X86AsmParser.cpp 152 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86IntelInstPrinter.h"
#include "MCTargetDesc/X86MCExpr.h"
#include "MCTargetDesc/X86TargetStreamer.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86AsmParserCommon.h"
#include "X86Operand.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>

using namespace llvm;

static cl::opt<bool> LVIInlineAsmHardening(
    "x86-experimental-lvi-inline-asm-hardening",
    cl::desc("Harden inline assembly code that may be vulnerable to Load Value"
             " Injection (LVI). This feature is experimental."), cl::Hidden);

static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
  if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
    ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
    return true;
  }
  return false;
}

namespace {

static const char OpPrecedence[] = {
  0, // IC_OR
  1, // IC_XOR
  2, // IC_AND
  3, // IC_LSHIFT
  3, // IC_RSHIFT
  4, // IC_PLUS
  4, // IC_MINUS
  5, // IC_MULTIPLY
  5, // IC_DIVIDE
  5, // IC_MOD
  6, // IC_NOT
  7, // IC_NEG
  8, // IC_RPAREN
  9, // IC_LPAREN
  0, // IC_IMM
  0  // IC_REGISTER
};

class X86AsmParser : public MCTargetAsmParser {
  ParseInstructionInfo *InstInfo;
  bool Code16GCC;

  enum VEXEncoding {
    VEXEncoding_Default,
    VEXEncoding_VEX,
    VEXEncoding_VEX3,
    VEXEncoding_EVEX,
  };

  VEXEncoding ForcedVEXEncoding = VEXEncoding_Default;

private:
  SMLoc consumeToken() {
    MCAsmParser &Parser = getParser();
    SMLoc Result = Parser.getTok().getLoc();
    Parser.Lex();
    return Result;
  }

  X86TargetStreamer &getTargetStreamer() {
    assert(getParser().getStreamer().getTargetStreamer() &&
           "do not have a target streamer");
    MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
    return static_cast<X86TargetStreamer &>(TS);
  }

  unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
                            uint64_t &ErrorInfo, FeatureBitset &MissingFeatures,
                            bool matchingInlineAsm, unsigned VariantID = 0) {
    // In Code16GCC mode, match as 32-bit.
    if (Code16GCC)
      SwitchMode(X86::Mode32Bit);
    unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
                                       MissingFeatures, matchingInlineAsm,
                                       VariantID);
    if (Code16GCC)
      SwitchMode(X86::Mode16Bit);
    return rv;
  }

  enum InfixCalculatorTok {
    IC_OR = 0,
    IC_XOR,
    IC_AND,
    IC_LSHIFT,
    IC_RSHIFT,
    IC_PLUS,
    IC_MINUS,
    IC_MULTIPLY,
    IC_DIVIDE,
    IC_MOD,
    IC_NOT,
    IC_NEG,
    IC_RPAREN,
    IC_LPAREN,
    IC_IMM,
    IC_REGISTER
  };

  enum IntelOperatorKind {
    IOK_INVALID = 0,
    IOK_LENGTH,
    IOK_SIZE,
    IOK_TYPE,
  };

  class InfixCalculator {
    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
    SmallVector<ICToken, 4> PostfixStack;

    bool isUnaryOperator(const InfixCalculatorTok Op) {
      return Op == IC_NEG || Op == IC_NOT;
    }

  public:
    int64_t popOperand() {
      assert (!PostfixStack.empty() && "Poped an empty stack!");
      ICToken Op = PostfixStack.pop_back_val();
      if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
        return -1; // The invalid Scale value will be caught later by checkScale
      return Op.second;
    }
    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
              "Unexpected operand!");
      PostfixStack.push_back(std::make_pair(Op, Val));
    }

    void popOperator() { InfixOperatorStack.pop_back(); }
    void pushOperator(InfixCalculatorTok Op) {
      // Push the new operator if the stack is empty.
      if (InfixOperatorStack.empty()) {
        InfixOperatorStack.push_back(Op);
        return;
      }

      // Push the new operator if it has a higher precedence than the operator
      // on the top of the stack or the operator on the top of the stack is a
      // left parentheses.
      unsigned Idx = InfixOperatorStack.size() - 1;
      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
        InfixOperatorStack.push_back(Op);
        return;
      }

      // The operator on the top of the stack has higher precedence than the
      // new operator.
      unsigned ParenCount = 0;
      while (1) {
        // Nothing to process.
        if (InfixOperatorStack.empty())
          break;

        Idx = InfixOperatorStack.size() - 1;
        StackOp = InfixOperatorStack[Idx];
        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
          break;

        // If we have an even parentheses count and we see a left parentheses,
        // then stop processing.
        if (!ParenCount && StackOp == IC_LPAREN)
          break;

        if (StackOp == IC_RPAREN) {
          ++ParenCount;
          InfixOperatorStack.pop_back();
        } else if (StackOp == IC_LPAREN) {
          --ParenCount;
          InfixOperatorStack.pop_back();
        } else {
          InfixOperatorStack.pop_back();
          PostfixStack.push_back(std::make_pair(StackOp, 0));
        }
      }
      // Push the new operator.
      InfixOperatorStack.push_back(Op);
    }

    int64_t execute() {
      // Push any remaining operators onto the postfix stack.
      while (!InfixOperatorStack.empty()) {
        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
          PostfixStack.push_back(std::make_pair(StackOp, 0));
      }

      if (PostfixStack.empty())
        return 0;

      SmallVector<ICToken, 16> OperandStack;
      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
        ICToken Op = PostfixStack[i];
        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
          OperandStack.push_back(Op);
        } else if (isUnaryOperator(Op.first)) {
          assert (OperandStack.size() > 0 && "Too few operands.");
          ICToken Operand = OperandStack.pop_back_val();
          assert (Operand.first == IC_IMM &&
                  "Unary operation with a register!");
          switch (Op.first) {
          default:
            report_fatal_error("Unexpected operator!");
            break;
          case IC_NEG:
            OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
            break;
          case IC_NOT:
            OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
            break;
          }
        } else {
          assert (OperandStack.size() > 1 && "Too few operands.");
          int64_t Val;
          ICToken Op2 = OperandStack.pop_back_val();
          ICToken Op1 = OperandStack.pop_back_val();
          switch (Op.first) {
          default:
            report_fatal_error("Unexpected operator!");
            break;
          case IC_PLUS:
            Val = Op1.second + Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_MINUS:
            Val = Op1.second - Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_MULTIPLY:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Multiply operation with an immediate and a register!");
            Val = Op1.second * Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_DIVIDE:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Divide operation with an immediate and a register!");
            assert (Op2.second != 0 && "Division by zero!");
            Val = Op1.second / Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_MOD:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Modulo operation with an immediate and a register!");
            Val = Op1.second % Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_OR:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Or operation with an immediate and a register!");
            Val = Op1.second | Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_XOR:
            assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
              "Xor operation with an immediate and a register!");
            Val = Op1.second ^ Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_AND:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "And operation with an immediate and a register!");
            Val = Op1.second & Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_LSHIFT:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Left shift operation with an immediate and a register!");
            Val = Op1.second << Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_RSHIFT:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Right shift operation with an immediate and a register!");
            Val = Op1.second >> Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          }
        }
      }
      assert (OperandStack.size() == 1 && "Expected a single result.");
      return OperandStack.pop_back_val().second;
    }
  };

  enum IntelExprState {
    IES_INIT,
    IES_OR,
    IES_XOR,
    IES_AND,
    IES_LSHIFT,
    IES_RSHIFT,
    IES_PLUS,
    IES_MINUS,
    IES_OFFSET,
    IES_CAST,
    IES_NOT,
    IES_MULTIPLY,
    IES_DIVIDE,
    IES_MOD,
    IES_LBRAC,
    IES_RBRAC,
    IES_LPAREN,
    IES_RPAREN,
    IES_REGISTER,
    IES_INTEGER,
    IES_IDENTIFIER,
    IES_ERROR
  };

  class IntelExprStateMachine {
    IntelExprState State, PrevState;
    unsigned BaseReg, IndexReg, TmpReg, Scale;
    int64_t Imm;
    const MCExpr *Sym;
    StringRef SymName;
    InfixCalculator IC;
    InlineAsmIdentifierInfo Info;
    short BracCount;
    bool MemExpr;
    bool OffsetOperator;
    SMLoc OffsetOperatorLoc;
    StringRef CurType;

    bool setSymRef(const MCExpr *Val, StringRef ID, StringRef &ErrMsg) {
      if (Sym) {
        ErrMsg = "cannot use more than one symbol in memory operand";
        return true;
      }
      Sym = Val;
      SymName = ID;
      return false;
    }

  public:
    IntelExprStateMachine()
        : State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
          TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
          MemExpr(false), OffsetOperator(false) {}

    void addImm(int64_t imm) { Imm += imm; }
    short getBracCount() { return BracCount; }
    bool isMemExpr() { return MemExpr; }
    bool isOffsetOperator() { return OffsetOperator; }
    SMLoc getOffsetLoc() { return OffsetOperatorLoc; }
    unsigned getBaseReg() { return BaseReg; }
    unsigned getIndexReg() { return IndexReg; }
    unsigned getScale() { return Scale; }
    const MCExpr *getSym() { return Sym; }
    StringRef getSymName() { return SymName; }
    StringRef getType() { return CurType; }
    int64_t getImm() { return Imm + IC.execute(); }
    bool isValidEndState() {
      return State == IES_RBRAC || State == IES_INTEGER;
    }
    bool hadError() { return State == IES_ERROR; }
    InlineAsmIdentifierInfo &getIdentifierInfo() { return Info; }

