X86InterleavedAccess.cpp 32.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
//===- X86InterleavedAccess.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the X86 implementation of the interleaved accesses
/// optimization generating X86-specific instructions/intrinsics for
/// interleaved access groups.
//
//===----------------------------------------------------------------------===//

#include "X86ISelLowering.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>

using namespace llvm;

namespace {

/// This class holds necessary information to represent an interleaved
/// access group and supports utilities to lower the group into
/// X86-specific instructions/intrinsics.
///  E.g. A group of interleaving access loads (Factor = 2; accessing every
///       other element)
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
class X86InterleavedAccessGroup {
  /// Reference to the wide-load instruction of an interleaved access
  /// group.
  Instruction *const Inst;

  /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
  ArrayRef<ShuffleVectorInst *> Shuffles;

  /// Reference to the starting index of each user-shuffle.
  ArrayRef<unsigned> Indices;

  /// Reference to the interleaving stride in terms of elements.
  const unsigned Factor;

  /// Reference to the underlying target.
  const X86Subtarget &Subtarget;

  const DataLayout &DL;

  IRBuilder<> &Builder;

  /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
  /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
  void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T,
                 SmallVectorImpl<Instruction *> &DecomposedVectors);

  /// Performs matrix transposition on a 4x4 matrix \p InputVectors and
  /// returns the transposed-vectors in \p TransposedVectors.
  /// E.g.
  /// InputVectors:
  ///   In-V0 = p1, p2, p3, p4
  ///   In-V1 = q1, q2, q3, q4
  ///   In-V2 = r1, r2, r3, r4
  ///   In-V3 = s1, s2, s3, s4
  /// OutputVectors:
  ///   Out-V0 = p1, q1, r1, s1
  ///   Out-V1 = p2, q2, r2, s2
  ///   Out-V2 = p3, q3, r3, s3
  ///   Out-V3 = P4, q4, r4, s4
  void transpose_4x4(ArrayRef<Instruction *> InputVectors,
                     SmallVectorImpl<Value *> &TransposedMatrix);
  void interleave8bitStride4(ArrayRef<Instruction *> InputVectors,
                             SmallVectorImpl<Value *> &TransposedMatrix,
                             unsigned NumSubVecElems);
  void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors,
                                SmallVectorImpl<Value *> &TransposedMatrix);
  void interleave8bitStride3(ArrayRef<Instruction *> InputVectors,
                             SmallVectorImpl<Value *> &TransposedMatrix,
                             unsigned NumSubVecElems);
  void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors,
                               SmallVectorImpl<Value *> &TransposedMatrix,
                               unsigned NumSubVecElems);

public:
  /// In order to form an interleaved access group X86InterleavedAccessGroup
  /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
  /// \p Shuffs, reference to the first indices of each interleaved-vector
  /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
  /// X86-specific instructions/intrinsics it also requires the underlying
  /// target information \p STarget.
  explicit X86InterleavedAccessGroup(Instruction *I,
                                     ArrayRef<ShuffleVectorInst *> Shuffs,
                                     ArrayRef<unsigned> Ind, const unsigned F,
                                     const X86Subtarget &STarget,
                                     IRBuilder<> &B)
      : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
        DL(Inst->getModule()->getDataLayout()), Builder(B) {}

  /// Returns true if this interleaved access group can be lowered into
  /// x86-specific instructions/intrinsics, false otherwise.
  bool isSupported() const;

  /// Lowers this interleaved access group into X86-specific
  /// instructions/intrinsics.
  bool lowerIntoOptimizedSequence();
};

} // end anonymous namespace

bool X86InterleavedAccessGroup::isSupported() const {
  VectorType *ShuffleVecTy = Shuffles[0]->getType();
  Type *ShuffleEltTy = ShuffleVecTy->getElementType();
  unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
  unsigned WideInstSize;

  // Currently, lowering is supported for the following vectors:
  // Stride 4:
  //    1. Store and load of 4-element vectors of 64 bits on AVX.
  //    2. Store of 16/32-element vectors of 8 bits on AVX.
  // Stride 3:
  //    1. Load of 16/32-element vectors of 8 bits on AVX.
  if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3))
    return false;

  if (isa<LoadInst>(Inst)) {
    WideInstSize = DL.getTypeSizeInBits(Inst->getType());
    if (cast<LoadInst>(Inst)->getPointerAddressSpace())
      return false;
  } else
    WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());

