X86RegisterInfo.td 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 Register file, defining the registers themselves,
// aliases between the registers, and the register classes built out of the
// registers.
//
//===----------------------------------------------------------------------===//

class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
  let Namespace = "X86";
  let HWEncoding = Enc;
  let SubRegs = subregs;
}

// Subregister indices.
let Namespace = "X86" in {
  def sub_8bit     : SubRegIndex<8>;
  def sub_8bit_hi  : SubRegIndex<8, 8>;
  def sub_8bit_hi_phony  : SubRegIndex<8, 8>;
  def sub_16bit    : SubRegIndex<16>;
  def sub_16bit_hi : SubRegIndex<16, 16>;
  def sub_32bit    : SubRegIndex<32>;
  def sub_xmm      : SubRegIndex<128>;
  def sub_ymm      : SubRegIndex<256>;
  def sub_mask_0   : SubRegIndex<-1>;
  def sub_mask_1   : SubRegIndex<-1, -1>;
}

//===----------------------------------------------------------------------===//
//  Register definitions...
//

// In the register alias definitions below, we define which registers alias
// which others.  We only specify which registers the small registers alias,
// because the register file generator is smart enough to figure out that
// AL aliases AX if we tell it that AX aliased AL (for example).

// Dwarf numbering is different for 32-bit and 64-bit, and there are
// variations by target as well. Currently the first entry is for X86-64,
// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
// and debug information on X86-32/Darwin)

// 8-bit registers
// Low registers
def AL : X86Reg<"al", 0>;
def DL : X86Reg<"dl", 2>;
def CL : X86Reg<"cl", 1>;
def BL : X86Reg<"bl", 3>;

// High registers. On x86-64, these cannot be used in any instruction
// with a REX prefix.
def AH : X86Reg<"ah", 4>;
def DH : X86Reg<"dh", 6>;
def CH : X86Reg<"ch", 5>;
def BH : X86Reg<"bh", 7>;

// X86-64 only, requires REX.
let CostPerUse = 1 in {
def SIL  : X86Reg<"sil",   6>;
def DIL  : X86Reg<"dil",   7>;
def BPL  : X86Reg<"bpl",   5>;
def SPL  : X86Reg<"spl",   4>;
def R8B  : X86Reg<"r8b",   8>;
def R9B  : X86Reg<"r9b",   9>;
def R10B : X86Reg<"r10b", 10>;
def R11B : X86Reg<"r11b", 11>;
def R12B : X86Reg<"r12b", 12>;
def R13B : X86Reg<"r13b", 13>;
def R14B : X86Reg<"r14b", 14>;
def R15B : X86Reg<"r15b", 15>;
}

let isArtificial = 1 in {
// High byte of the low 16 bits of the super-register:
def SIH   : X86Reg<"", -1>;
def DIH   : X86Reg<"", -1>;
def BPH   : X86Reg<"", -1>;
def SPH   : X86Reg<"", -1>;
def R8BH  : X86Reg<"", -1>;
def R9BH  : X86Reg<"", -1>;
def R10BH : X86Reg<"", -1>;
def R11BH : X86Reg<"", -1>;
def R12BH : X86Reg<"", -1>;
def R13BH : X86Reg<"", -1>;
def R14BH : X86Reg<"", -1>;
def R15BH : X86Reg<"", -1>;
// High word of the low 32 bits of the super-register:
def HAX   : X86Reg<"", -1>;
def HDX   : X86Reg<"", -1>;
def HCX   : X86Reg<"", -1>;
def HBX   : X86Reg<"", -1>;
def HSI   : X86Reg<"", -1>;
def HDI   : X86Reg<"", -1>;
def HBP   : X86Reg<"", -1>;
def HSP   : X86Reg<"", -1>;
def HIP   : X86Reg<"", -1>;
def R8WH  : X86Reg<"", -1>;
def R9WH  : X86Reg<"", -1>;
def R10WH : X86Reg<"", -1>;
def R11WH : X86Reg<"", -1>;
def R12WH : X86Reg<"", -1>;
def R13WH : X86Reg<"", -1>;
def R14WH : X86Reg<"", -1>;
def R15WH : X86Reg<"", -1>;
}

