InstCombineCompares.cpp 244 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
//===- InstCombineCompares.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitICmp and visitFCmp functions.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

// How many times is a select replaced by one of its operands?
STATISTIC(NumSel, "Number of select opts");


/// Compute Result = In1+In2, returning true if the result overflowed for this
/// type.
static bool addWithOverflow(APInt &Result, const APInt &In1,
                            const APInt &In2, bool IsSigned = false) {
  bool Overflow;
  if (IsSigned)
    Result = In1.sadd_ov(In2, Overflow);
  else
    Result = In1.uadd_ov(In2, Overflow);

  return Overflow;
}

/// Compute Result = In1-In2, returning true if the result overflowed for this
/// type.
static bool subWithOverflow(APInt &Result, const APInt &In1,
                            const APInt &In2, bool IsSigned = false) {
  bool Overflow;
  if (IsSigned)
    Result = In1.ssub_ov(In2, Overflow);
  else
    Result = In1.usub_ov(In2, Overflow);

  return Overflow;
}

/// Given an icmp instruction, return true if any use of this comparison is a
/// branch on sign bit comparison.
static bool hasBranchUse(ICmpInst &I) {
  for (auto *U : I.users())
    if (isa<BranchInst>(U))
      return true;
  return false;
}

/// Returns true if the exploded icmp can be expressed as a signed comparison
/// to zero and updates the predicate accordingly.
/// The signedness of the comparison is preserved.
/// TODO: Refactor with decomposeBitTestICmp()?
static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
  if (!ICmpInst::isSigned(Pred))
    return false;

  if (C.isNullValue())
    return ICmpInst::isRelational(Pred);

  if (C.isOneValue()) {
    if (Pred == ICmpInst::ICMP_SLT) {
      Pred = ICmpInst::ICMP_SLE;
      return true;
    }
  } else if (C.isAllOnesValue()) {
    if (Pred == ICmpInst::ICMP_SGT) {
      Pred = ICmpInst::ICMP_SGE;
      return true;
    }
  }

  return false;
}

/// Given a signed integer type and a set of known zero and one bits, compute
/// the maximum and minimum values that could have the specified known zero and
/// known one bits, returning them in Min/Max.
/// TODO: Move to method on KnownBits struct?
static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
                                                   APInt &Min, APInt &Max) {
  assert(Known.getBitWidth() == Min.getBitWidth() &&
         Known.getBitWidth() == Max.getBitWidth() &&
         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
  APInt UnknownBits = ~(Known.Zero|Known.One);

  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
  // bit if it is unknown.
  Min = Known.One;
  Max = Known.One|UnknownBits;

  if (UnknownBits.isNegative()) { // Sign bit is unknown
    Min.setSignBit();
    Max.clearSignBit();
  }
}

/// Given an unsigned integer type and a set of known zero and one bits, compute
/// the maximum and minimum values that could have the specified known zero and
/// known one bits, returning them in Min/Max.
/// TODO: Move to method on KnownBits struct?
static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
                                                     APInt &Min, APInt &Max) {
  assert(Known.getBitWidth() == Min.getBitWidth() &&
         Known.getBitWidth() == Max.getBitWidth() &&
         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
  APInt UnknownBits = ~(Known.Zero|Known.One);

  // The minimum value is when the unknown bits are all zeros.
  Min = Known.One;
  // The maximum value is when the unknown bits are all ones.
  Max = Known.One|UnknownBits;
}

/// This is called when we see this pattern:
///   cmp pred (load (gep GV, ...)), cmpcst
/// where GV is a global variable with a constant initializer. Try to simplify
/// this into some simple computation that does not need the load. For example
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
///
/// If AndCst is non-null, then the loaded value is masked with that constant
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
                                                        GlobalVariable *GV,
                                                        CmpInst &ICI,
                                                        ConstantInt *AndCst) {
  Constant *Init = GV->getInitializer();
  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    return nullptr;

  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
  // Don't blow up on huge arrays.
  if (ArrayElementCount > MaxArraySizeForCombine)
    return nullptr;

  // There are many forms of this optimization we can handle, for now, just do
  // the simple index into a single-dimensional array.
  //
  // Require: GEP GV, 0, i {{, constant indices}}
  if (GEP->getNumOperands() < 3 ||
      !isa<ConstantInt>(GEP->getOperand(1)) ||
      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
      isa<Constant>(GEP->getOperand(2)))
    return nullptr;

  // Check that indices after the variable are constants and in-range for the
  // type they index.  Collect the indices.  This is typically for arrays of
  // structs.
  SmallVector<unsigned, 4> LaterIndices;

  Type *EltTy = Init->getType()->getArrayElementType();
  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    if (!Idx) return nullptr;  // Variable index.

    uint64_t IdxVal = Idx->getZExtValue();
    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.

    if (StructType *STy = dyn_cast<StructType>(EltTy))
      EltTy = STy->getElementType(IdxVal);
    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
      if (IdxVal >= ATy->getNumElements()) return nullptr;
      EltTy = ATy->getElementType();
    } else {
      return nullptr; // Unknown type.
    }

    LaterIndices.push_back(IdxVal);
  }

  enum { Overdefined = -3, Undefined = -2 };

  // Variables for our state machines.

  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
  // undefined, otherwise set to the first true element.  SecondTrueElement is
  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;

  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
  // form "i != 47 & i != 87".  Same state transitions as for true elements.
  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;

  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
  /// define a state machine that triggers for ranges of values that the index
  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
  /// index in the range (inclusive).  We use -2 for undefined here because we
  /// use relative comparisons and don't want 0-1 to match -1.
  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;

  // MagicBitvector - This is a magic bitvector where we set a bit if the
  // comparison is true for element 'i'.  If there are 64 elements or less in
  // the array, this will fully represent all the comparison results.
  uint64_t MagicBitvector = 0;

  // Scan the array and see if one of our patterns matches.
  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    Constant *Elt = Init->getAggregateElement(i);
    if (!Elt) return nullptr;

    // If this is indexing an array of structures, get the structure element.
    if (!LaterIndices.empty())
      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);

    // If the element is masked, handle it.
    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);

    // Find out if the comparison would be true or false for the i'th element.
    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
                                                  CompareRHS, DL, &TLI);
    // If the result is undef for this element, ignore it.
    if (isa<UndefValue>(C)) {
      // Extend range state machines to cover this element in case there is an
      // undef in the middle of the range.
      if (TrueRangeEnd == (int)i-1)
        TrueRangeEnd = i;
      if (FalseRangeEnd == (int)i-1)
        FalseRangeEnd = i;
      continue;
    }

    // If we can't compute the result for any of the elements, we have to give
    // up evaluating the entire conditional.
    if (!isa<ConstantInt>(C)) return nullptr;

    // Otherwise, we know if the comparison is true or false for this element,
    // update our state machines.
    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();

    // State machine for single/double/range index comparison.
    if (IsTrueForElt) {
      // Update the TrueElement state machine.
      if (FirstTrueElement == Undefined)
        FirstTrueElement = TrueRangeEnd = i;  // First true element.
      else {
        // Update double-compare state machine.
        if (SecondTrueElement == Undefined)
          SecondTrueElement = i;
        else
          SecondTrueElement = Overdefined;

        // Update range state machine.
        if (TrueRangeEnd == (int)i-1)
          TrueRangeEnd = i;
        else
          TrueRangeEnd = Overdefined;
      }
    } else {
      // Update the FalseElement state machine.
      if (FirstFalseElement == Undefined)
        FirstFalseElement = FalseRangeEnd = i; // First false element.
      else {
        // Update double-compare state machine.
        if (SecondFalseElement == Undefined)
          SecondFalseElement = i;
        else
          SecondFalseElement = Overdefined;

        // Update range state machine.
        if (FalseRangeEnd == (int)i-1)
          FalseRangeEnd = i;
        else
          FalseRangeEnd = Overdefined;
      }
    }

    // If this element is in range, update our magic bitvector.
    if (i < 64 && IsTrueForElt)
      MagicBitvector |= 1ULL << i;

    // If all of our states become overdefined, bail out early.  Since the
    // predicate is expensive, only check it every 8 elements.  This is only
    // really useful for really huge arrays.
    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
        FalseRangeEnd == Overdefined)
      return nullptr;
  }

  // Now that we've scanned the entire array, emit our new comparison(s).  We
  // order the state machines in complexity of the generated code.
  Value *Idx = GEP->getOperand(2);

  // If the index is larger than the pointer size of the target, truncate the
  // index down like the GEP would do implicitly.  We don't have to do this for
  // an inbounds GEP because the index can't be out of range.
  if (!GEP->isInBounds()) {
    Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
      Idx = Builder.CreateTrunc(Idx, IntPtrTy);
  }

  // If the comparison is only true for one or two elements, emit direct
  // comparisons.
  if (SecondTrueElement != Overdefined) {
    // None true -> false.
    if (FirstTrueElement == Undefined)
      return replaceInstUsesWith(ICI, Builder.getFalse());

    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);

    // True for one element -> 'i == 47'.
    if (SecondTrueElement == Undefined)
      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);

    // True for two elements -> 'i == 47 | i == 72'.
    Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
    return BinaryOperator::CreateOr(C1, C2);
  }

  // If the comparison is only false for one or two elements, emit direct
  // comparisons.
  if (SecondFalseElement != Overdefined) {
    // None false -> true.
    if (FirstFalseElement == Undefined)
      return replaceInstUsesWith(ICI, Builder.getTrue());

    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);

    // False for one element -> 'i != 47'.
    if (SecondFalseElement == Undefined)
      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);

    // False for two elements -> 'i != 47 & i != 72'.
    Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
    return BinaryOperator::CreateAnd(C1, C2);
  }

  // If the comparison can be replaced with a range comparison for the elements
  // where it is true, emit the range check.
  if (TrueRangeEnd != Overdefined) {
    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");

    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    if (FirstTrueElement) {
      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
      Idx = Builder.CreateAdd(Idx, Offs);
    }

    Value *End = ConstantInt::get(Idx->getType(),
                                  TrueRangeEnd-FirstTrueElement+1);
    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
  }

  // False range check.
  if (FalseRangeEnd != Overdefined) {
    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    if (FirstFalseElement) {
      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
      Idx = Builder.CreateAdd(Idx, Offs);
    }

    Value *End = ConstantInt::get(Idx->getType(),
                                  FalseRangeEnd-FirstFalseElement);
    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
  }

  // If a magic bitvector captures the entire comparison state
  // of this load, replace it with computation that does:
  //   ((magic_cst >> i) & 1) != 0
  {
    Type *Ty = nullptr;

    // Look for an appropriate type:
    // - The type of Idx if the magic fits
    // - The smallest fitting legal type
    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
      Ty = Idx->getType();
    else
      Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);

    if (Ty) {
      Value *V = Builder.CreateIntCast(Idx, Ty, false);
      V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
      V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    }
  }

  return nullptr;
}

/// Return a value that can be used to compare the *offset* implied by a GEP to
/// zero. For example, if we have &A[i], we want to return 'i' for
/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
/// are involved. The above expression would also be legal to codegen as
/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
/// This latter form is less amenable to optimization though, and we are allowed
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
                                          const DataLayout &DL) {
  gep_type_iterator GTI = gep_type_begin(GEP);

  // Check to see if this gep only has a single variable index.  If so, and if
  // any constant indices are a multiple of its scale, then we can compute this
  // in terms of the scale of the variable index.  For example, if the GEP
  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
  // because the expression will cross zero at the same point.
  unsigned i, e = GEP->getNumOperands();
  int64_t Offset = 0;
  for (i = 1; i != e; ++i, ++GTI) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
      // Compute the aggregate offset of constant indices.
      if (CI->isZero()) continue;

      // Handle a struct index, which adds its field offset to the pointer.
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
      } else {
        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
        Offset += Size*CI->getSExtValue();
      }
    } else {
      // Found our variable index.
      break;
    }
  }

  // If there are no variable indices, we must have a constant offset, just
  // evaluate it the general way.
  if (i == e) return nullptr;

  Value *VariableIdx = GEP->getOperand(i);
  // Determine the scale factor of the variable element.  For example, this is
  // 4 if the variable index is into an array of i32.
  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());

  // Verify that there are no other variable indices.  If so, emit the hard way.
  for (++i, ++GTI; i != e; ++i, ++GTI) {
    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    if (!CI) return nullptr;

    // Compute the aggregate offset of constant indices.
    if (CI->isZero()) continue;

    // Handle a struct index, which adds its field offset to the pointer.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    } else {
      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
      Offset += Size*CI->getSExtValue();
    }
  }

  // Okay, we know we have a single variable index, which must be a
  // pointer/array/vector index.  If there is no offset, life is simple, return
  // the index.
  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
  if (Offset == 0) {
    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    // we don't need to bother extending: the extension won't affect where the
    // computation crosses zero.
    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
      VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
    }
    return VariableIdx;
  }

  // Otherwise, there is an index.  The computation we will do will be modulo
  // the pointer size.
  Offset = SignExtend64(Offset, IntPtrWidth);
  VariableScale = SignExtend64(VariableScale, IntPtrWidth);

  // To do this transformation, any constant index must be a multiple of the
  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
  // multiple of the variable scale.
  int64_t NewOffs = Offset / (int64_t)VariableScale;
  if (Offset != NewOffs*(int64_t)VariableScale)
    return nullptr;

  // Okay, we can do this evaluation.  Start by converting the index to intptr.
  if (VariableIdx->getType() != IntPtrTy)
    VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
                                            true /*Signed*/);
  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
  return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
}

/// Returns true if we can rewrite Start as a GEP with pointer Base
/// and some integer offset. The nodes that need to be re-written
/// for this transformation will be added to Explored.
static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
                                  const DataLayout &DL,
                                  SetVector<Value *> &Explored) {
  SmallVector<Value *, 16> WorkList(1, Start);
  Explored.insert(Base);

  // The following traversal gives us an order which can be used
  // when doing the final transformation. Since in the final
  // transformation we create the PHI replacement instructions first,
  // we don't have to get them in any particular order.
  //
  // However, for other instructions we will have to traverse the
  // operands of an instruction first, which means that we have to
  // do a post-order traversal.
  while (!WorkList.empty()) {
    SetVector<PHINode *> PHIs;

    while (!WorkList.empty()) {
      if (Explored.size() >= 100)
        return false;

      Value *V = WorkList.back();

      if (Explored.count(V) != 0) {
        WorkList.pop_back();
        continue;
      }

      if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
          !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
        // We've found some value that we can't explore which is different from
        // the base. Therefore we can't do this transformation.
        return false;

      if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
        auto *CI = dyn_cast<CastInst>(V);
        if (!CI->isNoopCast(DL))
          return false;

        if (Explored.count(CI->getOperand(0)) == 0)
          WorkList.push_back(CI->getOperand(0));
      }

      if (auto *GEP = dyn_cast<GEPOperator>(V)) {
        // We're limiting the GEP to having one index. This will preserve
        // the original pointer type. We could handle more cases in the
        // future.
        if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
            GEP->getType() != Start->getType())
          return false;

        if (Explored.count(GEP->getOperand(0)) == 0)
          WorkList.push_back(GEP->getOperand(0));
      }

      if (WorkList.back() == V) {
        WorkList.pop_back();
        // We've finished visiting this node, mark it as such.
        Explored.insert(V);
      }

      if (auto *PN = dyn_cast<PHINode>(V)) {
        // We cannot transform PHIs on unsplittable basic blocks.
        if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
          return false;
        Explored.insert(PN);
        PHIs.insert(PN);
      }
    }

    // Explore the PHI nodes further.
    for (auto *PN : PHIs)
      for (Value *Op : PN->incoming_values())
        if (Explored.count(Op) == 0)
          WorkList.push_back(Op);
  }

  // Make sure that we can do this. Since we can't insert GEPs in a basic
  // block before a PHI node, we can't easily do this transformation if
  // we have PHI node users of transformed instructions.
  for (Value *Val : Explored) {
    for (Value *Use : Val->uses()) {

      auto *PHI = dyn_cast<PHINode>(Use);
      auto *Inst = dyn_cast<Instruction>(Val);

      if (Inst == Base || Inst == PHI || !Inst || !PHI ||
          Explored.count(PHI) == 0)
        continue;

      if (PHI->getParent() == Inst->getParent())
        return false;
    }
  }
  return true;
}

// Sets the appropriate insert point on Builder where we can add
// a replacement Instruction for V (if that is possible).
static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
                              bool Before = true) {
  if (auto *PHI = dyn_cast<PHINode>(V)) {
    Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
    return;
  }
  if (auto *I = dyn_cast<Instruction>(V)) {
    if (!Before)
      I = &*std::next(I->getIterator());
    Builder.SetInsertPoint(I);
    return;
  }
  if (auto *A = dyn_cast<Argument>(V)) {
    // Set the insertion point in the entry block.
    BasicBlock &Entry = A->getParent()->getEntryBlock();
    Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
    return;
  }
  // Otherwise, this is a constant and we don't need to set a new
  // insertion point.
  assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
}

/// Returns a re-written value of Start as an indexed GEP using Base as a
/// pointer.
static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
                                 const DataLayout &DL,
                                 SetVector<Value *> &Explored) {
  // Perform all the substitutions. This is a bit tricky because we can
  // have cycles in our use-def chains.
  // 1. Create the PHI nodes without any incoming values.
  // 2. Create all the other values.
  // 3. Add the edges for the PHI nodes.
  // 4. Emit GEPs to get the original pointers.
  // 5. Remove the original instructions.
  Type *IndexType = IntegerType::get(
      Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));

  DenseMap<Value *, Value *> NewInsts;
  NewInsts[Base] = ConstantInt::getNullValue(IndexType);

  // Create the new PHI nodes, without adding any incoming values.
  for (Value *Val : Explored) {
    if (Val == Base)
      continue;
    // Create empty phi nodes. This avoids cyclic dependencies when creating
    // the remaining instructions.
    if (auto *PHI = dyn_cast<PHINode>(Val))
      NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
                                      PHI->getName() + ".idx", PHI);
  }
  IRBuilder<> Builder(Base->getContext());

  // Create all the other instructions.
  for (Value *Val : Explored) {

    if (NewInsts.find(Val) != NewInsts.end())
      continue;

    if (auto *CI = dyn_cast<CastInst>(Val)) {
      // Don't get rid of the intermediate variable here; the store can grow
      // the map which will invalidate the reference to the input value.
      Value *V = NewInsts[CI->getOperand(0)];
      NewInsts[CI] = V;
      continue;
    }
    if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
      Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
                                                  : GEP->getOperand(1);
      setInsertionPoint(Builder, GEP);
      // Indices might need to be sign extended. GEPs will magically do
      // this, but we need to do it ourselves here.
      if (Index->getType()->getScalarSizeInBits() !=
          NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
        Index = Builder.CreateSExtOrTrunc(
            Index, NewInsts[GEP->getOperand(0)]->getType(),
            GEP->getOperand(0)->getName() + ".sext");
      }

      auto *Op = NewInsts[GEP->getOperand(0)];
      if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
        NewInsts[GEP] = Index;
      else
        NewInsts[GEP] = Builder.CreateNSWAdd(
            Op, Index, GEP->getOperand(0)->getName() + ".add");
      continue;
    }
    if (isa<PHINode>(Val))
      continue;

    llvm_unreachable("Unexpected instruction type");
  }

  // Add the incoming values to the PHI nodes.
  for (Value *Val : Explored) {
    if (Val == Base)
      continue;
    // All the instructions have been created, we can now add edges to the
    // phi nodes.
    if (auto *PHI = dyn_cast<PHINode>(Val)) {
      PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
      for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
        Value *NewIncoming = PHI->getIncomingValue(I);

        if (NewInsts.find(NewIncoming) != NewInsts.end())
          NewIncoming = NewInsts[NewIncoming];

        NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
      }
    }
  }

  for (Value *Val : Explored) {
    if (Val == Base)
      continue;

    // Depending on the type, for external users we have to emit
    // a GEP or a GEP + ptrtoint.
    setInsertionPoint(Builder, Val, false);

    // If required, create an inttoptr instruction for Base.
    Value *NewBase = Base;
    if (!Base->getType()->isPointerTy())
      NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
                                               Start->getName() + "to.ptr");

    Value *GEP = Builder.CreateInBoundsGEP(
        Start->getType()->getPointerElementType(), NewBase,
        makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");

    if (!Val->getType()->isPointerTy()) {
      Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
                                              Val->getName() + ".conv");
      GEP = Cast;
    }
    Val->replaceAllUsesWith(GEP);
  }

  return NewInsts[Start];
}

/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
/// the input Value as a constant indexed GEP. Returns a pair containing
/// the GEPs Pointer and Index.
static std::pair<Value *, Value *>
getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
  Type *IndexType = IntegerType::get(V->getContext(),
                                     DL.getIndexTypeSizeInBits(V->getType()));

  Constant *Index = ConstantInt::getNullValue(IndexType);
  while (true) {
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
      // We accept only inbouds GEPs here to exclude the possibility of
      // overflow.
      if (!GEP->isInBounds())
        break;
      if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
          GEP->getType() == V->getType()) {
        V = GEP->getOperand(0);
        Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
        Index = ConstantExpr::getAdd(
            Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
        continue;
      }
      break;
    }
    if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
      if (!CI->isNoopCast(DL))
        break;
      V = CI->getOperand(0);
      continue;
    }
    if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
      if (!CI->isNoopCast(DL))
        break;
      V = CI->getOperand(0);
      continue;
    }
    break;
  }
  return {V, Index};
}

/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
/// We can look through PHIs, GEPs and casts in order to determine a common base
/// between GEPLHS and RHS.
static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
                                              ICmpInst::Predicate Cond,
                                              const DataLayout &DL) {
  // FIXME: Support vector of pointers.
  if (GEPLHS->getType()->isVectorTy())
    return nullptr;

  if (!GEPLHS->hasAllConstantIndices())
    return nullptr;