  // We support shuffle represents stride 4 for byte type with size of
  // WideInstSize.
  if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4)
    return true;

  if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 &&
      (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 ||
       WideInstSize == 2048))
    return true;

  if (ShuffleElemSize == 8 && Factor == 3 &&
      (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536))
    return true;

  return false;
}

void X86InterleavedAccessGroup::decompose(
    Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy,
    SmallVectorImpl<Instruction *> &DecomposedVectors) {
  assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
         "Expected Load or Shuffle");

  Type *VecWidth = VecInst->getType();
  (void)VecWidth;
  assert(VecWidth->isVectorTy() &&
         DL.getTypeSizeInBits(VecWidth) >=
             DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
         "Invalid Inst-size!!!");

  if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
    Value *Op0 = SVI->getOperand(0);
    Value *Op1 = SVI->getOperand(1);

    // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
    for (unsigned i = 0; i < NumSubVectors; ++i)
      DecomposedVectors.push_back(
          cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
              Op0, Op1,
              createSequentialMask(Indices[i], SubVecTy->getNumElements(),
                                   0))));
    return;
  }

  // Decompose the load instruction.
  LoadInst *LI = cast<LoadInst>(VecInst);
  Type *VecBaseTy, *VecBasePtrTy;
  Value *VecBasePtr;
  unsigned int NumLoads = NumSubVectors;
  // In the case of stride 3 with a vector of 32 elements load the information
  // in the following way:
  // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1]
  unsigned VecLength = DL.getTypeSizeInBits(VecWidth);
  if (VecLength == 768 || VecLength == 1536) {
    VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16);
    VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace());
    VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
    NumLoads = NumSubVectors * (VecLength / 384);
  } else {
    VecBaseTy = SubVecTy;
    VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace());
    VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
  }
  // Generate N loads of T type.
  assert(VecBaseTy->getPrimitiveSizeInBits().isByteSized() &&
         "VecBaseTy's size must be a multiple of 8");
  const Align FirstAlignment = LI->getAlign();
  const Align SubsequentAlignment = commonAlignment(
      FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedSize() / 8);
  Align Alignment = FirstAlignment;
  for (unsigned i = 0; i < NumLoads; i++) {
    // TODO: Support inbounds GEP.
    Value *NewBasePtr =
        Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i));
    Instruction *NewLoad =
        Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment);
    DecomposedVectors.push_back(NewLoad);
    Alignment = SubsequentAlignment;
  }
}

// Changing the scale of the vector type by reducing the number of elements and
// doubling the scalar size.
static MVT scaleVectorType(MVT VT) {
  unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2;
  return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize),
                          VT.getVectorNumElements() / 2);
}

static constexpr int Concat[] = {
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15,
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
    48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};

// genShuffleBland - Creates shuffle according to two vectors.This function is
// only works on instructions with lane inside 256 registers. According to
// the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The
// offset amount depends on the two integer, 'LowOffset' and 'HighOffset'.
// Where the 'LowOffset' refers to the first vector and the highOffset refers to
// the second vector.
// |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20|
// |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25|
// |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31|
// For the sequence to work as a mirror to the load.
// We must consider the elements order as above.
// In this function we are combining two types of shuffles.
// The first one is vpshufed and the second is a type of "blend" shuffle.
// By computing the shuffle on a sequence of 16 elements(one lane) and add the
// correct offset. We are creating a vpsuffed + blend sequence between two
// shuffles.
static void genShuffleBland(MVT VT, ArrayRef<int> Mask,
                            SmallVectorImpl<int> &Out, int LowOffset,
                            int HighOffset) {
  assert(VT.getSizeInBits() >= 256 &&
         "This function doesn't accept width smaller then 256");
  unsigned NumOfElm = VT.getVectorNumElements();
  for (unsigned i = 0; i < Mask.size(); i++)
    Out.push_back(Mask[i] + LowOffset);
  for (unsigned i = 0; i < Mask.size(); i++)
    Out.push_back(Mask[i] + HighOffset + NumOfElm);
}

// reorderSubVector returns the data to is the original state. And de-facto is
// the opposite of  the function concatSubVector.