// 16-bit registers
let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
def AX : X86Reg<"ax", 0, [AL,AH]>;
def DX : X86Reg<"dx", 2, [DL,DH]>;
def CX : X86Reg<"cx", 1, [CL,CH]>;
def BX : X86Reg<"bx", 3, [BL,BH]>;
}
let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CoveredBySubRegs = 1 in {
def SI : X86Reg<"si", 6, [SIL,SIH]>;
def DI : X86Reg<"di", 7, [DIL,DIH]>;
def BP : X86Reg<"bp", 5, [BPL,BPH]>;
def SP : X86Reg<"sp", 4, [SPL,SPH]>;
}
def IP : X86Reg<"ip", 0>;

// X86-64 only, requires REX.
let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CostPerUse = 1,
    CoveredBySubRegs = 1 in {
def R8W  : X86Reg<"r8w",   8, [R8B,R8BH]>;
def R9W  : X86Reg<"r9w",   9, [R9B,R9BH]>;
def R10W : X86Reg<"r10w", 10, [R10B,R10BH]>;
def R11W : X86Reg<"r11w", 11, [R11B,R11BH]>;
def R12W : X86Reg<"r12w", 12, [R12B,R12BH]>;
def R13W : X86Reg<"r13w", 13, [R13B,R13BH]>;
def R14W : X86Reg<"r14w", 14, [R14B,R14BH]>;
def R15W : X86Reg<"r15w", 15, [R15B,R15BH]>;
}

// 32-bit registers
let SubRegIndices = [sub_16bit, sub_16bit_hi], CoveredBySubRegs = 1 in {
def EAX : X86Reg<"eax", 0, [AX, HAX]>, DwarfRegNum<[-2, 0, 0]>;
def EDX : X86Reg<"edx", 2, [DX, HDX]>, DwarfRegNum<[-2, 2, 2]>;
def ECX : X86Reg<"ecx", 1, [CX, HCX]>, DwarfRegNum<[-2, 1, 1]>;
def EBX : X86Reg<"ebx", 3, [BX, HBX]>, DwarfRegNum<[-2, 3, 3]>;
def ESI : X86Reg<"esi", 6, [SI, HSI]>, DwarfRegNum<[-2, 6, 6]>;
def EDI : X86Reg<"edi", 7, [DI, HDI]>, DwarfRegNum<[-2, 7, 7]>;
def EBP : X86Reg<"ebp", 5, [BP, HBP]>, DwarfRegNum<[-2, 4, 5]>;
def ESP : X86Reg<"esp", 4, [SP, HSP]>, DwarfRegNum<[-2, 5, 4]>;
def EIP : X86Reg<"eip", 0, [IP, HIP]>, DwarfRegNum<[-2, 8, 8]>;
}

// X86-64 only, requires REX
let SubRegIndices = [sub_16bit, sub_16bit_hi], CostPerUse = 1,
    CoveredBySubRegs = 1 in {
def R8D  : X86Reg<"r8d",   8, [R8W,R8WH]>;
def R9D  : X86Reg<"r9d",   9, [R9W,R9WH]>;
def R10D : X86Reg<"r10d", 10, [R10W,R10WH]>;
def R11D : X86Reg<"r11d", 11, [R11W,R11WH]>;
def R12D : X86Reg<"r12d", 12, [R12W,R12WH]>;
def R13D : X86Reg<"r13d", 13, [R13W,R13WH]>;
def R14D : X86Reg<"r14d", 14, [R14W,R14WH]>;
def R15D : X86Reg<"r15d", 15, [R15W,R15WH]>;
}

// 64-bit registers, X86-64 only
let SubRegIndices = [sub_32bit] in {
def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;

// These also require REX.
let CostPerUse = 1 in {
def R8  : X86Reg<"r8",   8, [R8D]>,  DwarfRegNum<[ 8, -2, -2]>;
def R9  : X86Reg<"r9",   9, [R9D]>,  DwarfRegNum<[ 9, -2, -2]>;
def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
def RIP : X86Reg<"rip",  0, [EIP]>,  DwarfRegNum<[16, -2, -2]>;
}}

// MMX Registers. These are actually aliased to ST0 .. ST7
def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;

