X86CallFrameOptimization.cpp 23.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that optimizes call sequences on x86.
// Currently, it converts movs of function parameters onto the stack into
// pushes. This is beneficial for two main reasons:
// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
// 2) It is possible to push memory arguments directly. So, if the
//    the transformation is performed pre-reg-alloc, it can help relieve
//    register pressure.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "x86-cf-opt"

static cl::opt<bool>
    NoX86CFOpt("no-x86-call-frame-opt",
               cl::desc("Avoid optimizing x86 call frames for size"),
               cl::init(false), cl::Hidden);

namespace {

class X86CallFrameOptimization : public MachineFunctionPass {
public:
  X86CallFrameOptimization() : MachineFunctionPass(ID) { }

  bool runOnMachineFunction(MachineFunction &MF) override;

  static char ID;

private:
  // Information we know about a particular call site
  struct CallContext {
    CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}

    // Iterator referring to the frame setup instruction
    MachineBasicBlock::iterator FrameSetup;

    // Actual call instruction
    MachineInstr *Call = nullptr;

    // A copy of the stack pointer
    MachineInstr *SPCopy = nullptr;

    // The total displacement of all passed parameters
    int64_t ExpectedDist = 0;

    // The sequence of storing instructions used to pass the parameters
    SmallVector<MachineInstr *, 4> ArgStoreVector;

    // True if this call site has no stack parameters
    bool NoStackParams = false;

    // True if this call site can use push instructions
    bool UsePush = false;
  };

  typedef SmallVector<CallContext, 8> ContextVector;

  bool isLegal(MachineFunction &MF);

  bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);

  void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
                       MachineBasicBlock::iterator I, CallContext &Context);

  void adjustCallSequence(MachineFunction &MF, const CallContext &Context);

  MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
                                   unsigned Reg);

  enum InstClassification { Convert, Skip, Exit };

  InstClassification classifyInstruction(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator MI,
                                         const X86RegisterInfo &RegInfo,
                                         DenseSet<unsigned int> &UsedRegs);

  StringRef getPassName() const override { return "X86 Optimize Call Frame"; }

  const X86InstrInfo *TII = nullptr;
  const X86FrameLowering *TFL = nullptr;
  const X86Subtarget *STI = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  unsigned SlotSize = 0;
  unsigned Log2SlotSize = 0;
};

} // end anonymous namespace
char X86CallFrameOptimization::ID = 0;
INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
                "X86 Call Frame Optimization", false, false)

// This checks whether the transformation is legal.
// Also returns false in cases where it's potentially legal, but
// we don't even want to try.
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
  if (NoX86CFOpt.getValue())
    return false;

  // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
  // in the compact unwind encoding that Darwin uses. So, bail if there
  // is a danger of that being generated.
  if (STI->isTargetDarwin() &&
      (!MF.getLandingPads().empty() ||
       (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
    return false;

  // It is not valid to change the stack pointer outside the prolog/epilog
  // on 64-bit Windows.
  if (STI->isTargetWin64())
    return false;

  // You would expect straight-line code between call-frame setup and
  // call-frame destroy. You would be wrong. There are circumstances (e.g.
  // CMOV_GR8 expansion of a select that feeds a function call!) where we can
  // end up with the setup and the destroy in different basic blocks.
  // This is bad, and breaks SP adjustment.
  // So, check that all of the frames in the function are closed inside
  // the same block, and, for good measure, that there are no nested frames.
  //
  // If any call allocates more argument stack memory than the stack
  // probe size, don't do this optimization. Otherwise, this pass
  // would need to synthesize additional stack probe calls to allocate
  // memory for arguments.
  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
  bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF);
  unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF);
  for (MachineBasicBlock &BB : MF) {
    bool InsideFrameSequence = false;
    for (MachineInstr &MI : BB) {
      if (MI.getOpcode() == FrameSetupOpcode) {
        if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall)
          return false;
        if (InsideFrameSequence)
          return false;
        InsideFrameSequence = true;
      } else if (MI.getOpcode() == FrameDestroyOpcode) {
        if (!InsideFrameSequence)
          return false;
        InsideFrameSequence = false;
      }
    }

    if (InsideFrameSequence)
      return false;
  }

  return true;
}

// Check whether this transformation is profitable for a particular
// function - in terms of code size.
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
                                            ContextVector &CallSeqVector) {
  // This transformation is always a win when we do not expect to have
  // a reserved call frame. Under other circumstances, it may be either
  // a win or a loss, and requires a heuristic.
  bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
  if (CannotReserveFrame)
    return true;

