InstCombineCasts.cpp 108 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
//===- InstCombineCasts.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for cast operations.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
#include <numeric>
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Analyze 'Val', seeing if it is a simple linear expression.
/// If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
///
static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
                                        uint64_t &Offset) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    Offset = CI->getZExtValue();
    Scale  = 0;
    return ConstantInt::get(Val->getType(), 0);
  }

  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
    // Cannot look past anything that might overflow.
    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
      Scale = 1;
      Offset = 0;
      return Val;
    }

    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      if (I->getOpcode() == Instruction::Shl) {
        // This is a value scaled by '1 << the shift amt'.
        Scale = UINT64_C(1) << RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      }

      if (I->getOpcode() == Instruction::Mul) {
        // This value is scaled by 'RHS'.
        Scale = RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      }

      if (I->getOpcode() == Instruction::Add) {
        // We have X+C.  Check to see if we really have (X*C2)+C1,
        // where C1 is divisible by C2.
        unsigned SubScale;
        Value *SubVal =
          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
        Offset += RHS->getZExtValue();
        Scale = SubScale;
        return SubVal;
      }
    }
  }

  // Otherwise, we can't look past this.
  Scale = 1;
  Offset = 0;
  return Val;
}

/// If we find a cast of an allocation instruction, try to eliminate the cast by
/// moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
                                                   AllocaInst &AI) {
  PointerType *PTy = cast<PointerType>(CI.getType());

  IRBuilderBase::InsertPointGuard Guard(Builder);
  Builder.SetInsertPoint(&AI);

  // Get the type really allocated and the type casted to.
  Type *AllocElTy = AI.getAllocatedType();
  Type *CastElTy = PTy->getElementType();
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;

  Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
  Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
  if (CastElTyAlign < AllocElTyAlign) return nullptr;

  // If the allocation has multiple uses, only promote it if we are strictly
  // increasing the alignment of the resultant allocation.  If we keep it the
  // same, we open the door to infinite loops of various kinds.
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;

  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;

  // If the allocation has multiple uses, only promote it if we're not
  // shrinking the amount of memory being allocated.
  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;

  // See if we can satisfy the modulus by pulling a scale out of the array
  // size argument.
  unsigned ArraySizeScale;
  uint64_t ArrayOffset;
  Value *NumElements = // See if the array size is a decomposable linear expr.
    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);

  // If we can now satisfy the modulus, by using a non-1 scale, we really can
  // do the xform.
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;

  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
  Value *Amt = nullptr;
  if (Scale == 1) {
    Amt = NumElements;
  } else {
    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    // Insert before the alloca, not before the cast.
    Amt = Builder.CreateMul(Amt, NumElements);
  }

  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
                                  Offset, true);
    Amt = Builder.CreateAdd(Amt, Off);
  }

  AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
  New->setAlignment(AI.getAlign());
  New->takeName(&AI);
  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());

  // If the allocation has multiple real uses, insert a cast and change all
  // things that used it to use the new cast.  This will also hack on CI, but it
  // will die soon.
  if (!AI.hasOneUse()) {
    // New is the allocation instruction, pointer typed. AI is the original
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
    replaceInstUsesWith(AI, NewCast);
    eraseInstFromFunction(AI);
  }
  return replaceInstUsesWith(CI, New);
}

/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
/// true for, actually insert the code to evaluate the expression.
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
                                             bool isSigned) {
  if (Constant *C = dyn_cast<Constant>(V)) {
    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    // If we got a constantexpr back, try to simplify it with DL info.
    return ConstantFoldConstant(C, DL, &TLI);
  }

  // Otherwise, it must be an instruction.
  Instruction *I = cast<Instruction>(V);
  Instruction *Res = nullptr;
  unsigned Opc = I->getOpcode();
  switch (Opc) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::AShr:
  case Instruction::LShr:
  case Instruction::Shl:
  case Instruction::UDiv:
  case Instruction::URem: {
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    break;
  }
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
    // If the source type of the cast is the type we're trying for then we can
    // just return the source.  There's no need to insert it because it is not
    // new.
    if (I->getOperand(0)->getType() == Ty)
      return I->getOperand(0);

    // Otherwise, must be the same type of cast, so just reinsert a new one.
    // This also handles the case of zext(trunc(x)) -> zext(x).
    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
                                      Opc == Instruction::SExt);
    break;
  case Instruction::Select: {
    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    Res = SelectInst::Create(I->getOperand(0), True, False);
    break;
  }
  case Instruction::PHI: {
    PHINode *OPN = cast<PHINode>(I);
    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
      Value *V =
          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
      NPN->addIncoming(V, OPN->getIncomingBlock(i));
    }
    Res = NPN;
    break;
  }
  default:
    // TODO: Can handle more cases here.
    llvm_unreachable("Unreachable!");
  }

  Res->takeName(I);
  return InsertNewInstWith(Res, *I);
}

Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
                                                        const CastInst *CI2) {
  Type *SrcTy = CI1->getSrcTy();
  Type *MidTy = CI1->getDestTy();
  Type *DstTy = CI2->getDestTy();

  Instruction::CastOps firstOp = CI1->getOpcode();
  Instruction::CastOps secondOp = CI2->getOpcode();
  Type *SrcIntPtrTy =
      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
  Type *MidIntPtrTy =
      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
  Type *DstIntPtrTy =
      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
                                                DstIntPtrTy);

  // We don't want to form an inttoptr or ptrtoint that converts to an integer
  // type that differs from the pointer size.
  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
    Res = 0;

  return Instruction::CastOps(Res);
}

/// Implement the transforms common to all CastInst visitors.
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
  Value *Src = CI.getOperand(0);

  // Try to eliminate a cast of a cast.
  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
      // The first cast (CSrc) is eliminable so we need to fix up or replace
      // the second cast (CI). CSrc will then have a good chance of being dead.
      auto *Ty = CI.getType();
      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
      // Point debug users of the dying cast to the new one.
      if (CSrc->hasOneUse())
        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
      return Res;
    }
  }

  if (auto *Sel = dyn_cast<SelectInst>(Src)) {
    // We are casting a select. Try to fold the cast into the select if the
    // select does not have a compare instruction with matching operand types
    // or the select is likely better done in a narrow type.
    // Creating a select with operands that are different sizes than its
    // condition may inhibit other folds and lead to worse codegen.
    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
        (CI.getOpcode() == Instruction::Trunc &&
         shouldChangeType(CI.getSrcTy(), CI.getType()))) {
      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
        replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
        return NV;
      }
    }
  }

  // If we are casting a PHI, then fold the cast into the PHI.
  if (auto *PN = dyn_cast<PHINode>(Src)) {
    // Don't do this if it would create a PHI node with an illegal type from a
    // legal type.
    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
        shouldChangeType(CI.getSrcTy(), CI.getType()))
      if (Instruction *NV = foldOpIntoPhi(CI, PN))
        return NV;
  }

  return nullptr;
}

/// Constants and extensions/truncates from the destination type are always
/// free to be evaluated in that type. This is a helper for canEvaluate*.
static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
  if (isa<Constant>(V))
    return true;
  Value *X;
  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
      X->getType() == Ty)
    return true;

  return false;
}

/// Filter out values that we can not evaluate in the destination type for free.
/// This is a helper for canEvaluate*.
static bool canNotEvaluateInType(Value *V, Type *Ty) {
  assert(!isa<Constant>(V) && "Constant should already be handled.");
  if (!isa<Instruction>(V))
    return true;
  // We don't extend or shrink something that has multiple uses --  doing so
  // would require duplicating the instruction which isn't profitable.
  if (!V->hasOneUse())
    return true;

  return false;
}

/// Return true if we can evaluate the specified expression tree as type Ty
/// instead of its larger type, and arrive with the same value.
/// This is used by code that tries to eliminate truncates.
///
/// Ty will always be a type smaller than V.  We should return true if trunc(V)
/// can be computed by computing V in the smaller type.  If V is an instruction,
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
/// makes sense if x and y can be efficiently truncated.
///
/// This function works on both vectors and scalars.
///
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
                                 Instruction *CxtI) {
  if (canAlwaysEvaluateInType(V, Ty))
    return true;
  if (canNotEvaluateInType(V, Ty))
    return false;

  auto *I = cast<Instruction>(V);
  Type *OrigTy = V->getType();
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // These operators can all arbitrarily be extended or truncated.
    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);

  case Instruction::UDiv:
  case Instruction::URem: {
    // UDiv and URem can be truncated if all the truncated bits are zero.
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    }
    break;
  }
  case Instruction::Shl: {
    // If we are truncating the result of this SHL, and if it's a shift of an
    // inrange amount, we can always perform a SHL in a smaller type.
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    KnownBits AmtKnownBits =
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
    if (AmtKnownBits.getMaxValue().ult(BitWidth))
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    break;
  }
  case Instruction::LShr: {
    // If this is a truncate of a logical shr, we can truncate it to a smaller
    // lshr iff we know that the bits we would otherwise be shifting in are
    // already zeros.
    // TODO: It is enough to check that the bits we would be shifting in are
    //       zero - use AmtKnownBits.getMaxValue().
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    KnownBits AmtKnownBits =
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
    APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
        IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    }
    break;
  }
  case Instruction::AShr: {
    // If this is a truncate of an arithmetic shr, we can truncate it to a
    // smaller ashr iff we know that all the bits from the sign bit of the
    // original type and the sign bit of the truncate type are similar.
    // TODO: It is enough to check that the bits we would be shifting in are
    //       similar to sign bit of the truncate type.
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    KnownBits AmtKnownBits =
        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
    unsigned ShiftedBits = OrigBitWidth - BitWidth;
    if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
        ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    break;
  }
  case Instruction::Trunc:
    // trunc(trunc(x)) -> trunc(x)
    return true;
  case Instruction::ZExt:
  case Instruction::SExt:
    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    return true;
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
  }
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
        return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    break;
  }

  return false;
}

/// Given a vector that is bitcast to an integer, optionally logically
/// right-shifted, and truncated, convert it to an extractelement.
/// Example (big endian):
///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
///   --->
///   extractelement <4 x i32> %X, 1
static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
  Value *TruncOp = Trunc.getOperand(0);
  Type *DestType = Trunc.getType();
  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
    return nullptr;