    void onOr() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_OR;
        IC.pushOperator(IC_OR);
        break;
      }
      PrevState = CurrState;
    }
    void onXor() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_XOR;
        IC.pushOperator(IC_XOR);
        break;
      }
      PrevState = CurrState;
    }
    void onAnd() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_AND;
        IC.pushOperator(IC_AND);
        break;
      }
      PrevState = CurrState;
    }
    void onLShift() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_LSHIFT;
        IC.pushOperator(IC_LSHIFT);
        break;
      }
      PrevState = CurrState;
    }
    void onRShift() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_RSHIFT;
        IC.pushOperator(IC_RSHIFT);
        break;
      }
      PrevState = CurrState;
    }
    bool onPlus(StringRef &ErrMsg) {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
      case IES_OFFSET:
        State = IES_PLUS;
        IC.pushOperator(IC_PLUS);
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
          // If we already have a BaseReg, then assume this is the IndexReg with
          // no explicit scale.
          if (!BaseReg) {
            BaseReg = TmpReg;
          } else {
            if (IndexReg) {
              ErrMsg = "BaseReg/IndexReg already set!";
              return true;
            }
            IndexReg = TmpReg;
            Scale = 0;
          }
        }
        break;
      }
      PrevState = CurrState;
      return false;
    }
    bool onMinus(StringRef &ErrMsg) {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_OR:
      case IES_XOR:
      case IES_AND:
      case IES_LSHIFT:
      case IES_RSHIFT:
      case IES_PLUS:
      case IES_NOT:
      case IES_MULTIPLY:
      case IES_DIVIDE:
      case IES_MOD:
      case IES_LPAREN:
      case IES_RPAREN:
      case IES_LBRAC:
      case IES_RBRAC:
      case IES_INTEGER:
      case IES_REGISTER:
      case IES_INIT:
      case IES_OFFSET:
        State = IES_MINUS;
        // push minus operator if it is not a negate operator
        if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
            CurrState == IES_INTEGER  || CurrState == IES_RBRAC  ||
            CurrState == IES_OFFSET)
          IC.pushOperator(IC_MINUS);
        else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
          // We have negate operator for Scale: it's illegal
          ErrMsg = "Scale can't be negative";
          return true;
        } else
          IC.pushOperator(IC_NEG);
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
          // If we already have a BaseReg, then assume this is the IndexReg with
          // no explicit scale.
          if (!BaseReg) {
            BaseReg = TmpReg;
          } else {
            if (IndexReg) {
              ErrMsg = "BaseReg/IndexReg already set!";
              return true;
            }
            IndexReg = TmpReg;
            Scale = 0;
          }
        }
        break;
      }
      PrevState = CurrState;
      return false;
    }
    void onNot() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_OR:
      case IES_XOR:
      case IES_AND:
      case IES_LSHIFT:
      case IES_RSHIFT:
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
      case IES_MULTIPLY:
      case IES_DIVIDE:
      case IES_MOD:
      case IES_LPAREN:
      case IES_LBRAC:
      case IES_INIT:
        State = IES_NOT;
        IC.pushOperator(IC_NOT);
        break;
      }
      PrevState = CurrState;
    }
    bool onRegister(unsigned Reg, StringRef &ErrMsg) {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_LPAREN:
      case IES_LBRAC:
        State = IES_REGISTER;
        TmpReg = Reg;
        IC.pushOperand(IC_REGISTER);
        break;
      case IES_MULTIPLY:
        // Index Register - Scale * Register
        if (PrevState == IES_INTEGER) {
          if (IndexReg) {
            ErrMsg = "BaseReg/IndexReg already set!";
            return true;
          }
          State = IES_REGISTER;
          IndexReg = Reg;
          // Get the scale and replace the 'Scale * Register' with '0'.
          Scale = IC.popOperand();
          if (checkScale(Scale, ErrMsg))
            return true;
          IC.pushOperand(IC_IMM);
          IC.popOperator();
        } else {
          State = IES_ERROR;
        }
        break;
      }
      PrevState = CurrState;
      return false;
    }
    bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
                          const InlineAsmIdentifierInfo &IDInfo,
                          bool ParsingMSInlineAsm, StringRef &ErrMsg) {
      // InlineAsm: Treat an enum value as an integer
      if (ParsingMSInlineAsm)
        if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
          return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
      // Treat a symbolic constant like an integer
      if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
        return onInteger(CE->getValue(), ErrMsg);
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_CAST:
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
      case IES_INIT:
      case IES_LBRAC:
        if (setSymRef(SymRef, SymRefName, ErrMsg))
          return true;
        MemExpr = true;
        State = IES_INTEGER;
        IC.pushOperand(IC_IMM);
        if (ParsingMSInlineAsm)
          Info = IDInfo;
        break;
      }
      return false;
    }
    bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
      case IES_OR:
      case IES_XOR:
      case IES_AND:
      case IES_LSHIFT:
      case IES_RSHIFT:
      case IES_DIVIDE:
      case IES_MOD:
      case IES_MULTIPLY:
      case IES_LPAREN:
      case IES_INIT:
      case IES_LBRAC:
        State = IES_INTEGER;
        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
          // Index Register - Register * Scale
          if (IndexReg) {
            ErrMsg = "BaseReg/IndexReg already set!";
            return true;
          }
          IndexReg = TmpReg;
          Scale = TmpInt;
          if (checkScale(Scale, ErrMsg))
            return true;
          // Get the scale and replace the 'Register * Scale' with '0'.
          IC.popOperator();
        } else {
          IC.pushOperand(IC_IMM, TmpInt);
        }
        break;
      }
      PrevState = CurrState;
      return false;
    }
    void onStar() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_REGISTER:
      case IES_RPAREN:
        State = IES_MULTIPLY;
        IC.pushOperator(IC_MULTIPLY);
        break;
      }
    }
    void onDivide() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
        State = IES_DIVIDE;
        IC.pushOperator(IC_DIVIDE);
        break;
      }
    }
    void onMod() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
        State = IES_MOD;
        IC.pushOperator(IC_MOD);
        break;
      }
    }
    bool onLBrac() {
      if (BracCount)
        return true;
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_RBRAC:
      case IES_INTEGER:
      case IES_RPAREN:
        State = IES_PLUS;
        IC.pushOperator(IC_PLUS);
        break;
      case IES_INIT:
      case IES_CAST:
        assert(!BracCount && "BracCount should be zero on parsing's start");
        State = IES_LBRAC;
        break;
      }
      MemExpr = true;
      BracCount++;
      return false;
    }
    bool onRBrac() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_OFFSET:
      case IES_REGISTER:
      case IES_RPAREN:
        if (BracCount-- != 1)
          return true;
        State = IES_RBRAC;
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
          // If we already have a BaseReg, then assume this is the IndexReg with
          // no explicit scale.
          if (!BaseReg) {
            BaseReg = TmpReg;
          } else {
            assert (!IndexReg && "BaseReg/IndexReg already set!");
            IndexReg = TmpReg;
            Scale = 0;
          }
        }
        break;
      }
      PrevState = CurrState;
      return false;
    }
    void onLParen() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
      case IES_OR:
      case IES_XOR:
      case IES_AND:
      case IES_LSHIFT:
      case IES_RSHIFT:
      case IES_MULTIPLY:
      case IES_DIVIDE:
      case IES_MOD:
      case IES_LPAREN:
      case IES_INIT:
      case IES_LBRAC:
        State = IES_LPAREN;
        IC.pushOperator(IC_LPAREN);
        break;
      }
      PrevState = CurrState;
    }
    void onRParen() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_OFFSET:
      case IES_REGISTER:
      case IES_RBRAC:
      case IES_RPAREN:
        State = IES_RPAREN;
        IC.pushOperator(IC_RPAREN);
        break;
      }
    }
    bool onOffset(const MCExpr *Val, SMLoc OffsetLoc, StringRef ID,
                  const InlineAsmIdentifierInfo &IDInfo, bool ParsingMSInlineAsm,
                  StringRef &ErrMsg) {
      PrevState = State;
      switch (State) {
      default:
        ErrMsg = "unexpected offset operator expression";
        return true;
      case IES_PLUS:
      case IES_INIT:
      case IES_LBRAC:
        if (setSymRef(Val, ID, ErrMsg))
          return true;
        OffsetOperator = true;
        OffsetOperatorLoc = OffsetLoc;
        State = IES_OFFSET;
        // As we cannot yet resolve the actual value (offset), we retain
        // the requested semantics by pushing a '0' to the operands stack
        IC.pushOperand(IC_IMM);
        if (ParsingMSInlineAsm) {
          Info = IDInfo;
        }
        break;
      }
      return false;
    }
    void onCast(StringRef Type) {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_LPAREN:
        setType(Type);
        State = IES_CAST;
        break;
      }
    }
    void setType(StringRef Type) { CurType = Type; }
  };

  bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
             bool MatchingInlineAsm = false) {
    MCAsmParser &Parser = getParser();
    if (MatchingInlineAsm) {
      if (!getLexer().isAtStartOfStatement())
        Parser.eatToEndOfStatement();
      return false;
    }
    return Parser.Error(L, Msg, Range);
  }

  std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg, SMRange R = SMRange()) {
    Error(Loc, Msg, R);
    return nullptr;
  }

  bool MatchRegisterByName(unsigned &RegNo, StringRef RegName, SMLoc StartLoc,
                           SMLoc EndLoc);
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
                     bool RestoreOnFailure);

  std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
  std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
  bool IsSIReg(unsigned Reg);
  unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
  void
  AddDefaultSrcDestOperands(OperandVector &Operands,
                            std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
                            std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
  bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
                               OperandVector &FinalOperands);
  std::unique_ptr<X86Operand> ParseOperand();
  std::unique_ptr<X86Operand> ParseATTOperand();
  std::unique_ptr<X86Operand> ParseIntelOperand();
  bool ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
                                InlineAsmIdentifierInfo &Info, SMLoc &End);
  bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
  unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
  unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
  std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start);
  bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM,
                               bool &ParseError, SMLoc &End);
  void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
                              SMLoc End);
  bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
  bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
                                     InlineAsmIdentifierInfo &Info,
                                     bool IsUnevaluatedOperand, SMLoc &End,
                                     bool IsParsingOffsetOperator = false);

  std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg,
                                              const MCExpr *&Disp,
                                              const SMLoc &StartLoc,
                                              SMLoc &EndLoc);

  X86::CondCode ParseConditionCode(StringRef CCode);

  bool ParseIntelMemoryOperandSize(unsigned &Size);
  std::unique_ptr<X86Operand>
  CreateMemForMSInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
                          unsigned IndexReg, unsigned Scale, SMLoc Start,
                          SMLoc End, unsigned Size, StringRef Identifier,
                          const InlineAsmIdentifierInfo &Info);

  bool parseDirectiveEven(SMLoc L);
  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);

  /// CodeView FPO data directives.
  bool parseDirectiveFPOProc(SMLoc L);
  bool parseDirectiveFPOSetFrame(SMLoc L);
  bool parseDirectiveFPOPushReg(SMLoc L);
  bool parseDirectiveFPOStackAlloc(SMLoc L);
  bool parseDirectiveFPOStackAlign(SMLoc L);
  bool parseDirectiveFPOEndPrologue(SMLoc L);
  bool parseDirectiveFPOEndProc(SMLoc L);
  bool parseDirectiveFPOData(SMLoc L);

