X86CallingConv.td 46.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//

/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
                       "(State.getMachineFunction().getSubtarget()).", F),
           A>;

/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
class CCIfNotSubtarget<string F, CCAction A>
    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
                       "(State.getMachineFunction().getSubtarget()).", F),
           A>;

// Register classes for RegCall
class RC_X86_RegCall {
  list<Register> GPR_8 = [];
  list<Register> GPR_16 = [];
  list<Register> GPR_32 = [];
  list<Register> GPR_64 = [];
  list<Register> FP_CALL = [FP0];
  list<Register> FP_RET = [FP0, FP1];
  list<Register> XMM = [];
  list<Register> YMM = [];
  list<Register> ZMM = [];
}

// RegCall register classes for 32 bits
def RC_X86_32_RegCall : RC_X86_RegCall {
  let GPR_8 = [AL, CL, DL, DIL, SIL];
  let GPR_16 = [AX, CX, DX, DI, SI];
  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
                      ///< \todo Fix AssignToReg to enable empty lists
  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
}

class RC_X86_64_RegCall : RC_X86_RegCall {
  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
}

def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
}

def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
}

// X86-64 Intel regcall calling convention.
multiclass X86_RegCall_base<RC_X86_RegCall RC> {
def CC_#NAME : CallingConv<[
  // Handles byval parameters.
    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
    CCIfByVal<CCPassByVal<4, 4>>,

    // Promote i1/i8/i16/v1i1 arguments to i32.
    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

    // Promote v8i1/v16i1/v32i1 arguments to i32.
    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,

    // bool, char, int, enum, long, pointer --> GPR
    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,

    // long long, __int64 --> GPR
    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,

    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
    CCIfType<[v64i1], CCPromoteToType<i64>>,
    CCIfSubtarget<"is64Bit()", CCIfType<[i64], 
      CCAssignToReg<RC.GPR_64>>>,
    CCIfSubtarget<"is32Bit()", CCIfType<[i64], 
      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,

    // float, double, float128 --> XMM
    // In the case of SSE disabled --> save to stack
    CCIfType<[f32, f64, f128], 
      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,

    // long double --> FP
    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,

    // __m128, __m128i, __m128d --> XMM
    // In the case of SSE disabled --> save to stack
    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 
      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,

    // __m256, __m256i, __m256d --> YMM
    // In the case of SSE disabled --> save to stack
    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 
      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,

    // __m512, __m512i, __m512d --> ZMM
    // In the case of SSE disabled --> save to stack
    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], 
      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,

    // If no register was found -> assign to stack

    // In 64 bit, assign 64/32 bit values to 8 byte stack
    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64], 
      CCAssignToStack<8, 8>>>,

    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,

    // MMX type gets 8 byte slot in stack , while alignment depends on target
    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,

    // float 128 get stack slots whose size and alignment depends 
    // on the subtarget.
    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,

    // Vectors get 16-byte stack slots that are 16-byte aligned.
    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 
      CCAssignToStack<16, 16>>,

    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 
      CCAssignToStack<32, 32>>,

    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
      CCAssignToStack<64, 64>>
]>;

def RetCC_#NAME : CallingConv<[
    // Promote i1, v1i1, v8i1 arguments to i8.
    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,

    // Promote v16i1 arguments to i16.
    CCIfType<[v16i1], CCPromoteToType<i16>>,

    // Promote v32i1 arguments to i32.
    CCIfType<[v32i1], CCPromoteToType<i32>>,

    // bool, char, int, enum, long, pointer --> GPR
    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,

    // long long, __int64 --> GPR
    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,

    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
    CCIfType<[v64i1], CCPromoteToType<i64>>,
    CCIfSubtarget<"is64Bit()", CCIfType<[i64], 
      CCAssignToReg<RC.GPR_64>>>,
    CCIfSubtarget<"is32Bit()", CCIfType<[i64], 
      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,