  Value *VecInput = nullptr;
  ConstantInt *ShiftVal = nullptr;
  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
                                  m_LShr(m_BitCast(m_Value(VecInput)),
                                         m_ConstantInt(ShiftVal)))) ||
      !isa<VectorType>(VecInput->getType()))
    return nullptr;

  VectorType *VecType = cast<VectorType>(VecInput->getType());
  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;

  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
    return nullptr;

  // If the element type of the vector doesn't match the result type,
  // bitcast it to a vector type that we can extract from.
  unsigned NumVecElts = VecWidth / DestWidth;
  if (VecType->getElementType() != DestType) {
    VecType = FixedVectorType::get(DestType, NumVecElts);
    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
  }

  unsigned Elt = ShiftAmount / DestWidth;
  if (IC.getDataLayout().isBigEndian())
    Elt = NumVecElts - 1 - Elt;

  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
}

/// Rotate left/right may occur in a wider type than necessary because of type
/// promotion rules. Try to narrow the inputs and convert to funnel shift.
Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
  assert((isa<VectorType>(Trunc.getSrcTy()) ||
          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
         "Don't narrow to an illegal scalar type");

  // Bail out on strange types. It is possible to handle some of these patterns
  // even with non-power-of-2 sizes, but it is not a likely scenario.
  Type *DestTy = Trunc.getType();
  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
  if (!isPowerOf2_32(NarrowWidth))
    return nullptr;

  // First, find an or'd pair of opposite shifts with the same shifted operand:
  // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
  Value *Or0, *Or1;
  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
    return nullptr;

  Value *ShVal, *ShAmt0, *ShAmt1;
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
    return nullptr;

  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
  if (ShiftOpcode0 == ShiftOpcode1)
    return nullptr;

  // Match the shift amount operands for a rotate pattern. This always matches
  // a subtraction on the R operand.
  auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
    // The shift amounts may add up to the narrow bit width:
    // (shl ShVal, L) | (lshr ShVal, Width - L)
    if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
      return L;

    // The shift amount may be masked with negation:
    // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
    Value *X;
    unsigned Mask = Width - 1;
    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
      return X;

    // Same as above, but the shift amount may be extended after masking:
    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
      return X;

    return nullptr;
  };

  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
  bool SubIsOnLHS = false;
  if (!ShAmt) {
    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
    SubIsOnLHS = true;
  }
  if (!ShAmt)
    return nullptr;

  // The shifted value must have high zeros in the wide type. Typically, this
  // will be a zext, but it could also be the result of an 'and' or 'shift'.
  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
  if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
    return nullptr;

  // We have an unnecessarily wide rotate!
  // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
  // Narrow the inputs and convert to funnel shift intrinsic:
  // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
  Value *X = Builder.CreateTrunc(ShVal, DestTy);
  bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
                (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
  return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
}

/// Try to narrow the width of math or bitwise logic instructions by pulling a
/// truncate ahead of binary operators.
/// TODO: Transforms for truncated shifts should be moved into here.
Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
  Type *SrcTy = Trunc.getSrcTy();
  Type *DestTy = Trunc.getType();
  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
    return nullptr;

  BinaryOperator *BinOp;
  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
    return nullptr;

  Value *BinOp0 = BinOp->getOperand(0);
  Value *BinOp1 = BinOp->getOperand(1);
  switch (BinOp->getOpcode()) {
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul: {
    Constant *C;
    if (match(BinOp0, m_Constant(C))) {
      // trunc (binop C, X) --> binop (trunc C', X)
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
    }
    if (match(BinOp1, m_Constant(C))) {
      // trunc (binop X, C) --> binop (trunc X, C')
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
    }
    Value *X;
    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
      // trunc (binop (ext X), Y) --> binop X, (trunc Y)
      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
    }
    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
      // trunc (binop Y, (ext X)) --> binop (trunc Y), X
      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
    }
    break;
  }

  default: break;
  }

  if (Instruction *NarrowOr = narrowRotate(Trunc))
    return NarrowOr;

  return nullptr;
}

/// Try to narrow the width of a splat shuffle. This could be generalized to any
/// shuffle with a constant operand, but we limit the transform to avoid
/// creating a shuffle type that targets may not be able to lower effectively.
static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
                                       InstCombiner::BuilderTy &Builder) {
  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
      is_splat(Shuf->getShuffleMask()) &&
      Shuf->getType() == Shuf->getOperand(0)->getType()) {
    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
    Constant *NarrowUndef = UndefValue::get(Trunc.getType());
    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
  }

  return nullptr;
}

/// Try to narrow the width of an insert element. This could be generalized for
/// any vector constant, but we limit the transform to insertion into undef to
/// avoid potential backend problems from unsupported insertion widths. This
/// could also be extended to handle the case of inserting a scalar constant
/// into a vector variable.
static Instruction *shrinkInsertElt(CastInst &Trunc,
                                    InstCombiner::BuilderTy &Builder) {
  Instruction::CastOps Opcode = Trunc.getOpcode();
  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
         "Unexpected instruction for shrinking");

  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
  if (!InsElt || !InsElt->hasOneUse())
    return nullptr;

  Type *DestTy = Trunc.getType();
  Type *DestScalarTy = DestTy->getScalarType();
  Value *VecOp = InsElt->getOperand(0);
  Value *ScalarOp = InsElt->getOperand(1);
  Value *Index = InsElt->getOperand(2);

  if (isa<UndefValue>(VecOp)) {
    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
    UndefValue *NarrowUndef = UndefValue::get(DestTy);
    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
  }

  return nullptr;
}

Instruction *InstCombiner::visitTrunc(TruncInst &Trunc) {
  if (Instruction *Result = commonCastTransforms(Trunc))
    return Result;

  Value *Src = Trunc.getOperand(0);
  Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
  unsigned DestWidth = DestTy->getScalarSizeInBits();
  unsigned SrcWidth = SrcTy->getScalarSizeInBits();
  ConstantInt *Cst;

  // Attempt to truncate the entire input expression tree to the destination
  // type.   Only do this if the dest type is a simple type, don't convert the
  // expression tree to something weird like i93 unless the source is also
  // strange.
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
      canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {

    // If this cast is a truncate, evaluting in a different type always
    // eliminates the cast, so it is always a win.
    LLVM_DEBUG(
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                  " to avoid cast: "
               << Trunc << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    assert(Res->getType() == DestTy);
    return replaceInstUsesWith(Trunc, Res);
  }

  // For integer types, check if we can shorten the entire input expression to
  // DestWidth * 2, which won't allow removing the truncate, but reducing the
  // width may enable further optimizations, e.g. allowing for larger
  // vectorization factors.
  if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
    if (DestWidth * 2 < SrcWidth) {
      auto *NewDestTy = DestITy->getExtendedType();
      if (shouldChangeType(SrcTy, NewDestTy) &&
          canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
        LLVM_DEBUG(
            dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                      " to reduce the width of operand of"
                   << Trunc << '\n');
        Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
        return new TruncInst(Res, DestTy);
      }
    }
  }

  // Test if the trunc is the user of a select which is part of a
  // minimum or maximum operation. If so, don't do any more simplification.
  // Even simplifying demanded bits can break the canonical form of a
  // min/max.
  Value *LHS, *RHS;
  if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
    if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
      return nullptr;

  // See if we can simplify any instructions used by the input whose sole
  // purpose is to compute bits we don't care about.
  if (SimplifyDemandedInstructionBits(Trunc))
    return &Trunc;

  if (DestWidth == 1) {
    Value *Zero = Constant::getNullValue(SrcTy);
    if (DestTy->isIntegerTy()) {
      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
      // TODO: We canonicalize to more instructions here because we are probably
      // lacking equivalent analysis for trunc relative to icmp. There may also
      // be codegen concerns. If those trunc limitations were removed, we could
      // remove this transform.
      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
    }

    // For vectors, we do not canonicalize all truncs to icmp, so optimize
    // patterns that would be covered within visitICmpInst.
    Value *X;
    Constant *C;
    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
      Constant *MaskC = ConstantExpr::getShl(One, C);
      Value *And = Builder.CreateAnd(X, MaskC);
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
    }
    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
                                   m_Deferred(X))))) {
      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
      Constant *MaskC = ConstantExpr::getShl(One, C);
      MaskC = ConstantExpr::getOr(MaskC, One);
      Value *And = Builder.CreateAnd(X, MaskC);
      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
    }
  }

  // FIXME: Maybe combine the next two transforms to handle the no cast case
  // more efficiently. Support vector types. Cleanup code by using m_OneUse.