  Align StackAlign = TFL->getStackAlign();

  int64_t Advantage = 0;
  for (auto CC : CallSeqVector) {
    // Call sites where no parameters are passed on the stack
    // do not affect the cost, since there needs to be no
    // stack adjustment.
    if (CC.NoStackParams)
      continue;

    if (!CC.UsePush) {
      // If we don't use pushes for a particular call site,
      // we pay for not having a reserved call frame with an
      // additional sub/add esp pair. The cost is ~3 bytes per instruction,
      // depending on the size of the constant.
      // TODO: Callee-pop functions should have a smaller penalty, because
      // an add is needed even with a reserved call frame.
      Advantage -= 6;
    } else {
      // We can use pushes. First, account for the fixed costs.
      // We'll need a add after the call.
      Advantage -= 3;
      // If we have to realign the stack, we'll also need a sub before
      if (!isAligned(StackAlign, CC.ExpectedDist))
        Advantage -= 3;
      // Now, for each push, we save ~3 bytes. For small constants, we actually,
      // save more (up to 5 bytes), but 3 should be a good approximation.
      Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
    }
  }

  return Advantage >= 0;
}

bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
  STI = &MF.getSubtarget<X86Subtarget>();
  TII = STI->getInstrInfo();
  TFL = STI->getFrameLowering();
  MRI = &MF.getRegInfo();

  const X86RegisterInfo &RegInfo =
      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
  SlotSize = RegInfo.getSlotSize();
  assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
  Log2SlotSize = Log2_32(SlotSize);

  if (skipFunction(MF.getFunction()) || !isLegal(MF))
    return false;

  unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();

  bool Changed = false;

  ContextVector CallSeqVector;

  for (auto &MBB : MF)
    for (auto &MI : MBB)
      if (MI.getOpcode() == FrameSetupOpcode) {
        CallContext Context;
        collectCallInfo(MF, MBB, MI, Context);
        CallSeqVector.push_back(Context);
      }

  if (!isProfitable(MF, CallSeqVector))
    return false;

  for (auto CC : CallSeqVector) {
    if (CC.UsePush) {
      adjustCallSequence(MF, CC);
      Changed = true;
    }
  }

  return Changed;
}

X86CallFrameOptimization::InstClassification
X86CallFrameOptimization::classifyInstruction(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
  if (MI == MBB.end())
    return Exit;

  // The instructions we actually care about are movs onto the stack or special
  // cases of constant-stores to stack
  switch (MI->getOpcode()) {
    case X86::AND16mi8:
    case X86::AND32mi8:
    case X86::AND64mi8: {
      MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
      return ImmOp.getImm() == 0 ? Convert : Exit;
    }
    case X86::OR16mi8:
    case X86::OR32mi8:
    case X86::OR64mi8: {
      MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
      return ImmOp.getImm() == -1 ? Convert : Exit;
    }
    case X86::MOV32mi:
    case X86::MOV32mr:
    case X86::MOV64mi32:
    case X86::MOV64mr:
      return Convert;
  }

  // Not all calling conventions have only stack MOVs between the stack
  // adjust and the call.

  // We want to tolerate other instructions, to cover more cases.
  // In particular:
  // a) PCrel calls, where we expect an additional COPY of the basereg.
  // b) Passing frame-index addresses.
  // c) Calling conventions that have inreg parameters. These generate
  //    both copies and movs into registers.
  // To avoid creating lots of special cases, allow any instruction
  // that does not write into memory, does not def or use the stack
  // pointer, and does not def any register that was used by a preceding
  // push.
  // (Reading from memory is allowed, even if referenced through a
  // frame index, since these will get adjusted properly in PEI)

  // The reason for the last condition is that the pushes can't replace
  // the movs in place, because the order must be reversed.
  // So if we have a MOV32mr that uses EDX, then an instruction that defs
  // EDX, and then the call, after the transformation the push will use
  // the modified version of EDX, and not the original one.
  // Since we are still in SSA form at this point, we only need to
  // make sure we don't clobber any *physical* registers that were
  // used by an earlier mov that will become a push.

  if (MI->isCall() || MI->mayStore())
    return Exit;