    // long double --> FP
    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,

    // float, double, float128 --> XMM
    CCIfType<[f32, f64, f128], 
      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,

    // __m128, __m128i, __m128d --> XMM
    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 
      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,

    // __m256, __m256i, __m256d --> YMM
    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], 
      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,

    // __m512, __m512i, __m512d --> ZMM
    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], 
      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
]>;
}

//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//

// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
  // Scalar values are returned in AX first, then DX.  For i8, the ABI
  // requires the values to be in AL and AH, however this code uses AL and DL
  // instead. This is because using AH for the second register conflicts with
  // the way LLVM does multiple return values -- a return of {i16,i8} would end
  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
  // for functions that return two i8 values are currently expected to pack the
  // values into an i16 (which uses AX, and thus AL:AH).
  //
  // For code that doesn't care about the ABI, we allow returning more than two
  // integer values in registers.
  CCIfType<[v1i1],  CCPromoteToType<i8>>,
  CCIfType<[i1],  CCPromoteToType<i8>>,
  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,

  // Boolean vectors of AVX-512 are returned in SIMD registers.
  // The call from AVX to AVX-512 function should work,
  // since the boolean types in AVX/AVX2 are promoted by default.
  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
  CCIfType<[v64i1], CCPromoteToType<v64i8>>,

  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
  // can only be used by ABI non-compliant code. If the target doesn't have XMM
  // registers, it won't have vector types.
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,

  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
  // can only be used by ABI non-compliant code. This vector type is only
  // supported while using the AVX target feature.
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,

  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
  // can only be used by ABI non-compliant code. This vector type is only
  // supported while using the AVX-512 target feature.
  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,

  // MMX vector types are always returned in MM0. If the target doesn't have
  // MM0, it doesn't support these vector types.
  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,

  // Long double types are always returned in FP0 (even with SSE),
  // except on Win64.
  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
]>;

// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
  // The X86-32 calling convention returns FP values in FP0, unless marked
  // with "inreg" (used here to distinguish one kind of reg from another,
  // weirdly; this is really the sse-regparm calling convention) in which
  // case they use XMM0, otherwise it is the same as the common X86 calling
  // conv.
  CCIfInReg<CCIfSubtarget<"hasSSE2()",
    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
  // SSE2.
  // This can happen when a float, 2 x float, or 3 x float vector is split by
  // target lowering, and is returned in 1-3 sse regs.
  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,

  // For integers, ECX can be used as an extra return register
  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,

  // Otherwise, it is the same as the common X86 calling convention.
  CCDelegateTo<RetCC_X86Common>
]>;

// Intel_OCL_BI return-value convention.
def RetCC_Intel_OCL_BI : CallingConv<[
  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,

  // 256-bit FP vectors
  // No more than 4 registers
  CCIfType<[v8f32, v4f64, v8i32, v4i64],
            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,

  // 512-bit FP vectors
  CCIfType<[v16f32, v8f64, v16i32, v8i64],
            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,

  // i32, i64 in the standard way
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-32 HiPE return-value convention.
def RetCC_X86_32_HiPE : CallingConv<[
  // Promote all types to i32
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Return: HP, P, VAL1, VAL2
  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
]>;

// X86-32 Vectorcall return-value convention.
def RetCC_X86_32_VectorCall : CallingConv<[
  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
  CCIfType<[f32, f64, f128],
            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,

  // Return integers in the standard way.
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
  // The X86-64 calling convention always returns FP values in XMM0.
  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,

  // MMX vector types are always returned in XMM0.
  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,

  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,

  CCDelegateTo<RetCC_X86Common>
]>;

// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
  // The X86-Win64 calling convention always returns __m64 values in RAX.
  CCIfType<[x86mmx], CCBitConvertToType<i64>>,

  // GCC returns FP values in RAX on Win64.
  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,

  // Otherwise, everything is the same as 'normal' X86-64 C CC.
  CCDelegateTo<RetCC_X86_64_C>
]>;

