X86InsertPrefetch.cpp
9.64 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//===------- X86InsertPrefetch.cpp - Insert cache prefetch hints ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass applies cache prefetch instructions based on a profile. The pass
// assumes DiscriminateMemOps ran immediately before, to ensure debug info
// matches the one used at profile generation time. The profile is encoded in
// afdo format (text or binary). It contains prefetch hints recommendations.
// Each recommendation is made in terms of debug info locations, a type (i.e.
// nta, t{0|1|2}) and a delta. The debug info identifies an instruction with a
// memory operand (see X86DiscriminateMemOps). The prefetch will be made for
// a location at that memory operand + the delta specified in the
// recommendation.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Transforms/IPO/SampleProfile.h"
using namespace llvm;
using namespace sampleprof;
static cl::opt<std::string>
PrefetchHintsFile("prefetch-hints-file",
cl::desc("Path to the prefetch hints profile. See also "
"-x86-discriminate-memops"),
cl::Hidden);
namespace {
class X86InsertPrefetch : public MachineFunctionPass {
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool doInitialization(Module &) override;
bool runOnMachineFunction(MachineFunction &MF) override;
struct PrefetchInfo {
unsigned InstructionID;
int64_t Delta;
};
typedef SmallVectorImpl<PrefetchInfo> Prefetches;
bool findPrefetchInfo(const FunctionSamples *Samples, const MachineInstr &MI,
Prefetches &prefetches) const;
public:
static char ID;
X86InsertPrefetch(const std::string &PrefetchHintsFilename);
StringRef getPassName() const override {
return "X86 Insert Cache Prefetches";
}
private:
std::string Filename;
std::unique_ptr<SampleProfileReader> Reader;
};
using PrefetchHints = SampleRecord::CallTargetMap;
// Return any prefetching hints for the specified MachineInstruction. The hints
// are returned as pairs (name, delta).
ErrorOr<PrefetchHints> getPrefetchHints(const FunctionSamples *TopSamples,
const MachineInstr &MI) {
if (const auto &Loc = MI.getDebugLoc())
if (const auto *Samples = TopSamples->findFunctionSamples(Loc))
return Samples->findCallTargetMapAt(FunctionSamples::getOffset(Loc),
Loc->getBaseDiscriminator());
return std::error_code();
}
// The prefetch instruction can't take memory operands involving vector
// registers.
bool IsMemOpCompatibleWithPrefetch(const MachineInstr &MI, int Op) {
Register BaseReg = MI.getOperand(Op + X86::AddrBaseReg).getReg();
Register IndexReg = MI.getOperand(Op + X86::AddrIndexReg).getReg();
return (BaseReg == 0 ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg)) &&
(IndexReg == 0 ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg));
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
char X86InsertPrefetch::ID = 0;
X86InsertPrefetch::X86InsertPrefetch(const std::string &PrefetchHintsFilename)
: MachineFunctionPass(ID), Filename(PrefetchHintsFilename) {}
/// Return true if the provided MachineInstruction has cache prefetch hints. In
/// that case, the prefetch hints are stored, in order, in the Prefetches
/// vector.
bool X86InsertPrefetch::findPrefetchInfo(const FunctionSamples *TopSamples,
const MachineInstr &MI,
Prefetches &Prefetches) const {
assert(Prefetches.empty() &&
"Expected caller passed empty PrefetchInfo vector.");
static constexpr std::pair<StringLiteral, unsigned> HintTypes[] = {
{"_nta_", X86::PREFETCHNTA},
{"_t0_", X86::PREFETCHT0},
{"_t1_", X86::PREFETCHT1},
{"_t2_", X86::PREFETCHT2},
};
static const char *SerializedPrefetchPrefix = "__prefetch";
const ErrorOr<PrefetchHints> T = getPrefetchHints(TopSamples, MI);
if (!T)
return false;
int16_t max_index = -1;
// Convert serialized prefetch hints into PrefetchInfo objects, and populate
// the Prefetches vector.