  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
  Value *A = nullptr;
  if (Src->hasOneUse() &&
      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    // We have three types to worry about here, the type of A, the source of
    // the truncate (MidSize), and the destination of the truncate. We know that
    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    // between ASize and ResultSize.
    unsigned ASize = A->getType()->getPrimitiveSizeInBits();

    // If the shift amount is larger than the size of A, then the result is
    // known to be zero because all the input bits got shifted out.
    if (Cst->getZExtValue() >= ASize)
      return replaceInstUsesWith(Trunc, Constant::getNullValue(DestTy));

    // Since we're doing an lshr and a zero extend, and know that the shift
    // amount is smaller than ASize, it is always safe to do the shift in A's
    // type, then zero extend or truncate to the result.
    Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
    Shift->takeName(Src);
    return CastInst::CreateIntegerCast(Shift, DestTy, false);
  }

  const APInt *C;
  if (match(Src, m_LShr(m_SExt(m_Value(A)), m_APInt(C)))) {
    unsigned AWidth = A->getType()->getScalarSizeInBits();
    unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);

    // If the shift is small enough, all zero bits created by the shift are
    // removed by the trunc.
    if (C->getZExtValue() <= MaxShiftAmt) {
      // trunc (lshr (sext A), C) --> ashr A, C
      if (A->getType() == DestTy) {
        unsigned ShAmt = std::min((unsigned)C->getZExtValue(), DestWidth - 1);
        return BinaryOperator::CreateAShr(A, ConstantInt::get(DestTy, ShAmt));
      }
      // The types are mismatched, so create a cast after shifting:
      // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
      if (Src->hasOneUse()) {
        unsigned ShAmt = std::min((unsigned)C->getZExtValue(), AWidth - 1);
        Value *Shift = Builder.CreateAShr(A, ShAmt);
        return CastInst::CreateIntegerCast(Shift, DestTy, true);
      }
    }
    // TODO: Mask high bits with 'and'.
  }

  if (Instruction *I = narrowBinOp(Trunc))
    return I;

  if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
    return I;

  if (Instruction *I = shrinkInsertElt(Trunc, Builder))
    return I;

  if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
      shouldChangeType(SrcTy, DestTy)) {
    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
    // dest type is native and cst < dest size.
    if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
        !match(A, m_Shr(m_Value(), m_Constant()))) {
      // Skip shifts of shift by constants. It undoes a combine in
      // FoldShiftByConstant and is the extend in reg pattern.
      if (Cst->getValue().ult(DestWidth)) {
        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");

        return BinaryOperator::Create(
          Instruction::Shl, NewTrunc,
          ConstantInt::get(DestTy, Cst->getValue().trunc(DestWidth)));
      }
    }
  }

  if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
    return I;

  // Whenever an element is extracted from a vector, and then truncated,
  // canonicalize by converting it to a bitcast followed by an
  // extractelement.
  //
  // Example (little endian):
  //   trunc (extractelement <4 x i64> %X, 0) to i32
  //   --->
  //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
  Value *VecOp;
  if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
    auto *VecOpTy = cast<VectorType>(VecOp->getType());
    unsigned VecNumElts = VecOpTy->getNumElements();

    // A badly fit destination size would result in an invalid cast.
    if (SrcWidth % DestWidth == 0) {
      uint64_t TruncRatio = SrcWidth / DestWidth;
      uint64_t BitCastNumElts = VecNumElts * TruncRatio;
      uint64_t VecOpIdx = Cst->getZExtValue();
      uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
                                         : VecOpIdx * TruncRatio;
      assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
             "overflow 32-bits");

      auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
      Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
      return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
    }
  }

  return nullptr;
}

Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
                                             bool DoTransform) {
  // If we are just checking for a icmp eq of a single bit and zext'ing it
  // to an integer, then shift the bit to the appropriate place and then
  // cast to integer to avoid the comparison.
  const APInt *Op1CV;
  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {

    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
        (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
      if (!DoTransform) return Cmp;

      Value *In = Cmp->getOperand(0);
      Value *Sh = ConstantInt::get(In->getType(),
                                   In->getType()->getScalarSizeInBits() - 1);
      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
      if (In->getType() != Zext.getType())
        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);

      if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
        Constant *One = ConstantInt::get(In->getType(), 1);
        In = Builder.CreateXor(In, One, In->getName() + ".not");
      }

      return replaceInstUsesWith(Zext, In);
    }

    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
        // This only works for EQ and NE
        Cmp->isEquality()) {
      // If Op1C some other power of two, convert:
      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);

      APInt KnownZeroMask(~Known.Zero);
      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
        if (!DoTransform) return Cmp;

        bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
        if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
          // (X&4) == 2 --> false
          // (X&4) != 2 --> true
          Constant *Res = ConstantInt::get(Zext.getType(), isNE);
          return replaceInstUsesWith(Zext, Res);
        }

        uint32_t ShAmt = KnownZeroMask.logBase2();
        Value *In = Cmp->getOperand(0);
        if (ShAmt) {
          // Perform a logical shr by shiftamt.
          // Insert the shift to put the result in the low bit.
          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
                                  In->getName() + ".lobit");
        }

        if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
          Constant *One = ConstantInt::get(In->getType(), 1);
          In = Builder.CreateXor(In, One);
        }

        if (Zext.getType() == In->getType())
          return replaceInstUsesWith(Zext, In);

        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
        return replaceInstUsesWith(Zext, IntCast);
      }
    }
  }

  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
  // may lead to additional simplifications.
  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
    if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
      Value *LHS = Cmp->getOperand(0);
      Value *RHS = Cmp->getOperand(1);

      KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
      KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);

      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
        APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
        APInt UnknownBit = ~KnownBits;
        if (UnknownBit.countPopulation() == 1) {
          if (!DoTransform) return Cmp;

          Value *Result = Builder.CreateXor(LHS, RHS);

          // Mask off any bits that are set and won't be shifted away.
          if (KnownLHS.One.uge(UnknownBit))
            Result = Builder.CreateAnd(Result,
                                        ConstantInt::get(ITy, UnknownBit));

          // Shift the bit we're testing down to the lsb.
          Result = Builder.CreateLShr(
               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));

          if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
          Result->takeName(Cmp);
          return replaceInstUsesWith(Zext, Result);
        }
      }
    }
  }

  return nullptr;
}

/// Determine if the specified value can be computed in the specified wider type
/// and produce the same low bits. If not, return false.
///
/// If this function returns true, it can also return a non-zero number of bits
/// (in BitsToClear) which indicates that the value it computes is correct for
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
/// out.  For example, to promote something like:
///
///   %B = trunc i64 %A to i32
///   %C = lshr i32 %B, 8
///   %E = zext i32 %C to i64
///
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
/// set to 8 to indicate that the promoted value needs to have bits 24-31
/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
/// clear the top bits anyway, doing this has no extra cost.
///
/// This function works on both vectors and scalars.
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
                             InstCombiner &IC, Instruction *CxtI) {
  BitsToClear = 0;
  if (canAlwaysEvaluateInType(V, Ty))
    return true;
  if (canNotEvaluateInType(V, Ty))
    return false;

  auto *I = cast<Instruction>(V);
  unsigned Tmp;
  switch (I->getOpcode()) {
  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    return true;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
      return false;
    // These can all be promoted if neither operand has 'bits to clear'.
    if (BitsToClear == 0 && Tmp == 0)
      return true;

    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    // other side, BitsToClear is ok.
    if (Tmp == 0 && I->isBitwiseLogicOp()) {
      // We use MaskedValueIsZero here for generality, but the case we care
      // about the most is constant RHS.
      unsigned VSize = V->getType()->getScalarSizeInBits();
      if (IC.MaskedValueIsZero(I->getOperand(1),
                               APInt::getHighBitsSet(VSize, BitsToClear),
                               0, CxtI)) {
        // If this is an And instruction and all of the BitsToClear are
        // known to be zero we can reset BitsToClear.
        if (I->getOpcode() == Instruction::And)
          BitsToClear = 0;
        return true;
      }
    }