// X86-64 vectorcall return-value convention.
def RetCC_X86_64_Vectorcall : CallingConv<[
  // Vectorcall calling convention always returns FP values in XMMs.
  CCIfType<[f32, f64, f128], 
    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,

  // Otherwise, everything is the same as Windows X86-64 C CC.
  CCDelegateTo<RetCC_X86_Win64_C>
]>;

// X86-64 HiPE return-value convention.
def RetCC_X86_64_HiPE : CallingConv<[
  // Promote all types to i64
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Return: HP, P, VAL1, VAL2
  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
]>;

// X86-64 WebKit_JS return-value convention.
def RetCC_X86_64_WebKit_JS : CallingConv<[
  // Promote all types to i64
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Return: RAX
  CCIfType<[i64], CCAssignToReg<[RAX]>>
]>;

def RetCC_X86_64_Swift : CallingConv<[

  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,

  // For integers, ECX, R8D can be used as extra return registers.
  CCIfType<[v1i1],  CCPromoteToType<i8>>,
  CCIfType<[i1],  CCPromoteToType<i8>>,
  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,

  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,

  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-64 AnyReg return-value convention. No explicit register is specified for
// the return-value. The register allocator is allowed and expected to choose
// any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def RetCC_X86_64_AnyReg : CallingConv<[
  CCCustom<"CC_X86_AnyReg_Error">
]>;

// X86-64 HHVM return-value convention.
def RetCC_X86_64_HHVM: CallingConv<[
  // Promote all types to i64
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Return: could return in any GP register save RSP and R12.
  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
                                 RAX, R10, R11, R13, R14, R15]>>
]>;


defm X86_32_RegCall :
	 X86_RegCall_base<RC_X86_32_RegCall>;
defm X86_Win64_RegCall :
     X86_RegCall_base<RC_X86_64_RegCall_Win>;
defm X86_SysV64_RegCall :
     X86_RegCall_base<RC_X86_64_RegCall_SysV>;

// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
  // If FastCC, use RetCC_X86_32_Fast.
  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
  // CFGuard_Check never returns a value so does not need a RetCC.
  // If HiPE, use RetCC_X86_32_HiPE.
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,

  // Otherwise, use RetCC_X86_32_C.
  CCDelegateTo<RetCC_X86_32_C>
]>;

// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
  // HiPE uses RetCC_X86_64_HiPE
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,

  // Handle JavaScript calls.
  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,

  // Handle Swift calls.
  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,

  // Handle explicit CC selection
  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,

  // Handle Vectorcall CC
  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,

  // Handle HHVM calls.
  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,

  CCIfCC<"CallingConv::X86_RegCall",
          CCIfSubtarget<"isTargetWin64()",
                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
          
  // Mingw64 and native Win64 use Win64 CC
  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,

  // Otherwise, drop to normal X86-64 CC
  CCDelegateTo<RetCC_X86_64_C>
]>;

// This is the return-value convention used for the entire X86 backend.
let Entry = 1 in
def RetCC_X86 : CallingConv<[

  // Check if this is the Intel OpenCL built-ins calling convention
  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,

  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
  CCDelegateTo<RetCC_X86_32>
]>;

//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//

def CC_X86_64_C : CallingConv<[
  // Handles byval parameters.
  CCIfByVal<CCPassByVal<8, 8>>,

  // Promote i1/i8/i16/v1i1 arguments to i32.
  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in R10.
  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
  CCIfNest<CCAssignToReg<[R10]>>,

  // Pass SwiftSelf in a callee saved register.
  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,

  // A SwiftError is passed in R12.
  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,

  // For Swift Calling Convention, pass sret in %rax.
  CCIfCC<"CallingConv::Swift",
    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,

  // The first 6 integer arguments are passed in integer registers.
  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,

  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
  CCIfType<[x86mmx],
            CCIfSubtarget<"isTargetDarwin()",
            CCIfSubtarget<"hasSSE2()",
            CCPromoteToType<v2i64>>>>,