  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isPhysicalRegister(Reg))
      continue;
    if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
      return Exit;
    if (MO.isDef()) {
      for (unsigned int U : UsedRegs)
        if (RegInfo.regsOverlap(Reg, U))
          return Exit;
    }
  }

  return Skip;
}

void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
                                               MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator I,
                                               CallContext &Context) {
  // Check that this particular call sequence is amenable to the
  // transformation.
  const X86RegisterInfo &RegInfo =
      *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());

  // We expect to enter this at the beginning of a call sequence
  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
  MachineBasicBlock::iterator FrameSetup = I++;
  Context.FrameSetup = FrameSetup;

  // How much do we adjust the stack? This puts an upper bound on
  // the number of parameters actually passed on it.
  unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;

  // A zero adjustment means no stack parameters
  if (!MaxAdjust) {
    Context.NoStackParams = true;
    return;
  }

  // Skip over DEBUG_VALUE.
  // For globals in PIC mode, we can have some LEAs here. Skip them as well.
  // TODO: Extend this to something that covers more cases.
  while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
    ++I;

  Register StackPtr = RegInfo.getStackRegister();
  auto StackPtrCopyInst = MBB.end();
  // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
  // register.  If it's there, use that virtual register as stack pointer
  // instead. Also, we need to locate this instruction so that we can later
  // safely ignore it while doing the conservative processing of the call chain.
  // The COPY can be located anywhere between the call-frame setup
  // instruction and its first use. We use the call instruction as a boundary
  // because it is usually cheaper to check if an instruction is a call than
  // checking if an instruction uses a register.
  for (auto J = I; !J->isCall(); ++J)
    if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
        J->getOperand(1).getReg() == StackPtr) {
      StackPtrCopyInst = J;
      Context.SPCopy = &*J++;
      StackPtr = Context.SPCopy->getOperand(0).getReg();
      break;
    }

  // Scan the call setup sequence for the pattern we're looking for.
  // We only handle a simple case - a sequence of store instructions that
  // push a sequence of stack-slot-aligned values onto the stack, with
  // no gaps between them.
  if (MaxAdjust > 4)
    Context.ArgStoreVector.resize(MaxAdjust, nullptr);

  DenseSet<unsigned int> UsedRegs;

  for (InstClassification Classification = Skip; Classification != Exit; ++I) {
    // If this is the COPY of the stack pointer, it's ok to ignore.
    if (I == StackPtrCopyInst)
      continue;
    Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
    if (Classification != Convert)
      continue;
    // We know the instruction has a supported store opcode.
    // We only want movs of the form:
    // mov imm/reg, k(%StackPtr)
    // If we run into something else, bail.
    // Note that AddrBaseReg may, counter to its name, not be a register,
    // but rather a frame index.
    // TODO: Support the fi case. This should probably work now that we
    // have the infrastructure to track the stack pointer within a call
    // sequence.
    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
        !I->getOperand(X86::AddrScaleAmt).isImm() ||
        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
        !I->getOperand(X86::AddrDisp).isImm())
      return;

    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
    assert(StackDisp >= 0 &&
           "Negative stack displacement when passing parameters");

    // We really don't want to consider the unaligned case.
    if (StackDisp & (SlotSize - 1))
      return;
    StackDisp >>= Log2SlotSize;

    assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
           "Function call has more parameters than the stack is adjusted for.");

    // If the same stack slot is being filled twice, something's fishy.
    if (Context.ArgStoreVector[StackDisp] != nullptr)
      return;
    Context.ArgStoreVector[StackDisp] = &*I;

    for (const MachineOperand &MO : I->uses()) {
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (Register::isPhysicalRegister(Reg))
        UsedRegs.insert(Reg);
    }
  }

  --I;

  // We now expect the end of the sequence. If we stopped early,
  // or reached the end of the block without finding a call, bail.
  if (I == MBB.end() || !I->isCall())
    return;

  Context.Call = &*I;
  if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
    return;

  // Now, go through the vector, and see that we don't have any gaps,
  // but only a series of storing instructions.
  auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
  for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
    if (*MMI == nullptr)
      break;

  // If the call had no parameters, do nothing
  if (MMI == Context.ArgStoreVector.begin())
    return;

  // We are either at the last parameter, or a gap.
  // Make sure it's not a gap
  for (; MMI != MME; ++MMI)
    if (*MMI != nullptr)
      return;