// For VecElems = 16
// Invec[0] -  |0|      TransposedMatrix[0] - |0|
// Invec[1] -  |1|  =>  TransposedMatrix[1] - |1|
// Invec[2] -  |2|      TransposedMatrix[2] - |2|

// For VecElems = 32
// Invec[0] -  |0|3|      TransposedMatrix[0] - |0|1|
// Invec[1] -  |1|4|  =>  TransposedMatrix[1] - |2|3|
// Invec[2] -  |2|5|      TransposedMatrix[2] - |4|5|

// For VecElems = 64
// Invec[0] -  |0|3|6|9 |     TransposedMatrix[0] - |0|1|2 |3 |
// Invec[1] -  |1|4|7|10| =>  TransposedMatrix[1] - |4|5|6 |7 |
// Invec[2] -  |2|5|8|11|     TransposedMatrix[2] - |8|9|10|11|

static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix,
                             ArrayRef<Value *> Vec, ArrayRef<int> VPShuf,
                             unsigned VecElems, unsigned Stride,
                             IRBuilder<> &Builder) {

  if (VecElems == 16) {
    for (unsigned i = 0; i < Stride; i++)
      TransposedMatrix[i] = Builder.CreateShuffleVector(
          Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf);
    return;
  }

  SmallVector<int, 32> OptimizeShuf;
  Value *Temp[8];

  for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) {
    genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16,
                    (i + 1) / Stride * 16);
    Temp[i / 2] = Builder.CreateShuffleVector(
        Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf);
    OptimizeShuf.clear();
  }

  if (VecElems == 32) {
    std::copy(Temp, Temp + Stride, TransposedMatrix.begin());
    return;
  } else
    for (unsigned i = 0; i < Stride; i++)
      TransposedMatrix[i] =
          Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat);
}

void X86InterleavedAccessGroup::interleave8bitStride4VF8(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {
  // Assuming we start from the following vectors:
  // Matrix[0]= c0 c1 c2 c3 c4 ... c7
  // Matrix[1]= m0 m1 m2 m3 m4 ... m7
  // Matrix[2]= y0 y1 y2 y3 y4 ... y7
  // Matrix[3]= k0 k1 k2 k3 k4 ... k7

  MVT VT = MVT::v8i16;
  TransposedMatrix.resize(2);
  SmallVector<int, 16> MaskLow;
  SmallVector<int, 32> MaskLowTemp1, MaskLowWord;
  SmallVector<int, 32> MaskHighTemp1, MaskHighWord;

  for (unsigned i = 0; i < 8; ++i) {
    MaskLow.push_back(i);
    MaskLow.push_back(i + 8);
  }

  createUnpackShuffleMask(VT, MaskLowTemp1, true, false);
  createUnpackShuffleMask(VT, MaskHighTemp1, false, false);
  narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord);
  narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord);
  // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7
  // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7
  Value *IntrVec1Low =
      Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
  Value *IntrVec2Low =
      Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);

  // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3
  // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7

  TransposedMatrix[0] =
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
  TransposedMatrix[1] =
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
}

void X86InterleavedAccessGroup::interleave8bitStride4(
    ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix,
    unsigned NumOfElm) {
  // Example: Assuming we start from the following vectors:
  // Matrix[0]= c0 c1 c2 c3 c4 ... c31
  // Matrix[1]= m0 m1 m2 m3 m4 ... m31
  // Matrix[2]= y0 y1 y2 y3 y4 ... y31
  // Matrix[3]= k0 k1 k2 k3 k4 ... k31

  MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm);
  MVT HalfVT = scaleVectorType(VT);

  TransposedMatrix.resize(4);
  SmallVector<int, 32> MaskHigh;
  SmallVector<int, 32> MaskLow;
  SmallVector<int, 32> LowHighMask[2];
  SmallVector<int, 32> MaskHighTemp;
  SmallVector<int, 32> MaskLowTemp;

  // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
  // shuffle pattern.

  createUnpackShuffleMask(VT, MaskLow, true, false);
  createUnpackShuffleMask(VT, MaskHigh, false, false);

  // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
  // shuffle pattern.

  createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false);
  createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false);
  narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]);
  narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]);

  // IntrVec1Low  = c0  m0  c1  m1 ... c7  m7  | c16 m16 c17 m17 ... c23 m23
  // IntrVec1High = c8  m8  c9  m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
  // IntrVec2Low  = y0  k0  y1  k1 ... y7  k7  | y16 k16 y17 k17 ... y23 k23
  // IntrVec2High = y8  k8  y9  k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
  Value *IntrVec[4];

  IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
  IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
  IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
  IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);