    // Otherwise, we don't know how to analyze this BitsToClear case yet.
    return false;

  case Instruction::Shl: {
    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
    // upper bits we can reduce BitsToClear by the shift amount.
    const APInt *Amt;
    if (match(I->getOperand(1), m_APInt(Amt))) {
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
        return false;
      uint64_t ShiftAmt = Amt->getZExtValue();
      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
      return true;
    }
    return false;
  }
  case Instruction::LShr: {
    // We can promote lshr(x, cst) if we can promote x.  This requires the
    // ultimate 'and' to clear out the high zero bits we're clearing out though.
    const APInt *Amt;
    if (match(I->getOperand(1), m_APInt(Amt))) {
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
        return false;
      BitsToClear += Amt->getZExtValue();
      if (BitsToClear > V->getType()->getScalarSizeInBits())
        BitsToClear = V->getType()->getScalarSizeInBits();
      return true;
    }
    // Cannot promote variable LSHR.
    return false;
  }
  case Instruction::Select:
    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
        // TODO: If important, we could handle the case when the BitsToClear are
        // known zero in the disagreeing side.
        Tmp != BitsToClear)
      return false;
    return true;

  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
      return false;
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
          // TODO: If important, we could handle the case when the BitsToClear
          // are known zero in the disagreeing input.
          Tmp != BitsToClear)
        return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    return false;
  }
}

Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
  // If this zero extend is only used by a truncate, let the truncate be
  // eliminated before we try to optimize this zext.
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    return nullptr;

  // If one of the common conversion will work, do it.
  if (Instruction *Result = commonCastTransforms(CI))
    return Result;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();

  // Try to extend the entire expression tree to the wide destination type.
  unsigned BitsToClear;
  if (shouldChangeType(SrcTy, DestTy) &&
      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
           "Can't clear more bits than in SrcTy");

    // Okay, we can transform this!  Insert the new expression now.
    LLVM_DEBUG(
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                  " to avoid zero extend: "
               << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    assert(Res->getType() == DestTy);

    // Preserve debug values referring to Src if the zext is its last use.
    if (auto *SrcOp = dyn_cast<Instruction>(Src))
      if (SrcOp->hasOneUse())
        replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);

    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();

    // If the high bits are already filled with zeros, just replace this
    // cast with the result.
    if (MaskedValueIsZero(Res,
                          APInt::getHighBitsSet(DestBitSize,
                                                DestBitSize-SrcBitsKept),
                             0, &CI))
      return replaceInstUsesWith(CI, Res);

    // We need to emit an AND to clear the high bits.
    Constant *C = ConstantInt::get(Res->getType(),
                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    return BinaryOperator::CreateAnd(Res, C);
  }

  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
  // types and if the sizes are just right we can convert this into a logical
  // 'and' which will be much cheaper than the pair of casts.
  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    // TODO: Subsume this into EvaluateInDifferentType.

    // Get the sizes of the types involved.  We know that the intermediate type
    // will be smaller than A or C, but don't know the relation between A and C.
    Value *A = CSrc->getOperand(0);
    unsigned SrcSize = A->getType()->getScalarSizeInBits();
    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    unsigned DstSize = CI.getType()->getScalarSizeInBits();
    // If we're actually extending zero bits, then if
    // SrcSize <  DstSize: zext(a & mask)
    // SrcSize == DstSize: a & mask
    // SrcSize  > DstSize: trunc(a) & mask
    if (SrcSize < DstSize) {
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
      return new ZExtInst(And, CI.getType());
    }

    if (SrcSize == DstSize) {
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
                                                           AndValue));
    }
    if (SrcSize > DstSize) {
      Value *Trunc = Builder.CreateTrunc(A, CI.getType());
      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
      return BinaryOperator::CreateAnd(Trunc,
                                       ConstantInt::get(Trunc->getType(),
                                                        AndValue));
    }
  }

  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
    return transformZExtICmp(Cmp, CI);

  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
    // of the (zext icmp) can be eliminated. If so, immediately perform the
    // according elimination.
    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
        (transformZExtICmp(LHS, CI, false) ||
         transformZExtICmp(RHS, CI, false))) {
      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
      Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
      if (auto *OrInst = dyn_cast<Instruction>(Or))
        Builder.SetInsertPoint(OrInst);

      // Perform the elimination.
      if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
        transformZExtICmp(LHS, *LZExt);
      if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
        transformZExtICmp(RHS, *RZExt);

      return replaceInstUsesWith(CI, Or);
    }
  }

  // zext(trunc(X) & C) -> (X & zext(C)).
  Constant *C;
  Value *X;
  if (SrcI &&
      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
      X->getType() == CI.getType())
    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));

  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
  Value *And;
  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
      X->getType() == CI.getType()) {
    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
  }

  return nullptr;
}

/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
  ICmpInst::Predicate Pred = ICI->getPredicate();

  // Don't bother if Op1 isn't of vector or integer type.
  if (!Op1->getType()->isIntOrIntVectorTy())
    return nullptr;

  if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
      (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    Value *Sh = ConstantInt::get(Op0->getType(),
                                 Op0->getType()->getScalarSizeInBits() - 1);
    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
    if (In->getType() != CI.getType())
      In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);

    if (Pred == ICmpInst::ICMP_SGT)
      In = Builder.CreateNot(In, In->getName() + ".not");
    return replaceInstUsesWith(CI, In);
  }

  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    // If we know that only one bit of the LHS of the icmp can be set and we
    // have an equality comparison with zero or a power of 2, we can transform
    // the icmp and sext into bitwise/integer operations.
    if (ICI->hasOneUse() &&
        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
      KnownBits Known = computeKnownBits(Op0, 0, &CI);

      APInt KnownZeroMask(~Known.Zero);
      if (KnownZeroMask.isPowerOf2()) {
        Value *In = ICI->getOperand(0);

        // If the icmp tests for a known zero bit we can constant fold it.
        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
          Value *V = Pred == ICmpInst::ICMP_NE ?
                       ConstantInt::getAllOnesValue(CI.getType()) :
                       ConstantInt::getNullValue(CI.getType());
          return replaceInstUsesWith(CI, V);
        }

        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
          // Perform a right shift to place the desired bit in the LSB.
          if (ShiftAmt)
            In = Builder.CreateLShr(In,
                                    ConstantInt::get(In->getType(), ShiftAmt));

          // At this point "In" is either 1 or 0. Subtract 1 to turn
          // {1, 0} -> {0, -1}.
          In = Builder.CreateAdd(In,
                                 ConstantInt::getAllOnesValue(In->getType()),
                                 "sext");
        } else {
          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
          // Perform a left shift to place the desired bit in the MSB.
          if (ShiftAmt)
            In = Builder.CreateShl(In,
                                   ConstantInt::get(In->getType(), ShiftAmt));

          // Distribute the bit over the whole bit width.
          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
                                  KnownZeroMask.getBitWidth() - 1), "sext");
        }

        if (CI.getType() == In->getType())
          return replaceInstUsesWith(CI, In);
        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
      }
    }
  }

  return nullptr;
}

/// Return true if we can take the specified value and return it as type Ty
/// without inserting any new casts and without changing the value of the common
/// low bits.  This is used by code that tries to promote integer operations to
/// a wider types will allow us to eliminate the extension.
///
/// This function works on both vectors and scalars.
///
static bool canEvaluateSExtd(Value *V, Type *Ty) {
  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
         "Can't sign extend type to a smaller type");
  if (canAlwaysEvaluateInType(V, Ty))
    return true;
  if (canNotEvaluateInType(V, Ty))
    return false;

  auto *I = cast<Instruction>(V);
  switch (I->getOpcode()) {
  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
    return true;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // These operators can all arbitrarily be extended if their inputs can.
    return canEvaluateSExtd(I->getOperand(0), Ty) &&
           canEvaluateSExtd(I->getOperand(1), Ty);

  //case Instruction::Shl:   TODO
  //case Instruction::LShr:  TODO

  case Instruction::Select:
    return canEvaluateSExtd(I->getOperand(1), Ty) &&
           canEvaluateSExtd(I->getOperand(2), Ty);

  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateSExtd(IncValue, Ty)) return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    break;
  }

  return false;
}

Instruction *InstCombiner::visitSExt(SExtInst &CI) {
  // If this sign extend is only used by a truncate, let the truncate be
  // eliminated before we try to optimize this sext.
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    return nullptr;

  if (Instruction *I = commonCastTransforms(CI))
    return I;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();

  // If we know that the value being extended is positive, we can use a zext
  // instead.
  KnownBits Known = computeKnownBits(Src, 0, &CI);
  if (Known.isNonNegative())
    return CastInst::Create(Instruction::ZExt, Src, DestTy);

  // Try to extend the entire expression tree to the wide destination type.
  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
    // Okay, we can transform this!  Insert the new expression now.
    LLVM_DEBUG(
        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
                  " to avoid sign extend: "
               << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
    assert(Res->getType() == DestTy);

    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();

