X86FixupLEAs.cpp 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass that finds instructions that can be
// re-written as LEA instructions in order to reduce pipeline delays.
// It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define FIXUPLEA_DESC "X86 LEA Fixup"
#define FIXUPLEA_NAME "x86-fixup-LEAs"

#define DEBUG_TYPE FIXUPLEA_NAME

STATISTIC(NumLEAs, "Number of LEA instructions created");

namespace {
class FixupLEAPass : public MachineFunctionPass {
  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };

  /// Given a machine register, look for the instruction
  /// which writes it in the current basic block. If found,
  /// try to replace it with an equivalent LEA instruction.
  /// If replacement succeeds, then also process the newly created
  /// instruction.
  void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
                    MachineBasicBlock &MBB);

  /// Given a memory access or LEA instruction
  /// whose address mode uses a base and/or index register, look for
  /// an opportunity to replace the instruction which sets the base or index
  /// register with an equivalent LEA instruction.
  void processInstruction(MachineBasicBlock::iterator &I,
                          MachineBasicBlock &MBB);

  /// Given a LEA instruction which is unprofitable
  /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
  void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
                                    MachineBasicBlock &MBB);

  /// Given a LEA instruction which is unprofitable
  /// on SNB+ try to replace it with other instructions.
  /// According to Intel's Optimization Reference Manual:
  /// " For LEA instructions with three source operands and some specific
  ///   situations, instruction latency has increased to 3 cycles, and must
  ///   dispatch via port 1:
  /// - LEA that has all three source operands: base, index, and offset
  /// - LEA that uses base and index registers where the base is EBP, RBP,
  ///   or R13
  /// - LEA that uses RIP relative addressing mode
  /// - LEA that uses 16-bit addressing mode "
  /// This function currently handles the first 2 cases only.
  void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
                                 MachineBasicBlock &MBB, bool OptIncDec);

  /// Look for LEAs that are really two address LEAs that we might be able to
  /// turn into regular ADD instructions.
  bool optTwoAddrLEA(MachineBasicBlock::iterator &I,
                     MachineBasicBlock &MBB, bool OptIncDec,
                     bool UseLEAForSP) const;

  /// Determine if an instruction references a machine register
  /// and, if so, whether it reads or writes the register.
  RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);

  /// Step backwards through a basic block, looking
  /// for an instruction which writes a register within
  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
  MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
                                              MachineBasicBlock::iterator &I,
                                              MachineBasicBlock &MBB);

  /// if an instruction can be converted to an
  /// equivalent LEA, insert the new instruction into the basic block
  /// and return a pointer to it. Otherwise, return zero.
  MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator &MBBI) const;

public:
  static char ID;

  StringRef getPassName() const override { return FIXUPLEA_DESC; }

  FixupLEAPass() : MachineFunctionPass(ID) { }

  /// Loop over all of the basic blocks,
  /// replacing instructions by equivalent LEA instructions
  /// if needed and when possible.
  bool runOnMachineFunction(MachineFunction &MF) override;

  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

private:
  TargetSchedModel TSM;
  const X86InstrInfo *TII = nullptr;
  const X86RegisterInfo *TRI = nullptr;
};
}

char FixupLEAPass::ID = 0;

INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)

MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator &MBBI) const {
  MachineInstr &MI = *MBBI;
  switch (MI.getOpcode()) {
  case X86::MOV32rr:
  case X86::MOV64rr: {
    const MachineOperand &Src = MI.getOperand(1);
    const MachineOperand &Dest = MI.getOperand(0);
    MachineInstr *NewMI =
        BuildMI(MBB, MBBI, MI.getDebugLoc(),
                TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
                                                        : X86::LEA64r))
            .add(Dest)
            .add(Src)
            .addImm(1)
            .addReg(0)
            .addImm(0)
            .addReg(0);
    return NewMI;
  }
  }

  if (!MI.isConvertibleTo3Addr())
    return nullptr;

  switch (MI.getOpcode()) {
  default:
    // Only convert instructions that we've verified are safe.
    return nullptr;
  case X86::ADD64ri32:
  case X86::ADD64ri8:
  case X86::ADD64ri32_DB:
  case X86::ADD64ri8_DB:
  case X86::ADD32ri:
  case X86::ADD32ri8:
  case X86::ADD32ri_DB:
  case X86::ADD32ri8_DB:
    if (!MI.getOperand(2).isImm()) {
      // convertToThreeAddress will call getImm()
      // which requires isImm() to be true
      return nullptr;
    }
    break;
  case X86::SHL64ri:
  case X86::SHL32ri:
  case X86::INC64r:
  case X86::INC32r:
  case X86::DEC64r:
  case X86::DEC32r:
  case X86::ADD64rr:
  case X86::ADD64rr_DB:
  case X86::ADD32rr:
  case X86::ADD32rr_DB:
    // These instructions are all fine to convert.
    break;
  }
  MachineFunction::iterator MFI = MBB.getIterator();
  return TII->convertToThreeAddress(MFI, MI, nullptr);
}

FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }

static bool isLEA(unsigned Opcode) {
  return Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
         Opcode == X86::LEA64_32r;
}

bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
  bool IsSlowLEA = ST.slowLEA();
  bool IsSlow3OpsLEA = ST.slow3OpsLEA();
  bool LEAUsesAG = ST.LEAusesAG();

  bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize();
  bool UseLEAForSP = ST.useLeaForSP();

  TSM.init(&ST);
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  auto *MBFI = (PSI && PSI->hasProfileSummary())
                   ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()
                   : nullptr;

  LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
  for (MachineBasicBlock &MBB : MF) {
    // First pass. Try to remove or optimize existing LEAs.
    bool OptIncDecPerBB =
        OptIncDec || llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
    for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
      if (!isLEA(I->getOpcode()))
        continue;

      if (optTwoAddrLEA(I, MBB, OptIncDecPerBB, UseLEAForSP))
        continue;

      if (IsSlowLEA)
        processInstructionForSlowLEA(I, MBB);
      else if (IsSlow3OpsLEA)
        processInstrForSlow3OpLEA(I, MBB, OptIncDecPerBB);
    }

    // Second pass for creating LEAs. This may reverse some of the
    // transformations above.
    if (LEAUsesAG) {
      for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
        processInstruction(I, MBB);
    }
  }

  LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);

  return true;
}

FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
  RegUsageState RegUsage = RU_NotUsed;
  MachineInstr &MI = *I;

  for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
    MachineOperand &opnd = MI.getOperand(i);
    if (opnd.isReg() && opnd.getReg() == p.getReg()) {
      if (opnd.isDef())
        return RU_Write;
      RegUsage = RU_Read;
    }
  }
  return RegUsage;
}

/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
                                    MachineBasicBlock &MBB) {
  if (I == MBB.begin()) {
    if (MBB.isPredecessor(&MBB)) {
      I = --MBB.end();
      return true;
    } else
      return false;
  }
  --I;
  return true;
}

MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
                              MachineBasicBlock &MBB) {
  int InstrDistance = 1;
  MachineBasicBlock::iterator CurInst;
  static const int INSTR_DISTANCE_THRESHOLD = 5;

  CurInst = I;
  bool Found;
  Found = getPreviousInstr(CurInst, MBB);
  while (Found && I != CurInst) {
    if (CurInst->isCall() || CurInst->isInlineAsm())
      break;
    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
      break; // too far back to make a difference
    if (usesRegister(p, CurInst) == RU_Write) {
      return CurInst;
    }
    InstrDistance += TSM.computeInstrLatency(&*CurInst);
    Found = getPreviousInstr(CurInst, MBB);
  }
  return MachineBasicBlock::iterator();
}

static inline bool isInefficientLEAReg(unsigned Reg) {
  return Reg == X86::EBP || Reg == X86::RBP ||
         Reg == X86::R13D || Reg == X86::R13;
}

/// Returns true if this LEA uses base an index registers, and the base register
/// is known to be inefficient for the subtarget.
// TODO: use a variant scheduling class to model the latency profile
// of LEA instructions, and implement this logic as a scheduling predicate.
static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
                                            const MachineOperand &Index) {
  return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() &&
         Index.getReg() != X86::NoRegister;
}

static inline bool hasLEAOffset(const MachineOperand &Offset) {
  return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
}

static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) {
  switch (LEAOpcode) {
  default:
    llvm_unreachable("Unexpected LEA instruction");
  case X86::LEA32r:
  case X86::LEA64_32r:
    return X86::ADD32rr;
  case X86::LEA64r:
    return X86::ADD64rr;
  }
}

static inline unsigned getADDriFromLEA(unsigned LEAOpcode,
                                       const MachineOperand &Offset) {
  bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
  switch (LEAOpcode) {
  default:
    llvm_unreachable("Unexpected LEA instruction");
  case X86::LEA32r:
  case X86::LEA64_32r:
    return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
  case X86::LEA64r:
    return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
  }
}

static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) {
  switch (LEAOpcode) {
  default:
    llvm_unreachable("Unexpected LEA instruction");
  case X86::LEA32r:
  case X86::LEA64_32r:
    return IsINC ? X86::INC32r : X86::DEC32r;
  case X86::LEA64r:
    return IsINC ? X86::INC64r : X86::DEC64r;
  }
}

bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I,
                                 MachineBasicBlock &MBB, bool OptIncDec,
                                 bool UseLEAForSP) const {
  MachineInstr &MI = *I;

