FunctionAttrs.cpp 55.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements interprocedural passes which walk the
/// call-graph deducing and/or propagating function attributes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <cassert>
#include <iterator>
#include <map>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "functionattrs"

STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
STATISTIC(NumReturned, "Number of arguments marked returned");
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
STATISTIC(NumNoFree, "Number of functions marked as nofree");

static cl::opt<bool> EnableNonnullArgPropagation(
    "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
    cl::desc("Try to propagate nonnull argument attributes from callsites to "
             "caller functions."));

static cl::opt<bool> DisableNoUnwindInference(
    "disable-nounwind-inference", cl::Hidden,
    cl::desc("Stop inferring nounwind attribute during function-attrs pass"));

static cl::opt<bool> DisableNoFreeInference(
    "disable-nofree-inference", cl::Hidden,
    cl::desc("Stop inferring nofree attribute during function-attrs pass"));

namespace {

using SCCNodeSet = SmallSetVector<Function *, 8>;

} // end anonymous namespace

/// Returns the memory access attribute for function F using AAR for AA results,
/// where SCCNodes is the current SCC.
///
/// If ThisBody is true, this function may examine the function body and will
/// return a result pertaining to this copy of the function. If it is false, the
/// result will be based only on AA results for the function declaration; it
/// will be assumed that some other (perhaps less optimized) version of the
/// function may be selected at link time.
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
                                                  AAResults &AAR,
                                                  const SCCNodeSet &SCCNodes) {
  FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
  if (MRB == FMRB_DoesNotAccessMemory)
    // Already perfect!
    return MAK_ReadNone;

  if (!ThisBody) {
    if (AliasAnalysis::onlyReadsMemory(MRB))
      return MAK_ReadOnly;

    if (AliasAnalysis::doesNotReadMemory(MRB))
      return MAK_WriteOnly;

    // Conservatively assume it reads and writes to memory.
    return MAK_MayWrite;
  }

  // Scan the function body for instructions that may read or write memory.
  bool ReadsMemory = false;
  bool WritesMemory = false;
  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
    Instruction *I = &*II;

    // Some instructions can be ignored even if they read or write memory.
    // Detect these now, skipping to the next instruction if one is found.
    if (auto *Call = dyn_cast<CallBase>(I)) {
      // Ignore calls to functions in the same SCC, as long as the call sites
      // don't have operand bundles.  Calls with operand bundles are allowed to
      // have memory effects not described by the memory effects of the call
      // target.
      if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
          SCCNodes.count(Call->getCalledFunction()))
        continue;
      FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
      ModRefInfo MRI = createModRefInfo(MRB);

      // If the call doesn't access memory, we're done.
      if (isNoModRef(MRI))
        continue;

      if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
        // The call could access any memory. If that includes writes, note it.
        if (isModSet(MRI))
          WritesMemory = true;
        // If it reads, note it.
        if (isRefSet(MRI))
          ReadsMemory = true;
        continue;
      }

      // Check whether all pointer arguments point to local memory, and
      // ignore calls that only access local memory.
      for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) {
        Value *Arg = *CI;
        if (!Arg->getType()->isPtrOrPtrVectorTy())
          continue;

        AAMDNodes AAInfo;
        I->getAAMetadata(AAInfo);
        MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);

        // Skip accesses to local or constant memory as they don't impact the
        // externally visible mod/ref behavior.
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;

        if (isModSet(MRI))
          // Writes non-local memory.
          WritesMemory = true;
        if (isRefSet(MRI))
          // Ok, it reads non-local memory.
          ReadsMemory = true;
      }
      continue;
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      // Ignore non-volatile loads from local memory. (Atomic is okay here.)
      if (!LI->isVolatile()) {
        MemoryLocation Loc = MemoryLocation::get(LI);
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      // Ignore non-volatile stores to local memory. (Atomic is okay here.)
      if (!SI->isVolatile()) {
        MemoryLocation Loc = MemoryLocation::get(SI);
        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
          continue;
      }
    } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
      // Ignore vaargs on local memory.
      MemoryLocation Loc = MemoryLocation::get(VI);
      if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
        continue;
    }

    // Any remaining instructions need to be taken seriously!  Check if they
    // read or write memory.
    //
    // Writes memory, remember that.
    WritesMemory |= I->mayWriteToMemory();

    // If this instruction may read memory, remember that.
    ReadsMemory |= I->mayReadFromMemory();
  }

  if (WritesMemory) { 
    if (!ReadsMemory)
      return MAK_WriteOnly;
    else
      return MAK_MayWrite;
  }

  return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
}

MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
                                                       AAResults &AAR) {
  return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
}

/// Deduce readonly/readnone attributes for the SCC.
template <typename AARGetterT>
static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
  // Check if any of the functions in the SCC read or write memory.  If they
  // write memory then they can't be marked readnone or readonly.
  bool ReadsMemory = false;
  bool WritesMemory = false;
  for (Function *F : SCCNodes) {
    // Call the callable parameter to look up AA results for this function.
    AAResults &AAR = AARGetter(*F);

    // Non-exact function definitions may not be selected at link time, and an
    // alternative version that writes to memory may be selected.  See the
    // comment on GlobalValue::isDefinitionExact for more details.
    switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
                                      AAR, SCCNodes)) {
    case MAK_MayWrite:
      return false;
    case MAK_ReadOnly:
      ReadsMemory = true;
      break;
    case MAK_WriteOnly:
      WritesMemory = true;
      break;
    case MAK_ReadNone:
      // Nothing to do!
      break;
    }
  }