    // If the high bits are already filled with sign bit, just replace this
    // cast with the result.
    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
      return replaceInstUsesWith(CI, Res);

    // We need to emit a shl + ashr to do the sign extend.
    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
                                      ShAmt);
  }

  // If the input is a trunc from the destination type, then turn sext(trunc(x))
  // into shifts.
  Value *X;
  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
    // sext(trunc(X)) --> ashr(shl(X, C), C)
    unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    unsigned DestBitSize = DestTy->getScalarSizeInBits();
    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
  }

  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    return transformSExtICmp(ICI, CI);

  // If the input is a shl/ashr pair of a same constant, then this is a sign
  // extension from a smaller value.  If we could trust arbitrary bitwidth
  // integers, we could turn this into a truncate to the smaller bit and then
  // use a sext for the whole extension.  Since we don't, look deeper and check
  // for a truncate.  If the source and dest are the same type, eliminate the
  // trunc and extend and just do shifts.  For example, turn:
  //   %a = trunc i32 %i to i8
  //   %b = shl i8 %a, 6
  //   %c = ashr i8 %b, 6
  //   %d = sext i8 %c to i32
  // into:
  //   %a = shl i32 %i, 30
  //   %d = ashr i32 %a, 30
  Value *A = nullptr;
  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
  Constant *BA = nullptr, *CA = nullptr;
  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
                        m_Constant(CA))) &&
      BA == CA && A->getType() == CI.getType()) {
    unsigned MidSize = Src->getType()->getScalarSizeInBits();
    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
    Constant *SizeDiff = ConstantInt::get(CA->getType(), SrcDstSize - MidSize);
    Constant *ShAmt = ConstantExpr::getAdd(CA, SizeDiff);
    Constant *ShAmtExt = ConstantExpr::getSExt(ShAmt, CI.getType());
    A = Builder.CreateShl(A, ShAmtExt, CI.getName());
    return BinaryOperator::CreateAShr(A, ShAmtExt);
  }

  return nullptr;
}


/// Return a Constant* for the specified floating-point constant if it fits
/// in the specified FP type without changing its value.
static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
  bool losesInfo;
  APFloat F = CFP->getValueAPF();
  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
  return !losesInfo;
}

static Type *shrinkFPConstant(ConstantFP *CFP) {
  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
    return nullptr;  // No constant folding of this.
  // See if the value can be truncated to half and then reextended.
  if (fitsInFPType(CFP, APFloat::IEEEhalf()))
    return Type::getHalfTy(CFP->getContext());
  // See if the value can be truncated to float and then reextended.
  if (fitsInFPType(CFP, APFloat::IEEEsingle()))
    return Type::getFloatTy(CFP->getContext());
  if (CFP->getType()->isDoubleTy())
    return nullptr;  // Won't shrink.
  if (fitsInFPType(CFP, APFloat::IEEEdouble()))
    return Type::getDoubleTy(CFP->getContext());
  // Don't try to shrink to various long double types.
  return nullptr;
}

// Determine if this is a vector of ConstantFPs and if so, return the minimal
// type we can safely truncate all elements to.
// TODO: Make these support undef elements.
static Type *shrinkFPConstantVector(Value *V) {
  auto *CV = dyn_cast<Constant>(V);
  auto *CVVTy = dyn_cast<VectorType>(V->getType());
  if (!CV || !CVVTy)
    return nullptr;

  Type *MinType = nullptr;

  unsigned NumElts = CVVTy->getNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
    if (!CFP)
      return nullptr;

    Type *T = shrinkFPConstant(CFP);
    if (!T)
      return nullptr;

    // If we haven't found a type yet or this type has a larger mantissa than
    // our previous type, this is our new minimal type.
    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
      MinType = T;
  }

  // Make a vector type from the minimal type.
  return FixedVectorType::get(MinType, NumElts);
}

/// Find the minimum FP type we can safely truncate to.
static Type *getMinimumFPType(Value *V) {
  if (auto *FPExt = dyn_cast<FPExtInst>(V))
    return FPExt->getOperand(0)->getType();

  // If this value is a constant, return the constant in the smallest FP type
  // that can accurately represent it.  This allows us to turn
  // (float)((double)X+2.0) into x+2.0f.
  if (auto *CFP = dyn_cast<ConstantFP>(V))
    if (Type *T = shrinkFPConstant(CFP))
      return T;

  // Try to shrink a vector of FP constants.
  if (Type *T = shrinkFPConstantVector(V))
    return T;

  return V->getType();
}

/// Return true if the cast from integer to FP can be proven to be exact for all
/// possible inputs (the conversion does not lose any precision).
static bool isKnownExactCastIntToFP(CastInst &I) {
  CastInst::CastOps Opcode = I.getOpcode();
  assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
         "Unexpected cast");
  Value *Src = I.getOperand(0);
  Type *SrcTy = Src->getType();
  Type *FPTy = I.getType();
  bool IsSigned = Opcode == Instruction::SIToFP;
  int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;

  // Easy case - if the source integer type has less bits than the FP mantissa,
  // then the cast must be exact.
  int DestNumSigBits = FPTy->getFPMantissaWidth();
  if (SrcSize <= DestNumSigBits)
    return true;

  // Cast from FP to integer and back to FP is independent of the intermediate
  // integer width because of poison on overflow.
  Value *F;
  if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
    // If this is uitofp (fptosi F), the source needs an extra bit to avoid
    // potential rounding of negative FP input values.
    int SrcNumSigBits = F->getType()->getFPMantissaWidth();
    if (!IsSigned && match(Src, m_FPToSI(m_Value())))
      SrcNumSigBits++;

    // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
    // significant bits than the destination (and make sure neither type is
    // weird -- ppc_fp128).
    if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
        SrcNumSigBits <= DestNumSigBits)
      return true;
  }

  // TODO:
  // Try harder to find if the source integer type has less significant bits.
  // For example, compute number of sign bits or compute low bit mask.
  return false;
}

Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
  if (Instruction *I = commonCastTransforms(FPT))
    return I;

  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
  // simplify this expression to avoid one or more of the trunc/extend
  // operations if we can do so without changing the numerical results.
  //
  // The exact manner in which the widths of the operands interact to limit
  // what we can and cannot do safely varies from operation to operation, and
  // is explained below in the various case statements.
  Type *Ty = FPT.getType();
  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
  if (BO && BO->hasOneUse()) {
    Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
    Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
    unsigned OpWidth = BO->getType()->getFPMantissaWidth();
    unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
    unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
    unsigned DstWidth = Ty->getFPMantissaWidth();
    switch (BO->getOpcode()) {
      default: break;
      case Instruction::FAdd:
      case Instruction::FSub:
        // For addition and subtraction, the infinitely precise result can
        // essentially be arbitrarily wide; proving that double rounding
        // will not occur because the result of OpI is exact (as we will for
        // FMul, for example) is hopeless.  However, we *can* nonetheless
        // frequently know that double rounding cannot occur (or that it is
        // innocuous) by taking advantage of the specific structure of
        // infinitely-precise results that admit double rounding.
        //
        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
        // to represent both sources, we can guarantee that the double
        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
        // for proof of this fact).
        //
        // Note: Figueroa does not consider the case where DstFormat !=
        // SrcFormat.  It's possible (likely even!) that this analysis
        // could be tightened for those cases, but they are rare (the main
        // case of interest here is (float)((double)float + float)).
        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
          RI->copyFastMathFlags(BO);
          return RI;
        }
        break;
      case Instruction::FMul:
        // For multiplication, the infinitely precise result has at most
        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
        // that such a value can be exactly represented, then no double
        // rounding can possibly occur; we can safely perform the operation
        // in the destination format if it can represent both sources.
        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
        }
        break;
      case Instruction::FDiv:
        // For division, we use again use the bound from Figueroa's
        // dissertation.  I am entirely certain that this bound can be
        // tightened in the unbalanced operand case by an analysis based on
        // the diophantine rational approximation bound, but the well-known
        // condition used here is a good conservative first pass.
        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
        }
        break;
      case Instruction::FRem: {
        // Remainder is straightforward.  Remainder is always exact, so the
        // type of OpI doesn't enter into things at all.  We simply evaluate
        // in whichever source type is larger, then convert to the
        // destination type.
        if (SrcWidth == OpWidth)
          break;
        Value *LHS, *RHS;
        if (LHSWidth == SrcWidth) {
           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
        } else {
           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
        }

        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
        return CastInst::CreateFPCast(ExactResult, Ty);
      }
    }
  }

  // (fptrunc (fneg x)) -> (fneg (fptrunc x))
  Value *X;
  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
  if (Op && Op->hasOneUse()) {
    // FIXME: The FMF should propagate from the fptrunc, not the source op.
    IRBuilder<>::FastMathFlagGuard FMFG(Builder);
    if (isa<FPMathOperator>(Op))
      Builder.setFastMathFlags(Op->getFastMathFlags());

    if (match(Op, m_FNeg(m_Value(X)))) {
      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);

