtractedVals - Each new PHI we introduce is saved here so we don't
  // introduce redundant PHIs.
  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;

  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
    unsigned PHIId = PHIUsers[UserI].PHIId;
    PHINode *PN = PHIsToSlice[PHIId];
    unsigned Offset = PHIUsers[UserI].Shift;
    Type *Ty = PHIUsers[UserI].Inst->getType();

    PHINode *EltPHI;

    // If we've already lowered a user like this, reuse the previously lowered
    // value.
    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {

      // Otherwise, Create the new PHI node for this user.
      EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
                               PN->getName()+".off"+Twine(Offset), PN);
      assert(EltPHI->getType() != PN->getType() &&
             "Truncate didn't shrink phi?");

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        BasicBlock *Pred = PN->getIncomingBlock(i);
        Value *&PredVal = PredValues[Pred];

        // If we already have a value for this predecessor, reuse it.
        if (PredVal) {
          EltPHI->addIncoming(PredVal, Pred);
          continue;
        }

        // Handle the PHI self-reuse case.
        Value *InVal = PN->getIncomingValue(i);
        if (InVal == PN) {
          PredVal = EltPHI;
          EltPHI->addIncoming(PredVal, Pred);
          continue;
        }

        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
          // If the incoming value was a PHI, and if it was one of the PHIs we
          // already rewrote it, just use the lowered value.
          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
            PredVal = Res;
            EltPHI->addIncoming(PredVal, Pred);
            continue;
          }
        }

        // Otherwise, do an extract in the predecessor.
        Builder.SetInsertPoint(Pred->getTerminator());
        Value *Res = InVal;
        if (Offset)
          Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
                                                          Offset), "extract");
        Res = Builder.CreateTrunc(Res, Ty, "extract.t");
        PredVal = Res;
        EltPHI->addIncoming(Res, Pred);

        // If the incoming value was a PHI, and if it was one of the PHIs we are
        // rewriting, we will ultimately delete the code we inserted.  This
        // means we need to revisit that PHI to make sure we extract out the
        // needed piece.
        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
          if (PHIsInspected.count(OldInVal)) {
            unsigned RefPHIId =
                find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
                                              cast<Instruction>(Res)));
            ++UserE;
          }
      }
      PredValues.clear();

      LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
                        << *EltPHI << '\n');
      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
    }

    // Replace the use of this piece with the PHI node.
    replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
  }

  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
  // with undefs.
  Value *Undef = UndefValue::get(FirstPhi.getType());
  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
    replaceInstUsesWith(*PHIsToSlice[i], Undef);
  return replaceInstUsesWith(FirstPhi, Undef);
}

// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
  if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
    return replaceInstUsesWith(PN, V);

  if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
    return Result;

  // If all PHI operands are the same operation, pull them through the PHI,
  // reducing code size.
  if (isa<Instruction>(PN.getIncomingValue(0)) &&
      isa<Instruction>(PN.getIncomingValue(1)) &&
      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
      // FIXME: The hasOneUse check will fail for PHIs that use the value more
      // than themselves more than once.
      PN.getIncomingValue(0)->hasOneUse())
    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
      return Result;

  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
  // PHI)... break the cycle.
  if (PN.hasOneUse()) {
    if (Instruction *Result = FoldIntegerTypedPHI(PN))
      return Result;

    Instruction *PHIUser = cast<Instruction>(PN.user_back());
    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
      PotentiallyDeadPHIs.insert(&PN);
      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
        return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
    }

    // If this phi has a single use, and if that use just computes a value for
    // the next iteration of a loop, delete the phi.  This occurs with unused
    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
    // common case here is good because the only other things that catch this
    // are induction variable analysis (sometimes) and ADCE, which is only run
    // late.
    if (PHIUser->hasOneUse() &&
        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
        PHIUser->user_back() == &PN) {
      return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
    }
    // When a PHI is used only to be compared with zero, it is safe to replace
    // an incoming value proved as known nonzero with any non-zero constant.
    // For example, in the code below, the incoming value %v can be replaced
    // with any non-zero constant based on the fact that the PHI is only used to
    // be compared with zero and %v is a known non-zero value:
    // %v = select %cond, 1, 2
    // %p = phi [%v, BB] ...
    //      icmp eq, %p, 0
    auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
    // FIXME: To be simple, handle only integer type for now.
    if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
        match(CmpInst->getOperand(1), m_Zero())) {
      ConstantInt *NonZeroConst = nullptr;
      bool MadeChange = false;
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
        Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
        Value *VA = PN.getIncomingValue(i);
        if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
          if (!NonZeroConst)
            NonZeroConst = GetAnyNonZeroConstInt(PN);

          if (NonZeroConst != VA) {
            replaceOperand(PN, i, NonZeroConst);
            MadeChange = true;
          }
        }
      }
      if (MadeChange)
        return &PN;
    }
  }

  // We sometimes end up with phi cycles that non-obviously end up being the
  // same value, for example:
  //   z = some value; x = phi (y, z); y = phi (x, z)
  // where the phi nodes don't necessarily need to be in the same block.  Do a
  // quick check to see if the PHI node only contains a single non-phi value, if
  // so, scan to see if the phi cycle is actually equal to that value.
  {
    unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
    // Scan for the first non-phi operand.
    while (InValNo != NumIncomingVals &&
           isa<PHINode>(PN.getIncomingValue(InValNo)))
      ++InValNo;

    if (InValNo != NumIncomingVals) {
      Value *NonPhiInVal = PN.getIncomingValue(InValNo);

      // Scan the rest of the operands to see if there are any conflicts, if so
      // there is no need to recursively scan other phis.
      for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
        Value *OpVal = PN.getIncomingValue(InValNo);
        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
          break;
      }

      // If we scanned over all operands, then we have one unique value plus
      // phi values.  Scan PHI nodes to see if they all merge in each other or
      // the value.
      if (InValNo == NumIncomingVals) {
        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
          return replaceInstUsesWith(PN, NonPhiInVal);
      }
    }
  }

  // If there are multiple PHIs, sort their operands so that they all list
  // the blocks in the same order. This will help identical PHIs be eliminated
  // by other passes. Other passes shouldn't depend on this for correctness
  // however.
  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
  if (&PN != FirstPN)
    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *BBA = PN.getIncomingBlock(i);
      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
      if (BBA != BBB) {
        Value *VA = PN.getIncomingValue(i);
        unsigned j = PN.getBasicBlockIndex(BBB);
        Value *VB = PN.getIncomingValue(j);
        PN.setIncomingBlock(i, BBB);
        PN.setIncomingValue(i, VB);
        PN.setIncomingBlock(j, BBA);
        PN.setIncomingValue(j, VA);
        // NOTE: Instcombine normally would want us to "return &PN" if we
        // modified any of the operands of an instruction.  However, since we
        // aren't adding or removing uses (just rearranging them) we don't do
        // this in this case.
      }
    }

  // If this is an integer PHI and we know that it has an illegal type, see if
  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
  // PHI into the various pieces being extracted.  This sort of thing is
  // introduced when SROA promotes an aggregate to a single large integer type.
  if (PN.getType()->isIntegerTy() &&
      !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
      return Res;

  return nullptr;
}