  // Boolean vectors of AVX-512 are passed in SIMD registers.
  // The call from AVX to AVX-512 function should work,
  // since the boolean types in AVX/AVX2 are promoted by default.
  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
  CCIfType<[v64i1], CCPromoteToType<v64i8>>,

  // The first 8 FP/Vector arguments are passed in XMM registers.
  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
            CCIfSubtarget<"hasSSE1()",
            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,

  // The first 8 256-bit vector arguments are passed in YMM registers, unless
  // this is a vararg function.
  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
  // fixed arguments to vararg functions are supposed to be passed in
  // registers.  Actually modeling that would be a lot of work, though.
  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
                          CCIfSubtarget<"hasAVX()",
                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
                                         YMM4, YMM5, YMM6, YMM7]>>>>,

  // The first 8 512-bit vector arguments are passed in ZMM registers.
  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
            CCIfSubtarget<"hasAVX512()",
            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,

  // Integer/FP values get stored in stack slots that are 8 bytes in size and
  // 8-byte aligned if there are no more registers to hold them.
  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,

  // Long doubles get stack slots whose size and alignment depends on the
  // subtarget.
  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,

  // Vectors get 16-byte stack slots that are 16-byte aligned.
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,

  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
           CCAssignToStack<32, 32>>,

  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
           CCAssignToStack<64, 64>>
]>;

// Calling convention for X86-64 HHVM.
def CC_X86_64_HHVM : CallingConv<[
  // Use all/any GP registers for args, except RSP.
  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
                                 RDI, RSI, RDX, RCX, R8, R9,
                                 RAX, R10, R11, R13, R14]>>
]>;

// Calling convention for helper functions in HHVM.
def CC_X86_64_HHVM_C : CallingConv<[
  // Pass the first argument in RBP.
  CCIfType<[i64], CCAssignToReg<[RBP]>>,

  // Otherwise it's the same as the regular C calling convention.
  CCDelegateTo<CC_X86_64_C>
]>;

// Calling convention used on Win64
def CC_X86_Win64_C : CallingConv<[
  // FIXME: Handle varargs.

  // Byval aggregates are passed by pointer
  CCIfByVal<CCPassIndirect<i64>>,

  // Promote i1/v1i1 arguments to i8.
  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,

  // The 'nest' parameter, if any, is passed in R10.
  CCIfNest<CCAssignToReg<[R10]>>,

  // A SwiftError is passed in R12.
  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,

  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,

  // 128 bit vectors are passed by pointer
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,

  // 256 bit vectors are passed by pointer
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,

  // 512 bit vectors are passed by pointer
  CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,

  // Long doubles are passed by pointer
  CCIfType<[f80], CCPassIndirect<i64>>,

  // The first 4 MMX vector arguments are passed in GPRs.
  CCIfType<[x86mmx], CCBitConvertToType<i64>>,

  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
  // GPRs or on the stack.
  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,

  // The first 4 FP/Vector arguments are passed in XMM registers.
  CCIfType<[f32, f64],
           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
                                   [RCX , RDX , R8  , R9  ]>>,

  // The first 4 integer arguments are passed in integer registers.
  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
                                          [XMM0, XMM1, XMM2, XMM3]>>,
  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
                                          [XMM0, XMM1, XMM2, XMM3]>>,
  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
                                          [XMM0, XMM1, XMM2, XMM3]>>,

  // Do not pass the sret argument in RCX, the Win64 thiscall calling
  // convention requires "this" to be passed in RCX.
  CCIfCC<"CallingConv::X86_ThisCall",
    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
                                                     [XMM1, XMM2, XMM3]>>>>,

  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
                                          [XMM0, XMM1, XMM2, XMM3]>>,