  /// SEH directives.
  bool parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo);
  bool parseDirectiveSEHPushReg(SMLoc);
  bool parseDirectiveSEHSetFrame(SMLoc);
  bool parseDirectiveSEHSaveReg(SMLoc);
  bool parseDirectiveSEHSaveXMM(SMLoc);
  bool parseDirectiveSEHPushFrame(SMLoc);

  unsigned checkTargetMatchPredicate(MCInst &Inst) override;

  bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
  bool processInstruction(MCInst &Inst, const OperandVector &Ops);

  // Load Value Injection (LVI) Mitigations for machine code
  void emitWarningForSpecialLVIInstruction(SMLoc Loc);
  void applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out);
  void applyLVILoadHardeningMitigation(MCInst &Inst, MCStreamer &Out);

  /// Wrapper around MCStreamer::emitInstruction(). Possibly adds
  /// instrumentation around Inst.
  void emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);

  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               uint64_t &ErrorInfo,
                               bool MatchingInlineAsm) override;

  void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
                         MCStreamer &Out, bool MatchingInlineAsm);

  bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures,
                           bool MatchingInlineAsm);

  bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
                                  OperandVector &Operands, MCStreamer &Out,
                                  uint64_t &ErrorInfo,
                                  bool MatchingInlineAsm);

  bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
                                    OperandVector &Operands, MCStreamer &Out,
                                    uint64_t &ErrorInfo,
                                    bool MatchingInlineAsm);

  bool OmitRegisterFromClobberLists(unsigned RegNo) override;

  /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
  /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
  /// return false if no parsing errors occurred, true otherwise.
  bool HandleAVX512Operand(OperandVector &Operands,
                           const MCParsedAsmOperand &Op);

  bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);

  bool is64BitMode() const {
    // FIXME: Can tablegen auto-generate this?
    return getSTI().getFeatureBits()[X86::Mode64Bit];
  }
  bool is32BitMode() const {
    // FIXME: Can tablegen auto-generate this?
    return getSTI().getFeatureBits()[X86::Mode32Bit];
  }
  bool is16BitMode() const {
    // FIXME: Can tablegen auto-generate this?
    return getSTI().getFeatureBits()[X86::Mode16Bit];
  }
  void SwitchMode(unsigned mode) {
    MCSubtargetInfo &STI = copySTI();
    FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
    FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
    FeatureBitset FB = ComputeAvailableFeatures(
      STI.ToggleFeature(OldMode.flip(mode)));
    setAvailableFeatures(FB);

    assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
  }

  unsigned getPointerWidth() {
    if (is16BitMode()) return 16;
    if (is32BitMode()) return 32;
    if (is64BitMode()) return 64;
    llvm_unreachable("invalid mode");
  }

  bool isParsingIntelSyntax() {
    return getParser().getAssemblerDialect();
  }

  /// @name Auto-generated Matcher Functions
  /// {

#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"

  /// }

public:
  enum X86MatchResultTy {
    Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "X86GenAsmMatcher.inc"
  };

  X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
               const MCInstrInfo &mii, const MCTargetOptions &Options)
      : MCTargetAsmParser(Options, sti, mii),  InstInfo(nullptr),
        Code16GCC(false) {

    Parser.addAliasForDirective(".word", ".2byte");

    // Initialize the set of available features.
    setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
  }

  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
  OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                        SMLoc &EndLoc) override;

  bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;

  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;

  bool ParseDirective(AsmToken DirectiveID) override;
};
} // end anonymous namespace

/// @name Auto-generated Match Functions
/// {

static unsigned MatchRegisterName(StringRef Name);

/// }

static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
                                            unsigned Scale, bool Is64BitMode,
                                            StringRef &ErrMsg) {
  // If we have both a base register and an index register make sure they are
  // both 64-bit or 32-bit registers.
  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.

  if (BaseReg != 0 &&
      !(BaseReg == X86::RIP || BaseReg == X86::EIP ||
        X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
    ErrMsg = "invalid base+index expression";
    return true;
  }

  if (IndexReg != 0 &&
      !(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
        X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
    ErrMsg = "invalid base+index expression";
    return true;
  }

  if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
      IndexReg == X86::EIP || IndexReg == X86::RIP ||
      IndexReg == X86::ESP || IndexReg == X86::RSP) {
    ErrMsg = "invalid base+index expression";
    return true;
  }

  // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
  // and then only in non-64-bit modes.
  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
      (Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
                       BaseReg != X86::SI && BaseReg != X86::DI))) {
    ErrMsg = "invalid 16-bit base register";
    return true;
  }

  if (BaseReg == 0 &&
      X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
    ErrMsg = "16-bit memory operand may not include only index register";
    return true;
  }

  if (BaseReg != 0 && IndexReg != 0) {
    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
         IndexReg == X86::EIZ)) {
      ErrMsg = "base register is 64-bit, but index register is not";
      return true;
    }
    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
         IndexReg == X86::RIZ)) {
      ErrMsg = "base register is 32-bit, but index register is not";
      return true;
    }
    if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
      if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
        ErrMsg = "base register is 16-bit, but index register is not";
        return true;
      }
      if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
          (IndexReg != X86::SI && IndexReg != X86::DI)) {
        ErrMsg = "invalid 16-bit base/index register combination";
        return true;
      }
    }
  }

  // RIP/EIP-relative addressing is only supported in 64-bit mode.
  if (!Is64BitMode && BaseReg != 0 &&
      (BaseReg == X86::RIP || BaseReg == X86::EIP)) {
    ErrMsg = "IP-relative addressing requires 64-bit mode";
    return true;
  }

  return checkScale(Scale, ErrMsg);
}

bool X86AsmParser::MatchRegisterByName(unsigned &RegNo, StringRef RegName,
                                       SMLoc StartLoc, SMLoc EndLoc) {
  // If we encounter a %, ignore it. This code handles registers with and
  // without the prefix, unprefixed registers can occur in cfi directives.
  RegName.consume_front("%");

  RegNo = MatchRegisterName(RegName);

  // If the match failed, try the register name as lowercase.
  if (RegNo == 0)
    RegNo = MatchRegisterName(RegName.lower());

  // The "flags" and "mxcsr" registers cannot be referenced directly.
  // Treat it as an identifier instead.
  if (isParsingMSInlineAsm() && isParsingIntelSyntax() &&
      (RegNo == X86::EFLAGS || RegNo == X86::MXCSR))
    RegNo = 0;

  if (!is64BitMode()) {
    // FIXME: This should be done using Requires<Not64BitMode> and
    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
    // checked.
    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
    // REX prefix.
    if (RegNo == X86::RIZ || RegNo == X86::RIP ||
        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
        X86II::isX86_64NonExtLowByteReg(RegNo) ||
        X86II::isX86_64ExtendedReg(RegNo)) {
      return Error(StartLoc,
                   "register %" + RegName + " is only available in 64-bit mode",
                   SMRange(StartLoc, EndLoc));
    }
  }

  // If this is "db[0-15]", match it as an alias
  // for dr[0-15].
  if (RegNo == 0 && RegName.startswith("db")) {
    if (RegName.size() == 3) {
      switch (RegName[2]) {
      case '0':
        RegNo = X86::DR0;
        break;
      case '1':
        RegNo = X86::DR1;
        break;
      case '2':
        RegNo = X86::DR2;
        break;
      case '3':
        RegNo = X86::DR3;
        break;
      case '4':
        RegNo = X86::DR4;
        break;
      case '5':
        RegNo = X86::DR5;
        break;
      case '6':
        RegNo = X86::DR6;
        break;
      case '7':
        RegNo = X86::DR7;
        break;
      case '8':
        RegNo = X86::DR8;
        break;
      case '9':
        RegNo = X86::DR9;
        break;
      }
    } else if (RegName.size() == 4 && RegName[2] == '1') {
      switch (RegName[3]) {
      case '0':
        RegNo = X86::DR10;
        break;
      case '1':
        RegNo = X86::DR11;
        break;
      case '2':
        RegNo = X86::DR12;
        break;
      case '3':
        RegNo = X86::DR13;
        break;
      case '4':
        RegNo = X86::DR14;
        break;
      case '5':
        RegNo = X86::DR15;
        break;
      }
    }
  }

  if (RegNo == 0) {
    if (isParsingIntelSyntax())
      return true;
    return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc));
  }
  return false;
}

bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                 SMLoc &EndLoc, bool RestoreOnFailure) {
  MCAsmParser &Parser = getParser();
  MCAsmLexer &Lexer = getLexer();
  RegNo = 0;

  SmallVector<AsmToken, 5> Tokens;
  auto OnFailure = [RestoreOnFailure, &Lexer, &Tokens]() {
    if (RestoreOnFailure) {
      while (!Tokens.empty()) {
        Lexer.UnLex(Tokens.pop_back_val());
      }
    }
  };

  const AsmToken &PercentTok = Parser.getTok();
  StartLoc = PercentTok.getLoc();

  // If we encounter a %, ignore it. This code handles registers with and
  // without the prefix, unprefixed registers can occur in cfi directives.
  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) {
    Tokens.push_back(PercentTok);
    Parser.Lex(); // Eat percent token.
  }

  const AsmToken &Tok = Parser.getTok();
  EndLoc = Tok.getEndLoc();

  if (Tok.isNot(AsmToken::Identifier)) {
    OnFailure();
    if (isParsingIntelSyntax()) return true;
    return Error(StartLoc, "invalid register name",
                 SMRange(StartLoc, EndLoc));
  }

  if (MatchRegisterByName(RegNo, Tok.getString(), StartLoc, EndLoc)) {
    OnFailure();
    return true;
  }

  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
  if (RegNo == X86::ST0) {
    Tokens.push_back(Tok);
    Parser.Lex(); // Eat 'st'

    // Check to see if we have '(4)' after %st.
    if (Lexer.isNot(AsmToken::LParen))
      return false;
    // Lex the paren.
    Tokens.push_back(Parser.getTok());
    Parser.Lex();

    const AsmToken &IntTok = Parser.getTok();
    if (IntTok.isNot(AsmToken::Integer)) {
      OnFailure();
      return Error(IntTok.getLoc(), "expected stack index");
    }
    switch (IntTok.getIntVal()) {
    case 0: RegNo = X86::ST0; break;
    case 1: RegNo = X86::ST1; break;
    case 2: RegNo = X86::ST2; break;
    case 3: RegNo = X86::ST3; break;
    case 4: RegNo = X86::ST4; break;
    case 5: RegNo = X86::ST5; break;
    case 6: RegNo = X86::ST6; break;
    case 7: RegNo = X86::ST7; break;
    default:
      OnFailure();
      return Error(IntTok.getLoc(), "invalid stack index");
    }