  // Make sure the pointers have the same type.
  if (GEPLHS->getType() != RHS->getType())
    return nullptr;

  Value *PtrBase, *Index;
  std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);

  // The set of nodes that will take part in this transformation.
  SetVector<Value *> Nodes;

  if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
    return nullptr;

  // We know we can re-write this as
  //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
  // Since we've only looked through inbouds GEPs we know that we
  // can't have overflow on either side. We can therefore re-write
  // this as:
  //   OFFSET1 cmp OFFSET2
  Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);

  // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
  // GEP having PtrBase as the pointer base, and has returned in NewRHS the
  // offset. Since Index is the offset of LHS to the base pointer, we will now
  // compare the offsets instead of comparing the pointers.
  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
}

/// Fold comparisons between a GEP instruction and something else. At this point
/// we know that the GEP is on the LHS of the comparison.
Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
                                       ICmpInst::Predicate Cond,
                                       Instruction &I) {
  // Don't transform signed compares of GEPs into index compares. Even if the
  // GEP is inbounds, the final add of the base pointer can have signed overflow
  // and would change the result of the icmp.
  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
  // the maximum signed value for the pointer type.
  if (ICmpInst::isSigned(Cond))
    return nullptr;

  // Look through bitcasts and addrspacecasts. We do not however want to remove
  // 0 GEPs.
  if (!isa<GetElementPtrInst>(RHS))
    RHS = RHS->stripPointerCasts();

  Value *PtrBase = GEPLHS->getOperand(0);
  // FIXME: Support vector pointer GEPs.
  if (PtrBase == RHS && GEPLHS->isInBounds() &&
      !GEPLHS->getType()->isVectorTy()) {
    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    // This transformation (ignoring the base and scales) is valid because we
    // know pointers can't overflow since the gep is inbounds.  See if we can
    // output an optimized form.
    Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);

    // If not, synthesize the offset the hard way.
    if (!Offset)
      Offset = EmitGEPOffset(GEPLHS);
    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
                        Constant::getNullValue(Offset->getType()));
  }

  if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
      isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
      !NullPointerIsDefined(I.getFunction(),
                            RHS->getType()->getPointerAddressSpace())) {
    // For most address spaces, an allocation can't be placed at null, but null
    // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
    // the only valid inbounds address derived from null, is null itself.
    // Thus, we have four cases to consider:
    // 1) Base == nullptr, Offset == 0 -> inbounds, null
    // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
    // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
    // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
    //
    // (Note if we're indexing a type of size 0, that simply collapses into one
    //  of the buckets above.)
    //
    // In general, we're allowed to make values less poison (i.e. remove
    //   sources of full UB), so in this case, we just select between the two
    //   non-poison cases (1 and 4 above).
    //
    // For vectors, we apply the same reasoning on a per-lane basis.
    auto *Base = GEPLHS->getPointerOperand();
    if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
      int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements();
      Base = Builder.CreateVectorSplat(NumElts, Base);
    }
    return new ICmpInst(Cond, Base,
                        ConstantExpr::getPointerBitCastOrAddrSpaceCast(
                            cast<Constant>(RHS), Base->getType()));
  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    // If the base pointers are different, but the indices are the same, just
    // compare the base pointer.
    if (PtrBase != GEPRHS->getOperand(0)) {
      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
                        GEPRHS->getOperand(0)->getType();
      if (IndicesTheSame)
        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
            IndicesTheSame = false;
            break;
          }

      // If all indices are the same, just compare the base pointers.
      Type *BaseType = GEPLHS->getOperand(0)->getType();
      if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));

      // If we're comparing GEPs with two base pointers that only differ in type
      // and both GEPs have only constant indices or just one use, then fold
      // the compare with the adjusted indices.
      // FIXME: Support vector of pointers.
      if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
          PtrBase->stripPointerCasts() ==
              GEPRHS->getOperand(0)->stripPointerCasts() &&
          !GEPLHS->getType()->isVectorTy()) {
        Value *LOffset = EmitGEPOffset(GEPLHS);
        Value *ROffset = EmitGEPOffset(GEPRHS);

        // If we looked through an addrspacecast between different sized address
        // spaces, the LHS and RHS pointers are different sized
        // integers. Truncate to the smaller one.
        Type *LHSIndexTy = LOffset->getType();
        Type *RHSIndexTy = ROffset->getType();
        if (LHSIndexTy != RHSIndexTy) {
          if (LHSIndexTy->getPrimitiveSizeInBits() <
              RHSIndexTy->getPrimitiveSizeInBits()) {
            ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
          } else
            LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
        }

        Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
                                        LOffset, ROffset);
        return replaceInstUsesWith(I, Cmp);
      }

      // Otherwise, the base pointers are different and the indices are
      // different. Try convert this to an indexed compare by looking through
      // PHIs/casts.
      return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
    }

    // If one of the GEPs has all zero indices, recurse.
    // FIXME: Handle vector of pointers.
    if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
      return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
                         ICmpInst::getSwappedPredicate(Cond), I);

    // If the other GEP has all zero indices, recurse.
    // FIXME: Handle vector of pointers.
    if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
      return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);

    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
      // If the GEPs only differ by one index, compare it.
      unsigned NumDifferences = 0;  // Keep track of # differences.
      unsigned DiffOperand = 0;     // The operand that differs.
      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
          Type *LHSType = GEPLHS->getOperand(i)->getType();
          Type *RHSType = GEPRHS->getOperand(i)->getType();
          // FIXME: Better support for vector of pointers.
          if (LHSType->getPrimitiveSizeInBits() !=
                   RHSType->getPrimitiveSizeInBits() ||
              (GEPLHS->getType()->isVectorTy() &&
               (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
            // Irreconcilable differences.
            NumDifferences = 2;
            break;
          }

          if (NumDifferences++) break;
          DiffOperand = i;
        }

      if (NumDifferences == 0)   // SAME GEP?
        return replaceInstUsesWith(I, // No comparison is needed here.
          ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));

      else if (NumDifferences == 1 && GEPsInBounds) {
        Value *LHSV = GEPLHS->getOperand(DiffOperand);
        Value *RHSV = GEPRHS->getOperand(DiffOperand);
        // Make sure we do a signed comparison here.
        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
      }
    }

    // Only lower this if the icmp is the only user of the GEP or if we expect
    // the result to fold to a constant!
    if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
      Value *L = EmitGEPOffset(GEPLHS);
      Value *R = EmitGEPOffset(GEPRHS);
      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    }
  }

  // Try convert this to an indexed compare by looking through PHIs/casts as a
  // last resort.
  return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
}

Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
                                         const AllocaInst *Alloca,
                                         const Value *Other) {
  assert(ICI.isEquality() && "Cannot fold non-equality comparison.");

  // It would be tempting to fold away comparisons between allocas and any
  // pointer not based on that alloca (e.g. an argument). However, even
  // though such pointers cannot alias, they can still compare equal.
  //
  // But LLVM doesn't specify where allocas get their memory, so if the alloca
  // doesn't escape we can argue that it's impossible to guess its value, and we
  // can therefore act as if any such guesses are wrong.
  //
  // The code below checks that the alloca doesn't escape, and that it's only
  // used in a comparison once (the current instruction). The
  // single-comparison-use condition ensures that we're trivially folding all
  // comparisons against the alloca consistently, and avoids the risk of
  // erroneously folding a comparison of the pointer with itself.

  unsigned MaxIter = 32; // Break cycles and bound to constant-time.

  SmallVector<const Use *, 32> Worklist;
  for (const Use &U : Alloca->uses()) {
    if (Worklist.size() >= MaxIter)
      return nullptr;
    Worklist.push_back(&U);
  }

  unsigned NumCmps = 0;
  while (!Worklist.empty()) {
    assert(Worklist.size() <= MaxIter);
    const Use *U = Worklist.pop_back_val();
    const Value *V = U->getUser();
    --MaxIter;

    if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
        isa<SelectInst>(V)) {
      // Track the uses.
    } else if (isa<LoadInst>(V)) {
      // Loading from the pointer doesn't escape it.
      continue;
    } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
      // Storing *to* the pointer is fine, but storing the pointer escapes it.
      if (SI->getValueOperand() == U->get())
        return nullptr;
      continue;
    } else if (isa<ICmpInst>(V)) {
      if (NumCmps++)
        return nullptr; // Found more than one cmp.
      continue;
    } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
      switch (Intrin->getIntrinsicID()) {
        // These intrinsics don't escape or compare the pointer. Memset is safe
        // because we don't allow ptrtoint. Memcpy and memmove are safe because
        // we don't allow stores, so src cannot point to V.
        case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
        case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
          continue;
        default:
          return nullptr;
      }
    } else {
      return nullptr;
    }
    for (const Use &U : V->uses()) {
      if (Worklist.size() >= MaxIter)
        return nullptr;
      Worklist.push_back(&U);
    }
  }

  Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
  return replaceInstUsesWith(
      ICI,
      ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
}

/// Fold "icmp pred (X+C), X".
Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
                                              ICmpInst::Predicate Pred) {
  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
  // so the values can never be equal.  Similarly for all other "or equals"
  // operators.
  assert(!!C && "C should not be zero!");

  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    Constant *R = ConstantInt::get(X->getType(),
                                   APInt::getMaxValue(C.getBitWidth()) - C);
    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
  }

  // (X+1) >u X        --> X <u (0-1)        --> X != 255
  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    return new ICmpInst(ICmpInst::ICMP_ULT, X,
                        ConstantInt::get(X->getType(), -C));

  APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());

  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    return new ICmpInst(ICmpInst::ICMP_SGT, X,
                        ConstantInt::get(X->getType(), SMax - C));

  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128

  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
  return new ICmpInst(ICmpInst::ICMP_SLT, X,
                      ConstantInt::get(X->getType(), SMax - (C - 1)));
}

/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
/// (icmp eq/ne A, Log2(AP2/AP1)) ->
/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
                                                 const APInt &AP1,
                                                 const APInt &AP2) {
  assert(I.isEquality() && "Cannot fold icmp gt/lt");

  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
    if (I.getPredicate() == I.ICMP_NE)
      Pred = CmpInst::getInversePredicate(Pred);
    return new ICmpInst(Pred, LHS, RHS);
  };

  // Don't bother doing any work for cases which InstSimplify handles.
  if (AP2.isNullValue())
    return nullptr;

  bool IsAShr = isa<AShrOperator>(I.getOperand(0));
  if (IsAShr) {
    if (AP2.isAllOnesValue())
      return nullptr;
    if (AP2.isNegative() != AP1.isNegative())
      return nullptr;
    if (AP2.sgt(AP1))
      return nullptr;
  }

  if (!AP1)
    // 'A' must be large enough to shift out the highest set bit.
    return getICmp(I.ICMP_UGT, A,
                   ConstantInt::get(A->getType(), AP2.logBase2()));

  if (AP1 == AP2)
    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));

  int Shift;
  if (IsAShr && AP1.isNegative())
    Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
  else
    Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();

  if (Shift > 0) {
    if (IsAShr && AP1 == AP2.ashr(Shift)) {
      // There are multiple solutions if we are comparing against -1 and the LHS
      // of the ashr is not a power of two.
      if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
        return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
    } else if (AP1 == AP2.lshr(Shift)) {
      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
    }
  }

  // Shifting const2 will never be equal to const1.
  // FIXME: This should always be handled by InstSimplify?
  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
  return replaceInstUsesWith(I, TorF);
}

/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
                                                 const APInt &AP1,
                                                 const APInt &AP2) {
  assert(I.isEquality() && "Cannot fold icmp gt/lt");

  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
    if (I.getPredicate() == I.ICMP_NE)
      Pred = CmpInst::getInversePredicate(Pred);
    return new ICmpInst(Pred, LHS, RHS);
  };

  // Don't bother doing any work for cases which InstSimplify handles.
  if (AP2.isNullValue())
    return nullptr;

  unsigned AP2TrailingZeros = AP2.countTrailingZeros();

  if (!AP1 && AP2TrailingZeros != 0)
    return getICmp(
        I.ICMP_UGE, A,
        ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));

  if (AP1 == AP2)
    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));

  // Get the distance between the lowest bits that are set.
  int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;

  if (Shift > 0 && AP2.shl(Shift) == AP1)
    return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));

  // Shifting const2 will never be equal to const1.
  // FIXME: This should always be handled by InstSimplify?
  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
  return replaceInstUsesWith(I, TorF);
}

/// The caller has matched a pattern of the form:
///   I = icmp ugt (add (add A, B), CI2), CI1
/// If this is of the form:
///   sum = a + b
///   if (sum+128 >u 255)
/// Then replace it with llvm.sadd.with.overflow.i8.
///
static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
                                          ConstantInt *CI2, ConstantInt *CI1,
                                          InstCombiner &IC) {
  // The transformation we're trying to do here is to transform this into an
  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
  // with a narrower add, and discard the add-with-constant that is part of the
  // range check (if we can't eliminate it, this isn't profitable).

  // In order to eliminate the add-with-constant, the compare can be its only
  // use.
  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
  if (!AddWithCst->hasOneUse())
    return nullptr;

  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
  if (!CI2->getValue().isPowerOf2())
    return nullptr;
  unsigned NewWidth = CI2->getValue().countTrailingZeros();
  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
    return nullptr;

  // The width of the new add formed is 1 more than the bias.
  ++NewWidth;

  // Check to see that CI1 is an all-ones value with NewWidth bits.
  if (CI1->getBitWidth() == NewWidth ||
      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
    return nullptr;

  // This is only really a signed overflow check if the inputs have been
  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
    return nullptr;

  // In order to replace the original add with a narrower
  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
  // and truncates that discard the high bits of the add.  Verify that this is
  // the case.
  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
  for (User *U : OrigAdd->users()) {
    if (U == AddWithCst)
      continue;

    // Only accept truncates for now.  We would really like a nice recursive
    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
    // chain to see which bits of a value are actually demanded.  If the
    // original add had another add which was then immediately truncated, we
    // could still do the transformation.
    TruncInst *TI = dyn_cast<TruncInst>(U);
    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
      return nullptr;
  }

  // If the pattern matches, truncate the inputs to the narrower type and
  // use the sadd_with_overflow intrinsic to efficiently compute both the
  // result and the overflow bit.
  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
  Function *F = Intrinsic::getDeclaration(
      I.getModule(), Intrinsic::sadd_with_overflow, NewType);

  InstCombiner::BuilderTy &Builder = IC.Builder;

  // Put the new code above the original add, in case there are any uses of the
  // add between the add and the compare.
  Builder.SetInsertPoint(OrigAdd);

  Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
  Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
  CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
  Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
  Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());

  // The inner add was the result of the narrow add, zero extended to the
  // wider type.  Replace it with the result computed by the intrinsic.
  IC.replaceInstUsesWith(*OrigAdd, ZExt);
  IC.eraseInstFromFunction(*OrigAdd);

  // The original icmp gets replaced with the overflow value.
  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
}

/// If we have:
///   icmp eq/ne (urem/srem %x, %y), 0
/// iff %y is a power-of-two, we can replace this with a bit test:
///   icmp eq/ne (and %x, (add %y, -1)), 0
Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
  // This fold is only valid for equality predicates.
  if (!I.isEquality())
    return nullptr;
  ICmpInst::Predicate Pred;
  Value *X, *Y, *Zero;
  if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
                        m_CombineAnd(m_Zero(), m_Value(Zero)))))
    return nullptr;
  if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
    return nullptr;
  // This may increase instruction count, we don't enforce that Y is a constant.
  Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
  Value *Masked = Builder.CreateAnd(X, Mask);
  return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
}

/// Fold equality-comparison between zero and any (maybe truncated) right-shift
/// by one-less-than-bitwidth into a sign test on the original value.
Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
  Instruction *Val;
  ICmpInst::Predicate Pred;
  if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
    return nullptr;

  Value *X;
  Type *XTy;

  Constant *C;
  if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
    XTy = X->getType();
    unsigned XBitWidth = XTy->getScalarSizeInBits();
    if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
                                     APInt(XBitWidth, XBitWidth - 1))))
      return nullptr;
  } else if (isa<BinaryOperator>(Val) &&
             (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
                  cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
                  /*AnalyzeForSignBitExtraction=*/true))) {
    XTy = X->getType();
  } else
    return nullptr;

  return ICmpInst::Create(Instruction::ICmp,
                          Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
                                                    : ICmpInst::ICMP_SLT,
                          X, ConstantInt::getNullValue(XTy));
}

// Handle  icmp pred X, 0
Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
  CmpInst::Predicate Pred = Cmp.getPredicate();
  if (!match(Cmp.getOperand(1), m_Zero()))
    return nullptr;

  // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
  if (Pred == ICmpInst::ICMP_SGT) {
    Value *A, *B;
    SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
    if (SPR.Flavor == SPF_SMIN) {
      if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
        return new ICmpInst(Pred, B, Cmp.getOperand(1));
      if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
        return new ICmpInst(Pred, A, Cmp.getOperand(1));
    }
  }

  if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
    return New;

  // Given:
  //   icmp eq/ne (urem %x, %y), 0
  // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
  //   icmp eq/ne %x, 0
  Value *X, *Y;
  if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
      ICmpInst::isEquality(Pred)) {
    KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
    KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
    if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
      return new ICmpInst(Pred, X, Cmp.getOperand(1));
  }

  return nullptr;
}

/// Fold icmp Pred X, C.
/// TODO: This code structure does not make sense. The saturating add fold
/// should be moved to some other helper and extended as noted below (it is also
/// possible that code has been made unnecessary - do we canonicalize IR to
/// overflow/saturating intrinsics or not?).
Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
  // Match the following pattern, which is a common idiom when writing
  // overflow-safe integer arithmetic functions. The source performs an addition
  // in wider type and explicitly checks for overflow using comparisons against
  // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
  //
  // TODO: This could probably be generalized to handle other overflow-safe
  // operations if we worked out the formulas to compute the appropriate magic
  // constants.
  //
  // sum = a + b
  // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
  CmpInst::Predicate Pred = Cmp.getPredicate();
  Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
  Value *A, *B;
  ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
  if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
      match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
    if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
      return Res;

  // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
  Constant *C = dyn_cast<Constant>(Op1);
  if (!C)
    return nullptr;

  if (auto *Phi = dyn_cast<PHINode>(Op0))
    if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
      Type *Ty = Cmp.getType();
      Builder.SetInsertPoint(Phi);
      PHINode *NewPhi =
          Builder.CreatePHI(Ty, Phi->getNumOperands());
      for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
        auto *Input =
            cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
        auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
        NewPhi->addIncoming(BoolInput, Predecessor);
      }
      NewPhi->takeName(&Cmp);
      return replaceInstUsesWith(Cmp, NewPhi);
    }

  return nullptr;
}

/// Canonicalize icmp instructions based on dominating conditions.
Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
  // This is a cheap/incomplete check for dominance - just match a single
  // predecessor with a conditional branch.
  BasicBlock *CmpBB = Cmp.getParent();
  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
  if (!DomBB)
    return nullptr;

  Value *DomCond;
  BasicBlock *TrueBB, *FalseBB;
  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
    return nullptr;

  assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
         "Predecessor block does not point to successor?");

  // The branch should get simplified. Don't bother simplifying this condition.
  if (TrueBB == FalseBB)
    return nullptr;

  // Try to simplify this compare to T/F based on the dominating condition.
  Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
  if (Imp)
    return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));

  CmpInst::Predicate Pred = Cmp.getPredicate();
  Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
  ICmpInst::Predicate DomPred;
  const APInt *C, *DomC;
  if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
      match(Y, m_APInt(C))) {
    // We have 2 compares of a variable with constants. Calculate the constant
    // ranges of those compares to see if we can transform the 2nd compare:
    // DomBB:
    //   DomCond = icmp DomPred X, DomC
    //   br DomCond, CmpBB, FalseBB
    // CmpBB:
    //   Cmp = icmp Pred X, C
    ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
    ConstantRange DominatingCR =
        (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
                          : ConstantRange::makeExactICmpRegion(
                                CmpInst::getInversePredicate(DomPred), *DomC);
    ConstantRange Intersection = DominatingCR.intersectWith(CR);
    ConstantRange Difference = DominatingCR.difference(CR);
    if (Intersection.isEmptySet())
      return replaceInstUsesWith(Cmp, Builder.getFalse());
    if (Difference.isEmptySet())
      return replaceInstUsesWith(Cmp, Builder.getTrue());

    // Canonicalizing a sign bit comparison that gets used in a branch,
    // pessimizes codegen by generating branch on zero instruction instead
    // of a test and branch. So we avoid canonicalizing in such situations
    // because test and branch instruction has better branch displacement
    // than compare and branch instruction.
    bool UnusedBit;
    bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
    if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
      return nullptr;

    if (const APInt *EqC = Intersection.getSingleElement())
      return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
    if (const APInt *NeC = Difference.getSingleElement())
      return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
  }

  return nullptr;
}

/// Fold icmp (trunc X, Y), C.
Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
                                                 TruncInst *Trunc,
                                                 const APInt &C) {
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  Value *X = Trunc->getOperand(0);
  if (C.isOneValue() && C.getBitWidth() > 1) {
    // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
    Value *V = nullptr;
    if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
      return new ICmpInst(ICmpInst::ICMP_SLT, V,
                          ConstantInt::get(V->getType(), 1));
  }

  if (Cmp.isEquality() && Trunc->hasOneUse()) {
    // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
    // of the high bits truncated out of x are known.
    unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
             SrcBits = X->getType()->getScalarSizeInBits();
    KnownBits Known = computeKnownBits(X, 0, &Cmp);