  // Integer/FP values get stored in stack slots that are 8 bytes in size and
  // 8-byte aligned if there are no more registers to hold them.
  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;

def CC_X86_Win64_VectorCall : CallingConv<[
  CCCustom<"CC_X86_64_VectorCall">,

  // Delegate to fastcall to handle integer types.
  CCDelegateTo<CC_X86_Win64_C>
]>;


def CC_X86_64_GHC : CallingConv<[
  // Promote i8/i16/i32 arguments to i64.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
  CCIfType<[i64],
            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,

  // Pass in STG registers: F1, F2, F3, F4, D1, D2
  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
            CCIfSubtarget<"hasSSE1()",
            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
  // AVX
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
            CCIfSubtarget<"hasAVX()",
            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
  // AVX-512
  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
            CCIfSubtarget<"hasAVX512()",
            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
]>;

def CC_X86_64_HiPE : CallingConv<[
  // Promote i8/i16/i32 arguments to i64.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,

  // Integer/FP values get stored in stack slots that are 8 bytes in size and
  // 8-byte aligned if there are no more registers to hold them.
  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;

def CC_X86_64_WebKit_JS : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Only the first integer argument is passed in register.
  CCIfType<[i32], CCAssignToReg<[EAX]>>,
  CCIfType<[i64], CCAssignToReg<[RAX]>>,

  // The remaining integer arguments are passed on the stack. 32bit integer and
  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
  // in 8 byte stack slots.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

// No explicit register is specified for the AnyReg calling convention. The
// register allocator may assign the arguments to any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def CC_X86_64_AnyReg : CallingConv<[
  CCCustom<"CC_X86_AnyReg_Error">
]>;

//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//

/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
/// values are spilled on the stack.
def CC_X86_32_Vector_Common : CallingConv<[
  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,

  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
           CCAssignToStack<32, 32>>,

  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
           CCAssignToStack<64, 64>>
]>;

// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
// vector registers
def CC_X86_32_Vector_Standard : CallingConv<[
  // SSE vector arguments are passed in XMM registers.
  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,

  // AVX 256-bit vector arguments are passed in YMM registers.
  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
                CCIfSubtarget<"hasAVX()",
                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,

  // AVX 512-bit vector arguments are passed in ZMM registers.
  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,

  CCDelegateTo<CC_X86_32_Vector_Common>
]>;

// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
// vector registers.
def CC_X86_32_Vector_Darwin : CallingConv<[
  // SSE vector arguments are passed in XMM registers.
  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,

  // AVX 256-bit vector arguments are passed in YMM registers.
  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
                CCIfSubtarget<"hasAVX()",
                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,

  // AVX 512-bit vector arguments are passed in ZMM registers.
  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,

  CCDelegateTo<CC_X86_32_Vector_Common>
]>;

/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack.
def CC_X86_32_Common : CallingConv<[
  // Handles byval/preallocated parameters.
  CCIfByVal<CCPassByVal<4, 4>>,
  CCIfPreallocated<CCPassByVal<4, 4>>,

  // The first 3 float or double arguments, if marked 'inreg' and if the call
  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
                CCIfSubtarget<"hasSSE2()",
                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,

  // The first 3 __m64 vector arguments are passed in mmx registers if the
  // call is not a vararg call.
  CCIfNotVarArg<CCIfType<[x86mmx],
                CCAssignToReg<[MM0, MM1, MM2]>>>,

  // Integer/Float values get stored in stack slots that are 4 bytes in
  // size and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,

  // Doubles get 8-byte slots that are 4-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 4>>,

  // Long doubles get slots whose size depends on the subtarget.
  CCIfType<[f80], CCAssignToStack<0, 4>>,

  // Boolean vectors of AVX-512 are passed in SIMD registers.
  // The call from AVX to AVX-512 function should work,
  // since the boolean types in AVX/AVX2 are promoted by default.
  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
  CCIfType<[v64i1], CCPromoteToType<v64i8>>,

  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
  // passed in the parameter area.
  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,

  // Darwin passes vectors in a form that differs from the i386 psABI
  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,