// Pseudo Floating Point registers
def FP0 : X86Reg<"fp0", 0>;
def FP1 : X86Reg<"fp1", 0>;
def FP2 : X86Reg<"fp2", 0>;
def FP3 : X86Reg<"fp3", 0>;
def FP4 : X86Reg<"fp4", 0>;
def FP5 : X86Reg<"fp5", 0>;
def FP6 : X86Reg<"fp6", 0>;
def FP7 : X86Reg<"fp7", 0>;

// XMM Registers, used by the various SSE instruction set extensions.
def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;

// X86-64 only
let CostPerUse = 1 in {
def XMM8:  X86Reg<"xmm8",   8>, DwarfRegNum<[25, -2, -2]>;
def XMM9:  X86Reg<"xmm9",   9>, DwarfRegNum<[26, -2, -2]>;
def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;

def XMM16:  X86Reg<"xmm16", 16>, DwarfRegNum<[67, -2, -2]>;
def XMM17:  X86Reg<"xmm17", 17>, DwarfRegNum<[68, -2, -2]>;
def XMM18:  X86Reg<"xmm18", 18>, DwarfRegNum<[69, -2, -2]>;
def XMM19:  X86Reg<"xmm19", 19>, DwarfRegNum<[70, -2, -2]>;
def XMM20:  X86Reg<"xmm20", 20>, DwarfRegNum<[71, -2, -2]>;
def XMM21:  X86Reg<"xmm21", 21>, DwarfRegNum<[72, -2, -2]>;
def XMM22:  X86Reg<"xmm22", 22>, DwarfRegNum<[73, -2, -2]>;
def XMM23:  X86Reg<"xmm23", 23>, DwarfRegNum<[74, -2, -2]>;
def XMM24:  X86Reg<"xmm24", 24>, DwarfRegNum<[75, -2, -2]>;
def XMM25:  X86Reg<"xmm25", 25>, DwarfRegNum<[76, -2, -2]>;
def XMM26:  X86Reg<"xmm26", 26>, DwarfRegNum<[77, -2, -2]>;
def XMM27:  X86Reg<"xmm27", 27>, DwarfRegNum<[78, -2, -2]>;
def XMM28:  X86Reg<"xmm28", 28>, DwarfRegNum<[79, -2, -2]>;
def XMM29:  X86Reg<"xmm29", 29>, DwarfRegNum<[80, -2, -2]>;
def XMM30:  X86Reg<"xmm30", 30>, DwarfRegNum<[81, -2, -2]>;
def XMM31:  X86Reg<"xmm31", 31>, DwarfRegNum<[82, -2, -2]>;

} // CostPerUse

// YMM0-15 registers, used by AVX instructions and
// YMM16-31 registers, used by AVX-512 instructions.
let SubRegIndices = [sub_xmm] in {
  foreach  Index = 0-31 in {
    def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
  }
}

// ZMM Registers, used by AVX-512 instructions.
let SubRegIndices = [sub_ymm] in {
  foreach  Index = 0-31 in {
    def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
  }
}

// Tile "registers".
def TMM0:  X86Reg<"tmm0",   0>;
def TMM1:  X86Reg<"tmm1",   1>;
def TMM2:  X86Reg<"tmm2",   2>;
def TMM3:  X86Reg<"tmm3",   3>;
def TMM4:  X86Reg<"tmm4",   4>;
def TMM5:  X86Reg<"tmm5",   5>;
def TMM6:  X86Reg<"tmm6",   6>;
def TMM7:  X86Reg<"tmm7",   7>;

// Mask Registers, used by AVX-512 instructions.
def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118,  93,  93]>;
def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119,  94,  94]>;
def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120,  95,  95]>;
def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121,  96,  96]>;
def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122,  97,  97]>;
def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123,  98,  98]>;
def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124,  99,  99]>;
def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, 100, 100]>;

// Floating point stack registers. These don't map one-to-one to the FP
// pseudo registers, but we still mark them as aliasing FP registers. That
// way both kinds can be live without exceeding the stack depth. ST registers
// are only live around inline assembly.
def ST0 : X86Reg<"st", 0>, DwarfRegNum<[33, 12, 11]>;
def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;

// Floating-point status word
def FPSW : X86Reg<"fpsr", 0>;

// Floating-point control word
def FPCW : X86Reg<"fpcr", 0>;