    // Lex IntTok
    Tokens.push_back(IntTok);
    Parser.Lex();
    if (Lexer.isNot(AsmToken::RParen)) {
      OnFailure();
      return Error(Parser.getTok().getLoc(), "expected ')'");
    }

    EndLoc = Parser.getTok().getEndLoc();
    Parser.Lex(); // Eat ')'
    return false;
  }

  EndLoc = Parser.getTok().getEndLoc();

  if (RegNo == 0) {
    OnFailure();
    if (isParsingIntelSyntax()) return true;
    return Error(StartLoc, "invalid register name",
                 SMRange(StartLoc, EndLoc));
  }

  Parser.Lex(); // Eat identifier token.
  return false;
}

bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                 SMLoc &EndLoc) {
  return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
}

OperandMatchResultTy X86AsmParser::tryParseRegister(unsigned &RegNo,
                                                    SMLoc &StartLoc,
                                                    SMLoc &EndLoc) {
  bool Result =
      ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
  bool PendingErrors = getParser().hasPendingError();
  getParser().clearPendingErrors();
  if (PendingErrors)
    return MatchOperand_ParseFail;
  if (Result)
    return MatchOperand_NoMatch;
  return MatchOperand_Success;
}

std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
  bool Parse32 = is32BitMode() || Code16GCC;
  unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
  const MCExpr *Disp = MCConstantExpr::create(0, getContext());
  return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
                               /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
                               Loc, Loc, 0);
}

std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
  bool Parse32 = is32BitMode() || Code16GCC;
  unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
  const MCExpr *Disp = MCConstantExpr::create(0, getContext());
  return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
                               /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
                               Loc, Loc, 0);
}

bool X86AsmParser::IsSIReg(unsigned Reg) {
  switch (Reg) {
  default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
  case X86::RSI:
  case X86::ESI:
  case X86::SI:
    return true;
  case X86::RDI:
  case X86::EDI:
  case X86::DI:
    return false;
  }
}

unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
                                          bool IsSIReg) {
  switch (RegClassID) {
  default: llvm_unreachable("Unexpected register class");
  case X86::GR64RegClassID:
    return IsSIReg ? X86::RSI : X86::RDI;
  case X86::GR32RegClassID:
    return IsSIReg ? X86::ESI : X86::EDI;
  case X86::GR16RegClassID:
    return IsSIReg ? X86::SI : X86::DI;
  }
}

void X86AsmParser::AddDefaultSrcDestOperands(
    OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
    std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
  if (isParsingIntelSyntax()) {
    Operands.push_back(std::move(Dst));
    Operands.push_back(std::move(Src));
  }
  else {
    Operands.push_back(std::move(Src));
    Operands.push_back(std::move(Dst));
  }
}

bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
                                           OperandVector &FinalOperands) {

  if (OrigOperands.size() > 1) {
    // Check if sizes match, OrigOperands also contains the instruction name
    assert(OrigOperands.size() == FinalOperands.size() + 1 &&
           "Operand size mismatch");

    SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
    // Verify types match
    int RegClassID = -1;
    for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
      X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
      X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);

      if (FinalOp.isReg() &&
          (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
        // Return false and let a normal complaint about bogus operands happen
        return false;

      if (FinalOp.isMem()) {

        if (!OrigOp.isMem())
          // Return false and let a normal complaint about bogus operands happen
          return false;

        unsigned OrigReg = OrigOp.Mem.BaseReg;
        unsigned FinalReg = FinalOp.Mem.BaseReg;

        // If we've already encounterd a register class, make sure all register
        // bases are of the same register class
        if (RegClassID != -1 &&
            !X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
          return Error(OrigOp.getStartLoc(),
                       "mismatching source and destination index registers");
        }

        if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
          RegClassID = X86::GR64RegClassID;
        else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
          RegClassID = X86::GR32RegClassID;
        else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
          RegClassID = X86::GR16RegClassID;
        else
          // Unexpected register class type
          // Return false and let a normal complaint about bogus operands happen
          return false;

        bool IsSI = IsSIReg(FinalReg);
        FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);

        if (FinalReg != OrigReg) {
          std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
          Warnings.push_back(std::make_pair(
              OrigOp.getStartLoc(),
              "memory operand is only for determining the size, " + RegName +
                  " will be used for the location"));
        }

        FinalOp.Mem.Size = OrigOp.Mem.Size;
        FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
        FinalOp.Mem.BaseReg = FinalReg;
      }
    }

    // Produce warnings only if all the operands passed the adjustment - prevent
    // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
    for (auto &WarningMsg : Warnings) {
      Warning(WarningMsg.first, WarningMsg.second);
    }

    // Remove old operands
    for (unsigned int i = 0; i < FinalOperands.size(); ++i)
      OrigOperands.pop_back();
  }
  // OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
  for (unsigned int i = 0; i < FinalOperands.size(); ++i)
    OrigOperands.push_back(std::move(FinalOperands[i]));

  return false;
}

std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
  if (isParsingIntelSyntax())
    return ParseIntelOperand();
  return ParseATTOperand();
}

std::unique_ptr<X86Operand> X86AsmParser::CreateMemForMSInlineAsm(
    unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
    unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
    const InlineAsmIdentifierInfo &Info) {
  // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
  // some other label reference.
  if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
    // Insert an explicit size if the user didn't have one.
    if (!Size) {
      Size = getPointerWidth();
      InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
                                          /*Len=*/0, Size);
    }
    // Create an absolute memory reference in order to match against
    // instructions taking a PC relative operand.
    return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
                                 Identifier, Info.Label.Decl);
  }
  // We either have a direct symbol reference, or an offset from a symbol.  The
  // parser always puts the symbol on the LHS, so look there for size
  // calculation purposes.
  unsigned FrontendSize = 0;
  void *Decl = nullptr;
  bool IsGlobalLV = false;
  if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
    // Size is in terms of bits in this context.
    FrontendSize = Info.Var.Type * 8;
    Decl = Info.Var.Decl;
    IsGlobalLV = Info.Var.IsGlobalLV;
  }
  // It is widely common for MS InlineAsm to use a global variable and one/two
  // registers in a mmory expression, and though unaccessible via rip/eip.
  if (IsGlobalLV && (BaseReg || IndexReg)) {
    return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End);
  // Otherwise, we set the base register to a non-zero value
  // if we don't know the actual value at this time.  This is necessary to
  // get the matching correct in some cases.
  } else {
    BaseReg = BaseReg ? BaseReg : 1;
    return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
                                 IndexReg, Scale, Start, End, Size,
                                 /*DefaultBaseReg=*/X86::RIP, Identifier, Decl,
                                 FrontendSize);
  }
}

// Some binary bitwise operators have a named synonymous
// Query a candidate string for being such a named operator
// and if so - invoke the appropriate handler
bool X86AsmParser::ParseIntelNamedOperator(StringRef Name,
                                           IntelExprStateMachine &SM,
                                           bool &ParseError, SMLoc &End) {
  // A named operator should be either lower or upper case, but not a mix
  if (Name.compare(Name.lower()) && Name.compare(Name.upper()))
    return false;
  if (Name.equals_lower("not")) {
    SM.onNot();
  } else if (Name.equals_lower("or")) {
    SM.onOr();
  } else if (Name.equals_lower("shl")) {
    SM.onLShift();
  } else if (Name.equals_lower("shr")) {
    SM.onRShift();
  } else if (Name.equals_lower("xor")) {
    SM.onXor();
  } else if (Name.equals_lower("and")) {
    SM.onAnd();
  } else if (Name.equals_lower("mod")) {
    SM.onMod();
  } else if (Name.equals_lower("offset")) {
    SMLoc OffsetLoc = getTok().getLoc();
    const MCExpr *Val = nullptr;
    StringRef ID;
    InlineAsmIdentifierInfo Info;
    ParseError = ParseIntelOffsetOperator(Val, ID, Info, End);
    if (ParseError)
      return true;
    StringRef ErrMsg;
    ParseError =
        SM.onOffset(Val, OffsetLoc, ID, Info, isParsingMSInlineAsm(), ErrMsg);
    if (ParseError)
      return Error(SMLoc::getFromPointer(Name.data()), ErrMsg);
  } else {
    return false;
  }
  if (!Name.equals_lower("offset"))
    End = consumeToken();
  return true;
}

bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  StringRef ErrMsg;

  AsmToken::TokenKind PrevTK = AsmToken::Error;
  bool Done = false;
  while (!Done) {
    bool UpdateLocLex = true;
    AsmToken::TokenKind TK = getLexer().getKind();

    switch (TK) {
    default:
      if ((Done = SM.isValidEndState()))
        break;
      return Error(Tok.getLoc(), "unknown token in expression");
    case AsmToken::EndOfStatement:
      Done = true;
      break;
    case AsmToken::Real:
      // DotOperator: [ebx].0
      UpdateLocLex = false;
      if (ParseIntelDotOperator(SM, End))
        return true;
      break;
    case AsmToken::At:
    case AsmToken::String:
    case AsmToken::Identifier: {
      SMLoc IdentLoc = Tok.getLoc();
      StringRef Identifier = Tok.getString();
      UpdateLocLex = false;
      // (MASM only) <TYPE> PTR operator
      if (Parser.isParsingMasm()) {
        const AsmToken &NextTok = getLexer().peekTok();
        if (NextTok.is(AsmToken::Identifier) &&
            NextTok.getIdentifier().equals_lower("ptr")) {
          SM.onCast(Identifier);
          // Eat type and PTR.
          consumeToken();
          End = consumeToken();
          break;
        }
      }
      // Register, or (MASM only) <register>.<field>
      unsigned Reg;
      if (Tok.is(AsmToken::Identifier)) {
        if (!ParseRegister(Reg, IdentLoc, End, /*RestoreOnFailure=*/true)) {
          if (SM.onRegister(Reg, ErrMsg))
            return Error(IdentLoc, ErrMsg);
          break;
        }
        if (Parser.isParsingMasm()) {
          const std::pair<StringRef, StringRef> IDField =
              Tok.getString().split('.');
          const StringRef ID = IDField.first, Field = IDField.second;
          SMLoc IDEndLoc = SMLoc::getFromPointer(ID.data() + ID.size());
          if (!Field.empty() &&
              !MatchRegisterByName(Reg, ID, IdentLoc, IDEndLoc)) {
            if (SM.onRegister(Reg, ErrMsg))
              return Error(IdentLoc, ErrMsg);