      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
    }

    // If we are truncating a select that has an extended operand, we can
    // narrow the other operand and do the select as a narrow op.
    Value *Cond, *X, *Y;
    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
        X->getType() == Ty) {
      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
      return replaceInstUsesWith(FPT, Sel);
    }
    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
        X->getType() == Ty) {
      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
      return replaceInstUsesWith(FPT, Sel);
    }
  }

  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::ceil:
    case Intrinsic::fabs:
    case Intrinsic::floor:
    case Intrinsic::nearbyint:
    case Intrinsic::rint:
    case Intrinsic::round:
    case Intrinsic::roundeven:
    case Intrinsic::trunc: {
      Value *Src = II->getArgOperand(0);
      if (!Src->hasOneUse())
        break;

      // Except for fabs, this transformation requires the input of the unary FP
      // operation to be itself an fpext from the type to which we're
      // truncating.
      if (II->getIntrinsicID() != Intrinsic::fabs) {
        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
          break;
      }

      // Do unary FP operation on smaller type.
      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
                                                     II->getIntrinsicID(), Ty);
      SmallVector<OperandBundleDef, 1> OpBundles;
      II->getOperandBundlesAsDefs(OpBundles);
      CallInst *NewCI =
          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
      NewCI->copyFastMathFlags(II);
      return NewCI;
    }
    }
  }

  if (Instruction *I = shrinkInsertElt(FPT, Builder))
    return I;

  Value *Src = FPT.getOperand(0);
  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
    auto *FPCast = cast<CastInst>(Src);
    if (isKnownExactCastIntToFP(*FPCast))
      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
  }

  return nullptr;
}

Instruction *InstCombiner::visitFPExt(CastInst &FPExt) {
  // If the source operand is a cast from integer to FP and known exact, then
  // cast the integer operand directly to the destination type.
  Type *Ty = FPExt.getType();
  Value *Src = FPExt.getOperand(0);
  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
    auto *FPCast = cast<CastInst>(Src);
    if (isKnownExactCastIntToFP(*FPCast))
      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
  }

  return commonCastTransforms(FPExt);
}

/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
/// This is safe if the intermediate type has enough bits in its mantissa to
/// accurately represent all values of X.  For example, this won't work with
/// i64 -> float -> i64.
Instruction *InstCombiner::foldItoFPtoI(CastInst &FI) {
  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
    return nullptr;

  auto *OpI = cast<CastInst>(FI.getOperand(0));
  Value *X = OpI->getOperand(0);
  Type *XType = X->getType();
  Type *DestType = FI.getType();
  bool IsOutputSigned = isa<FPToSIInst>(FI);

  // Since we can assume the conversion won't overflow, our decision as to
  // whether the input will fit in the float should depend on the minimum
  // of the input range and output range.

  // This means this is also safe for a signed input and unsigned output, since
  // a negative input would lead to undefined behavior.
  if (!isKnownExactCastIntToFP(*OpI)) {
    // The first cast may not round exactly based on the source integer width
    // and FP width, but the overflow UB rules can still allow this to fold.
    // If the destination type is narrow, that means the intermediate FP value
    // must be large enough to hold the source value exactly.
    // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
    int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
    if (OutputSize > OpI->getType()->getFPMantissaWidth())
      return nullptr;
  }

  if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
    bool IsInputSigned = isa<SIToFPInst>(OpI);
    if (IsInputSigned && IsOutputSigned)
      return new SExtInst(X, DestType);
    return new ZExtInst(X, DestType);
  }
  if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
    return new TruncInst(X, DestType);

  assert(XType == DestType && "Unexpected types for int to FP to int casts");
  return replaceInstUsesWith(FI, X);
}

Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
  if (Instruction *I = foldItoFPtoI(FI))
    return I;

  return commonCastTransforms(FI);
}

Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
  if (Instruction *I = foldItoFPtoI(FI))
    return I;

  return commonCastTransforms(FI);
}

Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
  // If the source integer type is not the intptr_t type for this target, do a
  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
  // cast to be exposed to other transforms.
  unsigned AS = CI.getAddressSpace();
  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
      DL.getPointerSizeInBits(AS)) {
    Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
    // Handle vectors of pointers.
    if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
      Ty = VectorType::get(Ty, CIVTy->getElementCount());

    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
    return new IntToPtrInst(P, CI.getType());
  }

  if (Instruction *I = commonCastTransforms(CI))
    return I;

  return nullptr;
}

/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
  Value *Src = CI.getOperand(0);

  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
    // If casting the result of a getelementptr instruction with no offset, turn
    // this into a cast of the original pointer!
    if (GEP->hasAllZeroIndices() &&
        // If CI is an addrspacecast and GEP changes the poiner type, merging
        // GEP into CI would undo canonicalizing addrspacecast with different
        // pointer types, causing infinite loops.
        (!isa<AddrSpaceCastInst>(CI) ||
         GEP->getType() == GEP->getPointerOperandType())) {
      // Changing the cast operand is usually not a good idea but it is safe
      // here because the pointer operand is being replaced with another
      // pointer operand so the opcode doesn't need to change.
      return replaceOperand(CI, 0, GEP->getOperand(0));
    }
  }

  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
  // If the destination integer type is not the intptr_t type for this target,
  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
  // to be exposed to other transforms.

  Type *Ty = CI.getType();
  unsigned AS = CI.getPointerAddressSpace();

  if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
    return commonPointerCastTransforms(CI);

  Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
  if (auto *VTy = dyn_cast<VectorType>(Ty)) {
    // Handle vectors of pointers.
    // FIXME: what should happen for scalable vectors?
    PtrTy = FixedVectorType::get(PtrTy, VTy->getNumElements());
  }

  Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
}

/// This input value (which is known to have vector type) is being zero extended
/// or truncated to the specified vector type. Since the zext/trunc is done
/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
/// endianness will impact which end of the vector that is extended or
/// truncated.
///
/// A vector is always stored with index 0 at the lowest address, which
/// corresponds to the most significant bits for a big endian stored integer and
/// the least significant bits for little endian. A trunc/zext of an integer
/// impacts the big end of the integer. Thus, we need to add/remove elements at
/// the front of the vector for big endian targets, and the back of the vector
/// for little endian targets.
///
/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
///
/// The source and destination vector types may have different element types.
static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal,
                                                            VectorType *DestTy,
                                                            InstCombiner &IC) {
  // We can only do this optimization if the output is a multiple of the input
  // element size, or the input is a multiple of the output element size.
  // Convert the input type to have the same element type as the output.
  VectorType *SrcTy = cast<VectorType>(InVal->getType());

  if (SrcTy->getElementType() != DestTy->getElementType()) {
    // The input types don't need to be identical, but for now they must be the
    // same size.  There is no specific reason we couldn't handle things like
    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
    // there yet.
    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
        DestTy->getElementType()->getPrimitiveSizeInBits())
      return nullptr;

    SrcTy =
        FixedVectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
  }

  bool IsBigEndian = IC.getDataLayout().isBigEndian();
  unsigned SrcElts = SrcTy->getNumElements();
  unsigned DestElts = DestTy->getNumElements();

  assert(SrcElts != DestElts && "Element counts should be different.");

  // Now that the element types match, get the shuffle mask and RHS of the
  // shuffle to use, which depends on whether we're increasing or decreasing the
  // size of the input.
  SmallVector<int, 16> ShuffleMaskStorage;
  ArrayRef<int> ShuffleMask;
  Value *V2;

  // Produce an identify shuffle mask for the src vector.
  ShuffleMaskStorage.resize(SrcElts);
  std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);

  if (SrcElts > DestElts) {
    // If we're shrinking the number of elements (rewriting an integer
    // truncate), just shuffle in the elements corresponding to the least
    // significant bits from the input and use undef as the second shuffle
    // input.
    V2 = UndefValue::get(SrcTy);
    // Make sure the shuffle mask selects the "least significant bits" by
    // keeping elements from back of the src vector for big endian, and from the
    // front for little endian.
    ShuffleMask = ShuffleMaskStorage;
    if (IsBigEndian)
      ShuffleMask = ShuffleMask.take_back(DestElts);
    else
      ShuffleMask = ShuffleMask.take_front(DestElts);
  } else {
    // If we're increasing the number of elements (rewriting an integer zext),
    // shuffle in all of the elements from InVal. Fill the rest of the result
    // elements with zeros from a constant zero.
    V2 = Constant::getNullValue(SrcTy);
    // Use first elt from V2 when indicating zero in the shuffle mask.
    uint32_t NullElt = SrcElts;
    // Extend with null values in the "most significant bits" by adding elements
    // in front of the src vector for big endian, and at the back for little
    // endian.
    unsigned DeltaElts = DestElts - SrcElts;
    if (IsBigEndian)
      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
    else
      ShuffleMaskStorage.append(DeltaElts, NullElt);
    ShuffleMask = ShuffleMaskStorage;
  }

  return new ShuffleVectorInst(InVal, V2, ShuffleMask);
}

static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
  return Value % Ty->getPrimitiveSizeInBits() == 0;
}

static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
  return Value / Ty->getPrimitiveSizeInBits();
}