  // Otherwise, drop to 'normal' X86-32 CC
  CCDelegateTo<CC_X86_32_Vector_Standard>
]>;

def CC_X86_32_C : CallingConv<[
  // Promote i1/i8/i16/v1i1 arguments to i32.
  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in ECX.
  CCIfNest<CCAssignToReg<[ECX]>>,

  // The first 3 integer arguments, if marked 'inreg' and if the call is not
  // a vararg call, are passed in integer registers.
  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_MCU : CallingConv<[
  // Handles byval parameters.  Note that, like FastCC, we can't rely on
  // the delegation to CC_X86_32_Common because that happens after code that
  // puts arguments in registers.
  CCIfByVal<CCPassByVal<4, 4>>,

  // Promote i1/i8/i16/v1i1 arguments to i32.
  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

  // If the call is not a vararg call, some arguments may be passed
  // in integer registers.
  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_FastCall : CallingConv<[
  // Promote i1 to i8.
  CCIfType<[i1], CCPromoteToType<i8>>,

  // The 'nest' parameter, if any, is passed in EAX.
  CCIfNest<CCAssignToReg<[EAX]>>,

  // The first 2 integer arguments are passed in ECX/EDX
  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_Win32_VectorCall : CallingConv<[
  // Pass floating point in XMMs
  CCCustom<"CC_X86_32_VectorCall">,

  // Delegate to fastcall to handle integer types.
  CCDelegateTo<CC_X86_32_FastCall>
]>;

def CC_X86_32_ThisCall_Common : CallingConv<[
  // The first integer argument is passed in ECX
  CCIfType<[i32], CCAssignToReg<[ECX]>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_ThisCall_Mingw : CallingConv<[
  // Promote i1/i8/i16/v1i1 arguments to i32.
  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

  CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;

def CC_X86_32_ThisCall_Win : CallingConv<[
  // Promote i1/i8/i16/v1i1 arguments to i32.
  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

  // Pass sret arguments indirectly through stack.
  CCIfSRet<CCAssignToStack<4, 4>>,

  CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;

def CC_X86_32_ThisCall : CallingConv<[
  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
  CCDelegateTo<CC_X86_32_ThisCall_Win>
]>;

def CC_X86_32_FastCC : CallingConv<[
  // Handles byval parameters.  Note that we can't rely on the delegation
  // to CC_X86_32_Common for this because that happens after code that
  // puts arguments in registers.
  CCIfByVal<CCPassByVal<4, 4>>,

  // Promote i1/i8/i16/v1i1 arguments to i32.
  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in EAX.
  CCIfNest<CCAssignToReg<[EAX]>>,

  // The first 2 integer arguments are passed in ECX/EDX
  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,

  // The first 3 float or double arguments, if the call is not a vararg
  // call and if SSE2 is available, are passed in SSE registers.
  CCIfNotVarArg<CCIfType<[f32,f64],
                CCIfSubtarget<"hasSSE2()",
                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,

  // Doubles get 8-byte slots that are 8-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 8>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_Win32_CFGuard_Check : CallingConv<[
  // The CFGuard check call takes exactly one integer argument
  // (i.e. the target function address), which is passed in ECX.
  CCIfType<[i32], CCAssignToReg<[ECX]>>
]>;

def CC_X86_32_GHC : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Pass in STG registers: Base, Sp, Hp, R1
  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
]>;

def CC_X86_32_HiPE : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,

  // Integer/Float values get stored in stack slots that are 4 bytes in
  // size and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
]>;

// X86-64 Intel OpenCL built-ins calling convention.
def CC_Intel_OCL_BI : CallingConv<[

  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,

  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,

  CCIfType<[i32], CCAssignToStack<4, 4>>,

  // The SSE vector arguments are passed in XMM registers.
  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,

  // The 256-bit vector arguments are passed in YMM registers.
  CCIfType<[v8f32, v4f64, v8i32, v4i64],
           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,