    // If all the high bits are known, we can do this xform.
    if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
      // Pull in the high bits from known-ones set.
      APInt NewRHS = C.zext(SrcBits);
      NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
    }
  }

  return nullptr;
}

/// Fold icmp (xor X, Y), C.
Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
                                               BinaryOperator *Xor,
                                               const APInt &C) {
  Value *X = Xor->getOperand(0);
  Value *Y = Xor->getOperand(1);
  const APInt *XorC;
  if (!match(Y, m_APInt(XorC)))
    return nullptr;

  // If this is a comparison that tests the signbit (X < 0) or (x > -1),
  // fold the xor.
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  bool TrueIfSigned = false;
  if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {

    // If the sign bit of the XorCst is not set, there is no change to
    // the operation, just stop using the Xor.
    if (!XorC->isNegative())
      return replaceOperand(Cmp, 0, X);

    // Emit the opposite comparison.
    if (TrueIfSigned)
      return new ICmpInst(ICmpInst::ICMP_SGT, X,
                          ConstantInt::getAllOnesValue(X->getType()));
    else
      return new ICmpInst(ICmpInst::ICMP_SLT, X,
                          ConstantInt::getNullValue(X->getType()));
  }

  if (Xor->hasOneUse()) {
    // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
    if (!Cmp.isEquality() && XorC->isSignMask()) {
      Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
                            : Cmp.getSignedPredicate();
      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
    }

    // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
    if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
      Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
                            : Cmp.getSignedPredicate();
      Pred = Cmp.getSwappedPredicate(Pred);
      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
    }
  }

  // Mask constant magic can eliminate an 'xor' with unsigned compares.
  if (Pred == ICmpInst::ICMP_UGT) {
    // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
    if (*XorC == ~C && (C + 1).isPowerOf2())
      return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
    // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
    if (*XorC == C && (C + 1).isPowerOf2())
      return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
  }
  if (Pred == ICmpInst::ICMP_ULT) {
    // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
    if (*XorC == -C && C.isPowerOf2())
      return new ICmpInst(ICmpInst::ICMP_UGT, X,
                          ConstantInt::get(X->getType(), ~C));
    // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
    if (*XorC == C && (-C).isPowerOf2())
      return new ICmpInst(ICmpInst::ICMP_UGT, X,
                          ConstantInt::get(X->getType(), ~C));
  }
  return nullptr;
}

/// Fold icmp (and (sh X, Y), C2), C1.
Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
                                            const APInt &C1, const APInt &C2) {
  BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
  if (!Shift || !Shift->isShift())
    return nullptr;

  // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
  // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
  // code produced by the clang front-end, for bitfield access.
  // This seemingly simple opportunity to fold away a shift turns out to be
  // rather complicated. See PR17827 for details.
  unsigned ShiftOpcode = Shift->getOpcode();
  bool IsShl = ShiftOpcode == Instruction::Shl;
  const APInt *C3;
  if (match(Shift->getOperand(1), m_APInt(C3))) {
    APInt NewAndCst, NewCmpCst;
    bool AnyCmpCstBitsShiftedOut;
    if (ShiftOpcode == Instruction::Shl) {
      // For a left shift, we can fold if the comparison is not signed. We can
      // also fold a signed comparison if the mask value and comparison value
      // are not negative. These constraints may not be obvious, but we can
      // prove that they are correct using an SMT solver.
      if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
        return nullptr;

      NewCmpCst = C1.lshr(*C3);
      NewAndCst = C2.lshr(*C3);
      AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
    } else if (ShiftOpcode == Instruction::LShr) {
      // For a logical right shift, we can fold if the comparison is not signed.
      // We can also fold a signed comparison if the shifted mask value and the
      // shifted comparison value are not negative. These constraints may not be
      // obvious, but we can prove that they are correct using an SMT solver.
      NewCmpCst = C1.shl(*C3);
      NewAndCst = C2.shl(*C3);
      AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
      if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
        return nullptr;
    } else {
      // For an arithmetic shift, check that both constants don't use (in a
      // signed sense) the top bits being shifted out.
      assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
      NewCmpCst = C1.shl(*C3);
      NewAndCst = C2.shl(*C3);
      AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
      if (NewAndCst.ashr(*C3) != C2)
        return nullptr;
    }

    if (AnyCmpCstBitsShiftedOut) {
      // If we shifted bits out, the fold is not going to work out. As a
      // special case, check to see if this means that the result is always
      // true or false now.
      if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
        return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
      if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
        return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
    } else {
      Value *NewAnd = Builder.CreateAnd(
          Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
      return new ICmpInst(Cmp.getPredicate(),
          NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
    }
  }

  // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
  // preferable because it allows the C2 << Y expression to be hoisted out of a
  // loop if Y is invariant and X is not.
  if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
      !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
    // Compute C2 << Y.
    Value *NewShift =
        IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
              : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));

    // Compute X & (C2 << Y).
    Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
    return replaceOperand(Cmp, 0, NewAnd);
  }

  return nullptr;
}

/// Fold icmp (and X, C2), C1.
Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
                                                 BinaryOperator *And,
                                                 const APInt &C1) {
  bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;

  // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
  // TODO: We canonicalize to the longer form for scalars because we have
  // better analysis/folds for icmp, and codegen may be better with icmp.
  if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
      match(And->getOperand(1), m_One()))
    return new TruncInst(And->getOperand(0), Cmp.getType());

  const APInt *C2;
  Value *X;
  if (!match(And, m_And(m_Value(X), m_APInt(C2))))
    return nullptr;

  // Don't perform the following transforms if the AND has multiple uses
  if (!And->hasOneUse())
    return nullptr;

  if (Cmp.isEquality() && C1.isNullValue()) {
    // Restrict this fold to single-use 'and' (PR10267).
    // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
    if (C2->isSignMask()) {
      Constant *Zero = Constant::getNullValue(X->getType());
      auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
      return new ICmpInst(NewPred, X, Zero);
    }

    // Restrict this fold only for single-use 'and' (PR10267).
    // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
    if ((~(*C2) + 1).isPowerOf2()) {
      Constant *NegBOC =
          ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
      auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
      return new ICmpInst(NewPred, X, NegBOC);
    }
  }

  // If the LHS is an 'and' of a truncate and we can widen the and/compare to
  // the input width without changing the value produced, eliminate the cast:
  //
  // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
  //
  // We can do this transformation if the constants do not have their sign bits
  // set or if it is an equality comparison. Extending a relational comparison
  // when we're checking the sign bit would not work.
  Value *W;
  if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
      (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
    // TODO: Is this a good transform for vectors? Wider types may reduce
    // throughput. Should this transform be limited (even for scalars) by using
    // shouldChangeType()?
    if (!Cmp.getType()->isVectorTy()) {
      Type *WideType = W->getType();
      unsigned WideScalarBits = WideType->getScalarSizeInBits();
      Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
      Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
      Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
      return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
    }
  }

  if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
    return I;

  // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
  // (icmp pred (and A, (or (shl 1, B), 1), 0))
  //
  // iff pred isn't signed
  if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
      match(And->getOperand(1), m_One())) {
    Constant *One = cast<Constant>(And->getOperand(1));
    Value *Or = And->getOperand(0);
    Value *A, *B, *LShr;
    if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
        match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
      unsigned UsesRemoved = 0;
      if (And->hasOneUse())
        ++UsesRemoved;
      if (Or->hasOneUse())
        ++UsesRemoved;
      if (LShr->hasOneUse())
        ++UsesRemoved;

      // Compute A & ((1 << B) | 1)
      Value *NewOr = nullptr;
      if (auto *C = dyn_cast<Constant>(B)) {
        if (UsesRemoved >= 1)
          NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
      } else {
        if (UsesRemoved >= 3)
          NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
                                                     /*HasNUW=*/true),
                                   One, Or->getName());
      }
      if (NewOr) {
        Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
        return replaceOperand(Cmp, 0, NewAnd);
      }
    }
  }

  return nullptr;
}

/// Fold icmp (and X, Y), C.
Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
                                               BinaryOperator *And,
                                               const APInt &C) {
  if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
    return I;

  // TODO: These all require that Y is constant too, so refactor with the above.

  // Try to optimize things like "A[i] & 42 == 0" to index computations.
  Value *X = And->getOperand(0);
  Value *Y = And->getOperand(1);
  if (auto *LI = dyn_cast<LoadInst>(X))
    if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
      if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
        if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
            !LI->isVolatile() && isa<ConstantInt>(Y)) {
          ConstantInt *C2 = cast<ConstantInt>(Y);
          if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
            return Res;
        }

  if (!Cmp.isEquality())
    return nullptr;

  // X & -C == -C -> X >  u ~C
  // X & -C != -C -> X <= u ~C
  //   iff C is a power of 2
  if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
    auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
                                                          : CmpInst::ICMP_ULE;
    return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
  }

  // (X & C2) == 0 -> (trunc X) >= 0
  // (X & C2) != 0 -> (trunc X) <  0
  //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
  const APInt *C2;
  if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
    int32_t ExactLogBase2 = C2->exactLogBase2();
    if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
      Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
      if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
        NTy = FixedVectorType::get(NTy, AndVTy->getNumElements());
      Value *Trunc = Builder.CreateTrunc(X, NTy);
      auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
                                                            : CmpInst::ICMP_SLT;
      return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
    }
  }

  return nullptr;
}

/// Fold icmp (or X, Y), C.
Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
                                              const APInt &C) {
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  if (C.isOneValue()) {
    // icmp slt signum(V) 1 --> icmp slt V, 1
    Value *V = nullptr;
    if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
      return new ICmpInst(ICmpInst::ICMP_SLT, V,
                          ConstantInt::get(V->getType(), 1));
  }

  Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
  const APInt *MaskC;
  if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
    if (*MaskC == C && (C + 1).isPowerOf2()) {
      // X | C == C --> X <=u C
      // X | C != C --> X  >u C
      //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
      Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
      return new ICmpInst(Pred, OrOp0, OrOp1);
    }

    // More general: canonicalize 'equality with set bits mask' to
    // 'equality with clear bits mask'.
    // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
    // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
    if (Or->hasOneUse()) {
      Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
      Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
      return new ICmpInst(Pred, And, NewC);
    }
  }

  if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
    return nullptr;

  Value *P, *Q;
  if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
    // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
    // -> and (icmp eq P, null), (icmp eq Q, null).
    Value *CmpP =
        Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
    Value *CmpQ =
        Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
    auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
    return BinaryOperator::Create(BOpc, CmpP, CmpQ);
  }

  // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
  // a shorter form that has more potential to be folded even further.
  Value *X1, *X2, *X3, *X4;
  if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
      match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
    // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
    // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
    Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
    Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
    auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
    return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
  }

  return nullptr;
}

/// Fold icmp (mul X, Y), C.
Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
                                               BinaryOperator *Mul,
                                               const APInt &C) {
  const APInt *MulC;
  if (!match(Mul->getOperand(1), m_APInt(MulC)))
    return nullptr;

  // If this is a test of the sign bit and the multiply is sign-preserving with
  // a constant operand, use the multiply LHS operand instead.
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
    if (MulC->isNegative())
      Pred = ICmpInst::getSwappedPredicate(Pred);
    return new ICmpInst(Pred, Mul->getOperand(0),
                        Constant::getNullValue(Mul->getType()));
  }

  return nullptr;
}

/// Fold icmp (shl 1, Y), C.
static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
                                   const APInt &C) {
  Value *Y;
  if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
    return nullptr;

  Type *ShiftType = Shl->getType();
  unsigned TypeBits = C.getBitWidth();
  bool CIsPowerOf2 = C.isPowerOf2();
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  if (Cmp.isUnsigned()) {
    // (1 << Y) pred C -> Y pred Log2(C)
    if (!CIsPowerOf2) {
      // (1 << Y) <  30 -> Y <= 4
      // (1 << Y) <= 30 -> Y <= 4
      // (1 << Y) >= 30 -> Y >  4
      // (1 << Y) >  30 -> Y >  4
      if (Pred == ICmpInst::ICMP_ULT)
        Pred = ICmpInst::ICMP_ULE;
      else if (Pred == ICmpInst::ICMP_UGE)
        Pred = ICmpInst::ICMP_UGT;
    }

    // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
    // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
    unsigned CLog2 = C.logBase2();
    if (CLog2 == TypeBits - 1) {
      if (Pred == ICmpInst::ICMP_UGE)
        Pred = ICmpInst::ICMP_EQ;
      else if (Pred == ICmpInst::ICMP_ULT)
        Pred = ICmpInst::ICMP_NE;
    }
    return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
  } else if (Cmp.isSigned()) {
    Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
    if (C.isAllOnesValue()) {
      // (1 << Y) <= -1 -> Y == 31
      if (Pred == ICmpInst::ICMP_SLE)
        return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);

      // (1 << Y) >  -1 -> Y != 31
      if (Pred == ICmpInst::ICMP_SGT)
        return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
    } else if (!C) {
      // (1 << Y) <  0 -> Y == 31
      // (1 << Y) <= 0 -> Y == 31
      if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
        return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);

      // (1 << Y) >= 0 -> Y != 31
      // (1 << Y) >  0 -> Y != 31
      if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
        return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
    }
  } else if (Cmp.isEquality() && CIsPowerOf2) {
    return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
  }

  return nullptr;
}

/// Fold icmp (shl X, Y), C.
Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
                                               BinaryOperator *Shl,
                                               const APInt &C) {
  const APInt *ShiftVal;
  if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
    return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);

  const APInt *ShiftAmt;
  if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
    return foldICmpShlOne(Cmp, Shl, C);

  // Check that the shift amount is in range. If not, don't perform undefined
  // shifts. When the shift is visited, it will be simplified.
  unsigned TypeBits = C.getBitWidth();
  if (ShiftAmt->uge(TypeBits))
    return nullptr;

  ICmpInst::Predicate Pred = Cmp.getPredicate();
  Value *X = Shl->getOperand(0);
  Type *ShType = Shl->getType();

  // NSW guarantees that we are only shifting out sign bits from the high bits,
  // so we can ASHR the compare constant without needing a mask and eliminate
  // the shift.
  if (Shl->hasNoSignedWrap()) {
    if (Pred == ICmpInst::ICMP_SGT) {
      // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
      APInt ShiftedC = C.ashr(*ShiftAmt);
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
    }
    if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
        C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
      APInt ShiftedC = C.ashr(*ShiftAmt);
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
    }
    if (Pred == ICmpInst::ICMP_SLT) {
      // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
      // (X << S) <=s C is equiv to X <=s (C >> S) for all C
      // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
      // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
      assert(!C.isMinSignedValue() && "Unexpected icmp slt");
      APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
    }
    // If this is a signed comparison to 0 and the shift is sign preserving,
    // use the shift LHS operand instead; isSignTest may change 'Pred', so only
    // do that if we're sure to not continue on in this function.
    if (isSignTest(Pred, C))
      return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
  }

  // NUW guarantees that we are only shifting out zero bits from the high bits,
  // so we can LSHR the compare constant without needing a mask and eliminate
  // the shift.
  if (Shl->hasNoUnsignedWrap()) {
    if (Pred == ICmpInst::ICMP_UGT) {
      // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
      APInt ShiftedC = C.lshr(*ShiftAmt);
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
    }
    if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
        C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
      APInt ShiftedC = C.lshr(*ShiftAmt);
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
    }
    if (Pred == ICmpInst::ICMP_ULT) {
      // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
      // (X << S) <=u C is equiv to X <=u (C >> S) for all C
      // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
      // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
      assert(C.ugt(0) && "ult 0 should have been eliminated");
      APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
    }
  }

  if (Cmp.isEquality() && Shl->hasOneUse()) {
    // Strength-reduce the shift into an 'and'.
    Constant *Mask = ConstantInt::get(
        ShType,
        APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
    Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
    Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
    return new ICmpInst(Pred, And, LShrC);
  }

  // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
  bool TrueIfSigned = false;
  if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
    // (X << 31) <s 0  --> (X & 1) != 0
    Constant *Mask = ConstantInt::get(
        ShType,
        APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
    Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
    return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
                        And, Constant::getNullValue(ShType));
  }

  // Simplify 'shl' inequality test into 'and' equality test.
  if (Cmp.isUnsigned() && Shl->hasOneUse()) {
    // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
    if ((C + 1).isPowerOf2() &&
        (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
      Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
      return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
                                                     : ICmpInst::ICMP_NE,
                          And, Constant::getNullValue(ShType));
    }
    // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
    if (C.isPowerOf2() &&
        (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
      Value *And =
          Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
      return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
                                                     : ICmpInst::ICMP_NE,
                          And, Constant::getNullValue(ShType));
    }
  }

  // Transform (icmp pred iM (shl iM %v, N), C)
  // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
  // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
  // This enables us to get rid of the shift in favor of a trunc that may be
  // free on the target. It has the additional benefit of comparing to a
  // smaller constant that may be more target-friendly.
  unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
  if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
      DL.isLegalInteger(TypeBits - Amt)) {
    Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
    if (auto *ShVTy = dyn_cast<VectorType>(ShType))
      TruncTy = FixedVectorType::get(TruncTy, ShVTy->getNumElements());
    Constant *NewC =
        ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
    return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
  }

  return nullptr;
}

/// Fold icmp ({al}shr X, Y), C.
Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
                                               BinaryOperator *Shr,
                                               const APInt &C) {
  // An exact shr only shifts out zero bits, so:
  // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
  Value *X = Shr->getOperand(0);
  CmpInst::Predicate Pred = Cmp.getPredicate();
  if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
      C.isNullValue())
    return new ICmpInst(Pred, X, Cmp.getOperand(1));

  const APInt *ShiftVal;
  if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
    return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);

  const APInt *ShiftAmt;
  if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
    return nullptr;

  // Check that the shift amount is in range. If not, don't perform undefined
  // shifts. When the shift is visited it will be simplified.
  unsigned TypeBits = C.getBitWidth();
  unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    return nullptr;

  bool IsAShr = Shr->getOpcode() == Instruction::AShr;
  bool IsExact = Shr->isExact();
  Type *ShrTy = Shr->getType();
  // TODO: If we could guarantee that InstSimplify would handle all of the
  // constant-value-based preconditions in the folds below, then we could assert
  // those conditions rather than checking them. This is difficult because of
  // undef/poison (PR34838).
  if (IsAShr) {
    if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
      // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
      // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
      APInt ShiftedC = C.shl(ShAmtVal);
      if (ShiftedC.ashr(ShAmtVal) == C)
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
    }
    if (Pred == CmpInst::ICMP_SGT) {
      // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
      APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
      if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
          (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
    }
  } else {
    if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
      // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
      // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
      APInt ShiftedC = C.shl(ShAmtVal);
      if (ShiftedC.lshr(ShAmtVal) == C)
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
    }
    if (Pred == CmpInst::ICMP_UGT) {
      // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
      APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
      if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
    }
  }

  if (!Cmp.isEquality())
    return nullptr;

  // Handle equality comparisons of shift-by-constant.