  // cmyk4  cmyk5  cmyk6   cmyk7  | cmyk20 cmyk21 cmyk22 cmyk23
  // cmyk12 cmyk13 cmyk14  cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
  // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk16 cmyk17 cmyk18 cmyk19
  // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27

  Value *VecOut[4];
  for (int i = 0; i < 4; i++)
    VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2],
                                            LowHighMask[i % 2]);

  // cmyk0  cmyk1  cmyk2  cmyk3   | cmyk4  cmyk5  cmyk6  cmyk7
  // cmyk8  cmyk9  cmyk10 cmyk11  | cmyk12 cmyk13 cmyk14 cmyk15
  // cmyk16 cmyk17 cmyk18 cmyk19  | cmyk20 cmyk21 cmyk22 cmyk23
  // cmyk24 cmyk25 cmyk26 cmyk27  | cmyk28 cmyk29 cmyk30 cmyk31

  if (VT == MVT::v16i8) {
    std::copy(VecOut, VecOut + 4, TransposedMatrix.begin());
    return;
  }

  reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16),
                   NumOfElm, 4, Builder);
}

//  createShuffleStride returns shuffle mask of size N.
//  The shuffle pattern is as following :
//  {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane),
//  (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),...,
//  (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)}
//  Where Lane is the # of lanes in a register:
//  VectorSize = 128 => Lane = 1
//  VectorSize = 256 => Lane = 2
//  For example shuffle pattern for VF 16 register size 256 -> lanes = 2
//  {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>}
static void createShuffleStride(MVT VT, int Stride,
                                SmallVectorImpl<int> &Mask) {
  int VectorSize = VT.getSizeInBits();
  int VF = VT.getVectorNumElements();
  int LaneCount = std::max(VectorSize / 128, 1);
  for (int Lane = 0; Lane < LaneCount; Lane++)
    for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i)
      Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane);
}

//  setGroupSize sets 'SizeInfo' to the size(number of elements) of group
//  inside mask a shuffleMask. A mask contains exactly 3 groups, where
//  each group is a monotonically increasing sequence with stride 3.
//  For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2}
static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) {
  int VectorSize = VT.getSizeInBits();
  int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1);
  for (int i = 0, FirstGroupElement = 0; i < 3; i++) {
    int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0);
    SizeInfo.push_back(GroupSize);
    FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF;
  }
}

//  DecodePALIGNRMask returns the shuffle mask of vpalign instruction.
//  vpalign works according to lanes
//  Where Lane is the # of lanes in a register:
//  VectorWide = 128 => Lane = 1
//  VectorWide = 256 => Lane = 2
//  For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}.
//  For Lane = 2 shuffle pattern is:
//  {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}.
//  Imm variable sets the offset amount. The result of the
//  function is stored inside ShuffleMask vector and it built as described in
//  the begin of the description. AlignDirection is a boolean that indicates the
//  direction of the alignment. (false - align to the "right" side while true -
//  align to the "left" side)
static void DecodePALIGNRMask(MVT VT, unsigned Imm,
                              SmallVectorImpl<int> &ShuffleMask,
                              bool AlignDirection = true, bool Unary = false) {
  unsigned NumElts = VT.getVectorNumElements();
  unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1);
  unsigned NumLaneElts = NumElts / NumLanes;

  Imm = AlignDirection ? Imm : (NumLaneElts - Imm);
  unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8);

  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    for (unsigned i = 0; i != NumLaneElts; ++i) {
      unsigned Base = i + Offset;
      // if i+offset is out of this lane then we actually need the other source
      // If Unary the other source is the first source.
      if (Base >= NumLaneElts)
        Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts;
      ShuffleMask.push_back(Base + l);
    }
  }
}

// concatSubVector - The function rebuilds the data to a correct expected
// order. An assumption(The shape of the matrix) was taken for the
// deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'.
// This function ensures that the data is built in correct way for the lane
// instructions. Each lane inside the vector is a 128-bit length.
//
// The 'InVec' argument contains the data in increasing order. In InVec[0] You
// can find the first 128 bit data. The number of different lanes inside a
// vector depends on the 'VecElems'.In general, the formula is
// VecElems * type / 128. The size of the array 'InVec' depends and equal to
// 'VecElems'.

