X86InstrControl.td 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 jump, return, call, and related instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//  Control Flow Instructions.
//

// Return instructions.
//
// The X86retflag return instructions are variadic because we may add ST0 and
// ST1 arguments when returning values on the x87 stack.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
  def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
                    "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
  def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
                    "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
  def RETW   : I   <0xC3, RawFrm, (outs), (ins),
                    "ret{w}", []>, OpSize16;
  def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
                    "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
  def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
                    "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
  def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
                    "ret{w}\t$amt", []>, OpSize16;
  def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{l|f}", []>, OpSize32;
  def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
  def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{w|f}", []>, OpSize16;
  def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{l|f}\t$amt", []>, OpSize32;
  def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
  def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{w|f}\t$amt", []>, OpSize16;

  // The machine return from interrupt instruction, but sometimes we need to
  // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
  // which expands to include an SP adjustment if necessary.
  def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
               OpSize16;
  def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
  def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
  let isCodeGenOnly = 1 in
  def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
  def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
}

// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
                       "jmp\t$dst", [(br bb:$dst)]>;
  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
                          "jmp\t$dst", []>, OpSize16;
    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
                          "jmp\t$dst", []>, OpSize32;
  }
}

// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
    isCodeGenOnly = 1, ForceDisassemble = 1 in {
  def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
                        (ins brtarget8:$dst, ccode:$cond),
                        "j${cond}\t$dst",
                        [(X86brcond bb:$dst, timm:$cond, EFLAGS)]>;
  let hasSideEffects = 0 in {
    def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
                          (ins brtarget16:$dst, ccode:$cond),
                          "j${cond}\t$dst",
                          []>, OpSize16, TB;
    def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
                          (ins brtarget32:$dst, ccode:$cond),
                          "j${cond}\t$dst",
                          []>, TB, OpSize32;
  }
}

def : InstAlias<"jo\t$dst",  (JCC_1 brtarget8:$dst,  0), 0>;
def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst,  1), 0>;
def : InstAlias<"jb\t$dst",  (JCC_1 brtarget8:$dst,  2), 0>;
def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst,  3), 0>;
def : InstAlias<"je\t$dst",  (JCC_1 brtarget8:$dst,  4), 0>;
def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst,  5), 0>;
def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst,  6), 0>;
def : InstAlias<"ja\t$dst",  (JCC_1 brtarget8:$dst,  7), 0>;
def : InstAlias<"js\t$dst",  (JCC_1 brtarget8:$dst,  8), 0>;
def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst,  9), 0>;
def : InstAlias<"jp\t$dst",  (JCC_1 brtarget8:$dst, 10), 0>;
def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>;
def : InstAlias<"jl\t$dst",  (JCC_1 brtarget8:$dst, 12), 0>;
def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>;
def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>;
def : InstAlias<"jg\t$dst",  (JCC_1 brtarget8:$dst, 15), 0>;

// jcx/jecx/jrcx instructions.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
  // These are the 32-bit versions of this instruction for the asmparser.  In
  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
  // jecxz.
  let Uses = [CX] in
    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                        "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
  let Uses = [ECX] in
    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                        "jecxz\t$dst", []>, AdSize32;

  let Uses = [RCX] in
    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                         "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
}

// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
                     [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
                     OpSize16, Sched<[WriteJump]>;
  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
                     [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
                     OpSize16, Sched<[WriteJumpLd]>;

  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
                     [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
                     OpSize32, Sched<[WriteJump]>;
  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
                     [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
                     OpSize32, Sched<[WriteJumpLd]>;

  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
                     [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
                     Sched<[WriteJump]>;
  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
                     [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
                     Sched<[WriteJumpLd]>;

  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
  // These are switched from TAILJMPr/m64_REX in MCInstLower.
  let isCodeGenOnly = 1, hasREX_WPrefix = 1 in {
    def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>;
    let mayLoad = 1 in
    def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst),
                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>;