  // If the SCC contains both functions that read and functions that write, then
  // we cannot add readonly attributes.
  if (ReadsMemory && WritesMemory)
    return false;

  // Success!  Functions in this SCC do not access memory, or only read memory.
  // Give them the appropriate attribute.
  bool MadeChange = false;

  for (Function *F : SCCNodes) {
    if (F->doesNotAccessMemory())
      // Already perfect!
      continue;

    if (F->onlyReadsMemory() && ReadsMemory)
      // No change.
      continue;

    if (F->doesNotReadMemory() && WritesMemory)
      continue;

    MadeChange = true;

    // Clear out any existing attributes.
    F->removeFnAttr(Attribute::ReadOnly);
    F->removeFnAttr(Attribute::ReadNone);
    F->removeFnAttr(Attribute::WriteOnly);

    if (!WritesMemory && !ReadsMemory) {
      // Clear out any "access range attributes" if readnone was deduced.
      F->removeFnAttr(Attribute::ArgMemOnly);
      F->removeFnAttr(Attribute::InaccessibleMemOnly);
      F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
    }

    // Add in the new attribute.
    if (WritesMemory && !ReadsMemory)
      F->addFnAttr(Attribute::WriteOnly);
    else
      F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);

    if (WritesMemory && !ReadsMemory)
      ++NumWriteOnly;
    else if (ReadsMemory)
      ++NumReadOnly;
    else
      ++NumReadNone;
  }

  return MadeChange;
}

namespace {

/// For a given pointer Argument, this retains a list of Arguments of functions
/// in the same SCC that the pointer data flows into. We use this to build an
/// SCC of the arguments.
struct ArgumentGraphNode {
  Argument *Definition;
  SmallVector<ArgumentGraphNode *, 4> Uses;
};

class ArgumentGraph {
  // We store pointers to ArgumentGraphNode objects, so it's important that
  // that they not move around upon insert.
  using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;

  ArgumentMapTy ArgumentMap;

  // There is no root node for the argument graph, in fact:
  //   void f(int *x, int *y) { if (...) f(x, y); }
  // is an example where the graph is disconnected. The SCCIterator requires a
  // single entry point, so we maintain a fake ("synthetic") root node that
  // uses every node. Because the graph is directed and nothing points into
  // the root, it will not participate in any SCCs (except for its own).
  ArgumentGraphNode SyntheticRoot;

public:
  ArgumentGraph() { SyntheticRoot.Definition = nullptr; }

  using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;

  iterator begin() { return SyntheticRoot.Uses.begin(); }
  iterator end() { return SyntheticRoot.Uses.end(); }
  ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }

  ArgumentGraphNode *operator[](Argument *A) {
    ArgumentGraphNode &Node = ArgumentMap[A];
    Node.Definition = A;
    SyntheticRoot.Uses.push_back(&Node);
    return &Node;
  }
};

/// This tracker checks whether callees are in the SCC, and if so it does not
/// consider that a capture, instead adding it to the "Uses" list and
/// continuing with the analysis.
struct ArgumentUsesTracker : public CaptureTracker {
  ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}

  void tooManyUses() override { Captured = true; }

  bool captured(const Use *U) override {
    CallBase *CB = dyn_cast<CallBase>(U->getUser());
    if (!CB) {
      Captured = true;
      return true;
    }

    Function *F = CB->getCalledFunction();
    if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
      Captured = true;
      return true;
    }

    // Note: the callee and the two successor blocks *follow* the argument
    // operands.  This means there is no need to adjust UseIndex to account for
    // these.

    unsigned UseIndex =
        std::distance(const_cast<const Use *>(CB->arg_begin()), U);

    assert(UseIndex < CB->data_operands_size() &&
           "Indirect function calls should have been filtered above!");

    if (UseIndex >= CB->getNumArgOperands()) {
      // Data operand, but not a argument operand -- must be a bundle operand
      assert(CB->hasOperandBundles() && "Must be!");

      // CaptureTracking told us that we're being captured by an operand bundle
      // use.  In this case it does not matter if the callee is within our SCC
      // or not -- we've been captured in some unknown way, and we have to be
      // conservative.
      Captured = true;
      return true;
    }

    if (UseIndex >= F->arg_size()) {
      assert(F->isVarArg() && "More params than args in non-varargs call");
      Captured = true;
      return true;
    }

    Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
    return false;
  }

  // True only if certainly captured (used outside our SCC).
  bool Captured = false;

  // Uses within our SCC.
  SmallVector<Argument *, 4> Uses;

  const SCCNodeSet &SCCNodes;
};

} // end anonymous namespace

namespace llvm {

template <> struct GraphTraits<ArgumentGraphNode *> {
  using NodeRef = ArgumentGraphNode *;
  using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;

  static NodeRef getEntryNode(NodeRef A) { return A; }
  static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
};

template <>
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
  static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }

  static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
    return AG->begin();
  }

  static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
};

} // end namespace llvm

/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
static Attribute::AttrKind
determinePointerReadAttrs(Argument *A,
                          const SmallPtrSet<Argument *, 8> &SCCNodes) {
  SmallVector<Use *, 32> Worklist;
  SmallPtrSet<Use *, 32> Visited;

  // inalloca arguments are always clobbered by the call.
  if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
    return Attribute::None;

  bool IsRead = false;
  // We don't need to track IsWritten. If A is written to, return immediately.