for (const auto &S_V : *T) {
StringRef Name = S_V.getKey();
if (Name.consume_front(SerializedPrefetchPrefix)) {
int64_t D = static_cast<int64_t>(S_V.second);
unsigned IID = 0;
for (const auto &HintType : HintTypes) {
if (Name.startswith(HintType.first)) {
Name = Name.drop_front(HintType.first.size());
IID = HintType.second;
break;
}
}
if (IID == 0)
return false;
uint8_t index = 0;
Name.consumeInteger(10, index);
if (index >= Prefetches.size())
Prefetches.resize(index + 1);
Prefetches[index] = {IID, D};
max_index = std::max(max_index, static_cast<int16_t>(index));
}
}
assert(max_index + 1 >= 0 &&
"Possible overflow: max_index + 1 should be positive.");
assert(static_cast<size_t>(max_index + 1) == Prefetches.size() &&
"The number of prefetch hints received should match the number of "
"PrefetchInfo objects returned");
return !Prefetches.empty();
}
bool X86InsertPrefetch::doInitialization(Module &M) {
if (Filename.empty())
return false;
LLVMContext &Ctx = M.getContext();
ErrorOr<std::unique_ptr<SampleProfileReader>> ReaderOrErr =
SampleProfileReader::create(Filename, Ctx);
if (std::error_code EC = ReaderOrErr.getError()) {
std::string Msg = "Could not open profile: " + EC.message();
Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg,
DiagnosticSeverity::DS_Warning));
return false;
}
Reader = std::move(ReaderOrErr.get());
Reader->read();
return true;
}
void X86InsertPrefetch::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool X86InsertPrefetch::runOnMachineFunction(MachineFunction &MF) {
if (!Reader)
return false;
const FunctionSamples *Samples = Reader->getSamplesFor(MF.getFunction());
if (!Samples)
return false;
bool Changed = false;
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<PrefetchInfo, 4> Prefetches;
for (auto &MBB : MF) {
for (auto MI = MBB.instr_begin(); MI != MBB.instr_end();) {
auto Current = MI;
++MI;
int Offset = X86II::getMemoryOperandNo(Current->getDesc().TSFlags);
if (Offset < 0)
continue;
unsigned Bias = X86II::getOperandBias(Current->getDesc());
int MemOpOffset = Offset + Bias;
// FIXME(mtrofin): ORE message when the recommendation cannot be taken.
if (!IsMemOpCompatibleWithPrefetch(*Current, MemOpOffset))
continue;
Prefetches.clear();
if (!findPrefetchInfo(Samples, *Current, Prefetches))
continue;
assert(!Prefetches.empty() &&
"The Prefetches vector should contain at least a value if "
"findPrefetchInfo returned true.");
for (auto &PrefInfo : Prefetches) {
unsigned PFetchInstrID = PrefInfo.InstructionID;
int64_t Delta = PrefInfo.Delta;
const MCInstrDesc &Desc = TII->get(PFetchInstrID);
MachineInstr *PFetch =
MF.CreateMachineInstr(Desc, Current->getDebugLoc(), true);
MachineInstrBuilder MIB(MF, PFetch);
assert(X86::AddrBaseReg == 0 && X86::AddrScaleAmt == 1 &&
X86::AddrIndexReg == 2 && X86::AddrDisp == 3 &&
X86::AddrSegmentReg == 4 &&
"Unexpected change in X86 operand offset order.");
// This assumes X86::AddBaseReg = 0, {...}ScaleAmt = 1, etc.
// FIXME(mtrofin): consider adding a:
// MachineInstrBuilder::set(unsigned offset, op).
MIB.addReg(Current->getOperand(MemOpOffset + X86::AddrBaseReg).getReg())
.addImm(
Current->getOperand(MemOpOffset + X86::AddrScaleAmt).getImm())
.addReg(
Current->getOperand(MemOpOffset + X86::AddrIndexReg).getReg())
.addImm(Current->getOperand(MemOpOffset + X86::AddrDisp).getImm() +
Delta)
.addReg(Current->getOperand(MemOpOffset + X86::AddrSegmentReg)
.getReg());
if (!Current->memoperands_empty()) {
MachineMemOperand *CurrentOp = *(Current->memoperands_begin());
MIB.addMemOperand(MF.getMachineMemOperand(
CurrentOp, CurrentOp->getOffset() + Delta, CurrentOp->getSize()));
}
// Insert before Current. This is because Current may clobber some of
// the registers used to describe the input memory operand.
MBB.insert(Current, PFetch);
Changed = true;
}
}
}
return Changed;
}
FunctionPass *llvm::createX86InsertPrefetchPass() {
return new X86InsertPrefetch(PrefetchHintsFile);
}