  // The 512-bit vector arguments are passed in ZMM registers.
  CCIfType<[v16f32, v8f64, v16i32, v8i64],
           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,

  // Pass masks in mask registers
  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,

  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
  CCDelegateTo<CC_X86_32_C>
]>;

//===----------------------------------------------------------------------===//
// X86 Root Argument Calling Conventions
//===----------------------------------------------------------------------===//

// This is the root argument convention for the X86-32 backend.
def CC_X86_32 : CallingConv<[
  // X86_INTR calling convention is valid in MCU target and should override the
  // MCU calling convention. Thus, this should be checked before isTargetMCU().
  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,

  // Otherwise, drop to normal X86-32 CC
  CCDelegateTo<CC_X86_32_C>
]>;

// This is the root argument convention for the X86-64 backend.
def CC_X86_64 : CallingConv<[
  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
  CCIfCC<"CallingConv::X86_RegCall",
    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,

  // Mingw64 and native Win64 use Win64 CC
  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,

  // Otherwise, drop to normal X86-64 CC
  CCDelegateTo<CC_X86_64_C>
]>;

// This is the argument convention used for the entire X86 backend.
let Entry = 1 in
def CC_X86 : CallingConv<[
  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
  CCDelegateTo<CC_X86_32>
]>;

//===----------------------------------------------------------------------===//
// Callee-saved Registers.
//===----------------------------------------------------------------------===//

def CSR_NoRegs : CalleeSavedRegs<(add)>;

def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;

def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;

def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;

def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;

def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
                                     (sequence "XMM%u", 6, 15))>;

def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;

// The function used by Darwin to obtain the address of a thread-local variable
// uses rdi to pass a single parameter and rax for the return value. All other
// GPRs are preserved.
def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
                                             R8, R9, R10, R11)>;

// CSRs that are handled by prologue, epilogue.
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;

// CSRs that are handled explicitly via copies.
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;

// All GPRs - except r11
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
                                              R8, R9, R10, RSP)>;

// All registers - except r11
def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
                                                 (sequence "XMM%u", 0, 15))>;
def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
                                                 (sequence "YMM%u", 0, 15))>;

def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
                                           R11, R12, R13, R14, R15, RBP,
                                           (sequence "XMM%u", 0, 15))>;

def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
                                              EDI)>;
def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
                                              (sequence "XMM%u", 0, 7))>;
def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
                                              (sequence "YMM%u", 0, 7))>;
def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
                                                 (sequence "ZMM%u", 0, 7),
                                                 (sequence "K%u", 0, 7))>;

def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
                                                R10, R11, R12, R13, R14, R15, RBP)>;
def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
                                                   (sequence "YMM%u", 0, 15)),
                                              (sequence "XMM%u", 0, 15))>;
def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
                                                      (sequence "ZMM%u", 0, 31),
                                                      (sequence "K%u", 0, 7)),
                                                 (sequence "XMM%u", 0, 15))>;

// Standard C + YMM6-15
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
                                                  R13, R14, R15,
                                                  (sequence "YMM%u", 6, 15))>;

def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
                                                     R12, R13, R14, R15,
                                                     (sequence "ZMM%u", 6, 21),
                                                     K4, K5, K6, K7)>;
//Standard C + XMM 8-15
def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
                                                 (sequence "XMM%u", 8, 15))>;

//Standard C + YMM 8-15
def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
                                                  (sequence "YMM%u", 8, 15))>;

def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
                                                  (sequence "ZMM%u", 16, 31),
                                                  K4, K5, K6, K7)>;

// Only R12 is preserved for PHP calls in HHVM.
def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;

// Register calling convention preserves few GPR and XMM8-15
def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
                                           (sequence "XMM%u", 4, 7))>;
def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
                                              (sequence "R%u", 10, 15))>;
def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,                                  
                                              (sequence "XMM%u", 8, 15))>;
def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
                                               (sequence "R%u", 12, 15))>;
def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,               
                                               (sequence "XMM%u", 8, 15))>;