/// V is a value which is inserted into a vector of VecEltTy.
/// Look through the value to see if we can decompose it into
/// insertions into the vector.  See the example in the comment for
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
/// The type of V is always a non-zero multiple of VecEltTy's size.
/// Shift is the number of bits between the lsb of V and the lsb of
/// the vector.
///
/// This returns false if the pattern can't be matched or true if it can,
/// filling in Elements with the elements found here.
static bool collectInsertionElements(Value *V, unsigned Shift,
                                     SmallVectorImpl<Value *> &Elements,
                                     Type *VecEltTy, bool isBigEndian) {
  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
         "Shift should be a multiple of the element type size");

  // Undef values never contribute useful bits to the result.
  if (isa<UndefValue>(V)) return true;

  // If we got down to a value of the right type, we win, try inserting into the
  // right element.
  if (V->getType() == VecEltTy) {
    // Inserting null doesn't actually insert any elements.
    if (Constant *C = dyn_cast<Constant>(V))
      if (C->isNullValue())
        return true;

    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
    if (isBigEndian)
      ElementIndex = Elements.size() - ElementIndex - 1;

    // Fail if multiple elements are inserted into this slot.
    if (Elements[ElementIndex])
      return false;

    Elements[ElementIndex] = V;
    return true;
  }

  if (Constant *C = dyn_cast<Constant>(V)) {
    // Figure out the # elements this provides, and bitcast it or slice it up
    // as required.
    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
                                        VecEltTy);
    // If the constant is the size of a vector element, we just need to bitcast
    // it to the right type so it gets properly inserted.
    if (NumElts == 1)
      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
                                      Shift, Elements, VecEltTy, isBigEndian);

    // Okay, this is a constant that covers multiple elements.  Slice it up into
    // pieces and insert each element-sized piece into the vector.
    if (!isa<IntegerType>(C->getType()))
      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
                                       C->getType()->getPrimitiveSizeInBits()));
    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);

    for (unsigned i = 0; i != NumElts; ++i) {
      unsigned ShiftI = Shift+i*ElementSize;
      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
                                                                  ShiftI));
      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
                                    isBigEndian))
        return false;
    }
    return true;
  }

  if (!V->hasOneUse()) return false;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;
  switch (I->getOpcode()) {
  default: return false; // Unhandled case.
  case Instruction::BitCast:
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::ZExt:
    if (!isMultipleOfTypeSize(
                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
                              VecEltTy))
      return false;
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::Or:
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian) &&
           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::Shl: {
    // Must be shifting by a constant that is a multiple of the element size.
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    if (!CI) return false;
    Shift += CI->getZExtValue();
    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  }

  }
}


/// If the input is an 'or' instruction, we may be doing shifts and ors to
/// assemble the elements of the vector manually.
/// Try to rip the code out and replace it with insertelements.  This is to
/// optimize code like this:
///
///    %tmp37 = bitcast float %inc to i32
///    %tmp38 = zext i32 %tmp37 to i64
///    %tmp31 = bitcast float %inc5 to i32
///    %tmp32 = zext i32 %tmp31 to i64
///    %tmp33 = shl i64 %tmp32, 32
///    %ins35 = or i64 %tmp33, %tmp38
///    %tmp43 = bitcast i64 %ins35 to <2 x float>
///
/// Into two insertelements that do "buildvector{%inc, %inc5}".
static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
                                                InstCombiner &IC) {
  VectorType *DestVecTy = cast<VectorType>(CI.getType());
  Value *IntInput = CI.getOperand(0);

  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
  if (!collectInsertionElements(IntInput, 0, Elements,
                                DestVecTy->getElementType(),
                                IC.getDataLayout().isBigEndian()))
    return nullptr;

  // If we succeeded, we know that all of the element are specified by Elements
  // or are zero if Elements has a null entry.  Recast this as a set of
  // insertions.
  Value *Result = Constant::getNullValue(CI.getType());
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
    if (!Elements[i]) continue;  // Unset element.

    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
                                            IC.Builder.getInt32(i));
  }

  return Result;
}

/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
/// vector followed by extract element. The backend tends to handle bitcasts of
/// vectors better than bitcasts of scalars because vector registers are
/// usually not type-specific like scalar integer or scalar floating-point.
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
                                              InstCombiner &IC) {
  // TODO: Create and use a pattern matcher for ExtractElementInst.
  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
  if (!ExtElt || !ExtElt->hasOneUse())
    return nullptr;

  // The bitcast must be to a vectorizable type, otherwise we can't make a new
  // type to extract from.
  Type *DestType = BitCast.getType();
  if (!VectorType::isValidElementType(DestType))
    return nullptr;

  unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
  auto *NewVecType = FixedVectorType::get(DestType, NumElts);
  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
                                         NewVecType, "bc");
  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
}

/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
                                            InstCombiner::BuilderTy &Builder) {
  Type *DestTy = BitCast.getType();
  BinaryOperator *BO;
  if (!DestTy->isIntOrIntVectorTy() ||
      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
      !BO->isBitwiseLogicOp())
    return nullptr;

  // FIXME: This transform is restricted to vector types to avoid backend
  // problems caused by creating potentially illegal operations. If a fix-up is
  // added to handle that situation, we can remove this check.
  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
    return nullptr;

  Value *X;
  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
      X->getType() == DestTy && !isa<Constant>(X)) {
    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
  }

  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
      X->getType() == DestTy && !isa<Constant>(X)) {
    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
  }

  // Canonicalize vector bitcasts to come before vector bitwise logic with a
  // constant. This eases recognition of special constants for later ops.
  // Example:
  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
  Constant *C;
  if (match(BO->getOperand(1), m_Constant(C))) {
    // bitcast (logic X, C) --> logic (bitcast X, C')
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
    Value *CastedC = Builder.CreateBitCast(C, DestTy);
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
  }

  return nullptr;
}

/// Change the type of a select if we can eliminate a bitcast.
static Instruction *foldBitCastSelect(BitCastInst &BitCast,
                                      InstCombiner::BuilderTy &Builder) {
  Value *Cond, *TVal, *FVal;
  if (!match(BitCast.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
    return nullptr;

  // A vector select must maintain the same number of elements in its operands.
  Type *CondTy = Cond->getType();
  Type *DestTy = BitCast.getType();
  if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
    if (!DestTy->isVectorTy())
      return nullptr;
    if (cast<VectorType>(DestTy)->getNumElements() != CondVTy->getNumElements())
      return nullptr;
  }

  // FIXME: This transform is restricted from changing the select between
  // scalars and vectors to avoid backend problems caused by creating
  // potentially illegal operations. If a fix-up is added to handle that
  // situation, we can remove this check.
  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
    return nullptr;

  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
  Value *X;
  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
      !isa<Constant>(X)) {
    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
  }

  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
      !isa<Constant>(X)) {
    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
  }

  return nullptr;
}

/// Check if all users of CI are StoreInsts.
static bool hasStoreUsersOnly(CastInst &CI) {
  for (User *U : CI.users()) {
    if (!isa<StoreInst>(U))
      return false;
  }
  return true;
}

/// This function handles following case
///
///     A  ->  B    cast
///     PHI
///     B  ->  A    cast
///
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
  if (hasStoreUsersOnly(CI))
    return nullptr;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType();         // Type B
  Type *DestTy = CI.getType();          // Type A

  SmallVector<PHINode *, 4> PhiWorklist;
  SmallSetVector<PHINode *, 4> OldPhiNodes;

  // Find all of the A->B casts and PHI nodes.
  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
  // OldPhiNodes is used to track all known PHI nodes, before adding a new
  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
  PhiWorklist.push_back(PN);
  OldPhiNodes.insert(PN);
  while (!PhiWorklist.empty()) {
    auto *OldPN = PhiWorklist.pop_back_val();
    for (Value *IncValue : OldPN->incoming_values()) {
      if (isa<Constant>(IncValue))
        continue;

      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
        // If there is a sequence of one or more load instructions, each loaded
        // value is used as address of later load instruction, bitcast is
        // necessary to change the value type, don't optimize it. For
        // simplicity we give up if the load address comes from another load.
        Value *Addr = LI->getOperand(0);
        if (Addr == &CI || isa<LoadInst>(Addr))
          return nullptr;
        if (LI->hasOneUse() && LI->isSimple())
          continue;
        // If a LoadInst has more than one use, changing the type of loaded
        // value may create another bitcast.
        return nullptr;
      }

      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
        if (OldPhiNodes.insert(PNode))
          PhiWorklist.push_back(PNode);
        continue;
      }

      auto *BCI = dyn_cast<BitCastInst>(IncValue);
      // We can't handle other instructions.
      if (!BCI)
        return nullptr;

      // Verify it's a A->B cast.
      Type *TyA = BCI->getOperand(0)->getType();
      Type *TyB = BCI->getType();
      if (TyA != DestTy || TyB != SrcTy)
        return nullptr;
    }
  }