  // If the comparison constant changes with the shift, the comparison cannot
  // succeed (bits of the comparison constant cannot match the shifted value).
  // This should be known by InstSimplify and already be folded to true/false.
  assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
          (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
         "Expected icmp+shr simplify did not occur.");

  // If the bits shifted out are known zero, compare the unshifted value:
  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
  if (Shr->isExact())
    return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));

  if (Shr->hasOneUse()) {
    // Canonicalize the shift into an 'and':
    // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
    Constant *Mask = ConstantInt::get(ShrTy, Val);
    Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
    return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
  }

  return nullptr;
}

Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
                                                BinaryOperator *SRem,
                                                const APInt &C) {
  // Match an 'is positive' or 'is negative' comparison of remainder by a
  // constant power-of-2 value:
  // (X % pow2C) sgt/slt 0
  const ICmpInst::Predicate Pred = Cmp.getPredicate();
  if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
    return nullptr;

  // TODO: The one-use check is standard because we do not typically want to
  //       create longer instruction sequences, but this might be a special-case
  //       because srem is not good for analysis or codegen.
  if (!SRem->hasOneUse())
    return nullptr;

  const APInt *DivisorC;
  if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
    return nullptr;

  // Mask off the sign bit and the modulo bits (low-bits).
  Type *Ty = SRem->getType();
  APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
  Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
  Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);

  // For 'is positive?' check that the sign-bit is clear and at least 1 masked
  // bit is set. Example:
  // (i8 X % 32) s> 0 --> (X & 159) s> 0
  if (Pred == ICmpInst::ICMP_SGT)
    return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));

  // For 'is negative?' check that the sign-bit is set and at least 1 masked
  // bit is set. Example:
  // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
  return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
}

/// Fold icmp (udiv X, Y), C.
Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
                                                BinaryOperator *UDiv,
                                                const APInt &C) {
  const APInt *C2;
  if (!match(UDiv->getOperand(0), m_APInt(C2)))
    return nullptr;

  assert(*C2 != 0 && "udiv 0, X should have been simplified already.");

  // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
  Value *Y = UDiv->getOperand(1);
  if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
    assert(!C.isMaxValue() &&
           "icmp ugt X, UINT_MAX should have been simplified already.");
    return new ICmpInst(ICmpInst::ICMP_ULE, Y,
                        ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
  }

  // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
  if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
    assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
    return new ICmpInst(ICmpInst::ICMP_UGT, Y,
                        ConstantInt::get(Y->getType(), C2->udiv(C)));
  }

  return nullptr;
}

/// Fold icmp ({su}div X, Y), C.
Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
                                               BinaryOperator *Div,
                                               const APInt &C) {
  // Fold: icmp pred ([us]div X, C2), C -> range test
  // Fold this div into the comparison, producing a range check.
  // Determine, based on the divide type, what the range is being
  // checked.  If there is an overflow on the low or high side, remember
  // it, otherwise compute the range [low, hi) bounding the new value.
  // See: InsertRangeTest above for the kinds of replacements possible.
  const APInt *C2;
  if (!match(Div->getOperand(1), m_APInt(C2)))
    return nullptr;

  // FIXME: If the operand types don't match the type of the divide
  // then don't attempt this transform. The code below doesn't have the
  // logic to deal with a signed divide and an unsigned compare (and
  // vice versa). This is because (x /s C2) <s C  produces different
  // results than (x /s C2) <u C or (x /u C2) <s C or even
  // (x /u C2) <u C.  Simply casting the operands and result won't
  // work. :(  The if statement below tests that condition and bails
  // if it finds it.
  bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
  if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
    return nullptr;

  // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
  // INT_MIN will also fail if the divisor is 1. Although folds of all these
  // division-by-constant cases should be present, we can not assert that they
  // have happened before we reach this icmp instruction.
  if (C2->isNullValue() || C2->isOneValue() ||
      (DivIsSigned && C2->isAllOnesValue()))
    return nullptr;

  // Compute Prod = C * C2. We are essentially solving an equation of
  // form X / C2 = C. We solve for X by multiplying C2 and C.
  // By solving for X, we can turn this into a range check instead of computing
  // a divide.
  APInt Prod = C * *C2;

  // Determine if the product overflows by seeing if the product is not equal to
  // the divide. Make sure we do the same kind of divide as in the LHS
  // instruction that we're folding.
  bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;

  ICmpInst::Predicate Pred = Cmp.getPredicate();

  // If the division is known to be exact, then there is no remainder from the
  // divide, so the covered range size is unit, otherwise it is the divisor.
  APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;

  // Figure out the interval that is being checked.  For example, a comparison
  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
  // Compute this interval based on the constants involved and the signedness of
  // the compare/divide.  This computes a half-open interval, keeping track of
  // whether either value in the interval overflows.  After analysis each
  // overflow variable is set to 0 if it's corresponding bound variable is valid
  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
  int LoOverflow = 0, HiOverflow = 0;
  APInt LoBound, HiBound;

  if (!DivIsSigned) {  // udiv
    // e.g. X/5 op 3  --> [15, 20)
    LoBound = Prod;
    HiOverflow = LoOverflow = ProdOV;
    if (!HiOverflow) {
      // If this is not an exact divide, then many values in the range collapse
      // to the same result value.
      HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
    }
  } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
    if (C.isNullValue()) {       // (X / pos) op 0
      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
      LoBound = -(RangeSize - 1);
      HiBound = RangeSize;
    } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
      HiOverflow = LoOverflow = ProdOV;
      if (!HiOverflow)
        HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
    } else {                       // (X / pos) op neg
      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
      HiBound = Prod + 1;
      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
      if (!LoOverflow) {
        APInt DivNeg = -RangeSize;
        LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
      }
    }
  } else if (C2->isNegative()) { // Divisor is < 0.
    if (Div->isExact())
      RangeSize.negate();
    if (C.isNullValue()) { // (X / neg) op 0
      // e.g. X/-5 op 0  --> [-4, 5)
      LoBound = RangeSize + 1;
      HiBound = -RangeSize;
      if (HiBound == *C2) {        // -INTMIN = INTMIN
        HiOverflow = 1;            // [INTMIN+1, overflow)
        HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
      }
    } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
      // e.g. X/-5 op 3  --> [-19, -14)
      HiBound = Prod + 1;
      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
      if (!LoOverflow)
        LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    } else {                       // (X / neg) op neg
      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
      LoOverflow = HiOverflow = ProdOV;
      if (!HiOverflow)
        HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
    }

    // Dividing by a negative swaps the condition.  LT <-> GT
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  Value *X = Div->getOperand(0);
  switch (Pred) {
    default: llvm_unreachable("Unhandled icmp opcode!");
    case ICmpInst::ICMP_EQ:
      if (LoOverflow && HiOverflow)
        return replaceInstUsesWith(Cmp, Builder.getFalse());
      if (HiOverflow)
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
                            ICmpInst::ICMP_UGE, X,
                            ConstantInt::get(Div->getType(), LoBound));
      if (LoOverflow)
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
                            ICmpInst::ICMP_ULT, X,
                            ConstantInt::get(Div->getType(), HiBound));
      return replaceInstUsesWith(
          Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
    case ICmpInst::ICMP_NE:
      if (LoOverflow && HiOverflow)
        return replaceInstUsesWith(Cmp, Builder.getTrue());
      if (HiOverflow)
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
                            ICmpInst::ICMP_ULT, X,
                            ConstantInt::get(Div->getType(), LoBound));
      if (LoOverflow)
        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
                            ICmpInst::ICMP_UGE, X,
                            ConstantInt::get(Div->getType(), HiBound));
      return replaceInstUsesWith(Cmp,
                                 insertRangeTest(X, LoBound, HiBound,
                                                 DivIsSigned, false));
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_SLT:
      if (LoOverflow == +1)   // Low bound is greater than input range.
        return replaceInstUsesWith(Cmp, Builder.getTrue());
      if (LoOverflow == -1)   // Low bound is less than input range.
        return replaceInstUsesWith(Cmp, Builder.getFalse());
      return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_SGT:
      if (HiOverflow == +1)       // High bound greater than input range.
        return replaceInstUsesWith(Cmp, Builder.getFalse());
      if (HiOverflow == -1)       // High bound less than input range.
        return replaceInstUsesWith(Cmp, Builder.getTrue());
      if (Pred == ICmpInst::ICMP_UGT)
        return new ICmpInst(ICmpInst::ICMP_UGE, X,
                            ConstantInt::get(Div->getType(), HiBound));
      return new ICmpInst(ICmpInst::ICMP_SGE, X,
                          ConstantInt::get(Div->getType(), HiBound));
  }

  return nullptr;
}

/// Fold icmp (sub X, Y), C.
Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
                                               BinaryOperator *Sub,
                                               const APInt &C) {
  Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  const APInt *C2;
  APInt SubResult;

  // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
  if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
    return new ICmpInst(Cmp.getPredicate(), Y,
                        ConstantInt::get(Y->getType(), 0));

  // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
  if (match(X, m_APInt(C2)) &&
      ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
       (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
      !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
    return new ICmpInst(Cmp.getSwappedPredicate(), Y,
                        ConstantInt::get(Y->getType(), SubResult));

  // The following transforms are only worth it if the only user of the subtract
  // is the icmp.
  if (!Sub->hasOneUse())
    return nullptr;

  if (Sub->hasNoSignedWrap()) {
    // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
    if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
      return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);

    // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
    if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
      return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);

    // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
    if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
      return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);

    // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
    if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
      return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
  }

  if (!match(X, m_APInt(C2)))
    return nullptr;

  // C2 - Y <u C -> (Y | (C - 1)) == C2
  //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
      (*C2 & (C - 1)) == (C - 1))
    return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);

  // C2 - Y >u C -> (Y | C) != C2
  //   iff C2 & C == C and C + 1 is a power of 2
  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
    return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);

  return nullptr;
}

/// Fold icmp (add X, Y), C.
Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
                                               BinaryOperator *Add,
                                               const APInt &C) {
  Value *Y = Add->getOperand(1);
  const APInt *C2;
  if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
    return nullptr;

  // Fold icmp pred (add X, C2), C.
  Value *X = Add->getOperand(0);
  Type *Ty = Add->getType();
  CmpInst::Predicate Pred = Cmp.getPredicate();

  // If the add does not wrap, we can always adjust the compare by subtracting
  // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
  // are canonicalized to SGT/SLT/UGT/ULT.
  if ((Add->hasNoSignedWrap() &&
       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
      (Add->hasNoUnsignedWrap() &&
       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
    bool Overflow;
    APInt NewC =
        Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
    // If there is overflow, the result must be true or false.
    // TODO: Can we assert there is no overflow because InstSimplify always
    // handles those cases?
    if (!Overflow)
      // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
      return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
  }

  auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
  const APInt &Upper = CR.getUpper();
  const APInt &Lower = CR.getLower();
  if (Cmp.isSigned()) {
    if (Lower.isSignMask())
      return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
    if (Upper.isSignMask())
      return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
  } else {
    if (Lower.isMinValue())
      return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
    if (Upper.isMinValue())
      return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
  }

  if (!Add->hasOneUse())
    return nullptr;

  // X+C <u C2 -> (X & -C2) == C
  //   iff C & (C2-1) == 0
  //       C2 is a power of 2
  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
    return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
                        ConstantExpr::getNeg(cast<Constant>(Y)));

  // X+C >u C2 -> (X & ~C2) != C
  //   iff C & C2 == 0
  //       C2+1 is a power of 2
  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
    return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
                        ConstantExpr::getNeg(cast<Constant>(Y)));

  return nullptr;
}

bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
                                           Value *&RHS, ConstantInt *&Less,
                                           ConstantInt *&Equal,
                                           ConstantInt *&Greater) {
  // TODO: Generalize this to work with other comparison idioms or ensure
  // they get canonicalized into this form.

  // select i1 (a == b),
  //        i32 Equal,
  //        i32 (select i1 (a < b), i32 Less, i32 Greater)
  // where Equal, Less and Greater are placeholders for any three constants.
  ICmpInst::Predicate PredA;
  if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
      !ICmpInst::isEquality(PredA))
    return false;
  Value *EqualVal = SI->getTrueValue();
  Value *UnequalVal = SI->getFalseValue();
  // We still can get non-canonical predicate here, so canonicalize.
  if (PredA == ICmpInst::ICMP_NE)
    std::swap(EqualVal, UnequalVal);
  if (!match(EqualVal, m_ConstantInt(Equal)))
    return false;
  ICmpInst::Predicate PredB;
  Value *LHS2, *RHS2;
  if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
                                  m_ConstantInt(Less), m_ConstantInt(Greater))))
    return false;
  // We can get predicate mismatch here, so canonicalize if possible:
  // First, ensure that 'LHS' match.
  if (LHS2 != LHS) {
    // x sgt y <--> y slt x
    std::swap(LHS2, RHS2);
    PredB = ICmpInst::getSwappedPredicate(PredB);
  }
  if (LHS2 != LHS)
    return false;
  // We also need to canonicalize 'RHS'.
  if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
    // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
    auto FlippedStrictness =
        getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
    if (!FlippedStrictness)
      return false;
    assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
    RHS2 = FlippedStrictness->second;
    // And kind-of perform the result swap.
    std::swap(Less, Greater);
    PredB = ICmpInst::ICMP_SLT;
  }
  return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
}

Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
                                                  SelectInst *Select,
                                                  ConstantInt *C) {

  assert(C && "Cmp RHS should be a constant int!");
  // If we're testing a constant value against the result of a three way
  // comparison, the result can be expressed directly in terms of the
  // original values being compared.  Note: We could possibly be more
  // aggressive here and remove the hasOneUse test. The original select is
  // really likely to simplify or sink when we remove a test of the result.
  Value *OrigLHS, *OrigRHS;
  ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
  if (Cmp.hasOneUse() &&
      matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
                              C3GreaterThan)) {
    assert(C1LessThan && C2Equal && C3GreaterThan);

    bool TrueWhenLessThan =
        ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
            ->isAllOnesValue();
    bool TrueWhenEqual =
        ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
            ->isAllOnesValue();
    bool TrueWhenGreaterThan =
        ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
            ->isAllOnesValue();

    // This generates the new instruction that will replace the original Cmp
    // Instruction. Instead of enumerating the various combinations when
    // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
    // false, we rely on chaining of ORs and future passes of InstCombine to
    // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).

    // When none of the three constants satisfy the predicate for the RHS (C),
    // the entire original Cmp can be simplified to a false.
    Value *Cond = Builder.getFalse();
    if (TrueWhenLessThan)
      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
                                                       OrigLHS, OrigRHS));
    if (TrueWhenEqual)
      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
                                                       OrigLHS, OrigRHS));
    if (TrueWhenGreaterThan)
      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
                                                       OrigLHS, OrigRHS));

    return replaceInstUsesWith(Cmp, Cond);
  }
  return nullptr;
}

static Instruction *foldICmpBitCast(ICmpInst &Cmp,
                                    InstCombiner::BuilderTy &Builder) {
  auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
  if (!Bitcast)
    return nullptr;

  ICmpInst::Predicate Pred = Cmp.getPredicate();
  Value *Op1 = Cmp.getOperand(1);
  Value *BCSrcOp = Bitcast->getOperand(0);

  // Make sure the bitcast doesn't change the number of vector elements.
  if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
          Bitcast->getDestTy()->getScalarSizeInBits()) {
    // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
    Value *X;
    if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
      // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
      // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
      // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
      // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
      if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
           Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
          match(Op1, m_Zero()))
        return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));

      // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
      if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
        return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));

      // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
      if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
        return new ICmpInst(Pred, X,
                            ConstantInt::getAllOnesValue(X->getType()));
    }

    // Zero-equality checks are preserved through unsigned floating-point casts:
    // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
    // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
    if (match(BCSrcOp, m_UIToFP(m_Value(X))))
      if (Cmp.isEquality() && match(Op1, m_Zero()))
        return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));

    // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
    // the FP extend/truncate because that cast does not change the sign-bit.
    // This is true for all standard IEEE-754 types and the X86 80-bit type.
    // The sign-bit is always the most significant bit in those types.
    const APInt *C;
    bool TrueIfSigned;
    if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
        isSignBitCheck(Pred, *C, TrueIfSigned)) {
      if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
          match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
        // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
        // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
        Type *XType = X->getType();

        // We can't currently handle Power style floating point operations here.
        if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {

          Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
          if (auto *XVTy = dyn_cast<VectorType>(XType))
            NewType = FixedVectorType::get(NewType, XVTy->getNumElements());
          Value *NewBitcast = Builder.CreateBitCast(X, NewType);
          if (TrueIfSigned)
            return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
                                ConstantInt::getNullValue(NewType));
          else
            return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
                                ConstantInt::getAllOnesValue(NewType));
        }
      }
    }
  }

  // Test to see if the operands of the icmp are casted versions of other
  // values. If the ptr->ptr cast can be stripped off both arguments, do so.
  if (Bitcast->getType()->isPointerTy() &&
      (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
    // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
    // so eliminate it as well.
    if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
      Op1 = BC2->getOperand(0);

    Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
    return new ICmpInst(Pred, BCSrcOp, Op1);
  }

  // Folding: icmp <pred> iN X, C
  //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
  //    and C is a splat of a K-bit pattern
  //    and SC is a constant vector = <C', C', C', ..., C'>
  // Into:
  //   %E = extractelement <M x iK> %vec, i32 C'
  //   icmp <pred> iK %E, trunc(C)
  const APInt *C;
  if (!match(Cmp.getOperand(1), m_APInt(C)) ||
      !Bitcast->getType()->isIntegerTy() ||
      !Bitcast->getSrcTy()->isIntOrIntVectorTy())
    return nullptr;

  Value *Vec;
  ArrayRef<int> Mask;
  if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
    // Check whether every element of Mask is the same constant
    if (is_splat(Mask)) {
      auto *VecTy = cast<VectorType>(BCSrcOp->getType());
      auto *EltTy = cast<IntegerType>(VecTy->getElementType());
      if (C->isSplat(EltTy->getBitWidth())) {
        // Fold the icmp based on the value of C
        // If C is M copies of an iK sized bit pattern,
        // then:
        //   =>  %E = extractelement <N x iK> %vec, i32 Elem
        //       icmp <pred> iK %SplatVal, <pattern>
        Value *Elem = Builder.getInt32(Mask[0]);
        Value *Extract = Builder.CreateExtractElement(Vec, Elem);
        Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
        return new ICmpInst(Pred, Extract, NewC);
      }
    }
  }
  return nullptr;
}

/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
/// where X is some kind of instruction.
Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
  const APInt *C;
  if (!match(Cmp.getOperand(1), m_APInt(C)))
    return nullptr;

  if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
    switch (BO->getOpcode()) {
    case Instruction::Xor:
      if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::And:
      if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::Or:
      if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::Mul:
      if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::Shl:
      if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::LShr:
    case Instruction::AShr:
      if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::SRem:
      if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::UDiv:
      if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
        return I;
      LLVM_FALLTHROUGH;
    case Instruction::SDiv:
      if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::Sub:
      if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
        return I;
      break;
    case Instruction::Add:
      if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
        return I;
      break;
    default:
      break;
    }
    // TODO: These folds could be refactored to be part of the above calls.
    if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
      return I;
  }

  // Match against CmpInst LHS being instructions other than binary operators.

  if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
    // For now, we only support constant integers while folding the
    // ICMP(SELECT)) pattern. We can extend this to support vector of integers
    // similar to the cases handled by binary ops above.
    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
      if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
        return I;
  }

  if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
    if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
      return I;
  }

  if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
    if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
      return I;

  return nullptr;
}

/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
/// icmp eq/ne BO, C.
Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
                                                             BinaryOperator *BO,
                                                             const APInt &C) {
  // TODO: Some of these folds could work with arbitrary constants, but this
  // function is limited to scalar and vector splat constants.
  if (!Cmp.isEquality())
    return nullptr;

  ICmpInst::Predicate Pred = Cmp.getPredicate();
  bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
  Constant *RHS = cast<Constant>(Cmp.getOperand(1));
  Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);

  switch (BO->getOpcode()) {
  case Instruction::SRem:
    // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
    if (C.isNullValue() && BO->hasOneUse()) {
      const APInt *BOC;
      if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
        Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
        return new ICmpInst(Pred, NewRem,
                            Constant::getNullValue(BO->getType()));
      }
    }
    break;
  case Instruction::Add: {
    // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
    if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
      if (BO->hasOneUse())
        return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
    } else if (C.isNullValue()) {
      // Replace ((add A, B) != 0) with (A != -B) if A or B is
      // efficiently invertible, or if the add has just this one use.
      if (Value *NegVal = dyn_castNegVal(BOp1))
        return new ICmpInst(Pred, BOp0, NegVal);
      if (Value *NegVal = dyn_castNegVal(BOp0))
        return new ICmpInst(Pred, NegVal, BOp1);
      if (BO->hasOneUse()) {
        Value *Neg = Builder.CreateNeg(BOp1);
        Neg->takeName(BO);
        return new ICmpInst(Pred, BOp0, Neg);
      }
    }
    break;
  }
  case Instruction::Xor:
    if (BO->hasOneUse()) {
      if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
        // For the xor case, we can xor two constants together, eliminating
        // the explicit xor.
        return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
      } else if (C.isNullValue()) {
        // Replace ((xor A, B) != 0) with (A != B)
        return new ICmpInst(Pred, BOp0, BOp1);
      }
    }
    break;
  case Instruction::Sub:
    if (BO->hasOneUse()) {
      // Only check for constant LHS here, as constant RHS will be canonicalized
      // to add and use the fold above.
      if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
        // Replace ((sub BOC, B) != C) with (B != BOC-C).
        return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
      } else if (C.isNullValue()) {
        // Replace ((sub A, B) != 0) with (A != B).
        return new ICmpInst(Pred, BOp0, BOp1);
      }
    }
    break;
  case Instruction::Or: {
    const APInt *BOC;
    if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
      // Comparing if all bits outside of a constant mask are set?
      // Replace (X | C) == -1 with (X & ~C) == ~C.
      // This removes the -1 constant.
      Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
      Value *And = Builder.CreateAnd(BOp0, NotBOC);
      return new ICmpInst(Pred, And, NotBOC);
    }
    break;
  }
  case Instruction::And: {
    const APInt *BOC;
    if (match(BOp1, m_APInt(BOC))) {
      // If we have ((X & C) == C), turn it into ((X & C) != 0).
      if (C == *BOC && C.isPowerOf2())
        return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
                            BO, Constant::getNullValue(RHS->getType()));
    }
    break;
  }
  case Instruction::Mul:
    if (C.isNullValue() && BO->hasNoSignedWrap()) {
      const APInt *BOC;
      if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
        // The trivial case (mul X, 0) is handled by InstSimplify.
        // General case : (mul X, C) != 0 iff X != 0
        //                (mul X, C) == 0 iff X == 0
        return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
      }
    }
    break;
  case Instruction::UDiv:
    if (C.isNullValue()) {
      // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
      auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
      return new ICmpInst(NewPred, BOp1, BOp0);
    }
    break;
  default:
    break;
  }
  return nullptr;
}

/// Fold an equality icmp with LLVM intrinsic and constant operand.
Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
                                                           IntrinsicInst *II,
                                                           const APInt &C) {
  Type *Ty = II->getType();
  unsigned BitWidth = C.getBitWidth();
  switch (II->getIntrinsicID()) {
  case Intrinsic::bswap:
    // bswap(A) == C  ->  A == bswap(C)
    return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
                        ConstantInt::get(Ty, C.byteSwap()));

  case Intrinsic::ctlz:
  case Intrinsic::cttz: {
    // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
    if (C == BitWidth)
      return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
                          ConstantInt::getNullValue(Ty));

    // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
    // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
    // Limit to one use to ensure we don't increase instruction count.
    unsigned Num = C.getLimitedValue(BitWidth);
    if (Num != BitWidth && II->hasOneUse()) {
      bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
      APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
                               : APInt::getHighBitsSet(BitWidth, Num + 1);
      APInt Mask2 = IsTrailing
        ? APInt::getOneBitSet(BitWidth, Num)
        : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
      return new ICmpInst(Cmp.getPredicate(),
          Builder.CreateAnd(II->getArgOperand(0), Mask1),
          ConstantInt::get(Ty, Mask2));
    }
    break;
  }

  case Intrinsic::ctpop: {
    // popcount(A) == 0  ->  A == 0 and likewise for !=
    // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
    bool IsZero = C.isNullValue();
    if (IsZero || C == BitWidth)
      return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
          IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));

    break;
  }

  case Intrinsic::uadd_sat: {
    // uadd.sat(a, b) == 0  ->  (a | b) == 0
    if (C.isNullValue()) {
      Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
      return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
    }
    break;
  }

  case Intrinsic::usub_sat: {
    // usub.sat(a, b) == 0  ->  a <= b
    if (C.isNullValue()) {
      ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
          ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
      return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
    }
    break;
  }
  default:
    break;
  }

  return nullptr;
}

/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
                                                         IntrinsicInst *II,
                                                         const APInt &C) {
  if (Cmp.isEquality())
    return foldICmpEqIntrinsicWithConstant(Cmp, II, C);