            StringRef Type;
            unsigned Offset = 0;
            SMLoc FieldStartLoc = SMLoc::getFromPointer(Field.data());
            if (Parser.lookUpField(Field, Type, Offset))
              return Error(FieldStartLoc, "unknown offset");
            else if (SM.onPlus(ErrMsg))
              return Error(getTok().getLoc(), ErrMsg);
            else if (SM.onInteger(Offset, ErrMsg))
              return Error(IdentLoc, ErrMsg);
            SM.setType(Type);

            End = consumeToken();
            break;
          }
        }
      }
      // Operator synonymous ("not", "or" etc.)
      bool ParseError = false;
      if (ParseIntelNamedOperator(Identifier, SM, ParseError, End)) {
        if (ParseError)
          return true;
        break;
      }
      // Symbol reference, when parsing assembly content
      InlineAsmIdentifierInfo Info;
      const MCExpr *Val;
      if (isParsingMSInlineAsm() || Parser.isParsingMasm()) {
        // MS Dot Operator expression
        if (Identifier.count('.') &&
            (PrevTK == AsmToken::RBrac || PrevTK == AsmToken::RParen)) {
          if (ParseIntelDotOperator(SM, End))
            return true;
          break;
        }
      }
      if (isParsingMSInlineAsm()) {
        // MS InlineAsm operators (TYPE/LENGTH/SIZE)
        if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
          if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
            if (SM.onInteger(Val, ErrMsg))
              return Error(IdentLoc, ErrMsg);
          } else
            return true;
          break;
        }
        // MS InlineAsm identifier
        // Call parseIdentifier() to combine @ with the identifier behind it.
        if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
          return Error(IdentLoc, "expected identifier");
        if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
          return true;
        else if (SM.onIdentifierExpr(Val, Identifier, Info, true, ErrMsg))
          return Error(IdentLoc, ErrMsg);
        break;
      }
      if (getParser().parsePrimaryExpr(Val, End)) {
        return Error(Tok.getLoc(), "Unexpected identifier!");
      } else if (SM.onIdentifierExpr(Val, Identifier, Info, false, ErrMsg)) {
        return Error(IdentLoc, ErrMsg);
      }
      break;
    }
    case AsmToken::Integer: {
      // Look for 'b' or 'f' following an Integer as a directional label
      SMLoc Loc = getTok().getLoc();
      int64_t IntVal = getTok().getIntVal();
      End = consumeToken();
      UpdateLocLex = false;
      if (getLexer().getKind() == AsmToken::Identifier) {
        StringRef IDVal = getTok().getString();
        if (IDVal == "f" || IDVal == "b") {
          MCSymbol *Sym =
              getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
          MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
          const MCExpr *Val =
              MCSymbolRefExpr::create(Sym, Variant, getContext());
          if (IDVal == "b" && Sym->isUndefined())
            return Error(Loc, "invalid reference to undefined symbol");
          StringRef Identifier = Sym->getName();
          InlineAsmIdentifierInfo Info;
          if (SM.onIdentifierExpr(Val, Identifier, Info, isParsingMSInlineAsm(),
                                  ErrMsg))
            return Error(Loc, ErrMsg);
          End = consumeToken();
        } else {
          if (SM.onInteger(IntVal, ErrMsg))
            return Error(Loc, ErrMsg);
        }
      } else {
        if (SM.onInteger(IntVal, ErrMsg))
          return Error(Loc, ErrMsg);
      }
      break;
    }
    case AsmToken::Plus:
      if (SM.onPlus(ErrMsg))
        return Error(getTok().getLoc(), ErrMsg);
      break;
    case AsmToken::Minus:
      if (SM.onMinus(ErrMsg))
        return Error(getTok().getLoc(), ErrMsg);
      break;
    case AsmToken::Tilde:   SM.onNot(); break;
    case AsmToken::Star:    SM.onStar(); break;
    case AsmToken::Slash:   SM.onDivide(); break;
    case AsmToken::Percent: SM.onMod(); break;
    case AsmToken::Pipe:    SM.onOr(); break;
    case AsmToken::Caret:   SM.onXor(); break;
    case AsmToken::Amp:     SM.onAnd(); break;
    case AsmToken::LessLess:
                            SM.onLShift(); break;
    case AsmToken::GreaterGreater:
                            SM.onRShift(); break;
    case AsmToken::LBrac:
      if (SM.onLBrac())
        return Error(Tok.getLoc(), "unexpected bracket encountered");
      break;
    case AsmToken::RBrac:
      if (SM.onRBrac())
        return Error(Tok.getLoc(), "unexpected bracket encountered");
      break;
    case AsmToken::LParen:  SM.onLParen(); break;
    case AsmToken::RParen:  SM.onRParen(); break;
    }
    if (SM.hadError())
      return Error(Tok.getLoc(), "unknown token in expression");

    if (!Done && UpdateLocLex)
      End = consumeToken();

    PrevTK = TK;
  }
  return false;
}

void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
                                          SMLoc Start, SMLoc End) {
  SMLoc Loc = Start;
  unsigned ExprLen = End.getPointer() - Start.getPointer();
  // Skip everything before a symbol displacement (if we have one)
  if (SM.getSym() && !SM.isOffsetOperator()) {
    StringRef SymName = SM.getSymName();
    if (unsigned Len = SymName.data() - Start.getPointer())
      InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
    Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
    ExprLen = End.getPointer() - (SymName.data() + SymName.size());
    // If we have only a symbol than there's no need for complex rewrite,
    // simply skip everything after it
    if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
      if (ExprLen)
        InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
      return;
    }
  }
  // Build an Intel Expression rewrite
  StringRef BaseRegStr;
  StringRef IndexRegStr;
  StringRef OffsetNameStr;
  if (SM.getBaseReg())
    BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
  if (SM.getIndexReg())
    IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
  if (SM.isOffsetOperator())
    OffsetNameStr = SM.getSymName();
  // Emit it
  IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), OffsetNameStr,
                 SM.getImm(), SM.isMemExpr());
  InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
}

// Inline assembly may use variable names with namespace alias qualifiers.
bool X86AsmParser::ParseIntelInlineAsmIdentifier(
    const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info,
    bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator) {
  MCAsmParser &Parser = getParser();
  assert(isParsingMSInlineAsm() && "Expected to be parsing inline assembly.");
  Val = nullptr;

  StringRef LineBuf(Identifier.data());
  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);

  const AsmToken &Tok = Parser.getTok();
  SMLoc Loc = Tok.getLoc();

  // Advance the token stream until the end of the current token is
  // after the end of what the frontend claimed.
  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
  do {
    End = Tok.getEndLoc();
    getLexer().Lex();
  } while (End.getPointer() < EndPtr);
  Identifier = LineBuf;

  // The frontend should end parsing on an assembler token boundary, unless it
  // failed parsing.
  assert((End.getPointer() == EndPtr ||
          Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
          "frontend claimed part of a token?");

  // If the identifier lookup was unsuccessful, assume that we are dealing with
  // a label.
  if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
    StringRef InternalName =
      SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
                                         Loc, false);
    assert(InternalName.size() && "We should have an internal name here.");
    // Push a rewrite for replacing the identifier name with the internal name,
    // unless we are parsing the operand of an offset operator
    if (!IsParsingOffsetOperator)
      InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
                                          InternalName);
    else
      Identifier = InternalName;
  } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
    return false;
  // Create the symbol reference.
  MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
  Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
  return false;
}

//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
std::unique_ptr<X86Operand>
X86AsmParser::ParseRoundingModeOp(SMLoc Start) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  // Eat "{" and mark the current place.
  const SMLoc consumedToken = consumeToken();
  if (Tok.isNot(AsmToken::Identifier))
    return ErrorOperand(Tok.getLoc(), "Expected an identifier after {");
  if (Tok.getIdentifier().startswith("r")){
    int rndMode = StringSwitch<int>(Tok.getIdentifier())
      .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
      .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
      .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
      .Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
      .Default(-1);
    if (-1 == rndMode)
      return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
     Parser.Lex();  // Eat "r*" of r*-sae
    if (!getLexer().is(AsmToken::Minus))
      return ErrorOperand(Tok.getLoc(), "Expected - at this point");
    Parser.Lex();  // Eat "-"
    Parser.Lex();  // Eat the sae
    if (!getLexer().is(AsmToken::RCurly))
      return ErrorOperand(Tok.getLoc(), "Expected } at this point");
    SMLoc End = Tok.getEndLoc();
    Parser.Lex();  // Eat "}"
    const MCExpr *RndModeOp =
      MCConstantExpr::create(rndMode, Parser.getContext());
    return X86Operand::CreateImm(RndModeOp, Start, End);
  }
  if(Tok.getIdentifier().equals("sae")){
    Parser.Lex();  // Eat the sae
    if (!getLexer().is(AsmToken::RCurly))
      return ErrorOperand(Tok.getLoc(), "Expected } at this point");
    Parser.Lex();  // Eat "}"
    return X86Operand::CreateToken("{sae}", consumedToken);
  }
  return ErrorOperand(Tok.getLoc(), "unknown token in expression");
}

/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM,
                                         SMLoc &End) {
  const AsmToken &Tok = getTok();
  StringRef Type;
  unsigned Offset = 0;

  // Drop the optional '.'.
  StringRef DotDispStr = Tok.getString();
  if (DotDispStr.startswith("."))
    DotDispStr = DotDispStr.drop_front(1);

  // .Imm gets lexed as a real.
  if (Tok.is(AsmToken::Real)) {
    APInt DotDisp;
    DotDispStr.getAsInteger(10, DotDisp);
    Offset = DotDisp.getZExtValue();
  } else if ((isParsingMSInlineAsm() || getParser().isParsingMasm()) &&
             Tok.is(AsmToken::Identifier)) {
    const std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
    const StringRef Base = BaseMember.first, Member = BaseMember.second;
    if (getParser().lookUpField(SM.getType(), DotDispStr, Type, Offset) &&
        getParser().lookUpField(SM.getSymName(), DotDispStr, Type, Offset) &&
        getParser().lookUpField(DotDispStr, Type, Offset) &&
        (!SemaCallback ||
         SemaCallback->LookupInlineAsmField(Base, Member, Offset)))
      return Error(Tok.getLoc(), "Unable to lookup field reference!");
  } else
    return Error(Tok.getLoc(), "Unexpected token type!");