  for (Use &U : A->uses()) {
    Visited.insert(&U);
    Worklist.push_back(&U);
  }

  while (!Worklist.empty()) {
    Use *U = Worklist.pop_back_val();
    Instruction *I = cast<Instruction>(U->getUser());

    switch (I->getOpcode()) {
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::PHI:
    case Instruction::Select:
    case Instruction::AddrSpaceCast:
      // The original value is not read/written via this if the new value isn't.
      for (Use &UU : I->uses())
        if (Visited.insert(&UU).second)
          Worklist.push_back(&UU);
      break;

    case Instruction::Call:
    case Instruction::Invoke: {
      bool Captures = true;

      if (I->getType()->isVoidTy())
        Captures = false;

      auto AddUsersToWorklistIfCapturing = [&] {
        if (Captures)
          for (Use &UU : I->uses())
            if (Visited.insert(&UU).second)
              Worklist.push_back(&UU);
      };

      CallBase &CB = cast<CallBase>(*I);
      if (CB.doesNotAccessMemory()) {
        AddUsersToWorklistIfCapturing();
        continue;
      }

      Function *F = CB.getCalledFunction();
      if (!F) {
        if (CB.onlyReadsMemory()) {
          IsRead = true;
          AddUsersToWorklistIfCapturing();
          continue;
        }
        return Attribute::None;
      }

      // Note: the callee and the two successor blocks *follow* the argument
      // operands.  This means there is no need to adjust UseIndex to account
      // for these.

      unsigned UseIndex = std::distance(CB.arg_begin(), U);

      // U cannot be the callee operand use: since we're exploring the
      // transitive uses of an Argument, having such a use be a callee would
      // imply the call site is an indirect call or invoke; and we'd take the
      // early exit above.
      assert(UseIndex < CB.data_operands_size() &&
             "Data operand use expected!");

      bool IsOperandBundleUse = UseIndex >= CB.getNumArgOperands();

      if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
        assert(F->isVarArg() && "More params than args in non-varargs call");
        return Attribute::None;
      }

      Captures &= !CB.doesNotCapture(UseIndex);

      // Since the optimizer (by design) cannot see the data flow corresponding
      // to a operand bundle use, these cannot participate in the optimistic SCC
      // analysis.  Instead, we model the operand bundle uses as arguments in
      // call to a function external to the SCC.
      if (IsOperandBundleUse ||
          !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {

        // The accessors used on call site here do the right thing for calls and
        // invokes with operand bundles.

        if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex))
          return Attribute::None;
        if (!CB.doesNotAccessMemory(UseIndex))
          IsRead = true;
      }

      AddUsersToWorklistIfCapturing();
      break;
    }

    case Instruction::Load:
      // A volatile load has side effects beyond what readonly can be relied
      // upon.
      if (cast<LoadInst>(I)->isVolatile())
        return Attribute::None;

      IsRead = true;
      break;

    case Instruction::ICmp:
    case Instruction::Ret:
      break;

    default:
      return Attribute::None;
    }
  }

  return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
}

/// Deduce returned attributes for the SCC.
static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
  bool Changed = false;

  // Check each function in turn, determining if an argument is always returned.
  for (Function *F : SCCNodes) {
    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      continue;

    if (F->getReturnType()->isVoidTy())
      continue;

    // There is nothing to do if an argument is already marked as 'returned'.
    if (llvm::any_of(F->args(),
                     [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
      continue;

    auto FindRetArg = [&]() -> Value * {
      Value *RetArg = nullptr;
      for (BasicBlock &BB : *F)
        if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
          // Note that stripPointerCasts should look through functions with
          // returned arguments.
          Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
          if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
            return nullptr;

          if (!RetArg)
            RetArg = RetVal;
          else if (RetArg != RetVal)
            return nullptr;
        }

      return RetArg;
    };

    if (Value *RetArg = FindRetArg()) {
      auto *A = cast<Argument>(RetArg);
      A->addAttr(Attribute::Returned);
      ++NumReturned;
      Changed = true;
    }
  }

  return Changed;
}

/// If a callsite has arguments that are also arguments to the parent function,
/// try to propagate attributes from the callsite's arguments to the parent's
/// arguments. This may be important because inlining can cause information loss
/// when attribute knowledge disappears with the inlined call.
static bool addArgumentAttrsFromCallsites(Function &F) {
  if (!EnableNonnullArgPropagation)
    return false;

  bool Changed = false;

  // For an argument attribute to transfer from a callsite to the parent, the
  // call must be guaranteed to execute every time the parent is called.
  // Conservatively, just check for calls in the entry block that are guaranteed
  // to execute.
  // TODO: This could be enhanced by testing if the callsite post-dominates the
  // entry block or by doing simple forward walks or backward walks to the
  // callsite.
  BasicBlock &Entry = F.getEntryBlock();
  for (Instruction &I : Entry) {
    if (auto *CB = dyn_cast<CallBase>(&I)) {
      if (auto *CalledFunc = CB->getCalledFunction()) {
        for (auto &CSArg : CalledFunc->args()) {
          if (!CSArg.hasNonNullAttr())
            continue;

          // If the non-null callsite argument operand is an argument to 'F'
          // (the caller) and the call is guaranteed to execute, then the value
          // must be non-null throughout 'F'.
          auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
          if (FArg && !FArg->hasNonNullAttr()) {
            FArg->addAttr(Attribute::NonNull);
            Changed = true;
          }
        }
      }
    }
    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
      break;
  }

  return Changed;
}

static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
  assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
         && "Must be a Read attribute.");
  assert(A && "Argument must not be null.");