// SIMD Floating-point control register.
// Note: We only model the "Uses" of the control bits: current rounding modes,
// DAZ, FTZ and exception masks. We don't model the "Defs" of flag bits.
def MXCSR : X86Reg<"mxcsr", 0>;

// Status flags register.
//
// Note that some flags that are commonly thought of as part of the status
// flags register are modeled separately. Typically this is due to instructions
// reading and updating those flags independently of all the others. We don't
// want to create false dependencies between these instructions and so we use
// a separate register to model them.
def EFLAGS : X86Reg<"flags", 0>;

// The direction flag.
def DF : X86Reg<"dirflag", 0>;


// Segment registers
def CS : X86Reg<"cs", 1>;
def DS : X86Reg<"ds", 3>;
def SS : X86Reg<"ss", 2>;
def ES : X86Reg<"es", 0>;
def FS : X86Reg<"fs", 4>;
def GS : X86Reg<"gs", 5>;

// Debug registers
def DR0  : X86Reg<"dr0",   0>;
def DR1  : X86Reg<"dr1",   1>;
def DR2  : X86Reg<"dr2",   2>;
def DR3  : X86Reg<"dr3",   3>;
def DR4  : X86Reg<"dr4",   4>;
def DR5  : X86Reg<"dr5",   5>;
def DR6  : X86Reg<"dr6",   6>;
def DR7  : X86Reg<"dr7",   7>;
def DR8  : X86Reg<"dr8",   8>;
def DR9  : X86Reg<"dr9",   9>;
def DR10 : X86Reg<"dr10", 10>;
def DR11 : X86Reg<"dr11", 11>;
def DR12 : X86Reg<"dr12", 12>;
def DR13 : X86Reg<"dr13", 13>;
def DR14 : X86Reg<"dr14", 14>;
def DR15 : X86Reg<"dr15", 15>;

// Control registers
def CR0  : X86Reg<"cr0",   0>;
def CR1  : X86Reg<"cr1",   1>;
def CR2  : X86Reg<"cr2",   2>;
def CR3  : X86Reg<"cr3",   3>;
def CR4  : X86Reg<"cr4",   4>;
def CR5  : X86Reg<"cr5",   5>;
def CR6  : X86Reg<"cr6",   6>;
def CR7  : X86Reg<"cr7",   7>;
def CR8  : X86Reg<"cr8",   8>;
def CR9  : X86Reg<"cr9",   9>;
def CR10 : X86Reg<"cr10", 10>;
def CR11 : X86Reg<"cr11", 11>;
def CR12 : X86Reg<"cr12", 12>;
def CR13 : X86Reg<"cr13", 13>;
def CR14 : X86Reg<"cr14", 14>;
def CR15 : X86Reg<"cr15", 15>;

// Pseudo index registers
def EIZ : X86Reg<"eiz", 4>;
def RIZ : X86Reg<"riz", 4>;

// Bound registers, used in MPX instructions
def BND0 : X86Reg<"bnd0",   0>;
def BND1 : X86Reg<"bnd1",   1>;
def BND2 : X86Reg<"bnd2",   2>;
def BND3 : X86Reg<"bnd3",   3>;

// CET registers - Shadow Stack Pointer
def SSP : X86Reg<"ssp", 0>;

//===----------------------------------------------------------------------===//
// Register Class Definitions... now that we have all of the pieces, define the
// top-level register classes.  The order specified in the register list is
// implicitly defined to be the register allocation order.
//

// List call-clobbered registers before callee-save registers. RBX, RBP, (and
// R12, R13, R14, and R15 for X86-64) are callee-save registers.
// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
// R8B, ... R15B.
// Allocate R12 and R13 last, as these require an extra byte when
// encoded in x86_64 instructions.
// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
// 64-bit mode. The main complication is that they cannot be encoded in an
// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
// cannot be encoded.
def GR8 : RegisterClass<"X86", [i8],  8,
                        (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
                             R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
  let AltOrders = [(sub GR8, AH, BH, CH, DH)];
  let AltOrderSelect = [{
    return MF.getSubtarget<X86Subtarget>().is64Bit();
  }];
}

