X86TargetMachine.cpp 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//

#include "X86TargetMachine.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86.h"
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "X86TargetObjectFile.h"
#include "X86TargetTransformInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include <memory>
#include <string>

using namespace llvm;

static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
                               cl::desc("Enable the machine combiner pass"),
                               cl::init(true), cl::Hidden);

static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
                               cl::desc("Enable the conditional branch "
                                        "folding pass"),
                               cl::init(false), cl::Hidden);

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
  // Register the target.
  RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
  RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());

  PassRegistry &PR = *PassRegistry::getPassRegistry();
  initializeGlobalISel(PR);
  initializeWinEHStatePassPass(PR);
  initializeFixupBWInstPassPass(PR);
  initializeEvexToVexInstPassPass(PR);
  initializeFixupLEAPassPass(PR);
  initializeFPSPass(PR);
  initializeX86FixupSetCCPassPass(PR);
  initializeX86CallFrameOptimizationPass(PR);
  initializeX86CmovConverterPassPass(PR);
  initializeX86ExpandPseudoPass(PR);
  initializeX86ExecutionDomainFixPass(PR);
  initializeX86DomainReassignmentPass(PR);
  initializeX86AvoidSFBPassPass(PR);
  initializeX86AvoidTrailingCallPassPass(PR);
  initializeX86SpeculativeLoadHardeningPassPass(PR);
  initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
  initializeX86FlagsCopyLoweringPassPass(PR);
  initializeX86CondBrFoldingPassPass(PR);
  initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
  initializeX86LoadValueInjectionRetHardeningPassPass(PR);
  initializeX86OptimizeLEAPassPass(PR);
  initializeX86PartialReductionPass(PR);
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSBinFormatMachO()) {
    if (TT.getArch() == Triple::x86_64)
      return std::make_unique<X86_64MachoTargetObjectFile>();
    return std::make_unique<TargetLoweringObjectFileMachO>();
  }

  if (TT.isOSBinFormatCOFF())
    return std::make_unique<TargetLoweringObjectFileCOFF>();
  return std::make_unique<X86ELFTargetObjectFile>();
}

static std::string computeDataLayout(const Triple &TT) {
  // X86 is little endian
  std::string Ret = "e";

  Ret += DataLayout::getManglingComponent(TT);
  // X86 and x32 have 32 bit pointers.
  if ((TT.isArch64Bit() &&
       (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
      !TT.isArch64Bit())
    Ret += "-p:32:32";

  // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
  Ret += "-p270:32:32-p271:32:32-p272:64:64";

  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
  if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
    Ret += "-i64:64";
  else if (TT.isOSIAMCU())
    Ret += "-i64:32-f64:32";
  else
    Ret += "-f64:32:64";

  // Some ABIs align long double to 128 bits, others to 32.
  if (TT.isOSNaCl() || TT.isOSIAMCU())
    ; // No f80
  else if (TT.isArch64Bit() || TT.isOSDarwin())
    Ret += "-f80:128";
  else
    Ret += "-f80:32";

  if (TT.isOSIAMCU())
    Ret += "-f128:32";

  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
  if (TT.isArch64Bit())
    Ret += "-n8:16:32:64";
  else
    Ret += "-n8:16:32";

  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
  if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
    Ret += "-a:0:32-S32";
  else
    Ret += "-S128";

  return Ret;
}

static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           bool JIT,
                                           Optional<Reloc::Model> RM) {
  bool is64Bit = TT.getArch() == Triple::x86_64;
  if (!RM.hasValue()) {
    // JIT codegen should use static relocations by default, since it's
    // typically executed in process and not relocatable.
    if (JIT)
      return Reloc::Static;

    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
    // use static relocation model by default.
    if (TT.isOSDarwin()) {
      if (is64Bit)
        return Reloc::PIC_;
      return Reloc::DynamicNoPIC;
    }
    if (TT.isOSWindows() && is64Bit)
      return Reloc::PIC_;
    return Reloc::Static;
  }

  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
  // is defined as a model for code which may be used in static or dynamic
  // executables but not necessarily a shared library. On X86-32 we just
  // compile in -static mode, in x86-64 we use PIC.
  if (*RM == Reloc::DynamicNoPIC) {
    if (is64Bit)
      return Reloc::PIC_;
    if (!TT.isOSDarwin())
      return Reloc::Static;
  }

  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
  // the Mach-O file format doesn't support it.
  if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
    return Reloc::PIC_;

  return *RM;
}

static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
                                                 bool JIT, bool Is64Bit) {
  if (CM) {
    if (*CM == CodeModel::Tiny)
      report_fatal_error("Target does not support the tiny CodeModel", false);
    return *CM;
  }
  if (JIT)
    return Is64Bit ? CodeModel::Large : CodeModel::Small;
  return CodeModel::Small;
}

/// Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   const TargetOptions &Options,
                                   Optional<Reloc::Model> RM,
                                   Optional<CodeModel::Model> CM,
                                   CodeGenOpt::Level OL, bool JIT)
    : LLVMTargetMachine(
          T, computeDataLayout(TT), TT, CPU, FS, Options,
          getEffectiveRelocModel(TT, JIT, RM),
          getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
          OL),
      TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
  // On PS4, the "return address" of a 'noreturn' call must still be within
  // the calling function, and TrapUnreachable is an easy way to get that.
  if (TT.isPS4() || TT.isOSBinFormatMachO()) {
    this->Options.TrapUnreachable = true;
    this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
  }

  setMachineOutliner(true);

  // x86 supports the debug entry values.
  setSupportsDebugEntryValues(true);

  initAsmInfo();
}

X86TargetMachine::~X86TargetMachine() = default;

const X86Subtarget *
X86TargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
                      ? CPUAttr.getValueAsString()
                      : (StringRef)TargetCPU;
  StringRef FS = !FSAttr.hasAttribute(Attribute::None)
                     ? FSAttr.getValueAsString()
                     : (StringRef)TargetFS;

  SmallString<512> Key;
  Key.reserve(CPU.size() + FS.size());
  Key += CPU;
  Key += FS;

  // FIXME: This is related to the code below to reset the target options,
  // we need to know whether or not the soft float flag is set on the
  // function before we can generate a subtarget. We also need to use
  // it as a key for the subtarget since that can be the only difference
  // between two functions.
  bool SoftFloat =
      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
  // If the soft float attribute is set on the function turn on the soft float
  // subtarget feature.
  if (SoftFloat)
    Key += FS.empty() ? "+soft-float" : ",+soft-float";

  // Keep track of the key width after all features are added so we can extract
  // the feature string out later.
  unsigned CPUFSWidth = Key.size();

  // Extract prefer-vector-width attribute.
  unsigned PreferVectorWidthOverride = 0;
  if (F.hasFnAttribute("prefer-vector-width")) {
    StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
    unsigned Width;
    if (!Val.getAsInteger(0, Width)) {
      Key += ",prefer-vector-width=";
      Key += Val;
      PreferVectorWidthOverride = Width;
    }
  }

  // Extract min-legal-vector-width attribute.
  unsigned RequiredVectorWidth = UINT32_MAX;
  if (F.hasFnAttribute("min-legal-vector-width")) {
    StringRef Val =
        F.getFnAttribute("min-legal-vector-width").getValueAsString();
    unsigned Width;
    if (!Val.getAsInteger(0, Width)) {
      Key += ",min-legal-vector-width=";
      Key += Val;
      RequiredVectorWidth = Width;
    }
  }

  // Extracted here so that we make sure there is backing for the StringRef. If
  // we assigned earlier, its possible the SmallString reallocated leaving a
  // dangling StringRef.
  FS = Key.slice(CPU.size(), CPUFSWidth);

  auto &I = SubtargetMap[Key];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<X86Subtarget>(
        TargetTriple, CPU, FS, *this,
        MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
        RequiredVectorWidth);
  }
  return I.get();
}

//===----------------------------------------------------------------------===//
// X86 TTI query.
//===----------------------------------------------------------------------===//

TargetTransformInfo
X86TargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(X86TTIImpl(this, F));
}

//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//

namespace {

/// X86 Code Generator Pass Configuration Options.
class X86PassConfig : public TargetPassConfig {
public:
  X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {}

  X86TargetMachine &getX86TargetMachine() const {
    return getTM<X86TargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    DAG->addMutation(createX86MacroFusionDAGMutation());
    return DAG;
  }

  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
    DAG->addMutation(createX86MacroFusionDAGMutation());
    return DAG;
  }

  void addIRPasses() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  bool addLegalizeMachineIR() override;
  bool addRegBankSelect() override;
  bool addGlobalInstructionSelect() override;
  bool addILPOpts() override;
  bool addPreISel() override;
  void addMachineSSAOptimization() override;
  void addPreRegAlloc() override;
  void addPostRegAlloc() override;
  void addPreEmitPass() override;
  void addPreEmitPass2() override;
  void addPreSched2() override;

  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};

class X86ExecutionDomainFix : public ExecutionDomainFix {
public:
  static char ID;
  X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
  StringRef getPassName() const override {
    return "X86 Execution Dependency Fix";
  }
};
char X86ExecutionDomainFix::ID;

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
  "X86 Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
  "X86 Execution Domain Fix", false, false)

TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
  return new X86PassConfig(*this, PM);
}

void X86PassConfig::addIRPasses() {
  addPass(createAtomicExpandPass());

  TargetPassConfig::addIRPasses();

  if (TM->getOptLevel() != CodeGenOpt::None) {
    addPass(createInterleavedAccessPass());
    addPass(createX86PartialReductionPass());
  }

  // Add passes that handle indirect branch removal and insertion of a retpoline
  // thunk. These will be a no-op unless a function subtarget has the retpoline
  // feature enabled.
  addPass(createIndirectBrExpandPass());