  // If the argument already has the attribute, nothing needs to be done.
  if (A->hasAttribute(R))
      return false;

  // Otherwise, remove potentially conflicting attribute, add the new one,
  // and update statistics.
  A->removeAttr(Attribute::WriteOnly);
  A->removeAttr(Attribute::ReadOnly);
  A->removeAttr(Attribute::ReadNone);
  A->addAttr(R);
  R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
  return true;
}

/// Deduce nocapture attributes for the SCC.
static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
  bool Changed = false;

  ArgumentGraph AG;

  // Check each function in turn, determining which pointer arguments are not
  // captured.
  for (Function *F : SCCNodes) {
    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      continue;

    Changed |= addArgumentAttrsFromCallsites(*F);

    // Functions that are readonly (or readnone) and nounwind and don't return
    // a value can't capture arguments. Don't analyze them.
    if (F->onlyReadsMemory() && F->doesNotThrow() &&
        F->getReturnType()->isVoidTy()) {
      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
           ++A) {
        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
          A->addAttr(Attribute::NoCapture);
          ++NumNoCapture;
          Changed = true;
        }
      }
      continue;
    }

    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
         ++A) {
      if (!A->getType()->isPointerTy())
        continue;
      bool HasNonLocalUses = false;
      if (!A->hasNoCaptureAttr()) {
        ArgumentUsesTracker Tracker(SCCNodes);
        PointerMayBeCaptured(&*A, &Tracker);
        if (!Tracker.Captured) {
          if (Tracker.Uses.empty()) {
            // If it's trivially not captured, mark it nocapture now.
            A->addAttr(Attribute::NoCapture);
            ++NumNoCapture;
            Changed = true;
          } else {
            // If it's not trivially captured and not trivially not captured,
            // then it must be calling into another function in our SCC. Save
            // its particulars for Argument-SCC analysis later.
            ArgumentGraphNode *Node = AG[&*A];
            for (Argument *Use : Tracker.Uses) {
              Node->Uses.push_back(AG[Use]);
              if (Use != &*A)
                HasNonLocalUses = true;
            }
          }
        }
        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
      }
      if (!HasNonLocalUses && !A->onlyReadsMemory()) {
        // Can we determine that it's readonly/readnone without doing an SCC?
        // Note that we don't allow any calls at all here, or else our result
        // will be dependent on the iteration order through the functions in the
        // SCC.
        SmallPtrSet<Argument *, 8> Self;
        Self.insert(&*A);
        Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
        if (R != Attribute::None)
          Changed = addReadAttr(A, R);
      }
    }
  }

  // The graph we've collected is partial because we stopped scanning for
  // argument uses once we solved the argument trivially. These partial nodes
  // show up as ArgumentGraphNode objects with an empty Uses list, and for
  // these nodes the final decision about whether they capture has already been
  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
  // captures.

  for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
    const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
    if (ArgumentSCC.size() == 1) {
      if (!ArgumentSCC[0]->Definition)
        continue; // synthetic root node

      // eg. "void f(int* x) { if (...) f(x); }"
      if (ArgumentSCC[0]->Uses.size() == 1 &&
          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
        Argument *A = ArgumentSCC[0]->Definition;
        A->addAttr(Attribute::NoCapture);
        ++NumNoCapture;
        Changed = true;
      }
      continue;
    }

    bool SCCCaptured = false;
    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
         I != E && !SCCCaptured; ++I) {
      ArgumentGraphNode *Node = *I;
      if (Node->Uses.empty()) {
        if (!Node->Definition->hasNoCaptureAttr())
          SCCCaptured = true;
      }
    }
    if (SCCCaptured)
      continue;

    SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
    // quickly looking up whether a given Argument is in this ArgumentSCC.
    for (ArgumentGraphNode *I : ArgumentSCC) {
      ArgumentSCCNodes.insert(I->Definition);
    }

    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
         I != E && !SCCCaptured; ++I) {
      ArgumentGraphNode *N = *I;
      for (ArgumentGraphNode *Use : N->Uses) {
        Argument *A = Use->Definition;
        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
          continue;
        SCCCaptured = true;
        break;
      }
    }
    if (SCCCaptured)
      continue;

    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
      Argument *A = ArgumentSCC[i]->Definition;
      A->addAttr(Attribute::NoCapture);
      ++NumNoCapture;
      Changed = true;
    }

    // We also want to compute readonly/readnone. With a small number of false
    // negatives, we can assume that any pointer which is captured isn't going
    // to be provably readonly or readnone, since by definition we can't
    // analyze all uses of a captured pointer.
    //
    // The false negatives happen when the pointer is captured by a function
    // that promises readonly/readnone behaviour on the pointer, then the
    // pointer's lifetime ends before anything that writes to arbitrary memory.
    // Also, a readonly/readnone pointer may be returned, but returning a
    // pointer is capturing it.