  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
  const MachineOperand &Disp =    MI.getOperand(1 + X86::AddrDisp);
  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);

  if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 ||
      !TII->isSafeToClobberEFLAGS(MBB, I))
    return false;

  Register DestReg = MI.getOperand(0).getReg();
  Register BaseReg = Base.getReg();
  Register IndexReg = Index.getReg();

  // Don't change stack adjustment LEAs.
  if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP))
    return false;

  // LEA64_32 has 64-bit operands but 32-bit result.
  if (MI.getOpcode() == X86::LEA64_32r) {
    if (BaseReg != 0)
      BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
    if (IndexReg != 0)
      IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
  }

  MachineInstr *NewMI = nullptr;

  // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
  // which can be turned into add %reg2, %reg1
  if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 &&
      (DestReg == BaseReg || DestReg == IndexReg)) {
    unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode());
    if (DestReg != BaseReg)
      std::swap(BaseReg, IndexReg);

    if (MI.getOpcode() == X86::LEA64_32r) {
      // TODO: Do we need the super register implicit use?
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
        .addReg(BaseReg).addReg(IndexReg)
        .addReg(Base.getReg(), RegState::Implicit)
        .addReg(Index.getReg(), RegState::Implicit);
    } else {
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
        .addReg(BaseReg).addReg(IndexReg);
    }
  } else if (DestReg == BaseReg && IndexReg == 0) {
    // This is an LEA with only a base register and a displacement,
    // We can use ADDri or INC/DEC.

    // Does this LEA have one these forms:
    // lea  %reg, 1(%reg)
    // lea  %reg, -1(%reg)
    if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) {
      bool IsINC = Disp.getImm() == 1;
      unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC);

      if (MI.getOpcode() == X86::LEA64_32r) {
        // TODO: Do we need the super register implicit use?
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit);
      } else {
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg);
      }
    } else {
      unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp);
      if (MI.getOpcode() == X86::LEA64_32r) {
        // TODO: Do we need the super register implicit use?
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg).addImm(Disp.getImm())
          .addReg(Base.getReg(), RegState::Implicit);
      } else {
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
          .addReg(BaseReg).addImm(Disp.getImm());
      }
    }
  } else
    return false;

  MBB.erase(I);
  I = NewMI;
  return true;
}

void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
                                      MachineBasicBlock &MBB) {
  // Process a load, store, or LEA instruction.
  MachineInstr &MI = *I;
  const MCInstrDesc &Desc = MI.getDesc();
  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
  if (AddrOffset >= 0) {
    AddrOffset += X86II::getOperandBias(Desc);
    MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
    if (p.isReg() && p.getReg() != X86::ESP) {
      seekLEAFixup(p, I, MBB);
    }
    MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
    if (q.isReg() && q.getReg() != X86::ESP) {
      seekLEAFixup(q, I, MBB);
    }
  }
}

void FixupLEAPass::seekLEAFixup(MachineOperand &p,
                                MachineBasicBlock::iterator &I,
                                MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB);
  if (MBI != MachineBasicBlock::iterator()) {
    MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI);
    if (NewMI) {
      ++NumLEAs;
      LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
      // now to replace with an equivalent LEA...
      LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
      MBB.erase(MBI);
      MachineBasicBlock::iterator J =
          static_cast<MachineBasicBlock::iterator>(NewMI);
      processInstruction(J, MBB);
    }
  }
}

void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
                                                MachineBasicBlock &MBB) {
  MachineInstr &MI = *I;
  const unsigned Opcode = MI.getOpcode();

  const MachineOperand &Dst =     MI.getOperand(0);
  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
  const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);

  if (Segment.getReg() != 0 || !Offset.isImm() ||
      !TII->isSafeToClobberEFLAGS(MBB, I))
    return;
  const Register DstR = Dst.getReg();
  const Register SrcR1 = Base.getReg();
  const Register SrcR2 = Index.getReg();
  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
    return;
  if (Scale.getImm() > 1)
    return;
  LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
  LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
  MachineInstr *NewMI = nullptr;
  // Make ADD instruction for two registers writing to LEA's destination
  if (SrcR1 != 0 && SrcR2 != 0) {
    const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
    const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
    NewMI =
        BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
    LLVM_DEBUG(NewMI->dump(););
  }
  // Make ADD instruction for immediate
  if (Offset.getImm() != 0) {
    const MCInstrDesc &ADDri =
        TII->get(getADDriFromLEA(Opcode, Offset));
    const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
    NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR)
                .add(SrcR)
                .addImm(Offset.getImm());
    LLVM_DEBUG(NewMI->dump(););
  }
  if (NewMI) {
    MBB.erase(I);
    I = NewMI;
  }
}