  Type *Ty = II->getType();
  unsigned BitWidth = C.getBitWidth();
  switch (II->getIntrinsicID()) {
  case Intrinsic::ctlz: {
    // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
    if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
      unsigned Num = C.getLimitedValue();
      APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
                             II->getArgOperand(0), ConstantInt::get(Ty, Limit));
    }

    // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
    if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
        C.uge(1) && C.ule(BitWidth)) {
      unsigned Num = C.getLimitedValue();
      APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
                             II->getArgOperand(0), ConstantInt::get(Ty, Limit));
    }
    break;
  }
  case Intrinsic::cttz: {
    // Limit to one use to ensure we don't increase instruction count.
    if (!II->hasOneUse())
      return nullptr;

    // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
    if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
      APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
                             Builder.CreateAnd(II->getArgOperand(0), Mask),
                             ConstantInt::getNullValue(Ty));
    }

    // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
    if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
        C.uge(1) && C.ule(BitWidth)) {
      APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
                             Builder.CreateAnd(II->getArgOperand(0), Mask),
                             ConstantInt::getNullValue(Ty));
    }
    break;
  }
  default:
    break;
  }

  return nullptr;
}

/// Handle icmp with constant (but not simple integer constant) RHS.
Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Constant *RHSC = dyn_cast<Constant>(Op1);
  Instruction *LHSI = dyn_cast<Instruction>(Op0);
  if (!RHSC || !LHSI)
    return nullptr;

  switch (LHSI->getOpcode()) {
  case Instruction::GetElementPtr:
    // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
    if (RHSC->isNullValue() &&
        cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
      return new ICmpInst(
          I.getPredicate(), LHSI->getOperand(0),
          Constant::getNullValue(LHSI->getOperand(0)->getType()));
    break;
  case Instruction::PHI:
    // Only fold icmp into the PHI if the phi and icmp are in the same
    // block.  If in the same block, we're encouraging jump threading.  If
    // not, we are just pessimizing the code by making an i1 phi.
    if (LHSI->getParent() == I.getParent())
      if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
        return NV;
    break;
  case Instruction::Select: {
    // If either operand of the select is a constant, we can fold the
    // comparison into the select arms, which will cause one to be
    // constant folded and the select turned into a bitwise or.
    Value *Op1 = nullptr, *Op2 = nullptr;
    ConstantInt *CI = nullptr;
    if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
      Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
      CI = dyn_cast<ConstantInt>(Op1);
    }
    if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
      Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
      CI = dyn_cast<ConstantInt>(Op2);
    }

    // We only want to perform this transformation if it will not lead to
    // additional code. This is true if either both sides of the select
    // fold to a constant (in which case the icmp is replaced with a select
    // which will usually simplify) or this is the only user of the
    // select (in which case we are trading a select+icmp for a simpler
    // select+icmp) or all uses of the select can be replaced based on
    // dominance information ("Global cases").
    bool Transform = false;
    if (Op1 && Op2)
      Transform = true;
    else if (Op1 || Op2) {
      // Local case
      if (LHSI->hasOneUse())
        Transform = true;
      // Global cases
      else if (CI && !CI->isZero())
        // When Op1 is constant try replacing select with second operand.
        // Otherwise Op2 is constant and try replacing select with first
        // operand.
        Transform =
            replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
    }
    if (Transform) {
      if (!Op1)
        Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
                                 I.getName());
      if (!Op2)
        Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
                                 I.getName());
      return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
    }
    break;
  }
  case Instruction::IntToPtr:
    // icmp pred inttoptr(X), null -> icmp pred X, 0
    if (RHSC->isNullValue() &&
        DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
      return new ICmpInst(
          I.getPredicate(), LHSI->getOperand(0),
          Constant::getNullValue(LHSI->getOperand(0)->getType()));
    break;

  case Instruction::Load:
    // Try to optimize things like "A[i] > 4" to index computations.
    if (GetElementPtrInst *GEP =
            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
        if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
            !cast<LoadInst>(LHSI)->isVolatile())
          if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
            return Res;
    }
    break;
  }

  return nullptr;
}

/// Some comparisons can be simplified.
/// In this case, we are looking for comparisons that look like
/// a check for a lossy truncation.
/// Folds:
///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
/// Where Mask is some pattern that produces all-ones in low bits:
///    (-1 >> y)
///    ((-1 << y) >> y)     <- non-canonical, has extra uses
///   ~(-1 << y)
///    ((1 << y) + (-1))    <- non-canonical, has extra uses
/// The Mask can be a constant, too.
/// For some predicates, the operands are commutative.
/// For others, x can only be on a specific side.
static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
                                          InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate SrcPred;
  Value *X, *M, *Y;
  auto m_VariableMask = m_CombineOr(
      m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
                  m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
      m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
                  m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
  auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
  if (!match(&I, m_c_ICmp(SrcPred,
                          m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
                          m_Deferred(X))))
    return nullptr;

  ICmpInst::Predicate DstPred;
  switch (SrcPred) {
  case ICmpInst::Predicate::ICMP_EQ:
    //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
    DstPred = ICmpInst::Predicate::ICMP_ULE;
    break;
  case ICmpInst::Predicate::ICMP_NE:
    //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
    DstPred = ICmpInst::Predicate::ICMP_UGT;
    break;
  case ICmpInst::Predicate::ICMP_ULT:
    //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
    //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
    DstPred = ICmpInst::Predicate::ICMP_UGT;
    break;
  case ICmpInst::Predicate::ICMP_UGE:
    //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
    //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
    DstPred = ICmpInst::Predicate::ICMP_ULE;
    break;
  case ICmpInst::Predicate::ICMP_SLT:
    //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
    //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
    if (!match(M, m_Constant())) // Can not do this fold with non-constant.
      return nullptr;
    if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
      return nullptr;
    DstPred = ICmpInst::Predicate::ICMP_SGT;
    break;
  case ICmpInst::Predicate::ICMP_SGE:
    //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
    //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
    if (!match(M, m_Constant())) // Can not do this fold with non-constant.
      return nullptr;
    if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
      return nullptr;
    DstPred = ICmpInst::Predicate::ICMP_SLE;
    break;
  case ICmpInst::Predicate::ICMP_SGT:
  case ICmpInst::Predicate::ICMP_SLE:
    return nullptr;
  case ICmpInst::Predicate::ICMP_UGT:
  case ICmpInst::Predicate::ICMP_ULE:
    llvm_unreachable("Instsimplify took care of commut. variant");
    break;
  default:
    llvm_unreachable("All possible folds are handled.");
  }

  // The mask value may be a vector constant that has undefined elements. But it
  // may not be safe to propagate those undefs into the new compare, so replace
  // those elements by copying an existing, defined, and safe scalar constant.
  Type *OpTy = M->getType();
  auto *VecC = dyn_cast<Constant>(M);
  if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
    auto *OpVTy = cast<VectorType>(OpTy);
    Constant *SafeReplacementConstant = nullptr;
    for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
      if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
        SafeReplacementConstant = VecC->getAggregateElement(i);
        break;
      }
    }
    assert(SafeReplacementConstant && "Failed to find undef replacement");
    M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
  }

  return Builder.CreateICmp(DstPred, X, M);
}

/// Some comparisons can be simplified.
/// In this case, we are looking for comparisons that look like
/// a check for a lossy signed truncation.
/// Folds:   (MaskedBits is a constant.)
///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
/// Into:
///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
/// Where  KeptBits = bitwidth(%x) - MaskedBits
static Value *
foldICmpWithTruncSignExtendedVal(ICmpInst &I,
                                 InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate SrcPred;
  Value *X;
  const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
  // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
  if (!match(&I, m_c_ICmp(SrcPred,
                          m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
                                          m_APInt(C1))),
                          m_Deferred(X))))
    return nullptr;

  // Potential handling of non-splats: for each element:
  //  * if both are undef, replace with constant 0.
  //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
  //  * if both are not undef, and are different, bailout.
  //  * else, only one is undef, then pick the non-undef one.

  // The shift amount must be equal.
  if (*C0 != *C1)
    return nullptr;
  const APInt &MaskedBits = *C0;
  assert(MaskedBits != 0 && "shift by zero should be folded away already.");

  ICmpInst::Predicate DstPred;
  switch (SrcPred) {
  case ICmpInst::Predicate::ICMP_EQ:
    // ((%x << MaskedBits) a>> MaskedBits) == %x
    //   =>
    // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
    DstPred = ICmpInst::Predicate::ICMP_ULT;
    break;
  case ICmpInst::Predicate::ICMP_NE:
    // ((%x << MaskedBits) a>> MaskedBits) != %x
    //   =>
    // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
    DstPred = ICmpInst::Predicate::ICMP_UGE;
    break;
  // FIXME: are more folds possible?
  default:
    return nullptr;
  }

  auto *XType = X->getType();
  const unsigned XBitWidth = XType->getScalarSizeInBits();
  const APInt BitWidth = APInt(XBitWidth, XBitWidth);
  assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");

  // KeptBits = bitwidth(%x) - MaskedBits
  const APInt KeptBits = BitWidth - MaskedBits;
  assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
  // ICmpCst = (1 << KeptBits)
  const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
  assert(ICmpCst.isPowerOf2());
  // AddCst = (1 << (KeptBits-1))
  const APInt AddCst = ICmpCst.lshr(1);
  assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());

  // T0 = add %x, AddCst
  Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
  // T1 = T0 DstPred ICmpCst
  Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));

  return T1;
}

// Given pattern:
//   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
// we should move shifts to the same hand of 'and', i.e. rewrite as
//   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
// We are only interested in opposite logical shifts here.
// One of the shifts can be truncated.
// If we can, we want to end up creating 'lshr' shift.
static Value *
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
                                           InstCombiner::BuilderTy &Builder) {
  if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
      !I.getOperand(0)->hasOneUse())
    return nullptr;

  auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());

  // Look for an 'and' of two logical shifts, one of which may be truncated.
  // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
  Instruction *XShift, *MaybeTruncation, *YShift;
  if (!match(
          I.getOperand(0),
          m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
                  m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
                                   m_AnyLogicalShift, m_Instruction(YShift))),
                               m_Instruction(MaybeTruncation)))))
    return nullptr;

  // We potentially looked past 'trunc', but only when matching YShift,
  // therefore YShift must have the widest type.
  Instruction *WidestShift = YShift;
  // Therefore XShift must have the shallowest type.
  // Or they both have identical types if there was no truncation.
  Instruction *NarrowestShift = XShift;

  Type *WidestTy = WidestShift->getType();
  Type *NarrowestTy = NarrowestShift->getType();
  assert(NarrowestTy == I.getOperand(0)->getType() &&
         "We did not look past any shifts while matching XShift though.");
  bool HadTrunc = WidestTy != I.getOperand(0)->getType();

  // If YShift is a 'lshr', swap the shifts around.
  if (match(YShift, m_LShr(m_Value(), m_Value())))
    std::swap(XShift, YShift);

  // The shifts must be in opposite directions.
  auto XShiftOpcode = XShift->getOpcode();
  if (XShiftOpcode == YShift->getOpcode())
    return nullptr; // Do not care about same-direction shifts here.

  Value *X, *XShAmt, *Y, *YShAmt;
  match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
  match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));

  // If one of the values being shifted is a constant, then we will end with
  // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
  // however, we will need to ensure that we won't increase instruction count.
  if (!isa<Constant>(X) && !isa<Constant>(Y)) {
    // At least one of the hands of the 'and' should be one-use shift.
    if (!match(I.getOperand(0),
               m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
      return nullptr;
    if (HadTrunc) {
      // Due to the 'trunc', we will need to widen X. For that either the old
      // 'trunc' or the shift amt in the non-truncated shift should be one-use.
      if (!MaybeTruncation->hasOneUse() &&
          !NarrowestShift->getOperand(1)->hasOneUse())
        return nullptr;
    }
  }

  // We have two shift amounts from two different shifts. The types of those
  // shift amounts may not match. If that's the case let's bailout now.
  if (XShAmt->getType() != YShAmt->getType())
    return nullptr;

  // As input, we have the following pattern:
  //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
  // We want to rewrite that as:
  //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
  // While we know that originally (Q+K) would not overflow
  // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
  // shift amounts. so it may now overflow in smaller bitwidth.
  // To ensure that does not happen, we need to ensure that the total maximal
  // shift amount is still representable in that smaller bit width.
  unsigned MaximalPossibleTotalShiftAmount =
      (WidestTy->getScalarSizeInBits() - 1) +
      (NarrowestTy->getScalarSizeInBits() - 1);
  APInt MaximalRepresentableShiftAmount =
      APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
  if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
    return nullptr;

  // Can we fold (XShAmt+YShAmt) ?
  auto *NewShAmt = dyn_cast_or_null<Constant>(
      SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
                      /*isNUW=*/false, SQ.getWithInstruction(&I)));
  if (!NewShAmt)
    return nullptr;
  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
  unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();

  // Is the new shift amount smaller than the bit width?
  // FIXME: could also rely on ConstantRange.
  if (!match(NewShAmt,
             m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
                                APInt(WidestBitWidth, WidestBitWidth))))
    return nullptr;

  // An extra legality check is needed if we had trunc-of-lshr.
  if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
    auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
                    WidestShift]() {
      // It isn't obvious whether it's worth it to analyze non-constants here.
      // Also, let's basically give up on non-splat cases, pessimizing vectors.
      // If *any* of these preconditions matches we can perform the fold.
      Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
                                    ? NewShAmt->getSplatValue()
                                    : NewShAmt;
      // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
      if (NewShAmtSplat &&
          (NewShAmtSplat->isNullValue() ||
           NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
        return true;
      // We consider *min* leading zeros so a single outlier
      // blocks the transform as opposed to allowing it.
      if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
        KnownBits Known = computeKnownBits(C, SQ.DL);
        unsigned MinLeadZero = Known.countMinLeadingZeros();
        // If the value being shifted has at most lowest bit set we can fold.
        unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
        if (MaxActiveBits <= 1)
          return true;
        // Precondition:  NewShAmt u<= countLeadingZeros(C)
        if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
          return true;
      }
      if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
        KnownBits Known = computeKnownBits(C, SQ.DL);
        unsigned MinLeadZero = Known.countMinLeadingZeros();
        // If the value being shifted has at most lowest bit set we can fold.
        unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
        if (MaxActiveBits <= 1)
          return true;
        // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
        if (NewShAmtSplat) {
          APInt AdjNewShAmt =
              (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
          if (AdjNewShAmt.ule(MinLeadZero))
            return true;
        }
      }
      return false; // Can't tell if it's ok.
    };
    if (!CanFold())
      return nullptr;
  }

  // All good, we can do this fold.
  X = Builder.CreateZExt(X, WidestTy);
  Y = Builder.CreateZExt(Y, WidestTy);
  // The shift is the same that was for X.
  Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
                  ? Builder.CreateLShr(X, NewShAmt)
                  : Builder.CreateShl(X, NewShAmt);
  Value *T1 = Builder.CreateAnd(T0, Y);
  return Builder.CreateICmp(I.getPredicate(), T1,
                            Constant::getNullValue(WidestTy));
}

/// Fold
///   (-1 u/ x) u< y
///   ((x * y) u/ x) != y
/// to
///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
/// will mean that we are looking for the opposite answer.
Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
  ICmpInst::Predicate Pred;
  Value *X, *Y;
  Instruction *Mul;
  bool NeedNegation;
  // Look for: (-1 u/ x) u</u>= y
  if (!I.isEquality() &&
      match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
                         m_Value(Y)))) {
    Mul = nullptr;

    // Are we checking that overflow does not happen, or does happen?
    switch (Pred) {
    case ICmpInst::Predicate::ICMP_ULT:
      NeedNegation = false;
      break; // OK
    case ICmpInst::Predicate::ICMP_UGE:
      NeedNegation = true;
      break; // OK
    default:
      return nullptr; // Wrong predicate.
    }
  } else // Look for: ((x * y) u/ x) !=/== y
      if (I.isEquality() &&
          match(&I, m_c_ICmp(Pred, m_Value(Y),
                             m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
                                                                  m_Value(X)),
                                                          m_Instruction(Mul)),
                                             m_Deferred(X)))))) {
    NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
  } else
    return nullptr;

  BuilderTy::InsertPointGuard Guard(Builder);
  // If the pattern included (x * y), we'll want to insert new instructions
  // right before that original multiplication so that we can replace it.
  bool MulHadOtherUses = Mul && !Mul->hasOneUse();
  if (MulHadOtherUses)
    Builder.SetInsertPoint(Mul);

  Function *F = Intrinsic::getDeclaration(
      I.getModule(), Intrinsic::umul_with_overflow, X->getType());
  CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");

  // If the multiplication was used elsewhere, to ensure that we don't leave
  // "duplicate" instructions, replace uses of that original multiplication
  // with the multiplication result from the with.overflow intrinsic.
  if (MulHadOtherUses)
    replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));

  Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
  if (NeedNegation) // This technically increases instruction count.
    Res = Builder.CreateNot(Res, "umul.not.ov");

  // If we replaced the mul, erase it. Do this after all uses of Builder,
  // as the mul is used as insertion point.
  if (MulHadOtherUses)
    eraseInstFromFunction(*Mul);

  return Res;
}

/// Try to fold icmp (binop), X or icmp X, (binop).
/// TODO: A large part of this logic is duplicated in InstSimplify's
/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
/// duplication.
Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
  const SimplifyQuery Q = SQ.getWithInstruction(&I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Special logic for binary operators.
  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
  if (!BO0 && !BO1)
    return nullptr;

  const CmpInst::Predicate Pred = I.getPredicate();
  Value *X;

  // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
  // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
  if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
      (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
    return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
  // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
  if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
      (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
    return new ICmpInst(Pred, X, Builder.CreateNot(Op0));

  bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
  if (BO0 && isa<OverflowingBinaryOperator>(BO0))
    NoOp0WrapProblem =
        ICmpInst::isEquality(Pred) ||
        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
  if (BO1 && isa<OverflowingBinaryOperator>(BO1))
    NoOp1WrapProblem =
        ICmpInst::isEquality(Pred) ||
        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());

  // Analyze the case when either Op0 or Op1 is an add instruction.
  // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
  if (BO0 && BO0->getOpcode() == Instruction::Add) {
    A = BO0->getOperand(0);
    B = BO0->getOperand(1);
  }
  if (BO1 && BO1->getOpcode() == Instruction::Add) {
    C = BO1->getOperand(0);
    D = BO1->getOperand(1);
  }

  // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
  // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
  if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
    return new ICmpInst(Pred, A == Op1 ? B : A,
                        Constant::getNullValue(Op1->getType()));

  // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
  // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
  if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
    return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
                        C == Op0 ? D : C);

  // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
  if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
      NoOp1WrapProblem) {
    // Determine Y and Z in the form icmp (X+Y), (X+Z).
    Value *Y, *Z;
    if (A == C) {
      // C + B == C + D  ->  B == D
      Y = B;
      Z = D;
    } else if (A == D) {
      // D + B == C + D  ->  B == C
      Y = B;
      Z = C;
    } else if (B == C) {
      // A + C == C + D  ->  A == D
      Y = A;
      Z = D;
    } else {
      assert(B == D);
      // A + D == C + D  ->  A == C
      Y = A;
      Z = C;
    }
    return new ICmpInst(Pred, Y, Z);
  }

  // icmp slt (A + -1), Op1 -> icmp sle A, Op1
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
      match(B, m_AllOnes()))
    return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);

  // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
      match(B, m_AllOnes()))
    return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);

  // icmp sle (A + 1), Op1 -> icmp slt A, Op1
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
    return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);

  // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
    return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);

  // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
      match(D, m_AllOnes()))
    return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);

  // icmp sle Op0, (C + -1) -> icmp slt Op0, C
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
      match(D, m_AllOnes()))
    return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);

  // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
    return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);

  // icmp slt Op0, (C + 1) -> icmp sle Op0, C
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
    return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);

  // TODO: The subtraction-related identities shown below also hold, but
  // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
  // wouldn't happen even if they were implemented.
  //
  // icmp ult (A - 1), Op1 -> icmp ule A, Op1
  // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
  // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
  // icmp ule Op0, (C - 1) -> icmp ult Op0, C

  // icmp ule (A + 1), Op0 -> icmp ult A, Op1
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
    return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);

  // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
    return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);

  // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
    return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);

  // icmp ult Op0, (C + 1) -> icmp ule Op0, C
  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
    return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);

  // if C1 has greater magnitude than C2:
  //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
  //  s.t. C3 = C1 - C2
  //
  // if C2 has greater magnitude than C1:
  //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
  //  s.t. C3 = C2 - C1
  if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
      (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
    if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
      if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
        const APInt &AP1 = C1->getValue();
        const APInt &AP2 = C2->getValue();
        if (AP1.isNegative() == AP2.isNegative()) {
          APInt AP1Abs = C1->getValue().abs();
          APInt AP2Abs = C2->getValue().abs();
          if (AP1Abs.uge(AP2Abs)) {
            ConstantInt *C3 = Builder.getInt(AP1 - AP2);
            Value *NewAdd = Builder.CreateNSWAdd(A, C3);
            return new ICmpInst(Pred, NewAdd, C);
          } else {
            ConstantInt *C3 = Builder.getInt(AP2 - AP1);
            Value *NewAdd = Builder.CreateNSWAdd(C, C3);
            return new ICmpInst(Pred, A, NewAdd);
          }
        }
      }