// For VecElems = 16
// Invec[0] - |0|      Vec[0] - |0|
// Invec[1] - |1|  =>  Vec[1] - |1|
// Invec[2] - |2|      Vec[2] - |2|

// For VecElems = 32
// Invec[0] - |0|1|      Vec[0] - |0|3|
// Invec[1] - |2|3|  =>  Vec[1] - |1|4|
// Invec[2] - |4|5|      Vec[2] - |2|5|

// For VecElems = 64
// Invec[0] - |0|1|2 |3 |      Vec[0] - |0|3|6|9 |
// Invec[1] - |4|5|6 |7 |  =>  Vec[1] - |1|4|7|10|
// Invec[2] - |8|9|10|11|      Vec[2] - |2|5|8|11|

static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec,
                            unsigned VecElems, IRBuilder<> &Builder) {
  if (VecElems == 16) {
    for (int i = 0; i < 3; i++)
      Vec[i] = InVec[i];
    return;
  }

  for (unsigned j = 0; j < VecElems / 32; j++)
    for (int i = 0; i < 3; i++)
      Vec[i + j * 3] = Builder.CreateShuffleVector(
          InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32));

  if (VecElems == 32)
    return;

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat);
}

void X86InterleavedAccessGroup::deinterleave8bitStride3(
    ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
    unsigned VecElems) {
  // Example: Assuming we start from the following vectors:
  // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2
  // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5
  // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7

  TransposedMatrix.resize(3);
  SmallVector<int, 32> VPShuf;
  SmallVector<int, 32> VPAlign[2];
  SmallVector<int, 32> VPAlign2;
  SmallVector<int, 32> VPAlign3;
  SmallVector<int, 3> GroupSize;
  Value *Vec[6], *TempVector[3];

  MVT VT = MVT::getVT(Shuffles[0]->getType());

  createShuffleStride(VT, 3, VPShuf);
  setGroupSize(VT, GroupSize);

  for (int i = 0; i < 2; i++)
    DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false);

  DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true);
  DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true);

  concatSubVector(Vec, InVec, VecElems, Builder);
  // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
  // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
  // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(
        Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf);

  // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2
  // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5
  // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7

  for (int i = 0; i < 3; i++)
    TempVector[i] =
        Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]);

  // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
  // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
  // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i],
                                         VPAlign[1]);

  // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
  // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
  // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7

  Value *TempVec = Builder.CreateShuffleVector(
      Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3);
  TransposedMatrix[0] = Builder.CreateShuffleVector(
      Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2);
  TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec;
  TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2];
}

// group2Shuffle reorder the shuffle stride back into continuous order.
// For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} =>
// MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}.
static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask,
                          SmallVectorImpl<int> &Output) {
  int IndexGroup[3] = {0, 0, 0};
  int Index = 0;
  int VectorWidth = VT.getSizeInBits();
  int VF = VT.getVectorNumElements();
  // Find the index of the different groups.
  int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1;
  for (int i = 0; i < 3; i++) {
    IndexGroup[(Index * 3) % (VF / Lane)] = Index;
    Index += Mask[i];
  }
  // According to the index compute the convert mask.
  for (int i = 0; i < VF / Lane; i++) {
    Output.push_back(IndexGroup[i % 3]);
    IndexGroup[i % 3]++;
  }
}

void X86InterleavedAccessGroup::interleave8bitStride3(
    ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
    unsigned VecElems) {
  // Example: Assuming we start from the following vectors:
  // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
  // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
  // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7

  TransposedMatrix.resize(3);
  SmallVector<int, 3> GroupSize;
  SmallVector<int, 32> VPShuf;
  SmallVector<int, 32> VPAlign[3];
  SmallVector<int, 32> VPAlign2;
  SmallVector<int, 32> VPAlign3;

  Value *Vec[3], *TempVector[3];
  MVT VT = MVT::getVectorVT(MVT::i8, VecElems);

  setGroupSize(VT, GroupSize);

  for (int i = 0; i < 3; i++)
    DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]);

  DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true);
  DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true);

  // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
  // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
  // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7

  Vec[0] = Builder.CreateShuffleVector(
      InVec[0], UndefValue::get(InVec[0]->getType()), VPAlign2);
  Vec[1] = Builder.CreateShuffleVector(
      InVec[1], UndefValue::get(InVec[1]->getType()), VPAlign3);
  Vec[2] = InVec[2];

  // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2
  // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5
  // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7

  for (int i = 0; i < 3; i++)
    TempVector[i] =
        Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]);

  // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
  // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
  // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3],
                                         VPAlign[2]);

  // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2
  // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5
  // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7

  unsigned NumOfElm = VT.getVectorNumElements();
  group2Shuffle(VT, GroupSize, VPShuf);
  reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder);
}

void X86InterleavedAccessGroup::transpose_4x4(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {
  assert(Matrix.size() == 4 && "Invalid matrix size");
  TransposedMatrix.resize(4);

  // dst = src1[0,1],src2[0,1]
  static constexpr int IntMask1[] = {0, 1, 4, 5};
  ArrayRef<int> Mask = makeArrayRef(IntMask1, 4);
  Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[2,3],src2[2,3]
  static constexpr int IntMask2[] = {2, 3, 6, 7};
  Mask = makeArrayRef(IntMask2, 4);
  Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[0],src2[0],src1[2],src2[2]
  static constexpr int IntMask3[] = {0, 4, 2, 6};
  Mask = makeArrayRef(IntMask3, 4);
  TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);

  // dst = src1[1],src2[1],src1[3],src2[3]
  static constexpr int IntMask4[] = {1, 5, 3, 7};
  Mask = makeArrayRef(IntMask4, 4);
  TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
}

// Lowers this interleaved access group into X86-specific
// instructions/intrinsics.
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
  SmallVector<Instruction *, 4> DecomposedVectors;
  SmallVector<Value *, 4> TransposedVectors;
  auto *ShuffleTy = cast<FixedVectorType>(Shuffles[0]->getType());

  if (isa<LoadInst>(Inst)) {
    // Try to generate target-sized register(/instruction).
    decompose(Inst, Factor, ShuffleTy, DecomposedVectors);

    auto *ShuffleEltTy = cast<FixedVectorType>(Inst->getType());
    unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor;
    // Perform matrix-transposition in order to compute interleaved
    // results by generating some sort of (optimized) target-specific
    // instructions.

    switch (NumSubVecElems) {
    default:
      return false;
    case 4:
      transpose_4x4(DecomposedVectors, TransposedVectors);
      break;
    case 8:
    case 16:
    case 32:
    case 64:
      deinterleave8bitStride3(DecomposedVectors, TransposedVectors,
                              NumSubVecElems);
      break;
    }

    // Now replace the unoptimized-interleaved-vectors with the
    // transposed-interleaved vectors.
    for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
      Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);

    return true;
  }

  Type *ShuffleEltTy = ShuffleTy->getElementType();
  unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor;

  // Lower the interleaved stores:
  //   1. Decompose the interleaved wide shuffle into individual shuffle
  //   vectors.
  decompose(Shuffles[0], Factor,
            FixedVectorType::get(ShuffleEltTy, NumSubVecElems),
            DecomposedVectors);

  //   2. Transpose the interleaved-vectors into vectors of contiguous
  //      elements.
  switch (NumSubVecElems) {
  case 4:
    transpose_4x4(DecomposedVectors, TransposedVectors);
    break;
  case 8:
    interleave8bitStride4VF8(DecomposedVectors, TransposedVectors);
    break;
  case 16:
  case 32:
  case 64:
    if (Factor == 4)
      interleave8bitStride4(DecomposedVectors, TransposedVectors,
                            NumSubVecElems);
    if (Factor == 3)
      interleave8bitStride3(DecomposedVectors, TransposedVectors,
                            NumSubVecElems);
    break;
  default:
    return false;
  }

  //   3. Concatenate the contiguous-vectors back into a wide vector.
  Value *WideVec = concatenateVectors(Builder, TransposedVectors);

  //   4. Generate a store instruction for wide-vec.
  StoreInst *SI = cast<StoreInst>(Inst);
  Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign());

  return true;
}

// Lower interleaved load(s) into target specific instructions/
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
// number of shuffles and ISA.
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
bool X86TargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  // Create an interleaved access group.
  IRBuilder<> Builder(LI);
  X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}

bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
                                              ShuffleVectorInst *SVI,
                                              unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");

  assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor ==
             0 &&
         "Invalid interleaved store");

  // Holds the indices of SVI that correspond to the starting index of each
  // interleaved shuffle.
  SmallVector<unsigned, 4> Indices;
  auto Mask = SVI->getShuffleMask();
  for (unsigned i = 0; i < Factor; i++)
    Indices.push_back(Mask[i]);

  ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);

  // Create an interleaved access group.
  IRBuilder<> Builder(SI);
  X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}