  // Check that each user of each old PHI node is something that we can
  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
  for (auto *OldPN : OldPhiNodes) {
    for (User *V : OldPN->users()) {
      if (auto *SI = dyn_cast<StoreInst>(V)) {
        if (!SI->isSimple() || SI->getOperand(0) != OldPN)
          return nullptr;
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        // Verify it's a B->A cast.
        Type *TyB = BCI->getOperand(0)->getType();
        Type *TyA = BCI->getType();
        if (TyA != DestTy || TyB != SrcTy)
          return nullptr;
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
        // As long as the user is another old PHI node, then even if we don't
        // rewrite it, the PHI web we're considering won't have any users
        // outside itself, so it'll be dead.
        if (OldPhiNodes.count(PHI) == 0)
          return nullptr;
      } else {
        return nullptr;
      }
    }
  }

  // For each old PHI node, create a corresponding new PHI node with a type A.
  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
  for (auto *OldPN : OldPhiNodes) {
    Builder.SetInsertPoint(OldPN);
    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
    NewPNodes[OldPN] = NewPN;
  }

  // Fill in the operands of new PHI nodes.
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
      Value *V = OldPN->getOperand(j);
      Value *NewV = nullptr;
      if (auto *C = dyn_cast<Constant>(V)) {
        NewV = ConstantExpr::getBitCast(C, DestTy);
      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
        // Explicitly perform load combine to make sure no opposing transform
        // can remove the bitcast in the meantime and trigger an infinite loop.
        Builder.SetInsertPoint(LI);
        NewV = combineLoadToNewType(*LI, DestTy);
        // Remove the old load and its use in the old phi, which itself becomes
        // dead once the whole transform finishes.
        replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
        eraseInstFromFunction(*LI);
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        NewV = BCI->getOperand(0);
      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
        NewV = NewPNodes[PrevPN];
      }
      assert(NewV);
      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
    }
  }

  // Traverse all accumulated PHI nodes and process its users,
  // which are Stores and BitcCasts. Without this processing
  // NewPHI nodes could be replicated and could lead to extra
  // moves generated after DeSSA.
  // If there is a store with type B, change it to type A.


  // Replace users of BitCast B->A with NewPHI. These will help
  // later to get rid off a closure formed by OldPHI nodes.
  Instruction *RetVal = nullptr;
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
      User *V = *It;
      // We may remove this user, advance to avoid iterator invalidation.
      ++It;
      if (auto *SI = dyn_cast<StoreInst>(V)) {
        assert(SI->isSimple() && SI->getOperand(0) == OldPN);
        Builder.SetInsertPoint(SI);
        auto *NewBC =
          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
        SI->setOperand(0, NewBC);
        Worklist.push(SI);
        assert(hasStoreUsersOnly(*NewBC));
      }
      else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        Type *TyB = BCI->getOperand(0)->getType();
        Type *TyA = BCI->getType();
        assert(TyA == DestTy && TyB == SrcTy);
        (void) TyA;
        (void) TyB;
        Instruction *I = replaceInstUsesWith(*BCI, NewPN);
        if (BCI == &CI)
          RetVal = I;
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
        assert(OldPhiNodes.count(PHI) > 0);
        (void) PHI;
      } else {
        llvm_unreachable("all uses should be handled");
      }
    }
  }

  return RetVal;
}

Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
  // If the operands are integer typed then apply the integer transforms,
  // otherwise just apply the common ones.
  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType();
  Type *DestTy = CI.getType();

  // Get rid of casts from one type to the same type. These are useless and can
  // be replaced by the operand.
  if (DestTy == Src->getType())
    return replaceInstUsesWith(CI, Src);

  if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
    PointerType *SrcPTy = cast<PointerType>(SrcTy);
    PointerType *DstPTy = cast<PointerType>(DestTy);
    Type *DstElTy = DstPTy->getElementType();
    Type *SrcElTy = SrcPTy->getElementType();

    // Casting pointers between the same type, but with different address spaces
    // is an addrspace cast rather than a bitcast.
    if ((DstElTy == SrcElTy) &&
        (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
      return new AddrSpaceCastInst(Src, DestTy);

    // If we are casting a alloca to a pointer to a type of the same
    // size, rewrite the allocation instruction to allocate the "right" type.
    // There is no need to modify malloc calls because it is their bitcast that
    // needs to be cleaned up.
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
        return V;

    // When the type pointed to is not sized the cast cannot be
    // turned into a gep.
    Type *PointeeType =
        cast<PointerType>(Src->getType()->getScalarType())->getElementType();
    if (!PointeeType->isSized())
      return nullptr;

    // If the source and destination are pointers, and this cast is equivalent
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
    // This can enhance SROA and other transforms that want type-safe pointers.
    unsigned NumZeros = 0;
    while (SrcElTy && SrcElTy != DstElTy) {
      SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
      ++NumZeros;
    }

    // If we found a path from the src to dest, create the getelementptr now.
    if (SrcElTy == DstElTy) {
      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
      GetElementPtrInst *GEP =
          GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);

      // If the source pointer is dereferenceable, then assume it points to an
      // allocated object and apply "inbounds" to the GEP.
      bool CanBeNull;
      if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
        // In a non-default address space (not 0), a null pointer can not be
        // assumed inbounds, so ignore that case (dereferenceable_or_null).
        // The reason is that 'null' is not treated differently in these address
        // spaces, and we consequently ignore the 'gep inbounds' special case
        // for 'null' which allows 'inbounds' on 'null' if the indices are
        // zeros.
        if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
          GEP->setIsInBounds();
      }
      return GEP;
    }
  }

  if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
    // Beware: messing with this target-specific oddity may cause trouble.
    if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
    }

    if (isa<IntegerType>(SrcTy)) {
      // If this is a cast from an integer to vector, check to see if the input
      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
      // the casts with a shuffle and (potentially) a bitcast.
      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
        CastInst *SrcCast = cast<CastInst>(Src);
        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
              return I;
      }

      // If the input is an 'or' instruction, we may be doing shifts and ors to
      // assemble the elements of the vector manually.  Try to rip the code out
      // and replace it with insertelements.
      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
        return replaceInstUsesWith(CI, V);
    }
  }

  if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
    if (SrcVTy->getNumElements() == 1) {
      // If our destination is not a vector, then make this a straight
      // scalar-scalar cast.
      if (!DestTy->isVectorTy()) {
        Value *Elem =
          Builder.CreateExtractElement(Src,
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
      }

      // Otherwise, see if our source is an insert. If so, then use the scalar
      // component directly:
      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
      if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
        return new BitCastInst(InsElt->getOperand(1), DestTy);
    }
  }

  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
    // a bitcast to a vector with the same # elts.
    Value *ShufOp0 = Shuf->getOperand(0);
    Value *ShufOp1 = Shuf->getOperand(1);
    unsigned NumShufElts = Shuf->getType()->getNumElements();
    unsigned NumSrcVecElts =
        cast<VectorType>(ShufOp0->getType())->getNumElements();
    if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
        cast<VectorType>(DestTy)->getNumElements() == NumShufElts &&
        NumShufElts == NumSrcVecElts) {
      BitCastInst *Tmp;
      // If either of the operands is a cast from CI.getType(), then
      // evaluating the shuffle in the casted destination's type will allow
      // us to eliminate at least one cast.
      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
           Tmp->getOperand(0)->getType() == DestTy) ||
          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
           Tmp->getOperand(0)->getType() == DestTy)) {
        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
        // Return a new shuffle vector.  Use the same element ID's, as we
        // know the vector types match #elts.
        return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
      }
    }

    // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
    // a byte-swap:
    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
    // TODO: We should match the related pattern for bitreverse.
    if (DestTy->isIntegerTy() &&
        DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
        SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
        Shuf->hasOneUse() && Shuf->isReverse()) {
      assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
      assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
      Function *Bswap =
          Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
      Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
      return IntrinsicInst::Create(Bswap, { ScalarX });
    }
  }

  // Handle the A->B->A cast, and there is an intervening PHI node.
  if (PHINode *PN = dyn_cast<PHINode>(Src))
    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
      return I;

  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
    return I;

  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
    return I;

  if (Instruction *I = foldBitCastSelect(CI, Builder))
    return I;

  if (SrcTy->isPointerTy())
    return commonPointerCastTransforms(CI);
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
  // If the destination pointer element type is not the same as the source's
  // first do a bitcast to the destination type, and then the addrspacecast.
  // This allows the cast to be exposed to other transforms.
  Value *Src = CI.getOperand(0);
  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());

  Type *DestElemTy = DestTy->getElementType();
  if (SrcTy->getElementType() != DestElemTy) {
    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
      // Handle vectors of pointers.
      // FIXME: what should happen for scalable vectors?
      MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
    }

    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
    return new AddrSpaceCastInst(NewBitCast, CI.getType());
  }

  return commonPointerCastTransforms(CI);
}