  // Eat the DotExpression and update End
  End = SMLoc::getFromPointer(DotDispStr.data());
  const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
  while (Tok.getLoc().getPointer() < DotExprEndLoc)
    Lex();
  SM.addImm(Offset);
  SM.setType(Type);
  return false;
}

/// Parse the 'offset' operator.
/// This operator is used to specify the location of a given operand
bool X86AsmParser::ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
                                            InlineAsmIdentifierInfo &Info,
                                            SMLoc &End) {
  // Eat offset, mark start of identifier.
  SMLoc Start = Lex().getLoc();
  ID = getTok().getString();
  if (!isParsingMSInlineAsm()) {
    if ((getTok().isNot(AsmToken::Identifier) &&
         getTok().isNot(AsmToken::String)) ||
        getParser().parsePrimaryExpr(Val, End))
      return Error(Start, "unexpected token!");
  } else if (ParseIntelInlineAsmIdentifier(Val, ID, Info, false, End, true)) {
    return Error(Start, "unable to lookup expression");
  } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) {
    return Error(Start, "offset operator cannot yet handle constants");
  }
  return false;
}

// Query a candidate string for being an Intel assembly operator
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
  return StringSwitch<unsigned>(Name)
    .Cases("TYPE","type",IOK_TYPE)
    .Cases("SIZE","size",IOK_SIZE)
    .Cases("LENGTH","length",IOK_LENGTH)
    .Default(IOK_INVALID);
}

/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
/// returns the number of elements in an array.  It returns the value 1 for
/// non-array variables.  The SIZE operator returns the size of a C or C++
/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  Parser.Lex(); // Eat operator.

  const MCExpr *Val = nullptr;
  InlineAsmIdentifierInfo Info;
  SMLoc Start = Tok.getLoc(), End;
  StringRef Identifier = Tok.getString();
  if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
                                    /*Unevaluated=*/true, End))
    return 0;

  if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
    Error(Start, "unable to lookup expression");
    return 0;
  }

  unsigned CVal = 0;
  switch(OpKind) {
  default: llvm_unreachable("Unexpected operand kind!");
  case IOK_LENGTH: CVal = Info.Var.Length; break;
  case IOK_SIZE: CVal = Info.Var.Size; break;
  case IOK_TYPE: CVal = Info.Var.Type; break;
  }

  return CVal;
}

bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
  Size = StringSwitch<unsigned>(getTok().getString())
    .Cases("BYTE", "byte", 8)
    .Cases("WORD", "word", 16)
    .Cases("DWORD", "dword", 32)
    .Cases("FLOAT", "float", 32)
    .Cases("LONG", "long", 32)
    .Cases("FWORD", "fword", 48)
    .Cases("DOUBLE", "double", 64)
    .Cases("QWORD", "qword", 64)
    .Cases("MMWORD","mmword", 64)
    .Cases("XWORD", "xword", 80)
    .Cases("TBYTE", "tbyte", 80)
    .Cases("XMMWORD", "xmmword", 128)
    .Cases("YMMWORD", "ymmword", 256)
    .Cases("ZMMWORD", "zmmword", 512)
    .Default(0);
  if (Size) {
    const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
    if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
      return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
    Lex(); // Eat ptr.
  }
  return false;
}

std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  SMLoc Start, End;

  // Parse optional Size directive.
  unsigned Size;
  if (ParseIntelMemoryOperandSize(Size))
    return nullptr;
  bool PtrInOperand = bool(Size);

  Start = Tok.getLoc();

  // Rounding mode operand.
  if (getLexer().is(AsmToken::LCurly))
    return ParseRoundingModeOp(Start);

  // Register operand.
  unsigned RegNo = 0;
  if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
    if (RegNo == X86::RIP)
      return ErrorOperand(Start, "rip can only be used as a base register");
    // A Register followed by ':' is considered a segment override
    if (Tok.isNot(AsmToken::Colon))
      return !PtrInOperand ? X86Operand::CreateReg(RegNo, Start, End) :
        ErrorOperand(Start, "expected memory operand after 'ptr', "
                            "found register operand instead");
    // An alleged segment override. check if we have a valid segment register
    if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
      return ErrorOperand(Start, "invalid segment register");
    // Eat ':' and update Start location
    Start = Lex().getLoc();
  }

  // Immediates and Memory
  IntelExprStateMachine SM;
  if (ParseIntelExpression(SM, End))
    return nullptr;

  if (isParsingMSInlineAsm())
    RewriteIntelExpression(SM, Start, Tok.getLoc());

  int64_t Imm = SM.getImm();
  const MCExpr *Disp = SM.getSym();
  const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
  if (Disp && Imm)
    Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
  if (!Disp)
    Disp = ImmDisp;

  // RegNo != 0 specifies a valid segment register,
  // and we are parsing a segment override
  if (!SM.isMemExpr() && !RegNo) {
    if (isParsingMSInlineAsm() && SM.isOffsetOperator()) {
      const InlineAsmIdentifierInfo Info = SM.getIdentifierInfo();
      if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
        // Disp includes the address of a variable; make sure this is recorded
        // for later handling.
        return X86Operand::CreateImm(Disp, Start, End, SM.getSymName(),
                                     Info.Var.Decl, Info.Var.IsGlobalLV);
      }
    }

    return X86Operand::CreateImm(Disp, Start, End);
  }

  StringRef ErrMsg;
  unsigned BaseReg = SM.getBaseReg();
  unsigned IndexReg = SM.getIndexReg();
  unsigned Scale = SM.getScale();

  if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
      (IndexReg == X86::ESP || IndexReg == X86::RSP))
    std::swap(BaseReg, IndexReg);

  // If BaseReg is a vector register and IndexReg is not, swap them unless
  // Scale was specified in which case it would be an error.
  if (Scale == 0 &&
      !(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
        X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
      (X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
       X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
       X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
    std::swap(BaseReg, IndexReg);

  if (Scale != 0 &&
      X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
    return ErrorOperand(Start, "16-bit addresses cannot have a scale");

  // If there was no explicit scale specified, change it to 1.
  if (Scale == 0)
    Scale = 1;

  // If this is a 16-bit addressing mode with the base and index in the wrong
  // order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
  // shared with att syntax where order matters.
  if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
      (IndexReg == X86::BX || IndexReg == X86::BP))
    std::swap(BaseReg, IndexReg);

  if ((BaseReg || IndexReg) &&
      CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
                                      ErrMsg))
    return ErrorOperand(Start, ErrMsg);
  if (isParsingMSInlineAsm())
    return CreateMemForMSInlineAsm(RegNo, Disp, BaseReg, IndexReg, Scale, Start,
                                   End, Size, SM.getSymName(),
                                   SM.getIdentifierInfo());

  // When parsing x64 MS-style assembly, all memory operands default to
  // RIP-relative when interpreted as non-absolute references.
  if (Parser.isParsingMasm() && is64BitMode())
    return X86Operand::CreateMem(getPointerWidth(), RegNo, Disp, BaseReg,
                                 IndexReg, Scale, Start, End, Size,
                                 /*DefaultBaseReg=*/X86::RIP);

  if (!(BaseReg || IndexReg || RegNo))
    return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
  return X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
                               BaseReg, IndexReg, Scale, Start, End, Size);
}

std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
  MCAsmParser &Parser = getParser();
  switch (getLexer().getKind()) {
  case AsmToken::Dollar: {
    // $42 or $ID -> immediate.
    SMLoc Start = Parser.getTok().getLoc(), End;
    Parser.Lex();
    const MCExpr *Val;
    // This is an immediate, so we should not parse a register. Do a precheck
    // for '%' to supercede intra-register parse errors.
    SMLoc L = Parser.getTok().getLoc();
    if (check(getLexer().is(AsmToken::Percent), L,
              "expected immediate expression") ||
        getParser().parseExpression(Val, End) ||
        check(isa<X86MCExpr>(Val), L, "expected immediate expression"))
      return nullptr;
    return X86Operand::CreateImm(Val, Start, End);
  }
  case AsmToken::LCurly: {
    SMLoc Start = Parser.getTok().getLoc();
    return ParseRoundingModeOp(Start);
  }
  default: {
    // This a memory operand or a register. We have some parsing complications
    // as a '(' may be part of an immediate expression or the addressing mode
    // block. This is complicated by the fact that an assembler-level variable
    // may refer either to a register or an immediate expression.

    SMLoc Loc = Parser.getTok().getLoc(), EndLoc;
    const MCExpr *Expr = nullptr;
    unsigned Reg = 0;
    if (getLexer().isNot(AsmToken::LParen)) {
      // No '(' so this is either a displacement expression or a register.
      if (Parser.parseExpression(Expr, EndLoc))
        return nullptr;
      if (auto *RE = dyn_cast<X86MCExpr>(Expr)) {
        // Segment Register. Reset Expr and copy value to register.
        Expr = nullptr;
        Reg = RE->getRegNo();

        // Sanity check register.
        if (Reg == X86::EIZ || Reg == X86::RIZ)
          return ErrorOperand(
              Loc, "%eiz and %riz can only be used as index registers",
              SMRange(Loc, EndLoc));
        if (Reg == X86::RIP)
          return ErrorOperand(Loc, "%rip can only be used as a base register",
                              SMRange(Loc, EndLoc));
        // Return register that are not segment prefixes immediately.
        if (!Parser.parseOptionalToken(AsmToken::Colon))
          return X86Operand::CreateReg(Reg, Loc, EndLoc);
        if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg))
          return ErrorOperand(Loc, "invalid segment register");
      }
    }
    // This is a Memory operand.
    return ParseMemOperand(Reg, Expr, Loc, EndLoc);
  }
  }
}

// X86::COND_INVALID if not a recognized condition code or alternate mnemonic,
// otherwise the EFLAGS Condition Code enumerator.
X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) {
  return StringSwitch<X86::CondCode>(CC)
      .Case("o", X86::COND_O)          // Overflow
      .Case("no", X86::COND_NO)        // No Overflow
      .Cases("b", "nae", X86::COND_B)  // Below/Neither Above nor Equal
      .Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below
      .Cases("e", "z", X86::COND_E)    // Equal/Zero
      .Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero
      .Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above
      .Cases("a", "nbe", X86::COND_A)  // Above/Neither Below nor Equal
      .Case("s", X86::COND_S)          // Sign
      .Case("ns", X86::COND_NS)        // No Sign
      .Cases("p", "pe", X86::COND_P)   // Parity/Parity Even
      .Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd
      .Cases("l", "nge", X86::COND_L)  // Less/Neither Greater nor Equal
      .Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less
      .Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater
      .Cases("g", "nle", X86::COND_G)  // Greater/Neither Less nor Equal
      .Default(X86::COND_INVALID);
}