let isAllocatable = 0 in
def GRH8 : RegisterClass<"X86", [i8],  8,
                         (add SIH, DIH, BPH, SPH, R8BH, R9BH, R10BH, R11BH,
                              R12BH, R13BH, R14BH, R15BH)>;

def GR16 : RegisterClass<"X86", [i16], 16,
                         (add AX, CX, DX, SI, DI, BX, BP, SP,
                              R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;

let isAllocatable = 0 in
def GRH16 : RegisterClass<"X86", [i16], 16,
                          (add HAX, HCX, HDX, HSI, HDI, HBX, HBP, HSP, HIP,
                               R8WH, R9WH, R10WH, R11WH, R12WH, R13WH, R14WH,
                               R15WH)>;

def GR32 : RegisterClass<"X86", [i32], 32,
                         (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
                              R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;

// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
// RIP isn't really a register and it can't be used anywhere except in an
// address, but it doesn't cause trouble.
// FIXME: it *does* cause trouble - CheckBaseRegAndIndexReg() has extra
// tests because of the inclusion of RIP in this register class.
def GR64 : RegisterClass<"X86", [i64], 64,
                         (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
                              RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;

// Segment registers for use by MOV instructions (and others) that have a
//   segment register as one operand.  Always contain a 16-bit segment
//   descriptor.
def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;

// Debug registers.
def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 15)>;

// Control registers.
def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;

// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
// and GR64_ABCD are classes for registers that support 8-bit h-register
// operations.
def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, ESP)>;
def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
                                                     R8, R9, R11, RIP, RSP)>;
def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
                                                      R8, R9, R10, R11,
                                                      RIP, RSP)>;

// GR8_NOREX - GR8 registers which do not require a REX prefix.
def GR8_NOREX : RegisterClass<"X86", [i8], 8,
                              (add AL, CL, DL, AH, CH, DH, BL, BH)> {
  let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
  let AltOrderSelect = [{
    return MF.getSubtarget<X86Subtarget>().is64Bit();
  }];
}
// GR16_NOREX - GR16 registers which do not require a REX prefix.
def GR16_NOREX : RegisterClass<"X86", [i16], 16,
                               (add AX, CX, DX, SI, DI, BX, BP, SP)>;
// GR32_NOREX - GR32 registers which do not require a REX prefix.
def GR32_NOREX : RegisterClass<"X86", [i32], 32,
                               (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
// GR64_NOREX - GR64 registers which do not require a REX prefix.
def GR64_NOREX : RegisterClass<"X86", [i64], 64,
                            (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;

// GR32_NOSP - GR32 registers except ESP.
def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;

// GR64_NOSP - GR64 registers except RSP (and RIP).
def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;

// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
// ESP.
def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
                                    (and GR32_NOREX, GR32_NOSP)>;

// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
                                    (and GR64_NOREX, GR64_NOSP)>;

// Register classes used for ABIs that use 32-bit address accesses,
// while using the whole x84_64 ISA.

// In such cases, it is fine to use RIP as we are sure the 32 high
// bits are not set. We do not need variants for NOSP as RIP is not
// allowed there.
// RIP is not spilled anywhere for now, so stick to 32-bit alignment
// to save on memory space.
// FIXME: We could allow all 64bit registers, but we would need
// something to check that the 32 high bits are not set,
// which we do not have right now.
def LOW32_ADDR_ACCESS : RegisterClass<"X86", [i32], 32, (add GR32, RIP)>;

// When RBP is used as a base pointer in a 32-bit addresses environment,
// this is also safe to use the full register to access addresses.
// Since RBP will never be spilled, stick to a 32 alignment to save
// on memory consumption.
def LOW32_ADDR_ACCESS_RBP : RegisterClass<"X86", [i32], 32,
                                          (add LOW32_ADDR_ACCESS, RBP)>;

// A class to support the 'A' assembler constraint: [ER]AX then [ER]DX.
def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
def GR64_AD : RegisterClass<"X86", [i64], 64, (add RAX, RDX)>;