  Context.UsePush = true;
}

void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
                                                  const CallContext &Context) {
  // Ok, we can in fact do the transformation for this call.
  // Do not remove the FrameSetup instruction, but adjust the parameters.
  // PEI will end up finalizing the handling of this.
  MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
  MachineBasicBlock &MBB = *(FrameSetup->getParent());
  TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);

  DebugLoc DL = FrameSetup->getDebugLoc();
  bool Is64Bit = STI->is64Bit();
  // Now, iterate through the vector in reverse order, and replace the store to
  // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
  // replace uses.
  for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
    MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
    MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
    MachineBasicBlock::iterator Push = nullptr;
    unsigned PushOpcode;
    switch (Store->getOpcode()) {
    default:
      llvm_unreachable("Unexpected Opcode!");
    case X86::AND16mi8:
    case X86::AND32mi8:
    case X86::AND64mi8:
    case X86::OR16mi8:
    case X86::OR32mi8:
    case X86::OR64mi8:
    case X86::MOV32mi:
    case X86::MOV64mi32:
      PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
      // If the operand is a small (8-bit) immediate, we can use a
      // PUSH instruction with a shorter encoding.
      // Note that isImm() may fail even though this is a MOVmi, because
      // the operand can also be a symbol.
      if (PushOp.isImm()) {
        int64_t Val = PushOp.getImm();
        if (isInt<8>(Val))
          PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
      }
      Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
      Push->cloneMemRefs(MF, *Store);
      break;
    case X86::MOV32mr:
    case X86::MOV64mr: {
      Register Reg = PushOp.getReg();

      // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
      // in preparation for the PUSH64. The upper 32 bits can be undef.
      if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
        Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
        Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
        BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
        BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
            .addReg(UndefReg)
            .add(PushOp)
            .addImm(X86::sub_32bit);
      }

      // If PUSHrmm is not slow on this target, try to fold the source of the
      // push into the instruction.
      bool SlowPUSHrmm = STI->slowTwoMemOps();

      // Check that this is legal to fold. Right now, we're extremely
      // conservative about that.
      MachineInstr *DefMov = nullptr;
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
        PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));

        unsigned NumOps = DefMov->getDesc().getNumOperands();
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
          Push->addOperand(DefMov->getOperand(i));
        Push->cloneMergedMemRefs(MF, {&*DefMov, &*Store});

        DefMov->eraseFromParent();
      } else {
        PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
        Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
                   .addReg(Reg)
                   .getInstr();
        Push->cloneMemRefs(MF, *Store);
      }
      break;
    }
    }

    // For debugging, when using SP-based CFA, we need to adjust the CFA
    // offset after each push.
    // TODO: This is needed only if we require precise CFA.
    if (!TFL->hasFP(MF))
      TFL->BuildCFI(
          MBB, std::next(Push), DL,
          MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));

    MBB.erase(Store);
  }

  // The stack-pointer copy is no longer used in the call sequences.
  // There should not be any other users, but we can't commit to that, so:
  if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
    Context.SPCopy->eraseFromParent();

  // Once we've done this, we need to make sure PEI doesn't assume a reserved
  // frame.
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  FuncInfo->setHasPushSequences(true);
}

MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
    MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
  // Do an extremely restricted form of load folding.
  // ISel will often create patterns like:
  // movl    4(%edi), %eax
  // movl    8(%edi), %ecx
  // movl    12(%edi), %edx
  // movl    %edx, 8(%esp)
  // movl    %ecx, 4(%esp)
  // movl    %eax, (%esp)
  // call
  // Get rid of those with prejudice.
  if (!Register::isVirtualRegister(Reg))
    return nullptr;

  // Make sure this is the only use of Reg.
  if (!MRI->hasOneNonDBGUse(Reg))
    return nullptr;

  MachineInstr &DefMI = *MRI->getVRegDef(Reg);

  // Make sure the def is a MOV from memory.
  // If the def is in another block, give up.
  if ((DefMI.getOpcode() != X86::MOV32rm &&
       DefMI.getOpcode() != X86::MOV64rm) ||
      DefMI.getParent() != FrameSetup->getParent())
    return nullptr;

  // Make sure we don't have any instructions between DefMI and the
  // push that make folding the load illegal.
  for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
    if (I->isLoadFoldBarrier())
      return nullptr;

  return &DefMI;
}

FunctionPass *llvm::createX86CallFrameOptimization() {
  return new X86CallFrameOptimization();
}