  }

  // Non-tracking jumps for IBT, use with caution.
  let isCodeGenOnly = 1 in {
    def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
                      [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
                      OpSize16, Sched<[WriteJump]>, NOTRACK;

    def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
                      [(X86NoTrackBrind (loadi16 addr : $dst))]>,
                      Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
                      NOTRACK;

    def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
                      [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
                      OpSize32, Sched<[WriteJump]>, NOTRACK;
    def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
                      [(X86NoTrackBrind (loadi32 addr : $dst))]>,
                      Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
                      NOTRACK;

    def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
                      [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
                      Sched<[WriteJump]>, NOTRACK;
    def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
                      [(X86NoTrackBrind(loadi64 addr : $dst))]>,
                      Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
  }

  let Predicates = [Not64BitMode], AsmVariantName = "att" in {
    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
                            (ins i16imm:$off, i16imm:$seg),
                            "ljmp{w}\t$seg, $off", []>,
                            OpSize16, Sched<[WriteJump]>;
    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
                            (ins i32imm:$off, i16imm:$seg),
                            "ljmp{l}\t$seg, $off", []>,
                            OpSize32, Sched<[WriteJump]>;
  }
  let mayLoad = 1 in {
    def FARJMP64m  : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                        "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;

    let AsmVariantName = "att" in
    def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                       "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
    def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                       "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
  }
}

// Loop instructions
let SchedRW = [WriteJump] in {
def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
}

//===----------------------------------------------------------------------===//
//  Call Instructions...
//
let isCall = 1 in
  // All calls clobber the non-callee saved registers. ESP is marked as
  // a use to prevent stack-pointer assignments that appear immediately
  // before calls from potentially appearing dead. Uses for argument
  // registers are added manually.
  let Uses = [ESP, SSP] in {
    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
                           (outs), (ins i32imm_brtarget:$dst),
                           "call{l}\t$dst", []>, OpSize32,
                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    let hasSideEffects = 0 in
      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
                             (outs), (ins i16imm_brtarget:$dst),
                             "call{w}\t$dst", []>, OpSize16,
                        Sched<[WriteJump]>;
    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
                        "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>;
    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
                        "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
                        Requires<[Not64BitMode,NotUseIndirectThunkCalls]>,
                        Sched<[WriteJump]>;
    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
                        OpSize32,
                        Requires<[Not64BitMode,FavorMemIndirectCall,
                                  NotUseIndirectThunkCalls]>,
                        Sched<[WriteJumpLd]>;

    // Non-tracking calls for IBT, use with caution.
    let isCodeGenOnly = 1 in {
      def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
                        "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
                        OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
      def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
                        "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>, NOTRACK;
      def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
                        "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
                        OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
      def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
                        "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
                        OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>, NOTRACK;
    }

    let Predicates = [Not64BitMode], AsmVariantName = "att" in {
      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
                               (ins i16imm:$off, i16imm:$seg),
                               "lcall{w}\t$seg, $off", []>,
                               OpSize16, Sched<[WriteJump]>;
      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
                               (ins i32imm:$off, i16imm:$seg),
                               "lcall{l}\t$seg, $off", []>,
                               OpSize32, Sched<[WriteJump]>;
    }

    let mayLoad = 1 in {
      def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                          "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
      def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                          "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
    }
  }


// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    isCodeGenOnly = 1, Uses = [ESP, SSP] in {
  def TCRETURNdi : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$offset),
                           []>, Sched<[WriteJump]>, NotMemoryFoldable;
  def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset),
                           []>, Sched<[WriteJump]>, NotMemoryFoldable;
  let mayLoad = 1 in
  def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset),
                           []>, Sched<[WriteJumpLd]>;

  def TAILJMPd : PseudoI<(outs), (ins i32imm_brtarget:$dst),
                         []>, Sched<[WriteJump]>;

  def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                         []>, Sched<[WriteJump]>;
  let mayLoad = 1 in
  def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst),
                         []>, Sched<[WriteJumpLd]>;
}

// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    isCodeGenOnly = 1, SchedRW = [WriteJump] in
  let Uses = [ESP, EFLAGS, SSP] in {
  def TCRETURNdicc : PseudoI<(outs),
                     (ins i32imm_brtarget:$dst, i32imm:$offset, i32imm:$cond),
                     []>;

  // This gets substituted to a conditional jump instruction in MC lowering.
  def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$cond), []>;
}


//===----------------------------------------------------------------------===//
//  Call Instructions...
//

// RSP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
  // NOTE: this pattern doesn't match "X86call imm", because we do not know
  // that the offset between an arbitrary immediate and the call will fit in
  // the 32-bit pcrel field that we have.
  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
                        (outs), (ins i64i32imm_brtarget:$dst),
                        "call{q}\t$dst", []>, OpSize32,
                      Requires<[In64BitMode]>;
  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
                        "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
                      Requires<[In64BitMode,NotUseIndirectThunkCalls]>;
  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
                      Requires<[In64BitMode,FavorMemIndirectCall,
                                NotUseIndirectThunkCalls]>;

  // Non-tracking calls for IBT, use with caution.
  let isCodeGenOnly = 1 in {
    def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
                      "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
                      Requires<[In64BitMode]>, NOTRACK;
    def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
                       "call{q}\t{*}$dst",
                       [(X86NoTrackCall(loadi64 addr : $dst))]>,
                       Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
  }

  let mayLoad = 1 in
  def FARCALL64m  : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                       "lcall{q}\t{*}$dst", []>;
}

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    isCodeGenOnly = 1, Uses = [RSP, SSP] in {
  def TCRETURNdi64   : PseudoI<(outs),
                               (ins i64i32imm_brtarget:$dst, i32imm:$offset),
                               []>, Sched<[WriteJump]>;
  def TCRETURNri64   : PseudoI<(outs),
                               (ins ptr_rc_tailcall:$dst, i32imm:$offset),
                               []>, Sched<[WriteJump]>, NotMemoryFoldable;
  let mayLoad = 1 in
  def TCRETURNmi64   : PseudoI<(outs),
                               (ins i64mem_TC:$dst, i32imm:$offset),
                               []>, Sched<[WriteJumpLd]>, NotMemoryFoldable;

  def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_brtarget:$dst),
                           []>, Sched<[WriteJump]>;

  def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                           []>, Sched<[WriteJump]>;

  let mayLoad = 1 in
  def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst),
                           []>, Sched<[WriteJumpLd]>;

  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
  let hasREX_WPrefix = 1 in {
    def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                                 []>, Sched<[WriteJump]>;

    let mayLoad = 1 in
    def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst),
                                 []>, Sched<[WriteJumpLd]>;
  }
}

let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
    Uses = [RSP, SSP],
    usesCustomInserter = 1,
    SchedRW = [WriteJump] in {
  def INDIRECT_THUNK_CALL32 :
    PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
            Requires<[Not64BitMode,UseIndirectThunkCalls]>;

  def INDIRECT_THUNK_CALL64 :
    PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
            Requires<[In64BitMode,UseIndirectThunkCalls]>;

  // Indirect thunk variant of indirect tail calls.
  let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    def INDIRECT_THUNK_TCRETURN64 :
      PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
    def INDIRECT_THUNK_TCRETURN32 :
      PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
  }
}

// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    isCodeGenOnly = 1, SchedRW = [WriteJump] in
  let Uses = [RSP, EFLAGS, SSP] in {
  def TCRETURNdi64cc : PseudoI<(outs),
                           (ins i64i32imm_brtarget:$dst, i32imm:$offset,
                            i32imm:$cond), []>;

  // This gets substituted to a conditional jump instruction in MC lowering.
  def TAILJMPd64_CC : PseudoI<(outs),
                              (ins i64i32imm_brtarget:$dst, i32imm:$cond), []>;
}