// Classes to support the 64-bit assembler constraint tied to a fixed
// register in 32-bit mode. The second register is always the next in
// the list. Wrap around causes an error.
def GR32_DC : RegisterClass<"X86", [i32], 32, (add EDX, ECX)>;
def GR32_CB : RegisterClass<"X86", [i32], 32, (add ECX, EBX)>;
def GR32_BSI : RegisterClass<"X86", [i32], 32, (add EBX, ESI)>;
def GR32_SIDI : RegisterClass<"X86", [i32], 32, (add ESI, EDI)>;
def GR32_DIBP : RegisterClass<"X86", [i32], 32, (add EDI, EBP)>;
def GR32_BPSP : RegisterClass<"X86", [i32], 32, (add EBP, ESP)>;

// Scalar SSE2 floating point registers.
def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;

def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;


// FIXME: This sets up the floating point register files as though they are f64
// values, though they really are f80 values.  This will cause us to spill
// values as 64-bit quantities instead of 80-bit quantities, which is much much
// faster on common hardware.  In reality, this should be controlled by a
// command line option or something.


def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;

// st(7) may be is not allocatable.
def RFP80_7 : RegisterClass<"X86",[f80], 32, (add FP7)> {
  let isAllocatable = 0;
}

// Floating point stack registers (these are not allocatable by the
// register allocator - the floating point stackifier is responsible
// for transforming FPn allocations to STn registers)
def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
  let isAllocatable = 0;
}

// Helper to allow %st to print as %st(0) when its encoded in the instruction.
def RSTi : RegisterOperand<RST, "printSTiRegOperand">;

// Generic vector registers: VR64 and VR128.
// Ensure that float types are declared first - only float is legal on SSE1.
def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
                          128, (add FR32)>;
def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
                          256, (sequence "YMM%u", 0, 15)>;

// Status flags registers.
def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
  let CopyCost = -1;  // Don't allow copying of status registers.
  let isAllocatable = 0;
}
def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
  let CopyCost = -1;  // Don't allow copying of status registers.
  let isAllocatable = 0;
}
def DFCCR : RegisterClass<"X86", [i32], 32, (add DF)> {
  let CopyCost = -1;  // Don't allow copying of status registers.
  let isAllocatable = 0;
}

// AVX-512 vector/mask registers.
def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
                          512, (sequence "ZMM%u", 0, 31)>;

// Represents the lower 16 registers that have VEX/legacy encodable subregs.
def VR512_0_15 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
                               512, (sequence "ZMM%u", 0, 15)>;

// Scalar AVX-512 floating point registers.
def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;

def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;

// Extended VR128 and VR256 for AVX-512 instructions
def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
                           128, (add FR32X)>;
def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
                           256, (sequence "YMM%u", 0, 31)>;

// Mask registers
def VK1     : RegisterClass<"X86", [v1i1],  16,  (sequence "K%u", 0, 7)> {let Size = 16;}
def VK2     : RegisterClass<"X86", [v2i1],  16,  (add VK1)> {let Size = 16;}
def VK4     : RegisterClass<"X86", [v4i1],  16,  (add VK2)> {let Size = 16;}
def VK8     : RegisterClass<"X86", [v8i1],  16,  (add VK4)> {let Size = 16;}
def VK16    : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
def VK32    : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
def VK64    : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}

// Mask register pairs
def KPAIRS : RegisterTuples<[sub_mask_0, sub_mask_1],
                             [(add K0, K2, K4, K6), (add K1, K3, K5, K7)]>;

def VK1PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
def VK2PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
def VK4PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
def VK8PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
def VK16PAIR  : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}

def VK1WM   : RegisterClass<"X86", [v1i1],  16,  (sub VK1, K0)> {let Size = 16;}
def VK2WM   : RegisterClass<"X86", [v2i1],  16,  (sub VK2, K0)> {let Size = 16;}
def VK4WM   : RegisterClass<"X86", [v4i1],  16,  (sub VK4, K0)> {let Size = 16;}
def VK8WM   : RegisterClass<"X86", [v8i1],  16,  (sub VK8, K0)> {let Size = 16;}
def VK16WM  : RegisterClass<"X86", [v16i1], 16, (add VK8WM)>   {let Size = 16;}
def VK32WM  : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
def VK64WM  : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}

// Bound registers
def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>;

// Tiles
let isAllocatable = 0 in
def TILE : RegisterClass<"X86", [untyped], 0,
                         (sequence "TMM%u", 0, 7)> {let Size = 8192;}