  // Analyze the case when either Op0 or Op1 is a sub instruction.
  // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
  A = nullptr;
  B = nullptr;
  C = nullptr;
  D = nullptr;
  if (BO0 && BO0->getOpcode() == Instruction::Sub) {
    A = BO0->getOperand(0);
    B = BO0->getOperand(1);
  }
  if (BO1 && BO1->getOpcode() == Instruction::Sub) {
    C = BO1->getOperand(0);
    D = BO1->getOperand(1);
  }

  // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
  if (A == Op1 && NoOp0WrapProblem)
    return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
  // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
  if (C == Op0 && NoOp1WrapProblem)
    return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));

  // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
  // (A - B) u>/u<= A --> B u>/u<= A
  if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
    return new ICmpInst(Pred, B, A);
  // C u</u>= (C - D) --> C u</u>= D
  if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
    return new ICmpInst(Pred, C, D);
  // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
  if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
      isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
    return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
  // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
  if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
      isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
    return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);

  // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
  if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
    return new ICmpInst(Pred, A, C);

  // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
  if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
    return new ICmpInst(Pred, D, B);

  // icmp (0-X) < cst --> x > -cst
  if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
    Value *X;
    if (match(BO0, m_Neg(m_Value(X))))
      if (Constant *RHSC = dyn_cast<Constant>(Op1))
        if (RHSC->isNotMinSignedValue())
          return new ICmpInst(I.getSwappedPredicate(), X,
                              ConstantExpr::getNeg(RHSC));
  }

  BinaryOperator *SRem = nullptr;
  // icmp (srem X, Y), Y
  if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
    SRem = BO0;
  // icmp Y, (srem X, Y)
  else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
           Op0 == BO1->getOperand(1))
    SRem = BO1;
  if (SRem) {
    // We don't check hasOneUse to avoid increasing register pressure because
    // the value we use is the same value this instruction was already using.
    switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
    default:
      break;
    case ICmpInst::ICMP_EQ:
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    case ICmpInst::ICMP_NE:
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE:
      return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
                          Constant::getAllOnesValue(SRem->getType()));
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE:
      return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
                          Constant::getNullValue(SRem->getType()));
    }
  }

  if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
      BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
    switch (BO0->getOpcode()) {
    default:
      break;
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Xor: {
      if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
        return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));

      const APInt *C;
      if (match(BO0->getOperand(1), m_APInt(C))) {
        // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
        if (C->isSignMask()) {
          ICmpInst::Predicate NewPred =
              I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
          return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
        }

        // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
        if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
          ICmpInst::Predicate NewPred =
              I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
          NewPred = I.getSwappedPredicate(NewPred);
          return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
        }
      }
      break;
    }
    case Instruction::Mul: {
      if (!I.isEquality())
        break;

      const APInt *C;
      if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
          !C->isOneValue()) {
        // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
        // Mask = -1 >> count-trailing-zeros(C).
        if (unsigned TZs = C->countTrailingZeros()) {
          Constant *Mask = ConstantInt::get(
              BO0->getType(),
              APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
          Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
          Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
          return new ICmpInst(Pred, And1, And2);
        }
        // If there are no trailing zeros in the multiplier, just eliminate
        // the multiplies (no masking is needed):
        // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
        return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
      }
      break;
    }
    case Instruction::UDiv:
    case Instruction::LShr:
      if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
        break;
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));

    case Instruction::SDiv:
      if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
        break;
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));

    case Instruction::AShr:
      if (!BO0->isExact() || !BO1->isExact())
        break;
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));

    case Instruction::Shl: {
      bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
      bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
      if (!NUW && !NSW)
        break;
      if (!NSW && I.isSigned())
        break;
      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
    }
    }
  }

  if (BO0) {
    // Transform  A & (L - 1) `ult` L --> L != 0
    auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
    auto BitwiseAnd = m_c_And(m_Value(), LSubOne);

    if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
      auto *Zero = Constant::getNullValue(BO0->getType());
      return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
    }
  }

  if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
    return replaceInstUsesWith(I, V);

  if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
    return replaceInstUsesWith(I, V);

  if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
    return replaceInstUsesWith(I, V);

  if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
    return replaceInstUsesWith(I, V);

  return nullptr;
}

/// Fold icmp Pred min|max(X, Y), X.
static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
  ICmpInst::Predicate Pred = Cmp.getPredicate();
  Value *Op0 = Cmp.getOperand(0);
  Value *X = Cmp.getOperand(1);

  // Canonicalize minimum or maximum operand to LHS of the icmp.
  if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
      match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
      match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
      match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
    std::swap(Op0, X);
    Pred = Cmp.getSwappedPredicate();
  }

  Value *Y;
  if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
    // smin(X, Y)  == X --> X s<= Y
    // smin(X, Y) s>= X --> X s<= Y
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
      return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);

    // smin(X, Y) != X --> X s> Y
    // smin(X, Y) s< X --> X s> Y
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
      return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);

    // These cases should be handled in InstSimplify:
    // smin(X, Y) s<= X --> true
    // smin(X, Y) s> X --> false
    return nullptr;
  }

  if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
    // smax(X, Y)  == X --> X s>= Y
    // smax(X, Y) s<= X --> X s>= Y
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
      return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);

    // smax(X, Y) != X --> X s< Y
    // smax(X, Y) s> X --> X s< Y
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
      return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);

    // These cases should be handled in InstSimplify:
    // smax(X, Y) s>= X --> true
    // smax(X, Y) s< X --> false
    return nullptr;
  }

  if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
    // umin(X, Y)  == X --> X u<= Y
    // umin(X, Y) u>= X --> X u<= Y
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
      return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);

    // umin(X, Y) != X --> X u> Y
    // umin(X, Y) u< X --> X u> Y
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
      return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);

    // These cases should be handled in InstSimplify:
    // umin(X, Y) u<= X --> true
    // umin(X, Y) u> X --> false
    return nullptr;
  }

  if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
    // umax(X, Y)  == X --> X u>= Y
    // umax(X, Y) u<= X --> X u>= Y
    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
      return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);

    // umax(X, Y) != X --> X u< Y
    // umax(X, Y) u> X --> X u< Y
    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
      return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);

    // These cases should be handled in InstSimplify:
    // umax(X, Y) u>= X --> true
    // umax(X, Y) u< X --> false
    return nullptr;
  }

  return nullptr;
}

Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
  if (!I.isEquality())
    return nullptr;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  const CmpInst::Predicate Pred = I.getPredicate();
  Value *A, *B, *C, *D;
  if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
    if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
      Value *OtherVal = A == Op1 ? B : A;
      return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
    }

    if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
      // A^c1 == C^c2 --> A == C^(c1^c2)
      ConstantInt *C1, *C2;
      if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
          Op1->hasOneUse()) {
        Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
        Value *Xor = Builder.CreateXor(C, NC);
        return new ICmpInst(Pred, A, Xor);
      }

      // A^B == A^D -> B == D
      if (A == C)
        return new ICmpInst(Pred, B, D);
      if (A == D)
        return new ICmpInst(Pred, B, C);
      if (B == C)
        return new ICmpInst(Pred, A, D);
      if (B == D)
        return new ICmpInst(Pred, A, C);
    }
  }

  if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
    // A == (A^B)  ->  B == 0
    Value *OtherVal = A == Op0 ? B : A;
    return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
  }

  // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
  if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
      match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
    Value *X = nullptr, *Y = nullptr, *Z = nullptr;

    if (A == C) {
      X = B;
      Y = D;
      Z = A;
    } else if (A == D) {
      X = B;
      Y = C;
      Z = A;
    } else if (B == C) {
      X = A;
      Y = D;
      Z = B;
    } else if (B == D) {
      X = A;
      Y = C;
      Z = B;
    }

    if (X) { // Build (X^Y) & Z
      Op1 = Builder.CreateXor(X, Y);
      Op1 = Builder.CreateAnd(Op1, Z);
      return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
    }
  }

  // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
  // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
  ConstantInt *Cst1;
  if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
       match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
      (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
       match(Op1, m_ZExt(m_Value(A))))) {
    APInt Pow2 = Cst1->getValue() + 1;
    if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
        Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
      return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
  }

  // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
  // For lshr and ashr pairs.
  if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
       match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
      (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
       match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
    unsigned TypeBits = Cst1->getBitWidth();
    unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
    if (ShAmt < TypeBits && ShAmt != 0) {
      ICmpInst::Predicate NewPred =
          Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
      Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
      APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
      return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
    }
  }

  // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
  if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
      match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
    unsigned TypeBits = Cst1->getBitWidth();
    unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
    if (ShAmt < TypeBits && ShAmt != 0) {
      Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
      APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
      Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
                                      I.getName() + ".mask");
      return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
    }
  }

  // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
  // "icmp (and X, mask), cst"
  uint64_t ShAmt = 0;
  if (Op0->hasOneUse() &&
      match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
      match(Op1, m_ConstantInt(Cst1)) &&
      // Only do this when A has multiple uses.  This is most important to do
      // when it exposes other optimizations.
      !A->hasOneUse()) {
    unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();

    if (ShAmt < ASize) {
      APInt MaskV =
          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
      MaskV <<= ShAmt;

      APInt CmpV = Cst1->getValue().zext(ASize);
      CmpV <<= ShAmt;

      Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
      return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
    }
  }

  // If both operands are byte-swapped or bit-reversed, just compare the
  // original values.
  // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
  // and handle more intrinsics.
  if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
      (match(Op0, m_BitReverse(m_Value(A))) &&
       match(Op1, m_BitReverse(m_Value(B)))))
    return new ICmpInst(Pred, A, B);

  // Canonicalize checking for a power-of-2-or-zero value:
  // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
  // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
  if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
                                   m_Deferred(A)))) ||
      !match(Op1, m_ZeroInt()))
    A = nullptr;

  // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
  // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
  if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
    A = Op1;
  else if (match(Op1,
                 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
    A = Op0;

  if (A) {
    Type *Ty = A->getType();
    CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
    return Pred == ICmpInst::ICMP_EQ
        ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
        : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
  }

  return nullptr;
}

static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
                                           InstCombiner::BuilderTy &Builder) {
  assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
  auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
  Value *X;
  if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
    return nullptr;

  bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
  bool IsSignedCmp = ICmp.isSigned();
  if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
    // If the signedness of the two casts doesn't agree (i.e. one is a sext
    // and the other is a zext), then we can't handle this.
    // TODO: This is too strict. We can handle some predicates (equality?).
    if (CastOp0->getOpcode() != CastOp1->getOpcode())
      return nullptr;

    // Not an extension from the same type?
    Value *Y = CastOp1->getOperand(0);
    Type *XTy = X->getType(), *YTy = Y->getType();
    if (XTy != YTy) {
      // One of the casts must have one use because we are creating a new cast.
      if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
        return nullptr;
      // Extend the narrower operand to the type of the wider operand.
      if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
        X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
      else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
        Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
      else
        return nullptr;
    }

    // (zext X) == (zext Y) --> X == Y
    // (sext X) == (sext Y) --> X == Y
    if (ICmp.isEquality())
      return new ICmpInst(ICmp.getPredicate(), X, Y);

    // A signed comparison of sign extended values simplifies into a
    // signed comparison.
    if (IsSignedCmp && IsSignedExt)
      return new ICmpInst(ICmp.getPredicate(), X, Y);

    // The other three cases all fold into an unsigned comparison.
    return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
  }

  // Below here, we are only folding a compare with constant.
  auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
  if (!C)
    return nullptr;

  // Compute the constant that would happen if we truncated to SrcTy then
  // re-extended to DestTy.
  Type *SrcTy = CastOp0->getSrcTy();
  Type *DestTy = CastOp0->getDestTy();
  Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
  Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);

  // If the re-extended constant didn't change...
  if (Res2 == C) {
    if (ICmp.isEquality())
      return new ICmpInst(ICmp.getPredicate(), X, Res1);

    // A signed comparison of sign extended values simplifies into a
    // signed comparison.
    if (IsSignedExt && IsSignedCmp)
      return new ICmpInst(ICmp.getPredicate(), X, Res1);

    // The other three cases all fold into an unsigned comparison.
    return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
  }

  // The re-extended constant changed, partly changed (in the case of a vector),
  // or could not be determined to be equal (in the case of a constant
  // expression), so the constant cannot be represented in the shorter type.
  // All the cases that fold to true or false will have already been handled
  // by SimplifyICmpInst, so only deal with the tricky case.
  if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
    return nullptr;

  // Is source op positive?
  // icmp ult (sext X), C --> icmp sgt X, -1
  if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
    return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));

  // Is source op negative?
  // icmp ugt (sext X), C --> icmp slt X, 0
  assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
  return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
}

/// Handle icmp (cast x), (cast or constant).
Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
  auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
  if (!CastOp0)
    return nullptr;
  if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
    return nullptr;

  Value *Op0Src = CastOp0->getOperand(0);
  Type *SrcTy = CastOp0->getSrcTy();
  Type *DestTy = CastOp0->getDestTy();

  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
  // integer type is the same size as the pointer type.
  auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
    if (isa<VectorType>(SrcTy)) {
      SrcTy = cast<VectorType>(SrcTy)->getElementType();
      DestTy = cast<VectorType>(DestTy)->getElementType();
    }
    return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
  };
  if (CastOp0->getOpcode() == Instruction::PtrToInt &&
      CompatibleSizes(SrcTy, DestTy)) {
    Value *NewOp1 = nullptr;
    if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
      Value *PtrSrc = PtrToIntOp1->getOperand(0);
      if (PtrSrc->getType()->getPointerAddressSpace() ==
          Op0Src->getType()->getPointerAddressSpace()) {
        NewOp1 = PtrToIntOp1->getOperand(0);
        // If the pointer types don't match, insert a bitcast.
        if (Op0Src->getType() != NewOp1->getType())
          NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
      }
    } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
      NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
    }

    if (NewOp1)
      return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
  }

  return foldICmpWithZextOrSext(ICmp, Builder);
}

static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
  switch (BinaryOp) {
    default:
      llvm_unreachable("Unsupported binary op");
    case Instruction::Add:
    case Instruction::Sub:
      return match(RHS, m_Zero());
    case Instruction::Mul:
      return match(RHS, m_One());
  }
}

OverflowResult InstCombiner::computeOverflow(
    Instruction::BinaryOps BinaryOp, bool IsSigned,
    Value *LHS, Value *RHS, Instruction *CxtI) const {
  switch (BinaryOp) {
    default:
      llvm_unreachable("Unsupported binary op");
    case Instruction::Add:
      if (IsSigned)
        return computeOverflowForSignedAdd(LHS, RHS, CxtI);
      else
        return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
    case Instruction::Sub:
      if (IsSigned)
        return computeOverflowForSignedSub(LHS, RHS, CxtI);
      else
        return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
    case Instruction::Mul:
      if (IsSigned)
        return computeOverflowForSignedMul(LHS, RHS, CxtI);
      else
        return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
  }
}

bool InstCombiner::OptimizeOverflowCheck(
    Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
    Instruction &OrigI, Value *&Result, Constant *&Overflow) {
  if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
    std::swap(LHS, RHS);

  // If the overflow check was an add followed by a compare, the insertion point
  // may be pointing to the compare.  We want to insert the new instructions
  // before the add in case there are uses of the add between the add and the
  // compare.
  Builder.SetInsertPoint(&OrigI);

  if (isNeutralValue(BinaryOp, RHS)) {
    Result = LHS;
    Overflow = Builder.getFalse();
    return true;
  }

  switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
    case OverflowResult::MayOverflow:
      return false;
    case OverflowResult::AlwaysOverflowsLow:
    case OverflowResult::AlwaysOverflowsHigh:
      Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
      Result->takeName(&OrigI);
      Overflow = Builder.getTrue();
      return true;
    case OverflowResult::NeverOverflows:
      Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
      Result->takeName(&OrigI);
      Overflow = Builder.getFalse();
      if (auto *Inst = dyn_cast<Instruction>(Result)) {
        if (IsSigned)
          Inst->setHasNoSignedWrap();
        else
          Inst->setHasNoUnsignedWrap();
      }
      return true;
  }

  llvm_unreachable("Unexpected overflow result");
}

/// Recognize and process idiom involving test for multiplication
/// overflow.
///
/// The caller has matched a pattern of the form:
///   I = cmp u (mul(zext A, zext B), V
/// The function checks if this is a test for overflow and if so replaces
/// multiplication with call to 'mul.with.overflow' intrinsic.
///
/// \param I Compare instruction.
/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
///               the compare instruction.  Must be of integer type.
/// \param OtherVal The other argument of compare instruction.
/// \returns Instruction which must replace the compare instruction, NULL if no
///          replacement required.
static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
                                         Value *OtherVal, InstCombiner &IC) {
  // Don't bother doing this transformation for pointers, don't do it for
  // vectors.
  if (!isa<IntegerType>(MulVal->getType()))
    return nullptr;

  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
  auto *MulInstr = dyn_cast<Instruction>(MulVal);
  if (!MulInstr)
    return nullptr;
  assert(MulInstr->getOpcode() == Instruction::Mul);

  auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
       *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
  assert(LHS->getOpcode() == Instruction::ZExt);
  assert(RHS->getOpcode() == Instruction::ZExt);
  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);

  // Calculate type and width of the result produced by mul.with.overflow.
  Type *TyA = A->getType(), *TyB = B->getType();
  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
           WidthB = TyB->getPrimitiveSizeInBits();
  unsigned MulWidth;
  Type *MulType;
  if (WidthB > WidthA) {
    MulWidth = WidthB;
    MulType = TyB;
  } else {
    MulWidth = WidthA;
    MulType = TyA;
  }

  // In order to replace the original mul with a narrower mul.with.overflow,
  // all uses must ignore upper bits of the product.  The number of used low
  // bits must be not greater than the width of mul.with.overflow.
  if (MulVal->hasNUsesOrMore(2))
    for (User *U : MulVal->users()) {
      if (U == &I)
        continue;
      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
        // Check if truncation ignores bits above MulWidth.
        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
        if (TruncWidth > MulWidth)
          return nullptr;
      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
        // Check if AND ignores bits above MulWidth.
        if (BO->getOpcode() != Instruction::And)
          return nullptr;
        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
          const APInt &CVal = CI->getValue();
          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
            return nullptr;
        } else {
          // In this case we could have the operand of the binary operation
          // being defined in another block, and performing the replacement
          // could break the dominance relation.
          return nullptr;
        }
      } else {
        // Other uses prohibit this transformation.
        return nullptr;
      }
    }

  // Recognize patterns
  switch (I.getPredicate()) {
  case ICmpInst::ICMP_EQ:
  case ICmpInst::ICMP_NE:
    // Recognize pattern:
    //   mulval = mul(zext A, zext B)
    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
    ConstantInt *CI;
    Value *ValToMask;
    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
      if (ValToMask != MulVal)
        return nullptr;
      const APInt &CVal = CI->getValue() + 1;
      if (CVal.isPowerOf2()) {
        unsigned MaskWidth = CVal.logBase2();
        if (MaskWidth == MulWidth)
          break; // Recognized
      }
    }
    return nullptr;

  case ICmpInst::ICMP_UGT:
    // Recognize pattern:
    //   mulval = mul(zext A, zext B)
    //   cmp ugt mulval, max
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
      APInt MaxVal = APInt::getMaxValue(MulWidth);
      MaxVal = MaxVal.zext(CI->getBitWidth());
      if (MaxVal.eq(CI->getValue()))
        break; // Recognized
    }
    return nullptr;

  case ICmpInst::ICMP_UGE:
    // Recognize pattern:
    //   mulval = mul(zext A, zext B)
    //   cmp uge mulval, max+1
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
      if (MaxVal.eq(CI->getValue()))
        break; // Recognized
    }
    return nullptr;

  case ICmpInst::ICMP_ULE:
    // Recognize pattern:
    //   mulval = mul(zext A, zext B)
    //   cmp ule mulval, max
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
      APInt MaxVal = APInt::getMaxValue(MulWidth);
      MaxVal = MaxVal.zext(CI->getBitWidth());
      if (MaxVal.eq(CI->getValue()))
        break; // Recognized
    }
    return nullptr;

  case ICmpInst::ICMP_ULT:
    // Recognize pattern:
    //   mulval = mul(zext A, zext B)
    //   cmp ule mulval, max + 1
    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
      if (MaxVal.eq(CI->getValue()))
        break; // Recognized
    }
    return nullptr;

  default:
    return nullptr;
  }

  InstCombiner::BuilderTy &Builder = IC.Builder;
  Builder.SetInsertPoint(MulInstr);

  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
  Value *MulA = A, *MulB = B;
  if (WidthA < MulWidth)
    MulA = Builder.CreateZExt(A, MulType);
  if (WidthB < MulWidth)
    MulB = Builder.CreateZExt(B, MulType);
  Function *F = Intrinsic::getDeclaration(
      I.getModule(), Intrinsic::umul_with_overflow, MulType);
  CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
  IC.Worklist.push(MulInstr);

  // If there are uses of mul result other than the comparison, we know that
  // they are truncation or binary AND. Change them to use result of
  // mul.with.overflow and adjust properly mask/size.
  if (MulVal->hasNUsesOrMore(2)) {
    Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
    for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
      User *U = *UI++;
      if (U == &I || U == OtherVal)
        continue;
      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
          IC.replaceInstUsesWith(*TI, Mul);
        else
          TI->setOperand(0, Mul);
      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
        assert(BO->getOpcode() == Instruction::And);
        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
        APInt ShortMask = CI->getValue().trunc(MulWidth);
        Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
        Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
        IC.replaceInstUsesWith(*BO, Zext);
      } else {
        llvm_unreachable("Unexpected Binary operation");
      }
      IC.Worklist.push(cast<Instruction>(U));
    }
  }
  if (isa<Instruction>(OtherVal))
    IC.Worklist.push(cast<Instruction>(OtherVal));