    Attribute::AttrKind ReadAttr = Attribute::ReadNone;
    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
      Argument *A = ArgumentSCC[i]->Definition;
      Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
      if (K == Attribute::ReadNone)
        continue;
      if (K == Attribute::ReadOnly) {
        ReadAttr = Attribute::ReadOnly;
        continue;
      }
      ReadAttr = K;
      break;
    }

    if (ReadAttr != Attribute::None) {
      for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
        Argument *A = ArgumentSCC[i]->Definition;
        Changed = addReadAttr(A, ReadAttr);
      }
    }
  }

  return Changed;
}

/// Tests whether a function is "malloc-like".
///
/// A function is "malloc-like" if it returns either null or a pointer that
/// doesn't alias any other pointer visible to the caller.
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
  SmallSetVector<Value *, 8> FlowsToReturn;
  for (BasicBlock &BB : *F)
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
      FlowsToReturn.insert(Ret->getReturnValue());

  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
    Value *RetVal = FlowsToReturn[i];

    if (Constant *C = dyn_cast<Constant>(RetVal)) {
      if (!C->isNullValue() && !isa<UndefValue>(C))
        return false;

      continue;
    }

    if (isa<Argument>(RetVal))
      return false;

    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
      switch (RVI->getOpcode()) {
      // Extend the analysis by looking upwards.
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
      case Instruction::AddrSpaceCast:
        FlowsToReturn.insert(RVI->getOperand(0));
        continue;
      case Instruction::Select: {
        SelectInst *SI = cast<SelectInst>(RVI);
        FlowsToReturn.insert(SI->getTrueValue());
        FlowsToReturn.insert(SI->getFalseValue());
        continue;
      }
      case Instruction::PHI: {
        PHINode *PN = cast<PHINode>(RVI);
        for (Value *IncValue : PN->incoming_values())
          FlowsToReturn.insert(IncValue);
        continue;
      }

      // Check whether the pointer came from an allocation.
      case Instruction::Alloca:
        break;
      case Instruction::Call:
      case Instruction::Invoke: {
        CallBase &CB = cast<CallBase>(*RVI);
        if (CB.hasRetAttr(Attribute::NoAlias))
          break;
        if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
          break;
        LLVM_FALLTHROUGH;
      }
      default:
        return false; // Did not come from an allocation.
      }

    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
      return false;
  }

  return true;
}

/// Deduce noalias attributes for the SCC.
static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
  // Check each function in turn, determining which functions return noalias
  // pointers.
  for (Function *F : SCCNodes) {
    // Already noalias.
    if (F->returnDoesNotAlias())
      continue;

    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      return false;

    // We annotate noalias return values, which are only applicable to
    // pointer types.
    if (!F->getReturnType()->isPointerTy())
      continue;

    if (!isFunctionMallocLike(F, SCCNodes))
      return false;
  }

  bool MadeChange = false;
  for (Function *F : SCCNodes) {
    if (F->returnDoesNotAlias() ||
        !F->getReturnType()->isPointerTy())
      continue;

    F->setReturnDoesNotAlias();
    ++NumNoAlias;
    MadeChange = true;
  }

  return MadeChange;
}

/// Tests whether this function is known to not return null.
///
/// Requires that the function returns a pointer.
///
/// Returns true if it believes the function will not return a null, and sets
/// \p Speculative based on whether the returned conclusion is a speculative
/// conclusion due to SCC calls.
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
                            bool &Speculative) {
  assert(F->getReturnType()->isPointerTy() &&
         "nonnull only meaningful on pointer types");
  Speculative = false;

  SmallSetVector<Value *, 8> FlowsToReturn;
  for (BasicBlock &BB : *F)
    if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
      FlowsToReturn.insert(Ret->getReturnValue());

  auto &DL = F->getParent()->getDataLayout();

  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
    Value *RetVal = FlowsToReturn[i];

    // If this value is locally known to be non-null, we're good
    if (isKnownNonZero(RetVal, DL))
      continue;

    // Otherwise, we need to look upwards since we can't make any local
    // conclusions.
    Instruction *RVI = dyn_cast<Instruction>(RetVal);
    if (!RVI)
      return false;
    switch (RVI->getOpcode()) {
    // Extend the analysis by looking upwards.
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::AddrSpaceCast:
      FlowsToReturn.insert(RVI->getOperand(0));
      continue;
    case Instruction::Select: {
      SelectInst *SI = cast<SelectInst>(RVI);
      FlowsToReturn.insert(SI->getTrueValue());
      FlowsToReturn.insert(SI->getFalseValue());
      continue;
    }
    case Instruction::PHI: {
      PHINode *PN = cast<PHINode>(RVI);
      for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        FlowsToReturn.insert(PN->getIncomingValue(i));
      continue;
    }
    case Instruction::Call:
    case Instruction::Invoke: {
      CallBase &CB = cast<CallBase>(*RVI);
      Function *Callee = CB.getCalledFunction();
      // A call to a node within the SCC is assumed to return null until
      // proven otherwise
      if (Callee && SCCNodes.count(Callee)) {
        Speculative = true;
        continue;
      }
      return false;
    }
    default:
      return false; // Unknown source, may be null
    };
    llvm_unreachable("should have either continued or returned");
  }

  return true;
}

/// Deduce nonnull attributes for the SCC.
static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
  // Speculative that all functions in the SCC return only nonnull
  // pointers.  We may refute this as we analyze functions.
  bool SCCReturnsNonNull = true;

  bool MadeChange = false;

  // Check each function in turn, determining which functions return nonnull
  // pointers.
  for (Function *F : SCCNodes) {
    // Already nonnull.
    if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                        Attribute::NonNull))
      continue;

    // We can infer and propagate function attributes only when we know that the
    // definition we'll get at link time is *exactly* the definition we see now.
    // For more details, see GlobalValue::mayBeDerefined.
    if (!F->hasExactDefinition())
      return false;