void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
                                             MachineBasicBlock &MBB,
                                             bool OptIncDec) {
  MachineInstr &MI = *I;
  const unsigned LEAOpcode = MI.getOpcode();

  const MachineOperand &Dest =    MI.getOperand(0);
  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
  const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);

  if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) ||
      !TII->isSafeToClobberEFLAGS(MBB, MI) ||
      Segment.getReg() != X86::NoRegister)
    return;

  Register DestReg = Dest.getReg();
  Register BaseReg = Base.getReg();
  Register IndexReg = Index.getReg();

  if (MI.getOpcode() == X86::LEA64_32r) {
    if (BaseReg != 0)
      BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
    if (IndexReg != 0)
      IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
  }

  bool IsScale1 = Scale.getImm() == 1;
  bool IsInefficientBase = isInefficientLEAReg(BaseReg);
  bool IsInefficientIndex = isInefficientLEAReg(IndexReg);

  // Skip these cases since it takes more than 2 instructions
  // to replace the LEA instruction.
  if (IsInefficientBase && DestReg == BaseReg && !IsScale1)
    return;

  LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
  LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);

  MachineInstr *NewMI = nullptr;

  // First try to replace LEA with one or two (for the 3-op LEA case)
  // add instructions:
  // 1.lea (%base,%index,1), %base => add %index,%base
  // 2.lea (%base,%index,1), %index => add %base,%index
  if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) {
    unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
    if (DestReg != BaseReg)
      std::swap(BaseReg, IndexReg);

    if (MI.getOpcode() == X86::LEA64_32r) {
      // TODO: Do we need the super register implicit use?
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                  .addReg(BaseReg)
                  .addReg(IndexReg)
                  .addReg(Base.getReg(), RegState::Implicit)
                  .addReg(Index.getReg(), RegState::Implicit);
    } else {
      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                  .addReg(BaseReg)
                  .addReg(IndexReg);
    }
  } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
    // If the base is inefficient try switching the index and base operands,
    // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
    // lea offset(%base,%index,scale),%dst =>
    // lea (%base,%index,scale); add offset,%dst
    NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
                .add(Dest)
                .add(IsInefficientBase ? Index : Base)
                .add(Scale)
                .add(IsInefficientBase ? Base : Index)
                .addImm(0)
                .add(Segment);
    LLVM_DEBUG(NewMI->dump(););
  }

  // If either replacement succeeded above, add the offset if needed, then
  // replace the instruction.
  if (NewMI) {
    // Create ADD instruction for the Offset in case of 3-Ops LEA.
    if (hasLEAOffset(Offset)) {
      if (OptIncDec && Offset.isImm() &&
          (Offset.getImm() == 1 || Offset.getImm() == -1)) {
        unsigned NewOpc =
            getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1);
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                    .addReg(DestReg);
        LLVM_DEBUG(NewMI->dump(););
      } else {
        unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset);
        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                    .addReg(DestReg)
                    .add(Offset);
        LLVM_DEBUG(NewMI->dump(););
      }
    }

    MBB.erase(I);
    I = NewMI;
    return;
  }

  // Handle the rest of the cases with inefficient base register:
  assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!");
  assert(IsInefficientBase && "efficient base should be handled already!");

  // FIXME: Handle LEA64_32r.
  if (LEAOpcode == X86::LEA64_32r)
    return;

  // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
  if (IsScale1 && !hasLEAOffset(Offset)) {
    bool BIK = Base.isKill() && BaseReg != IndexReg;
    TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK);
    LLVM_DEBUG(MI.getPrevNode()->dump(););

    unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
    NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
                .addReg(DestReg)
                .add(Index);
    LLVM_DEBUG(NewMI->dump(););

    MBB.erase(I);
    I = NewMI;
    return;
  }

  // lea offset(%base,%index,scale), %dst =>
  // lea offset( ,%index,scale), %dst; add %base,%dst
  NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
              .add(Dest)
              .addReg(0)
              .add(Scale)
              .add(Index)
              .add(Offset)
              .add(Segment);
  LLVM_DEBUG(NewMI->dump(););

  unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
  NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
              .addReg(DestReg)
              .add(Base);
  LLVM_DEBUG(NewMI->dump(););

  MBB.erase(I);
  I = NewMI;
}