  // The original icmp gets replaced with the overflow value, maybe inverted
  // depending on predicate.
  bool Inverse = false;
  switch (I.getPredicate()) {
  case ICmpInst::ICMP_NE:
    break;
  case ICmpInst::ICMP_EQ:
    Inverse = true;
    break;
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_UGE:
    if (I.getOperand(0) == MulVal)
      break;
    Inverse = true;
    break;
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_ULE:
    if (I.getOperand(1) == MulVal)
      break;
    Inverse = true;
    break;
  default:
    llvm_unreachable("Unexpected predicate");
  }
  if (Inverse) {
    Value *Res = Builder.CreateExtractValue(Call, 1);
    return BinaryOperator::CreateNot(Res);
  }

  return ExtractValueInst::Create(Call, 1);
}

/// When performing a comparison against a constant, it is possible that not all
/// the bits in the LHS are demanded. This helper method computes the mask that
/// IS demanded.
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
  const APInt *RHS;
  if (!match(I.getOperand(1), m_APInt(RHS)))
    return APInt::getAllOnesValue(BitWidth);

  // If this is a normal comparison, it demands all bits. If it is a sign bit
  // comparison, it only demands the sign bit.
  bool UnusedBit;
  if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
    return APInt::getSignMask(BitWidth);

  switch (I.getPredicate()) {
  // For a UGT comparison, we don't care about any bits that
  // correspond to the trailing ones of the comparand.  The value of these
  // bits doesn't impact the outcome of the comparison, because any value
  // greater than the RHS must differ in a bit higher than these due to carry.
  case ICmpInst::ICMP_UGT:
    return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());

  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
  // Any value less than the RHS must differ in a higher bit because of carries.
  case ICmpInst::ICMP_ULT:
    return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());

  default:
    return APInt::getAllOnesValue(BitWidth);
  }
}

/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
/// should be swapped.
/// The decision is based on how many times these two operands are reused
/// as subtract operands and their positions in those instructions.
/// The rationale is that several architectures use the same instruction for
/// both subtract and cmp. Thus, it is better if the order of those operands
/// match.
/// \return true if Op0 and Op1 should be swapped.
static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
  // Filter out pointer values as those cannot appear directly in subtract.
  // FIXME: we may want to go through inttoptrs or bitcasts.
  if (Op0->getType()->isPointerTy())
    return false;
  // If a subtract already has the same operands as a compare, swapping would be
  // bad. If a subtract has the same operands as a compare but in reverse order,
  // then swapping is good.
  int GoodToSwap = 0;
  for (const User *U : Op0->users()) {
    if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
      GoodToSwap++;
    else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
      GoodToSwap--;
  }
  return GoodToSwap > 0;
}

/// Check that one use is in the same block as the definition and all
/// other uses are in blocks dominated by a given block.
///
/// \param DI Definition
/// \param UI Use
/// \param DB Block that must dominate all uses of \p DI outside
///           the parent block
/// \return true when \p UI is the only use of \p DI in the parent block
/// and all other uses of \p DI are in blocks dominated by \p DB.
///
bool InstCombiner::dominatesAllUses(const Instruction *DI,
                                    const Instruction *UI,
                                    const BasicBlock *DB) const {
  assert(DI && UI && "Instruction not defined\n");
  // Ignore incomplete definitions.
  if (!DI->getParent())
    return false;
  // DI and UI must be in the same block.
  if (DI->getParent() != UI->getParent())
    return false;
  // Protect from self-referencing blocks.
  if (DI->getParent() == DB)
    return false;
  for (const User *U : DI->users()) {
    auto *Usr = cast<Instruction>(U);
    if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
      return false;
  }
  return true;
}

/// Return true when the instruction sequence within a block is select-cmp-br.
static bool isChainSelectCmpBranch(const SelectInst *SI) {
  const BasicBlock *BB = SI->getParent();
  if (!BB)
    return false;
  auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
  if (!BI || BI->getNumSuccessors() != 2)
    return false;
  auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
  if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
    return false;
  return true;
}

/// True when a select result is replaced by one of its operands
/// in select-icmp sequence. This will eventually result in the elimination
/// of the select.
///
/// \param SI    Select instruction
/// \param Icmp  Compare instruction
/// \param SIOpd Operand that replaces the select
///
/// Notes:
/// - The replacement is global and requires dominator information
/// - The caller is responsible for the actual replacement
///
/// Example:
///
/// entry:
///  %4 = select i1 %3, %C* %0, %C* null
///  %5 = icmp eq %C* %4, null
///  br i1 %5, label %9, label %7
///  ...
///  ; <label>:7                                       ; preds = %entry
///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
///  ...
///
/// can be transformed to
///
///  %5 = icmp eq %C* %0, null
///  %6 = select i1 %3, i1 %5, i1 true
///  br i1 %6, label %9, label %7
///  ...
///  ; <label>:7                                       ; preds = %entry
///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
///
/// Similar when the first operand of the select is a constant or/and
/// the compare is for not equal rather than equal.
///
/// NOTE: The function is only called when the select and compare constants
/// are equal, the optimization can work only for EQ predicates. This is not a
/// major restriction since a NE compare should be 'normalized' to an equal
/// compare, which usually happens in the combiner and test case
/// select-cmp-br.ll checks for it.
bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
                                             const ICmpInst *Icmp,
                                             const unsigned SIOpd) {
  assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
  if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
    BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
    // The check for the single predecessor is not the best that can be
    // done. But it protects efficiently against cases like when SI's
    // home block has two successors, Succ and Succ1, and Succ1 predecessor
    // of Succ. Then SI can't be replaced by SIOpd because the use that gets
    // replaced can be reached on either path. So the uniqueness check
    // guarantees that the path all uses of SI (outside SI's parent) are on
    // is disjoint from all other paths out of SI. But that information
    // is more expensive to compute, and the trade-off here is in favor
    // of compile-time. It should also be noticed that we check for a single
    // predecessor and not only uniqueness. This to handle the situation when
    // Succ and Succ1 points to the same basic block.
    if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
      NumSel++;
      SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
      return true;
    }
  }
  return false;
}

/// Try to fold the comparison based on range information we can get by checking
/// whether bits are known to be zero or one in the inputs.
Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = Op0->getType();
  ICmpInst::Predicate Pred = I.getPredicate();

  // Get scalar or pointer size.
  unsigned BitWidth = Ty->isIntOrIntVectorTy()
                          ? Ty->getScalarSizeInBits()
                          : DL.getPointerTypeSizeInBits(Ty->getScalarType());

  if (!BitWidth)
    return nullptr;

  KnownBits Op0Known(BitWidth);
  KnownBits Op1Known(BitWidth);

  if (SimplifyDemandedBits(&I, 0,
                           getDemandedBitsLHSMask(I, BitWidth),
                           Op0Known, 0))
    return &I;

  if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
                           Op1Known, 0))
    return &I;

  // Given the known and unknown bits, compute a range that the LHS could be
  // in.  Compute the Min, Max and RHS values based on the known bits. For the
  // EQ and NE we use unsigned values.
  APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
  APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
  if (I.isSigned()) {
    computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
    computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
  } else {
    computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
    computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
  }

  // If Min and Max are known to be the same, then SimplifyDemandedBits figured
  // out that the LHS or RHS is a constant. Constant fold this now, so that
  // code below can assume that Min != Max.
  if (!isa<Constant>(Op0) && Op0Min == Op0Max)
    return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
  if (!isa<Constant>(Op1) && Op1Min == Op1Max)
    return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));

  // Based on the range information we know about the LHS, see if we can
  // simplify this comparison.  For example, (x&4) < 8 is always true.
  switch (Pred) {
  default:
    llvm_unreachable("Unknown icmp opcode!");
  case ICmpInst::ICMP_EQ:
  case ICmpInst::ICMP_NE: {
    if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
      return Pred == CmpInst::ICMP_EQ
                 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
                 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    }

    // If all bits are known zero except for one, then we know at most one bit
    // is set. If the comparison is against zero, then this is a check to see if
    // *that* bit is set.
    APInt Op0KnownZeroInverted = ~Op0Known.Zero;
    if (Op1Known.isZero()) {
      // If the LHS is an AND with the same constant, look through it.
      Value *LHS = nullptr;
      const APInt *LHSC;
      if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
          *LHSC != Op0KnownZeroInverted)
        LHS = Op0;

      Value *X;
      if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
        APInt ValToCheck = Op0KnownZeroInverted;
        Type *XTy = X->getType();
        if (ValToCheck.isPowerOf2()) {
          // ((1 << X) & 8) == 0 -> X != 3
          // ((1 << X) & 8) != 0 -> X == 3
          auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
          auto NewPred = ICmpInst::getInversePredicate(Pred);
          return new ICmpInst(NewPred, X, CmpC);
        } else if ((++ValToCheck).isPowerOf2()) {
          // ((1 << X) & 7) == 0 -> X >= 3
          // ((1 << X) & 7) != 0 -> X  < 3
          auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
          auto NewPred =
              Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
          return new ICmpInst(NewPred, X, CmpC);
        }
      }

      // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
      const APInt *CI;
      if (Op0KnownZeroInverted.isOneValue() &&
          match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
        // ((8 >>u X) & 1) == 0 -> X != 3
        // ((8 >>u X) & 1) != 0 -> X == 3
        unsigned CmpVal = CI->countTrailingZeros();
        auto NewPred = ICmpInst::getInversePredicate(Pred);
        return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
      }
    }
    break;
  }
  case ICmpInst::ICMP_ULT: {
    if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);

    const APInt *CmpC;
    if (match(Op1, m_APInt(CmpC))) {
      // A <u C -> A == C-1 if min(A)+1 == C
      if (*CmpC == Op0Min + 1)
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
                            ConstantInt::get(Op1->getType(), *CmpC - 1));
      // X <u C --> X == 0, if the number of zero bits in the bottom of X
      // exceeds the log2 of C.
      if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
                            Constant::getNullValue(Op1->getType()));
    }
    break;
  }
  case ICmpInst::ICMP_UGT: {
    if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);

    const APInt *CmpC;
    if (match(Op1, m_APInt(CmpC))) {
      // A >u C -> A == C+1 if max(a)-1 == C
      if (*CmpC == Op0Max - 1)
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
                            ConstantInt::get(Op1->getType(), *CmpC + 1));
      // X >u C --> X != 0, if the number of zero bits in the bottom of X
      // exceeds the log2 of C.
      if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
        return new ICmpInst(ICmpInst::ICMP_NE, Op0,
                            Constant::getNullValue(Op1->getType()));
    }
    break;
  }
  case ICmpInst::ICMP_SLT: {
    if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
    const APInt *CmpC;
    if (match(Op1, m_APInt(CmpC))) {
      if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
                            ConstantInt::get(Op1->getType(), *CmpC - 1));
    }
    break;
  }
  case ICmpInst::ICMP_SGT: {
    if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
    const APInt *CmpC;
    if (match(Op1, m_APInt(CmpC))) {
      if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
                            ConstantInt::get(Op1->getType(), *CmpC + 1));
    }
    break;
  }
  case ICmpInst::ICMP_SGE:
    assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
    if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
    break;
  case ICmpInst::ICMP_SLE:
    assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
    if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
    break;
  case ICmpInst::ICMP_UGE:
    assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
    if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
    break;
  case ICmpInst::ICMP_ULE:
    assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
    if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
    if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
    if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
    break;
  }

  // Turn a signed comparison into an unsigned one if both operands are known to
  // have the same sign.
  if (I.isSigned() &&
      ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
       (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
    return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);

  return nullptr;
}

llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
                                               Constant *C) {
  assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
         "Only for relational integer predicates.");

  Type *Type = C->getType();
  bool IsSigned = ICmpInst::isSigned(Pred);

  CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
  bool WillIncrement =
      UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;

  // Check if the constant operand can be safely incremented/decremented
  // without overflowing/underflowing.
  auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
    return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
  };

  Constant *SafeReplacementConstant = nullptr;
  if (auto *CI = dyn_cast<ConstantInt>(C)) {
    // Bail out if the constant can't be safely incremented/decremented.
    if (!ConstantIsOk(CI))
      return llvm::None;
  } else if (auto *VTy = dyn_cast<VectorType>(Type)) {
    unsigned NumElts = VTy->getNumElements();
    for (unsigned i = 0; i != NumElts; ++i) {
      Constant *Elt = C->getAggregateElement(i);
      if (!Elt)
        return llvm::None;

      if (isa<UndefValue>(Elt))
        continue;

      // Bail out if we can't determine if this constant is min/max or if we
      // know that this constant is min/max.
      auto *CI = dyn_cast<ConstantInt>(Elt);
      if (!CI || !ConstantIsOk(CI))
        return llvm::None;

      if (!SafeReplacementConstant)
        SafeReplacementConstant = CI;
    }
  } else {
    // ConstantExpr?
    return llvm::None;
  }

  // It may not be safe to change a compare predicate in the presence of
  // undefined elements, so replace those elements with the first safe constant
  // that we found.
  if (C->containsUndefElement()) {
    assert(SafeReplacementConstant && "Replacement constant not set");
    C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
  }

  CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);

  // Increment or decrement the constant.
  Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
  Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);

  return std::make_pair(NewPred, NewC);
}

/// If we have an icmp le or icmp ge instruction with a constant operand, turn
/// it into the appropriate icmp lt or icmp gt instruction. This transform
/// allows them to be folded in visitICmpInst.
static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
  ICmpInst::Predicate Pred = I.getPredicate();
  if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
      isCanonicalPredicate(Pred))
    return nullptr;

  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  auto *Op1C = dyn_cast<Constant>(Op1);
  if (!Op1C)
    return nullptr;

  auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
  if (!FlippedStrictness)
    return nullptr;

  return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
}

/// If we have a comparison with a non-canonical predicate, if we can update
/// all the users, invert the predicate and adjust all the users.
static CmpInst *canonicalizeICmpPredicate(CmpInst &I) {
  // Is the predicate already canonical?
  CmpInst::Predicate Pred = I.getPredicate();
  if (isCanonicalPredicate(Pred))
    return nullptr;

  // Can all users be adjusted to predicate inversion?
  if (!canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
    return nullptr;

  // Ok, we can canonicalize comparison!
  // Let's first invert the comparison's predicate.
  I.setPredicate(CmpInst::getInversePredicate(Pred));
  I.setName(I.getName() + ".not");

  // And now let's adjust every user.
  for (User *U : I.users()) {
    switch (cast<Instruction>(U)->getOpcode()) {
    case Instruction::Select: {
      auto *SI = cast<SelectInst>(U);
      SI->swapValues();
      SI->swapProfMetadata();
      break;
    }
    case Instruction::Br:
      cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
      break;
    case Instruction::Xor:
      U->replaceAllUsesWith(&I);
      break;
    default:
      llvm_unreachable("Got unexpected user - out of sync with "
                       "canFreelyInvertAllUsersOf() ?");
    }
  }

  return &I;
}

/// Integer compare with boolean values can always be turned into bitwise ops.
static Instruction *canonicalizeICmpBool(ICmpInst &I,
                                         InstCombiner::BuilderTy &Builder) {
  Value *A = I.getOperand(0), *B = I.getOperand(1);
  assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");

  // A boolean compared to true/false can be simplified to Op0/true/false in
  // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
  // Cases not handled by InstSimplify are always 'not' of Op0.
  if (match(B, m_Zero())) {
    switch (I.getPredicate()) {
      case CmpInst::ICMP_EQ:  // A ==   0 -> !A
      case CmpInst::ICMP_ULE: // A <=u  0 -> !A
      case CmpInst::ICMP_SGE: // A >=s  0 -> !A
        return BinaryOperator::CreateNot(A);
      default:
        llvm_unreachable("ICmp i1 X, C not simplified as expected.");
    }
  } else if (match(B, m_One())) {
    switch (I.getPredicate()) {
      case CmpInst::ICMP_NE:  // A !=  1 -> !A
      case CmpInst::ICMP_ULT: // A <u  1 -> !A
      case CmpInst::ICMP_SGT: // A >s -1 -> !A
        return BinaryOperator::CreateNot(A);
      default:
        llvm_unreachable("ICmp i1 X, C not simplified as expected.");
    }
  }

  switch (I.getPredicate()) {
  default:
    llvm_unreachable("Invalid icmp instruction!");
  case ICmpInst::ICMP_EQ:
    // icmp eq i1 A, B -> ~(A ^ B)
    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));

  case ICmpInst::ICMP_NE:
    // icmp ne i1 A, B -> A ^ B
    return BinaryOperator::CreateXor(A, B);

  case ICmpInst::ICMP_UGT:
    // icmp ugt -> icmp ult
    std::swap(A, B);
    LLVM_FALLTHROUGH;
  case ICmpInst::ICMP_ULT:
    // icmp ult i1 A, B -> ~A & B
    return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);

  case ICmpInst::ICMP_SGT:
    // icmp sgt -> icmp slt
    std::swap(A, B);
    LLVM_FALLTHROUGH;
  case ICmpInst::ICMP_SLT:
    // icmp slt i1 A, B -> A & ~B
    return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);

  case ICmpInst::ICMP_UGE:
    // icmp uge -> icmp ule
    std::swap(A, B);
    LLVM_FALLTHROUGH;
  case ICmpInst::ICMP_ULE:
    // icmp ule i1 A, B -> ~A | B
    return BinaryOperator::CreateOr(Builder.CreateNot(A), B);

  case ICmpInst::ICMP_SGE:
    // icmp sge -> icmp sle
    std::swap(A, B);
    LLVM_FALLTHROUGH;
  case ICmpInst::ICMP_SLE:
    // icmp sle i1 A, B -> A | ~B
    return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
  }
}

// Transform pattern like:
//   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
//   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
// Into:
//   (X l>> Y) != 0
//   (X l>> Y) == 0
static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
                                            InstCombiner::BuilderTy &Builder) {
  ICmpInst::Predicate Pred, NewPred;
  Value *X, *Y;
  if (match(&Cmp,
            m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
    switch (Pred) {
    case ICmpInst::ICMP_ULE:
      NewPred = ICmpInst::ICMP_NE;
      break;
    case ICmpInst::ICMP_UGT:
      NewPred = ICmpInst::ICMP_EQ;
      break;
    default:
      return nullptr;
    }
  } else if (match(&Cmp, m_c_ICmp(Pred,
                                  m_OneUse(m_CombineOr(
                                      m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
                                      m_Add(m_Shl(m_One(), m_Value(Y)),
                                            m_AllOnes()))),
                                  m_Value(X)))) {
    // The variant with 'add' is not canonical, (the variant with 'not' is)
    // we only get it because it has extra uses, and can't be canonicalized,

    switch (Pred) {
    case ICmpInst::ICMP_ULT:
      NewPred = ICmpInst::ICMP_NE;
      break;
    case ICmpInst::ICMP_UGE:
      NewPred = ICmpInst::ICMP_EQ;
      break;
    default:
      return nullptr;
    }
  } else
    return nullptr;

  Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
  Constant *Zero = Constant::getNullValue(NewX->getType());
  return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
}

static Instruction *foldVectorCmp(CmpInst &Cmp,
                                  InstCombiner::BuilderTy &Builder) {
  const CmpInst::Predicate Pred = Cmp.getPredicate();
  Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
  Value *V1, *V2;
  ArrayRef<int> M;
  if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
    return nullptr;

  // If both arguments of the cmp are shuffles that use the same mask and
  // shuffle within a single vector, move the shuffle after the cmp:
  // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
  Type *V1Ty = V1->getType();
  if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
      V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
    Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
    return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
  }

  // Try to canonicalize compare with splatted operand and splat constant.
  // TODO: We could generalize this for more than splats. See/use the code in
  //       InstCombiner::foldVectorBinop().
  Constant *C;
  if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
    return nullptr;

  // Length-changing splats are ok, so adjust the constants as needed:
  // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
  Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
  int MaskSplatIndex;
  if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
    // We allow undefs in matching, but this transform removes those for safety.
    // Demanded elements analysis should be able to recover some/all of that.
    C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
                                 ScalarC);
    SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
    Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
    return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
                                 NewM);
  }

  return nullptr;
}

// extract(uadd.with.overflow(A, B), 0) ult A
//  -> extract(uadd.with.overflow(A, B), 1)
static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
  CmpInst::Predicate Pred = I.getPredicate();
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  Value *UAddOv;
  Value *A, *B;
  auto UAddOvResultPat = m_ExtractValue<0>(
      m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
  if (match(Op0, UAddOvResultPat) &&
      ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
       (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
        (match(A, m_One()) || match(B, m_One()))) ||
       (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
        (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
    // extract(uadd.with.overflow(A, B), 0) < A
    // extract(uadd.with.overflow(A, 1), 0) == 0
    // extract(uadd.with.overflow(A, -1), 0) != -1
    UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
  else if (match(Op1, UAddOvResultPat) &&
           Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
    // A > extract(uadd.with.overflow(A, B), 0)
    UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
  else
    return nullptr;

  return ExtractValueInst::Create(UAddOv, 1);
}

Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
  bool Changed = false;
  const SimplifyQuery Q = SQ.getWithInstruction(&I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  unsigned Op0Cplxity = getComplexity(Op0);
  unsigned Op1Cplxity = getComplexity(Op1);