  // Add Control Flow Guard checks.
  const Triple &TT = TM->getTargetTriple();
  if (TT.isOSWindows()) {
    if (TT.getArch() == Triple::x86_64) {
      addPass(createCFGuardDispatchPass());
    } else {
      addPass(createCFGuardCheckPass());
    }
  }
}

bool X86PassConfig::addInstSelector() {
  // Install an instruction selector.
  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));

  // For ELF, cleanup any local-dynamic TLS accesses.
  if (TM->getTargetTriple().isOSBinFormatELF() &&
      getOptLevel() != CodeGenOpt::None)
    addPass(createCleanupLocalDynamicTLSPass());

  addPass(createX86GlobalBaseRegPass());
  return false;
}

bool X86PassConfig::addIRTranslator() {
  addPass(new IRTranslator());
  return false;
}

bool X86PassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

bool X86PassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

bool X86PassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect());
  return false;
}

bool X86PassConfig::addILPOpts() {
  if (EnableCondBrFoldingPass)
    addPass(createX86CondBrFolding());
  addPass(&EarlyIfConverterID);
  if (EnableMachineCombinerPass)
    addPass(&MachineCombinerID);
  addPass(createX86CmovConverterPass());
  return true;
}

bool X86PassConfig::addPreISel() {
  // Only add this pass for 32-bit x86 Windows.
  const Triple &TT = TM->getTargetTriple();
  if (TT.isOSWindows() && TT.getArch() == Triple::x86)
    addPass(createX86WinEHStatePass());
  return true;
}

void X86PassConfig::addPreRegAlloc() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(&LiveRangeShrinkID);
    addPass(createX86FixupSetCC());
    addPass(createX86OptimizeLEAs());
    addPass(createX86CallFrameOptimization());
    addPass(createX86AvoidStoreForwardingBlocks());
  }

  addPass(createX86SpeculativeLoadHardeningPass());
  addPass(createX86FlagsCopyLoweringPass());
  addPass(createX86WinAllocaExpander());
}
void X86PassConfig::addMachineSSAOptimization() {
  addPass(createX86DomainReassignmentPass());
  TargetPassConfig::addMachineSSAOptimization();
}

void X86PassConfig::addPostRegAlloc() {
  addPass(createX86FloatingPointStackifierPass());
  // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
  // to using the Speculative Execution Side Effect Suppression pass for
  // mitigation. This is to prevent slow downs due to
  // analyses needed by the LVIHardening pass when compiling at -O0.
  if (getOptLevel() != CodeGenOpt::None)
    addPass(createX86LoadValueInjectionLoadHardeningPass());
}

void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }

void X86PassConfig::addPreEmitPass() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(new X86ExecutionDomainFix());
    addPass(createBreakFalseDeps());
  }

  addPass(createX86IndirectBranchTrackingPass());

  addPass(createX86IssueVZeroUpperPass());

  if (getOptLevel() != CodeGenOpt::None) {
    addPass(createX86FixupBWInsts());
    addPass(createX86PadShortFunctions());
    addPass(createX86FixupLEAs());
  }
  addPass(createX86EvexToVexInsts());
  addPass(createX86DiscriminateMemOpsPass());
  addPass(createX86InsertPrefetchPass());
  addPass(createX86InsertX87waitPass());
}

void X86PassConfig::addPreEmitPass2() {
  const Triple &TT = TM->getTargetTriple();
  const MCAsmInfo *MAI = TM->getMCAsmInfo();

  // The X86 Speculative Execution Pass must run after all control
  // flow graph modifying passes. As a result it was listed to run right before
  // the X86 Retpoline Thunks pass. The reason it must run after control flow
  // graph modifications is that the model of LFENCE in LLVM has to be updated
  // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
  // placement of this pass was hand checked to ensure that the subsequent
  // passes don't move the code around the LFENCEs in a way that will hurt the
  // correctness of this pass. This placement has been shown to work based on
  // hand inspection of the codegen output.
  addPass(createX86SpeculativeExecutionSideEffectSuppression());
  addPass(createX86IndirectThunksPass());

  // Insert extra int3 instructions after trailing call instructions to avoid
  // issues in the unwinder.
  if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
    addPass(createX86AvoidTrailingCallPass());

  // Verify basic block incoming and outgoing cfa offset and register values and
  // correct CFA calculation rule where needed by inserting appropriate CFI
  // instructions.
  if (!TT.isOSDarwin() &&
      (!TT.isOSWindows() ||
       MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
    addPass(createCFIInstrInserter());
  // Identify valid longjmp targets for Windows Control Flow Guard.
  if (TT.isOSWindows())
    addPass(createCFGuardLongjmpPass());
  addPass(createX86LoadValueInjectionRetHardeningPass());
}

std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
  return getStandardCSEConfigForOpt(TM->getOptLevel());
}