    // We annotate nonnull return values, which are only applicable to
    // pointer types.
    if (!F->getReturnType()->isPointerTy())
      continue;

    bool Speculative = false;
    if (isReturnNonNull(F, SCCNodes, Speculative)) {
      if (!Speculative) {
        // Mark the function eagerly since we may discover a function
        // which prevents us from speculating about the entire SCC
        LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
                          << " as nonnull\n");
        F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
        ++NumNonNullReturn;
        MadeChange = true;
      }
      continue;
    }
    // At least one function returns something which could be null, can't
    // speculate any more.
    SCCReturnsNonNull = false;
  }

  if (SCCReturnsNonNull) {
    for (Function *F : SCCNodes) {
      if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                          Attribute::NonNull) ||
          !F->getReturnType()->isPointerTy())
        continue;

      LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
      F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
      ++NumNonNullReturn;
      MadeChange = true;
    }
  }

  return MadeChange;
}

namespace {

/// Collects a set of attribute inference requests and performs them all in one
/// go on a single SCC Node. Inference involves scanning function bodies
/// looking for instructions that violate attribute assumptions.
/// As soon as all the bodies are fine we are free to set the attribute.
/// Customization of inference for individual attributes is performed by
/// providing a handful of predicates for each attribute.
class AttributeInferer {
public:
  /// Describes a request for inference of a single attribute.
  struct InferenceDescriptor {

    /// Returns true if this function does not have to be handled.
    /// General intent for this predicate is to provide an optimization
    /// for functions that do not need this attribute inference at all
    /// (say, for functions that already have the attribute).
    std::function<bool(const Function &)> SkipFunction;

    /// Returns true if this instruction violates attribute assumptions.
    std::function<bool(Instruction &)> InstrBreaksAttribute;

    /// Sets the inferred attribute for this function.
    std::function<void(Function &)> SetAttribute;

    /// Attribute we derive.
    Attribute::AttrKind AKind;

    /// If true, only "exact" definitions can be used to infer this attribute.
    /// See GlobalValue::isDefinitionExact.
    bool RequiresExactDefinition;

    InferenceDescriptor(Attribute::AttrKind AK,
                        std::function<bool(const Function &)> SkipFunc,
                        std::function<bool(Instruction &)> InstrScan,
                        std::function<void(Function &)> SetAttr,
                        bool ReqExactDef)
        : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
          SetAttribute(SetAttr), AKind(AK),
          RequiresExactDefinition(ReqExactDef) {}
  };

private:
  SmallVector<InferenceDescriptor, 4> InferenceDescriptors;

public:
  void registerAttrInference(InferenceDescriptor AttrInference) {
    InferenceDescriptors.push_back(AttrInference);
  }

  bool run(const SCCNodeSet &SCCNodes);
};

/// Perform all the requested attribute inference actions according to the
/// attribute predicates stored before.
bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
  SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
  // Go through all the functions in SCC and check corresponding attribute
  // assumptions for each of them. Attributes that are invalid for this SCC
  // will be removed from InferInSCC.
  for (Function *F : SCCNodes) {

    // No attributes whose assumptions are still valid - done.
    if (InferInSCC.empty())
      return false;

    // Check if our attributes ever need scanning/can be scanned.
    llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
      if (ID.SkipFunction(*F))
        return false;

      // Remove from further inference (invalidate) when visiting a function
      // that has no instructions to scan/has an unsuitable definition.
      return F->isDeclaration() ||
             (ID.RequiresExactDefinition && !F->hasExactDefinition());
    });

    // For each attribute still in InferInSCC that doesn't explicitly skip F,
    // set up the F instructions scan to verify assumptions of the attribute.
    SmallVector<InferenceDescriptor, 4> InferInThisFunc;
    llvm::copy_if(
        InferInSCC, std::back_inserter(InferInThisFunc),
        [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });

    if (InferInThisFunc.empty())
      continue;

    // Start instruction scan.
    for (Instruction &I : instructions(*F)) {
      llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
        if (!ID.InstrBreaksAttribute(I))
          return false;
        // Remove attribute from further inference on any other functions
        // because attribute assumptions have just been violated.
        llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
          return D.AKind == ID.AKind;
        });
        // Remove attribute from the rest of current instruction scan.
        return true;
      });

      if (InferInThisFunc.empty())
        break;
    }
  }

  if (InferInSCC.empty())
    return false;

  bool Changed = false;
  for (Function *F : SCCNodes)
    // At this point InferInSCC contains only functions that were either:
    //   - explicitly skipped from scan/inference, or
    //   - verified to have no instructions that break attribute assumptions.
    // Hence we just go and force the attribute for all non-skipped functions.
    for (auto &ID : InferInSCC) {
      if (ID.SkipFunction(*F))
        continue;
      Changed = true;
      ID.SetAttribute(*F);
    }
  return Changed;
}

} // end anonymous namespace

/// Helper for non-Convergent inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonConvergent(Instruction &I,
                                     const SCCNodeSet &SCCNodes) {
  const CallBase *CB = dyn_cast<CallBase>(&I);
  // Breaks non-convergent assumption if CS is a convergent call to a function
  // not in the SCC.
  return CB && CB->isConvergent() &&
         SCCNodes.count(CB->getCalledFunction()) == 0;
}

/// Helper for NoUnwind inference predicate InstrBreaksAttribute.
static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
  if (!I.mayThrow())
    return false;
  if (const auto *CI = dyn_cast<CallInst>(&I)) {
    if (Function *Callee = CI->getCalledFunction()) {
      // I is a may-throw call to a function inside our SCC. This doesn't
      // invalidate our current working assumption that the SCC is no-throw; we
      // just have to scan that other function.
      if (SCCNodes.count(Callee) > 0)
        return false;
    }
  }
  return true;
}