// true on failure, false otherwise
// If no {z} mark was found - Parser doesn't advance
bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
                          const SMLoc &StartLoc) {
  MCAsmParser &Parser = getParser();
  // Assuming we are just pass the '{' mark, quering the next token
  // Searched for {z}, but none was found. Return false, as no parsing error was
  // encountered
  if (!(getLexer().is(AsmToken::Identifier) &&
        (getLexer().getTok().getIdentifier() == "z")))
    return false;
  Parser.Lex(); // Eat z
  // Query and eat the '}' mark
  if (!getLexer().is(AsmToken::RCurly))
    return Error(getLexer().getLoc(), "Expected } at this point");
  Parser.Lex(); // Eat '}'
  // Assign Z with the {z} mark opernad
  Z = X86Operand::CreateToken("{z}", StartLoc);
  return false;
}

// true on failure, false otherwise
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
                                       const MCParsedAsmOperand &Op) {
  MCAsmParser &Parser = getParser();
  if (getLexer().is(AsmToken::LCurly)) {
    // Eat "{" and mark the current place.
    const SMLoc consumedToken = consumeToken();
    // Distinguish {1to<NUM>} from {%k<NUM>}.
    if(getLexer().is(AsmToken::Integer)) {
      // Parse memory broadcasting ({1to<NUM>}).
      if (getLexer().getTok().getIntVal() != 1)
        return TokError("Expected 1to<NUM> at this point");
      Parser.Lex();  // Eat "1" of 1to8
      if (!getLexer().is(AsmToken::Identifier) ||
          !getLexer().getTok().getIdentifier().startswith("to"))
        return TokError("Expected 1to<NUM> at this point");
      // Recognize only reasonable suffixes.
      const char *BroadcastPrimitive =
        StringSwitch<const char*>(getLexer().getTok().getIdentifier())
          .Case("to2",  "{1to2}")
          .Case("to4",  "{1to4}")
          .Case("to8",  "{1to8}")
          .Case("to16", "{1to16}")
          .Default(nullptr);
      if (!BroadcastPrimitive)
        return TokError("Invalid memory broadcast primitive.");
      Parser.Lex();  // Eat "toN" of 1toN
      if (!getLexer().is(AsmToken::RCurly))
        return TokError("Expected } at this point");
      Parser.Lex();  // Eat "}"
      Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
                                                 consumedToken));
      // No AVX512 specific primitives can pass
      // after memory broadcasting, so return.
      return false;
    } else {
      // Parse either {k}{z}, {z}{k}, {k} or {z}
      // last one have no meaning, but GCC accepts it
      // Currently, we're just pass a '{' mark
      std::unique_ptr<X86Operand> Z;
      if (ParseZ(Z, consumedToken))
        return true;
      // Reaching here means that parsing of the allegadly '{z}' mark yielded
      // no errors.
      // Query for the need of further parsing for a {%k<NUM>} mark
      if (!Z || getLexer().is(AsmToken::LCurly)) {
        SMLoc StartLoc = Z ? consumeToken() : consumedToken;
        // Parse an op-mask register mark ({%k<NUM>}), which is now to be
        // expected
        unsigned RegNo;
        SMLoc RegLoc;
        if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
            X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
          if (RegNo == X86::K0)
            return Error(RegLoc, "Register k0 can't be used as write mask");
          if (!getLexer().is(AsmToken::RCurly))
            return Error(getLexer().getLoc(), "Expected } at this point");
          Operands.push_back(X86Operand::CreateToken("{", StartLoc));
          Operands.push_back(
              X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
          Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
        } else
          return Error(getLexer().getLoc(),
                        "Expected an op-mask register at this point");
        // {%k<NUM>} mark is found, inquire for {z}
        if (getLexer().is(AsmToken::LCurly) && !Z) {
          // Have we've found a parsing error, or found no (expected) {z} mark
          // - report an error
          if (ParseZ(Z, consumeToken()) || !Z)
            return Error(getLexer().getLoc(),
                         "Expected a {z} mark at this point");

        }
        // '{z}' on its own is meaningless, hence should be ignored.
        // on the contrary - have it been accompanied by a K register,
        // allow it.
        if (Z)
          Operands.push_back(std::move(Z));
      }
    }
  }
  return false;
}

/// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'.  The '%ds:' prefix
/// has already been parsed if present. disp may be provided as well.
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
                                                          const MCExpr *&Disp,
                                                          const SMLoc &StartLoc,
                                                          SMLoc &EndLoc) {
  MCAsmParser &Parser = getParser();
  SMLoc Loc;
  // Based on the initial passed values, we may be in any of these cases, we are
  // in one of these cases (with current position (*)):

  //   1. seg : * disp  (base-index-scale-expr)
  //   2. seg : *(disp) (base-index-scale-expr)
  //   3. seg :       *(base-index-scale-expr)
  //   4.        disp  *(base-index-scale-expr)
  //   5.      *(disp)  (base-index-scale-expr)
  //   6.             *(base-index-scale-expr)
  //   7.  disp *
  //   8. *(disp)

  // If we do not have an displacement yet, check if we're in cases 4 or 6 by
  // checking if the first object after the parenthesis is a register (or an
  // identifier referring to a register) and parse the displacement or default
  // to 0 as appropriate.
  auto isAtMemOperand = [this]() {
    if (this->getLexer().isNot(AsmToken::LParen))
      return false;
    AsmToken Buf[2];
    StringRef Id;
    auto TokCount = this->getLexer().peekTokens(Buf, true);
    if (TokCount == 0)
      return false;
    switch (Buf[0].getKind()) {
    case AsmToken::Percent:
    case AsmToken::Comma:
      return true;
    // These lower cases are doing a peekIdentifier.
    case AsmToken::At:
    case AsmToken::Dollar:
      if ((TokCount > 1) &&
          (Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) &&
          (Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer()))
        Id = StringRef(Buf[0].getLoc().getPointer(),
                       Buf[1].getIdentifier().size() + 1);
      break;
    case AsmToken::Identifier:
    case AsmToken::String:
      Id = Buf[0].getIdentifier();
      break;
    default:
      return false;
    }
    // We have an ID. Check if it is bound to a register.
    if (!Id.empty()) {
      MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id);
      if (Sym->isVariable()) {
        auto V = Sym->getVariableValue(/*SetUsed*/ false);
        return isa<X86MCExpr>(V);
      }
    }
    return false;
  };

  if (!Disp) {
    // Parse immediate if we're not at a mem operand yet.
    if (!isAtMemOperand()) {
      if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc))
        return nullptr;
      assert(!isa<X86MCExpr>(Disp) && "Expected non-register here.");
    } else {
      // Disp is implicitly zero if we haven't parsed it yet.
      Disp = MCConstantExpr::create(0, Parser.getContext());
    }
  }

  // We are now either at the end of the operand or at the '(' at the start of a
  // base-index-scale-expr.

  if (!parseOptionalToken(AsmToken::LParen)) {
    if (SegReg == 0)
      return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc);
    return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
                                 StartLoc, EndLoc);
  }

  // If we reached here, then eat the '(' and Process
  // the rest of the memory operand.
  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
  SMLoc BaseLoc = getLexer().getLoc();
  const MCExpr *E;
  StringRef ErrMsg;

  // Parse BaseReg if one is provided.
  if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) {
    if (Parser.parseExpression(E, EndLoc) ||
        check(!isa<X86MCExpr>(E), BaseLoc, "expected register here"))
      return nullptr;

    // Sanity check register.
    BaseReg = cast<X86MCExpr>(E)->getRegNo();
    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ)
      return ErrorOperand(BaseLoc,
                          "eiz and riz can only be used as index registers",
                          SMRange(BaseLoc, EndLoc));
  }

  if (parseOptionalToken(AsmToken::Comma)) {
    // Following the comma we should have either an index register, or a scale
    // value. We don't support the later form, but we want to parse it
    // correctly.
    //
    // Even though it would be completely consistent to support syntax like
    // "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
    if (getLexer().isNot(AsmToken::RParen)) {
      if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc))
        return nullptr;

      if (!isa<X86MCExpr>(E)) {
        // We've parsed an unexpected Scale Value instead of an index
        // register. Interpret it as an absolute.
        int64_t ScaleVal;
        if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr()))
          return ErrorOperand(Loc, "expected absolute expression");
        if (ScaleVal != 1)
          Warning(Loc, "scale factor without index register is ignored");
        Scale = 1;
      } else { // IndexReg Found.
        IndexReg = cast<X86MCExpr>(E)->getRegNo();

        if (BaseReg == X86::RIP)
          return ErrorOperand(
              Loc, "%rip as base register can not have an index register");
        if (IndexReg == X86::RIP)
          return ErrorOperand(Loc, "%rip is not allowed as an index register");

        if (parseOptionalToken(AsmToken::Comma)) {
          // Parse the scale amount:
          //  ::= ',' [scale-expression]

          // A scale amount without an index is ignored.
          if (getLexer().isNot(AsmToken::RParen)) {
            int64_t ScaleVal;
            if (Parser.parseTokenLoc(Loc) ||
                Parser.parseAbsoluteExpression(ScaleVal))
              return ErrorOperand(Loc, "expected scale expression");
            Scale = (unsigned)ScaleVal;
            // Validate the scale amount.
            if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
                Scale != 1)
              return ErrorOperand(Loc,
                                  "scale factor in 16-bit address must be 1");
            if (checkScale(Scale, ErrMsg))
              return ErrorOperand(Loc, ErrMsg);
          }
        }
      }
    }
  }

  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
  if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
    return nullptr;

  // This is to support otherwise illegal operand (%dx) found in various
  // unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now
  // be supported. Mark such DX variants separately fix only in special cases.
  if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 &&
      isa<MCConstantExpr>(Disp) && cast<MCConstantExpr>(Disp)->getValue() == 0)
    return X86Operand::CreateDXReg(BaseLoc, BaseLoc);

  if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
                                      ErrMsg))
    return ErrorOperand(BaseLoc, ErrMsg);

  if (SegReg || BaseReg || IndexReg)
    return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
                                 IndexReg, Scale, StartLoc, EndLoc);
  return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc);
}