  /// Orders the operands of the compare so that they are listed from most
  /// complex to least complex.  This puts constants before unary operators,
  /// before binary operators.
  if (Op0Cplxity < Op1Cplxity ||
      (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
    I.swapOperands();
    std::swap(Op0, Op1);
    Changed = true;
  }

  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
    return replaceInstUsesWith(I, V);

  // Comparing -val or val with non-zero is the same as just comparing val
  // ie, abs(val) != 0 -> val != 0
  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
    Value *Cond, *SelectTrue, *SelectFalse;
    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
                            m_Value(SelectFalse)))) {
      if (Value *V = dyn_castNegVal(SelectTrue)) {
        if (V == SelectFalse)
          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
      }
      else if (Value *V = dyn_castNegVal(SelectFalse)) {
        if (V == SelectTrue)
          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
      }
    }
  }

  if (Op0->getType()->isIntOrIntVectorTy(1))
    if (Instruction *Res = canonicalizeICmpBool(I, Builder))
      return Res;

  if (Instruction *Res = canonicalizeCmpWithConstant(I))
    return Res;

  if (Instruction *Res = canonicalizeICmpPredicate(I))
    return Res;

  if (Instruction *Res = foldICmpWithConstant(I))
    return Res;

  if (Instruction *Res = foldICmpWithDominatingICmp(I))
    return Res;

  if (Instruction *Res = foldICmpBinOp(I, Q))
    return Res;

  if (Instruction *Res = foldICmpUsingKnownBits(I))
    return Res;

  // Test if the ICmpInst instruction is used exclusively by a select as
  // part of a minimum or maximum operation. If so, refrain from doing
  // any other folding. This helps out other analyses which understand
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
  // and CodeGen. And in this case, at least one of the comparison
  // operands has at least one user besides the compare (the select),
  // which would often largely negate the benefit of folding anyway.
  //
  // Do the same for the other patterns recognized by matchSelectPattern.
  if (I.hasOneUse())
    if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
      Value *A, *B;
      SelectPatternResult SPR = matchSelectPattern(SI, A, B);
      if (SPR.Flavor != SPF_UNKNOWN)
        return nullptr;
    }

  // Do this after checking for min/max to prevent infinite looping.
  if (Instruction *Res = foldICmpWithZero(I))
    return Res;

  // FIXME: We only do this after checking for min/max to prevent infinite
  // looping caused by a reverse canonicalization of these patterns for min/max.
  // FIXME: The organization of folds is a mess. These would naturally go into
  // canonicalizeCmpWithConstant(), but we can't move all of the above folds
  // down here after the min/max restriction.
  ICmpInst::Predicate Pred = I.getPredicate();
  const APInt *C;
  if (match(Op1, m_APInt(C))) {
    // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
    if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
      Constant *Zero = Constant::getNullValue(Op0->getType());
      return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
    }

    // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
    if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
      Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
      return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
    }
  }

  if (Instruction *Res = foldICmpInstWithConstant(I))
    return Res;

  // Try to match comparison as a sign bit test. Intentionally do this after
  // foldICmpInstWithConstant() to potentially let other folds to happen first.
  if (Instruction *New = foldSignBitTest(I))
    return New;

  if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
    return Res;

  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
    if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
      return NI;
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
    if (Instruction *NI = foldGEPICmp(GEP, Op0,
                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
      return NI;

  // Try to optimize equality comparisons against alloca-based pointers.
  if (Op0->getType()->isPointerTy() && I.isEquality()) {
    assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
      if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
        return New;
    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
      if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
        return New;
  }

  if (Instruction *Res = foldICmpBitCast(I, Builder))
    return Res;

  // TODO: Hoist this above the min/max bailout.
  if (Instruction *R = foldICmpWithCastOp(I))
    return R;

  if (Instruction *Res = foldICmpWithMinMax(I))
    return Res;

  {
    Value *A, *B;
    // Transform (A & ~B) == 0 --> (A & B) != 0
    // and       (A & ~B) != 0 --> (A & B) == 0
    // if A is a power of 2.
    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
        match(Op1, m_Zero()) &&
        isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
      return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
                          Op1);

    // ~X < ~Y --> Y < X
    // ~X < C -->  X > ~C
    if (match(Op0, m_Not(m_Value(A)))) {
      if (match(Op1, m_Not(m_Value(B))))
        return new ICmpInst(I.getPredicate(), B, A);

      const APInt *C;
      if (match(Op1, m_APInt(C)))
        return new ICmpInst(I.getSwappedPredicate(), A,
                            ConstantInt::get(Op1->getType(), ~(*C)));
    }

    Instruction *AddI = nullptr;
    if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
                                     m_Instruction(AddI))) &&
        isa<IntegerType>(A->getType())) {
      Value *Result;
      Constant *Overflow;
      // m_UAddWithOverflow can match patterns that do not include  an explicit
      // "add" instruction, so check the opcode of the matched op.
      if (AddI->getOpcode() == Instruction::Add &&
          OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
                                Result, Overflow)) {
        replaceInstUsesWith(*AddI, Result);
        eraseInstFromFunction(*AddI);
        return replaceInstUsesWith(I, Overflow);
      }
    }

    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
      if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
        return R;
    }
    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
      if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
        return R;
    }
  }

  if (Instruction *Res = foldICmpEquality(I))
    return Res;

  if (Instruction *Res = foldICmpOfUAddOv(I))
    return Res;

  // The 'cmpxchg' instruction returns an aggregate containing the old value and
  // an i1 which indicates whether or not we successfully did the swap.
  //
  // Replace comparisons between the old value and the expected value with the
  // indicator that 'cmpxchg' returns.
  //
  // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
  // spuriously fail.  In those cases, the old value may equal the expected
  // value but it is possible for the swap to not occur.
  if (I.getPredicate() == ICmpInst::ICMP_EQ)
    if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
      if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
        if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
            !ACXI->isWeak())
          return ExtractValueInst::Create(ACXI, 1);

  {
    Value *X;
    const APInt *C;
    // icmp X+Cst, X
    if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
      return foldICmpAddOpConst(X, *C, I.getPredicate());

    // icmp X, X+Cst
    if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
      return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
  }

  if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
    return Res;

  if (I.getType()->isVectorTy())
    if (Instruction *Res = foldVectorCmp(I, Builder))
      return Res;

  return Changed ? &I : nullptr;
}

/// Fold fcmp ([us]itofp x, cst) if possible.
Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
                                                Constant *RHSC) {
  if (!isa<ConstantFP>(RHSC)) return nullptr;
  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();

  // Get the width of the mantissa.  We don't want to hack on conversions that
  // might lose information from the integer, e.g. "i64 -> float"
  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
  if (MantissaWidth == -1) return nullptr;  // Unknown.

  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());

  bool LHSUnsigned = isa<UIToFPInst>(LHSI);

  if (I.isEquality()) {
    FCmpInst::Predicate P = I.getPredicate();
    bool IsExact = false;
    APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
    RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);

    // If the floating point constant isn't an integer value, we know if we will
    // ever compare equal / not equal to it.
    if (!IsExact) {
      // TODO: Can never be -0.0 and other non-representable values
      APFloat RHSRoundInt(RHS);
      RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
      if (RHS != RHSRoundInt) {
        if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
          return replaceInstUsesWith(I, Builder.getFalse());

        assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
        return replaceInstUsesWith(I, Builder.getTrue());
      }
    }

    // TODO: If the constant is exactly representable, is it always OK to do
    // equality compares as integer?
  }

  // Check to see that the input is converted from an integer type that is small
  // enough that preserves all bits.  TODO: check here for "known" sign bits.
  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
  unsigned InputSize = IntTy->getScalarSizeInBits();

  // Following test does NOT adjust InputSize downwards for signed inputs,
  // because the most negative value still requires all the mantissa bits
  // to distinguish it from one less than that value.
  if ((int)InputSize > MantissaWidth) {
    // Conversion would lose accuracy. Check if loss can impact comparison.
    int Exp = ilogb(RHS);
    if (Exp == APFloat::IEK_Inf) {
      int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
      if (MaxExponent < (int)InputSize - !LHSUnsigned)
        // Conversion could create infinity.
        return nullptr;
    } else {
      // Note that if RHS is zero or NaN, then Exp is negative
      // and first condition is trivially false.
      if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
        // Conversion could affect comparison.
        return nullptr;
    }
  }

  // Otherwise, we can potentially simplify the comparison.  We know that it
  // will always come through as an integer value and we know the constant is
  // not a NAN (it would have been previously simplified).
  assert(!RHS.isNaN() && "NaN comparison not already folded!");

  ICmpInst::Predicate Pred;
  switch (I.getPredicate()) {
  default: llvm_unreachable("Unexpected predicate!");
  case FCmpInst::FCMP_UEQ:
  case FCmpInst::FCMP_OEQ:
    Pred = ICmpInst::ICMP_EQ;
    break;
  case FCmpInst::FCMP_UGT:
  case FCmpInst::FCMP_OGT:
    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
    break;
  case FCmpInst::FCMP_UGE:
  case FCmpInst::FCMP_OGE:
    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
    break;
  case FCmpInst::FCMP_ULT:
  case FCmpInst::FCMP_OLT:
    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
    break;
  case FCmpInst::FCMP_ULE:
  case FCmpInst::FCMP_OLE:
    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
    break;
  case FCmpInst::FCMP_UNE:
  case FCmpInst::FCMP_ONE:
    Pred = ICmpInst::ICMP_NE;
    break;
  case FCmpInst::FCMP_ORD:
    return replaceInstUsesWith(I, Builder.getTrue());
  case FCmpInst::FCMP_UNO:
    return replaceInstUsesWith(I, Builder.getFalse());
  }

  // Now we know that the APFloat is a normal number, zero or inf.

  // See if the FP constant is too large for the integer.  For example,
  // comparing an i8 to 300.0.
  unsigned IntWidth = IntTy->getScalarSizeInBits();

  if (!LHSUnsigned) {
    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
    // and large values.
    APFloat SMax(RHS.getSemantics());
    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
                          APFloat::rmNearestTiesToEven);
    if (SMax < RHS) { // smax < 13123.0
      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
          Pred == ICmpInst::ICMP_SLE)
        return replaceInstUsesWith(I, Builder.getTrue());
      return replaceInstUsesWith(I, Builder.getFalse());
    }
  } else {
    // If the RHS value is > UnsignedMax, fold the comparison. This handles
    // +INF and large values.
    APFloat UMax(RHS.getSemantics());
    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
                          APFloat::rmNearestTiesToEven);
    if (UMax < RHS) { // umax < 13123.0
      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
          Pred == ICmpInst::ICMP_ULE)
        return replaceInstUsesWith(I, Builder.getTrue());
      return replaceInstUsesWith(I, Builder.getFalse());
    }
  }

  if (!LHSUnsigned) {
    // See if the RHS value is < SignedMin.
    APFloat SMin(RHS.getSemantics());
    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
                          APFloat::rmNearestTiesToEven);
    if (SMin > RHS) { // smin > 12312.0
      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
          Pred == ICmpInst::ICMP_SGE)
        return replaceInstUsesWith(I, Builder.getTrue());
      return replaceInstUsesWith(I, Builder.getFalse());
    }
  } else {
    // See if the RHS value is < UnsignedMin.
    APFloat UMin(RHS.getSemantics());
    UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
                          APFloat::rmNearestTiesToEven);
    if (UMin > RHS) { // umin > 12312.0
      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
          Pred == ICmpInst::ICMP_UGE)
        return replaceInstUsesWith(I, Builder.getTrue());
      return replaceInstUsesWith(I, Builder.getFalse());
    }
  }

  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
  // [0, UMAX], but it may still be fractional.  See if it is fractional by
  // casting the FP value to the integer value and back, checking for equality.
  // Don't do this for zero, because -0.0 is not fractional.
  Constant *RHSInt = LHSUnsigned
    ? ConstantExpr::getFPToUI(RHSC, IntTy)
    : ConstantExpr::getFPToSI(RHSC, IntTy);
  if (!RHS.isZero()) {
    bool Equal = LHSUnsigned
      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
    if (!Equal) {
      // If we had a comparison against a fractional value, we have to adjust
      // the compare predicate and sometimes the value.  RHSC is rounded towards
      // zero at this point.
      switch (Pred) {
      default: llvm_unreachable("Unexpected integer comparison!");
      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
        return replaceInstUsesWith(I, Builder.getTrue());
      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
        return replaceInstUsesWith(I, Builder.getFalse());
      case ICmpInst::ICMP_ULE:
        // (float)int <= 4.4   --> int <= 4
        // (float)int <= -4.4  --> false
        if (RHS.isNegative())
          return replaceInstUsesWith(I, Builder.getFalse());
        break;
      case ICmpInst::ICMP_SLE:
        // (float)int <= 4.4   --> int <= 4
        // (float)int <= -4.4  --> int < -4
        if (RHS.isNegative())
          Pred = ICmpInst::ICMP_SLT;
        break;
      case ICmpInst::ICMP_ULT:
        // (float)int < -4.4   --> false
        // (float)int < 4.4    --> int <= 4
        if (RHS.isNegative())
          return replaceInstUsesWith(I, Builder.getFalse());
        Pred = ICmpInst::ICMP_ULE;
        break;
      case ICmpInst::ICMP_SLT:
        // (float)int < -4.4   --> int < -4
        // (float)int < 4.4    --> int <= 4
        if (!RHS.isNegative())
          Pred = ICmpInst::ICMP_SLE;
        break;
      case ICmpInst::ICMP_UGT:
        // (float)int > 4.4    --> int > 4
        // (float)int > -4.4   --> true
        if (RHS.isNegative())
          return replaceInstUsesWith(I, Builder.getTrue());
        break;
      case ICmpInst::ICMP_SGT:
        // (float)int > 4.4    --> int > 4
        // (float)int > -4.4   --> int >= -4
        if (RHS.isNegative())
          Pred = ICmpInst::ICMP_SGE;
        break;
      case ICmpInst::ICMP_UGE:
        // (float)int >= -4.4   --> true
        // (float)int >= 4.4    --> int > 4
        if (RHS.isNegative())
          return replaceInstUsesWith(I, Builder.getTrue());
        Pred = ICmpInst::ICMP_UGT;
        break;
      case ICmpInst::ICMP_SGE:
        // (float)int >= -4.4   --> int >= -4
        // (float)int >= 4.4    --> int > 4
        if (!RHS.isNegative())
          Pred = ICmpInst::ICMP_SGT;
        break;
      }
    }
  }

  // Lower this FP comparison into an appropriate integer version of the
  // comparison.
  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
}

/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
                                              Constant *RHSC) {
  // When C is not 0.0 and infinities are not allowed:
  // (C / X) < 0.0 is a sign-bit test of X
  // (C / X) < 0.0 --> X < 0.0 (if C is positive)
  // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
  //
  // Proof:
  // Multiply (C / X) < 0.0 by X * X / C.
  // - X is non zero, if it is the flag 'ninf' is violated.
  // - C defines the sign of X * X * C. Thus it also defines whether to swap
  //   the predicate. C is also non zero by definition.
  //
  // Thus X * X / C is non zero and the transformation is valid. [qed]

  FCmpInst::Predicate Pred = I.getPredicate();

  // Check that predicates are valid.
  if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
      (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
    return nullptr;

  // Check that RHS operand is zero.
  if (!match(RHSC, m_AnyZeroFP()))
    return nullptr;

  // Check fastmath flags ('ninf').
  if (!LHSI->hasNoInfs() || !I.hasNoInfs())
    return nullptr;

  // Check the properties of the dividend. It must not be zero to avoid a
  // division by zero (see Proof).
  const APFloat *C;
  if (!match(LHSI->getOperand(0), m_APFloat(C)))
    return nullptr;

  if (C->isZero())
    return nullptr;

  // Get swapped predicate if necessary.
  if (C->isNegative())
    Pred = I.getSwappedPredicate();

  return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
}

/// Optimize fabs(X) compared with zero.
static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombiner &IC) {
  Value *X;
  if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
      !match(I.getOperand(1), m_PosZeroFP()))
    return nullptr;

  auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
    I->setPredicate(P);
    return IC.replaceOperand(*I, 0, X);
  };

  switch (I.getPredicate()) {
  case FCmpInst::FCMP_UGE:
  case FCmpInst::FCMP_OLT:
    // fabs(X) >= 0.0 --> true
    // fabs(X) <  0.0 --> false
    llvm_unreachable("fcmp should have simplified");

  case FCmpInst::FCMP_OGT:
    // fabs(X) > 0.0 --> X != 0.0
    return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);

  case FCmpInst::FCMP_UGT:
    // fabs(X) u> 0.0 --> X u!= 0.0
    return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);

  case FCmpInst::FCMP_OLE:
    // fabs(X) <= 0.0 --> X == 0.0
    return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);

  case FCmpInst::FCMP_ULE:
    // fabs(X) u<= 0.0 --> X u== 0.0
    return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);

  case FCmpInst::FCMP_OGE:
    // fabs(X) >= 0.0 --> !isnan(X)
    assert(!I.hasNoNaNs() && "fcmp should have simplified");
    return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);

  case FCmpInst::FCMP_ULT:
    // fabs(X) u< 0.0 --> isnan(X)
    assert(!I.hasNoNaNs() && "fcmp should have simplified");
    return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);

  case FCmpInst::FCMP_OEQ:
  case FCmpInst::FCMP_UEQ:
  case FCmpInst::FCMP_ONE:
  case FCmpInst::FCMP_UNE:
  case FCmpInst::FCMP_ORD:
  case FCmpInst::FCMP_UNO:
    // Look through the fabs() because it doesn't change anything but the sign.
    // fabs(X) == 0.0 --> X == 0.0,
    // fabs(X) != 0.0 --> X != 0.0
    // isnan(fabs(X)) --> isnan(X)
    // !isnan(fabs(X) --> !isnan(X)
    return replacePredAndOp0(&I, I.getPredicate(), X);

  default:
    return nullptr;
  }
}

Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
  bool Changed = false;

  /// Orders the operands of the compare so that they are listed from most
  /// complex to least complex.  This puts constants before unary operators,
  /// before binary operators.
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
    I.swapOperands();
    Changed = true;
  }

  const CmpInst::Predicate Pred = I.getPredicate();
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  // Simplify 'fcmp pred X, X'
  Type *OpType = Op0->getType();
  assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
  if (Op0 == Op1) {
    switch (Pred) {
      default: break;
    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
    case FCmpInst::FCMP_ULT:    // True if unordered or less than
    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
      // Canonicalize these to be 'fcmp uno %X, 0.0'.
      I.setPredicate(FCmpInst::FCMP_UNO);
      I.setOperand(1, Constant::getNullValue(OpType));
      return &I;

    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
      // Canonicalize these to be 'fcmp ord %X, 0.0'.
      I.setPredicate(FCmpInst::FCMP_ORD);
      I.setOperand(1, Constant::getNullValue(OpType));
      return &I;
    }
  }

  // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
  // then canonicalize the operand to 0.0.
  if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
    if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
      return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));

    if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
      return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
  }

  // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
  Value *X, *Y;
  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
    return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);

  // Test if the FCmpInst instruction is used exclusively by a select as
  // part of a minimum or maximum operation. If so, refrain from doing
  // any other folding. This helps out other analyses which understand
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
  // and CodeGen. And in this case, at least one of the comparison
  // operands has at least one user besides the compare (the select),
  // which would often largely negate the benefit of folding anyway.
  if (I.hasOneUse())
    if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
      Value *A, *B;
      SelectPatternResult SPR = matchSelectPattern(SI, A, B);
      if (SPR.Flavor != SPF_UNKNOWN)
        return nullptr;
    }

  // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
  // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
  if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
    return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));

  // Handle fcmp with instruction LHS and constant RHS.
  Instruction *LHSI;
  Constant *RHSC;
  if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
    switch (LHSI->getOpcode()) {
    case Instruction::PHI:
      // Only fold fcmp into the PHI if the phi and fcmp are in the same
      // block.  If in the same block, we're encouraging jump threading.  If
      // not, we are just pessimizing the code by making an i1 phi.
      if (LHSI->getParent() == I.getParent())
        if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
          return NV;
      break;
    case Instruction::SIToFP:
    case Instruction::UIToFP:
      if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
        return NV;
      break;
    case Instruction::FDiv:
      if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
        return NV;
      break;
    case Instruction::Load:
      if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
        if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
              !cast<LoadInst>(LHSI)->isVolatile())
            if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
              return Res;
      break;
  }
  }

  if (Instruction *R = foldFabsWithFcmpZero(I, *this))
    return R;

  if (match(Op0, m_FNeg(m_Value(X)))) {
    // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
    Constant *C;
    if (match(Op1, m_Constant(C))) {
      Constant *NegC = ConstantExpr::getFNeg(C);
      return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
    }
  }

  if (match(Op0, m_FPExt(m_Value(X)))) {
    // fcmp (fpext X), (fpext Y) -> fcmp X, Y
    if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
      return new FCmpInst(Pred, X, Y, "", &I);

    // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
    const APFloat *C;
    if (match(Op1, m_APFloat(C))) {
      const fltSemantics &FPSem =
          X->getType()->getScalarType()->getFltSemantics();
      bool Lossy;
      APFloat TruncC = *C;
      TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);

      // Avoid lossy conversions and denormals.
      // Zero is a special case that's OK to convert.
      APFloat Fabs = TruncC;
      Fabs.clearSign();
      if (!Lossy &&
          (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
        Constant *NewC = ConstantFP::get(X->getType(), TruncC);
        return new FCmpInst(Pred, X, NewC, "", &I);
      }
    }
  }

  if (I.getType()->isVectorTy())
    if (Instruction *Res = foldVectorCmp(I, Builder))
      return Res;

  return Changed ? &I : nullptr;
}