/// Helper for NoFree inference predicate InstrBreaksAttribute.
static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
  CallBase *CB = dyn_cast<CallBase>(&I);
  if (!CB)
    return false;

  Function *Callee = CB->getCalledFunction();
  if (!Callee)
    return true;

  if (Callee->doesNotFreeMemory())
    return false;

  if (SCCNodes.count(Callee) > 0)
    return false;

  return true;
}

/// Infer attributes from all functions in the SCC by scanning every
/// instruction for compliance to the attribute assumptions. Currently it
/// does:
///   - removal of Convergent attribute
///   - addition of NoUnwind attribute
///
/// Returns true if any changes to function attributes were made.
static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {

  AttributeInferer AI;

  // Request to remove the convergent attribute from all functions in the SCC
  // if every callsite within the SCC is not convergent (except for calls
  // to functions within the SCC).
  // Note: Removal of the attr from the callsites will happen in
  // InstCombineCalls separately.
  AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
      Attribute::Convergent,
      // Skip non-convergent functions.
      [](const Function &F) { return !F.isConvergent(); },
      // Instructions that break non-convergent assumption.
      [SCCNodes](Instruction &I) {
        return InstrBreaksNonConvergent(I, SCCNodes);
      },
      [](Function &F) {
        LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
                          << "\n");
        F.setNotConvergent();
      },
      /* RequiresExactDefinition= */ false});

  if (!DisableNoUnwindInference)
    // Request to infer nounwind attribute for all the functions in the SCC if
    // every callsite within the SCC is not throwing (except for calls to
    // functions within the SCC). Note that nounwind attribute suffers from
    // derefinement - results may change depending on how functions are
    // optimized. Thus it can be inferred only from exact definitions.
    AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
        Attribute::NoUnwind,
        // Skip non-throwing functions.
        [](const Function &F) { return F.doesNotThrow(); },
        // Instructions that break non-throwing assumption.
        [&SCCNodes](Instruction &I) {
          return InstrBreaksNonThrowing(I, SCCNodes);
        },
        [](Function &F) {
          LLVM_DEBUG(dbgs()
                     << "Adding nounwind attr to fn " << F.getName() << "\n");
          F.setDoesNotThrow();
          ++NumNoUnwind;
        },
        /* RequiresExactDefinition= */ true});

  if (!DisableNoFreeInference)
    // Request to infer nofree attribute for all the functions in the SCC if
    // every callsite within the SCC does not directly or indirectly free
    // memory (except for calls to functions within the SCC). Note that nofree
    // attribute suffers from derefinement - results may change depending on
    // how functions are optimized. Thus it can be inferred only from exact
    // definitions.
    AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
        Attribute::NoFree,
        // Skip functions known not to free memory.
        [](const Function &F) { return F.doesNotFreeMemory(); },
        // Instructions that break non-deallocating assumption.
        [&SCCNodes](Instruction &I) {
          return InstrBreaksNoFree(I, SCCNodes);
        },
        [](Function &F) {
          LLVM_DEBUG(dbgs()
                     << "Adding nofree attr to fn " << F.getName() << "\n");
          F.setDoesNotFreeMemory();
          ++NumNoFree;
        },
        /* RequiresExactDefinition= */ true});

  // Perform all the requested attribute inference actions.
  return AI.run(SCCNodes);
}

static bool setDoesNotRecurse(Function &F) {
  if (F.doesNotRecurse())
    return false;
  F.setDoesNotRecurse();
  ++NumNoRecurse;
  return true;
}

static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
  // Try and identify functions that do not recurse.

  // If the SCC contains multiple nodes we know for sure there is recursion.
  if (SCCNodes.size() != 1)
    return false;

  Function *F = *SCCNodes.begin();
  if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
    return false;

  // If all of the calls in F are identifiable and are to norecurse functions, F
  // is norecurse. This check also detects self-recursion as F is not currently
  // marked norecurse, so any called from F to F will not be marked norecurse.
  for (auto &BB : *F)
    for (auto &I : BB.instructionsWithoutDebug())
      if (auto *CB = dyn_cast<CallBase>(&I)) {
        Function *Callee = CB->getCalledFunction();
        if (!Callee || Callee == F || !Callee->doesNotRecurse())
          // Function calls a potentially recursive function.
          return false;
      }

  // Every call was to a non-recursive function other than this function, and
  // we have no indirect recursion as the SCC size is one. This function cannot
  // recurse.
  return setDoesNotRecurse(*F);
}

template <typename AARGetterT>
static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes,
                                   AARGetterT &&AARGetter,
                                   bool HasUnknownCall) {
  bool Changed = false;

  // Bail if the SCC only contains optnone functions.
  if (SCCNodes.empty())
    return Changed;

  Changed |= addArgumentReturnedAttrs(SCCNodes);
  Changed |= addReadAttrs(SCCNodes, AARGetter);
  Changed |= addArgumentAttrs(SCCNodes);

  // If we have no external nodes participating in the SCC, we can deduce some
  // more precise attributes as well.
  if (!HasUnknownCall) {
    Changed |= addNoAliasAttrs(SCCNodes);
    Changed |= addNonNullAttrs(SCCNodes);
    Changed |= inferAttrsFromFunctionBodies(SCCNodes);
    Changed |= addNoRecurseAttrs(SCCNodes);
  }

  return Changed;
}

PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
                                                  CGSCCAnalysisManager &AM,
                                                  LazyCallGraph &CG,
                                                  CGSCCUpdateResult &) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();

  // We pass a lambda into functions to wire them up to the analysis manager
  // for getting function analyses.
  auto AARGetter = [&](Function &F) -> AAResults & {
    return FAM.getResult<AAManager>(F);
  };

  // Fill SCCNodes with the elements of the SCC. Also track whether there are
  // any external or opt-none nodes that will prevent us from optimizing any
  // part of the SCC.
  SCCNodeSet SCCNodes;
  bool HasUnknownCall = false;
  for (LazyCallGraph::Node &N : C) {
    Function &F = N.getFunction();
    if (F.hasOptNone() || F.hasFnAttribute(Attribute::Naked)) {
      // Treat any function we're trying not to optimize as if it were an
      // indirect call and omit it from the node set used below.
      HasUnknownCall = true;
      continue;
    }
    // Track whether any functions in this SCC have an unknown call edge.
    // Note: if this is ever a performance hit, we can common it with
    // subsequent routines which also do scans over the instructions of the
    // function.
    if (!HasUnknownCall)
      for (Instruction &I : instructions(F))
        if (auto *CB = dyn_cast<CallBase>(&I))
          if (!CB->getCalledFunction()) {
            HasUnknownCall = true;
            break;
          }

    SCCNodes.insert(&F);
  }

  if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
    return PreservedAnalyses::none();

  return PreservedAnalyses::all();
}

namespace {

struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
  // Pass identification, replacement for typeid
  static char ID;

  PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
    initializePostOrderFunctionAttrsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnSCC(CallGraphSCC &SCC) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AssumptionCacheTracker>();
    getAAResultsAnalysisUsage(AU);
    CallGraphSCCPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char PostOrderFunctionAttrsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
                      "Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
                    "Deduce function attributes", false, false)

Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
  return new PostOrderFunctionAttrsLegacyPass();
}

template <typename AARGetterT>
static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {

  // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
  // whether a given CallGraphNode is in this SCC. Also track whether there are
  // any external or opt-none nodes that will prevent us from optimizing any
  // part of the SCC.
  SCCNodeSet SCCNodes;
  bool ExternalNode = false;
  for (CallGraphNode *I : SCC) {
    Function *F = I->getFunction();
    if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
      // External node or function we're trying not to optimize - we both avoid
      // transform them and avoid leveraging information they provide.
      ExternalNode = true;
      continue;
    }

    SCCNodes.insert(F);
  }

  return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
}

bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;
  return runImpl(SCC, LegacyAARGetter(*this));
}

namespace {

struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
  // Pass identification, replacement for typeid
  static char ID;

  ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
    initializeReversePostOrderFunctionAttrsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<CallGraphWrapperPass>();
    AU.addPreserved<CallGraphWrapperPass>();
  }
};

} // end anonymous namespace

char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
                      "Deduce function attributes in RPO", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
                    "Deduce function attributes in RPO", false, false)

Pass *llvm::createReversePostOrderFunctionAttrsPass() {
  return new ReversePostOrderFunctionAttrsLegacyPass();
}

static bool addNoRecurseAttrsTopDown(Function &F) {
  // We check the preconditions for the function prior to calling this to avoid
  // the cost of building up a reversible post-order list. We assert them here
  // to make sure none of the invariants this relies on were violated.
  assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
  assert(!F.doesNotRecurse() &&
         "This function has already been deduced as norecurs!");
  assert(F.hasInternalLinkage() &&
         "Can only do top-down deduction for internal linkage functions!");

  // If F is internal and all of its uses are calls from a non-recursive
  // functions, then none of its calls could in fact recurse without going
  // through a function marked norecurse, and so we can mark this function too
  // as norecurse. Note that the uses must actually be calls -- otherwise
  // a pointer to this function could be returned from a norecurse function but
  // this function could be recursively (indirectly) called. Note that this
  // also detects if F is directly recursive as F is not yet marked as
  // a norecurse function.
  for (auto *U : F.users()) {
    auto *I = dyn_cast<Instruction>(U);
    if (!I)
      return false;
    CallBase *CB = dyn_cast<CallBase>(I);
    if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
      return false;
  }
  return setDoesNotRecurse(F);
}

static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
  // We only have a post-order SCC traversal (because SCCs are inherently
  // discovered in post-order), so we accumulate them in a vector and then walk
  // it in reverse. This is simpler than using the RPO iterator infrastructure
  // because we need to combine SCC detection and the PO walk of the call
  // graph. We can also cheat egregiously because we're primarily interested in
  // synthesizing norecurse and so we can only save the singular SCCs as SCCs
  // with multiple functions in them will clearly be recursive.
  SmallVector<Function *, 16> Worklist;
  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    if (I->size() != 1)
      continue;

    Function *F = I->front()->getFunction();
    if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
        F->hasInternalLinkage())
      Worklist.push_back(F);
  }

  bool Changed = false;
  for (auto *F : llvm::reverse(Worklist))
    Changed |= addNoRecurseAttrsTopDown(*F);

  return Changed;
}

bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  return deduceFunctionAttributeInRPO(M, CG);
}

PreservedAnalyses
ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
  auto &CG = AM.getResult<CallGraphAnalysis>(M);

  if (!deduceFunctionAttributeInRPO(M, CG))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<CallGraphAnalysis>();
  return PA;
}