// Parse either a standard primary expression or a register.
bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
  MCAsmParser &Parser = getParser();
  // See if this is a register first.
  if (getTok().is(AsmToken::Percent) ||
      (isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) &&
       MatchRegisterName(Parser.getTok().getString()))) {
    SMLoc StartLoc = Parser.getTok().getLoc();
    unsigned RegNo;
    if (ParseRegister(RegNo, StartLoc, EndLoc))
      return true;
    Res = X86MCExpr::create(RegNo, Parser.getContext());
    return false;
  }
  return Parser.parsePrimaryExpr(Res, EndLoc);
}

bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                                    SMLoc NameLoc, OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  InstInfo = &Info;

  // Reset the forced VEX encoding.
  ForcedVEXEncoding = VEXEncoding_Default;

  // Parse pseudo prefixes.
  while (1) {
    if (Name == "{") {
      if (getLexer().isNot(AsmToken::Identifier))
        return Error(Parser.getTok().getLoc(), "Unexpected token after '{'");
      std::string Prefix = Parser.getTok().getString().lower();
      Parser.Lex(); // Eat identifier.
      if (getLexer().isNot(AsmToken::RCurly))
        return Error(Parser.getTok().getLoc(), "Expected '}'");
      Parser.Lex(); // Eat curly.

      if (Prefix == "vex" || Prefix == "vex2")
        ForcedVEXEncoding = VEXEncoding_VEX;
      else if (Prefix == "vex3")
        ForcedVEXEncoding = VEXEncoding_VEX3;
      else if (Prefix == "evex")
        ForcedVEXEncoding = VEXEncoding_EVEX;
      else
        return Error(NameLoc, "unknown prefix");

      NameLoc = Parser.getTok().getLoc();
      if (getLexer().is(AsmToken::LCurly)) {
        Parser.Lex();
        Name = "{";
      } else {
        if (getLexer().isNot(AsmToken::Identifier))
          return Error(Parser.getTok().getLoc(), "Expected identifier");
        // FIXME: The mnemonic won't match correctly if its not in lower case.
        Name = Parser.getTok().getString();
        Parser.Lex();
      }
      continue;
    }

    break;
  }

  StringRef PatchedName = Name;

  // Hack to skip "short" following Jcc.
  if (isParsingIntelSyntax() &&
      (PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" ||
       PatchedName == "jcxz" || PatchedName == "jexcz" ||
       (PatchedName.startswith("j") &&
        ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) {
    StringRef NextTok = Parser.getTok().getString();
    if (NextTok == "short") {
      SMLoc NameEndLoc =
          NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
      // Eat the short keyword.
      Parser.Lex();
      // MS and GAS ignore the short keyword; they both determine the jmp type
      // based on the distance of the label. (NASM does emit different code with
      // and without "short," though.)
      InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
                                          NextTok.size() + 1);
    }
  }

  // FIXME: Hack to recognize setneb as setne.
  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
      PatchedName != "setb" && PatchedName != "setnb")
    PatchedName = PatchedName.substr(0, Name.size()-1);

  unsigned ComparisonPredicate = ~0U;

  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
    bool IsVCMP = PatchedName[0] == 'v';
    unsigned CCIdx = IsVCMP ? 4 : 3;
    unsigned CC = StringSwitch<unsigned>(
      PatchedName.slice(CCIdx, PatchedName.size() - 2))
      .Case("eq",       0x00)
      .Case("eq_oq",    0x00)
      .Case("lt",       0x01)
      .Case("lt_os",    0x01)
      .Case("le",       0x02)
      .Case("le_os",    0x02)
      .Case("unord",    0x03)
      .Case("unord_q",  0x03)
      .Case("neq",      0x04)
      .Case("neq_uq",   0x04)
      .Case("nlt",      0x05)
      .Case("nlt_us",   0x05)
      .Case("nle",      0x06)
      .Case("nle_us",   0x06)
      .Case("ord",      0x07)
      .Case("ord_q",    0x07)
      /* AVX only from here */
      .Case("eq_uq",    0x08)
      .Case("nge",      0x09)
      .Case("nge_us",   0x09)
      .Case("ngt",      0x0A)
      .Case("ngt_us",   0x0A)
      .Case("false",    0x0B)
      .Case("false_oq", 0x0B)
      .Case("neq_oq",   0x0C)
      .Case("ge",       0x0D)
      .Case("ge_os",    0x0D)
      .Case("gt",       0x0E)
      .Case("gt_os",    0x0E)
      .Case("true",     0x0F)
      .Case("true_uq",  0x0F)
      .Case("eq_os",    0x10)
      .Case("lt_oq",    0x11)
      .Case("le_oq",    0x12)
      .Case("unord_s",  0x13)
      .Case("neq_us",   0x14)
      .Case("nlt_uq",   0x15)
      .Case("nle_uq",   0x16)
      .Case("ord_s",    0x17)
      .Case("eq_us",    0x18)
      .Case("nge_uq",   0x19)
      .Case("ngt_uq",   0x1A)
      .Case("false_os", 0x1B)
      .Case("neq_os",   0x1C)
      .Case("ge_oq",    0x1D)
      .Case("gt_oq",    0x1E)
      .Case("true_us",  0x1F)
      .Default(~0U);
    if (CC != ~0U && (IsVCMP || CC < 8)) {
      if (PatchedName.endswith("ss"))
        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
      else if (PatchedName.endswith("sd"))
        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
      else if (PatchedName.endswith("ps"))
        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
      else if (PatchedName.endswith("pd"))
        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
      else
        llvm_unreachable("Unexpected suffix!");

      ComparisonPredicate = CC;
    }
  }

  // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
  if (PatchedName.startswith("vpcmp") &&
      (PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
       PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
    unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
    unsigned CC = StringSwitch<unsigned>(
      PatchedName.slice(5, PatchedName.size() - SuffixSize))
      .Case("eq",    0x0) // Only allowed on unsigned. Checked below.
      .Case("lt",    0x1)
      .Case("le",    0x2)
      //.Case("false", 0x3) // Not a documented alias.
      .Case("neq",   0x4)
      .Case("nlt",   0x5)
      .Case("nle",   0x6)
      //.Case("true",  0x7) // Not a documented alias.
      .Default(~0U);
    if (CC != ~0U && (CC != 0 || SuffixSize == 2)) {
      switch (PatchedName.back()) {
      default: llvm_unreachable("Unexpected character!");
      case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break;
      case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break;
      case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break;
      case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break;
      }
      // Set up the immediate to push into the operands later.
      ComparisonPredicate = CC;
    }
  }

  // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
  if (PatchedName.startswith("vpcom") &&
      (PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
       PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
    unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
    unsigned CC = StringSwitch<unsigned>(
      PatchedName.slice(5, PatchedName.size() - SuffixSize))
      .Case("lt",    0x0)
      .Case("le",    0x1)
      .Case("gt",    0x2)
      .Case("ge",    0x3)
      .Case("eq",    0x4)
      .Case("neq",   0x5)
      .Case("false", 0x6)
      .Case("true",  0x7)
      .Default(~0U);
    if (CC != ~0U) {
      switch (PatchedName.back()) {
      default: llvm_unreachable("Unexpected character!");
      case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break;
      case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break;
      case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break;
      case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break;
      }
      // Set up the immediate to push into the operands later.
      ComparisonPredicate = CC;
    }
  }


  // Determine whether this is an instruction prefix.
  // FIXME:
  // Enhance prefixes integrity robustness. for example, following forms
  // are currently tolerated:
  // repz repnz <insn>    ; GAS errors for the use of two similar prefixes
  // lock addq %rax, %rbx ; Destination operand must be of memory type
  // xacquire <insn>      ; xacquire must be accompanied by 'lock'
  bool isPrefix = StringSwitch<bool>(Name)
                      .Cases("rex64", "data32", "data16", true)
                      .Cases("xacquire", "xrelease", true)
                      .Cases("acquire", "release", isParsingIntelSyntax())
                      .Default(false);

  auto isLockRepeatNtPrefix = [](StringRef N) {
    return StringSwitch<bool>(N)
        .Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
        .Default(false);
  };

  bool CurlyAsEndOfStatement = false;

  unsigned Flags = X86::IP_NO_PREFIX;
  while (isLockRepeatNtPrefix(Name.lower())) {
    unsigned Prefix =
        StringSwitch<unsigned>(Name)
            .Cases("lock", "lock", X86::IP_HAS_LOCK)
            .Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
            .Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
            .Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
            .Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
    Flags |= Prefix;
    if (getLexer().is(AsmToken::EndOfStatement)) {
      // We don't have real instr with the given prefix
      //  let's use the prefix as the instr.
      // TODO: there could be several prefixes one after another
      Flags = X86::IP_NO_PREFIX;
      break;
    }
    // FIXME: The mnemonic won't match correctly if its not in lower case.
    Name = Parser.getTok().getString();
    Parser.Lex(); // eat the prefix
    // Hack: we could have something like "rep # some comment" or
    //    "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
    while (Name.startswith(";") || Name.startswith("\n") ||
           Name.startswith("#") || Name.startswith("\t") ||
           Name.startswith("/")) {
      // FIXME: The mnemonic won't match correctly if its not in lower case.
      Name = Parser.getTok().getString();
      Parser.Lex(); // go to next prefix or instr
    }
  }

  if (Flags)
    PatchedName = Name;

  // Hacks to handle 'data16' and 'data32'
  if (PatchedName == "data16" && is16BitMode()) {
    return Error(NameLoc, "redundant data16 prefix");
  }
  if (PatchedName == "data32") {
    if (is32BitMode())
      return Error(NameLoc, "redundant data32 prefix");
    if (is64BitMode())
      return Error(NameLoc, "'data32' is not supported in 64-bit mode");
    // Hack to 'data16' for the table lookup.
    PatchedName = "data16";
  }

  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));

  // Push the immediate if we extracted one from the mnemonic.
  if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) {
    const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
                                                 getParser().getContext());
    Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
  }

  // This does the actual operand parsing.  Don't parse any more if we have a
  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
  // just want to parse the "lock" as the first instruction and the "incl" as
  // the next one.
  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
    // Parse '*' modifier.
    if (getLexer().is(AsmToken::Star))
      Operands.push_back(X86Operand::CreateToken("*", consumeToken()));

    // Read the operands.
    while(1) {
      if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
        Operands.push_back(std::move(Op));
        if (HandleAVX512Operand(Operands, *Operands.back()))
          return true;
      } else {
         return true;
      }
      // check for comma and eat it
      if (getLexer().is(AsmToken::Comma))
        Parser.Lex();
      else
        break;
     }

    // In MS inline asm curly braces mark the beginning/end of a block,
    // therefore they should be interepreted as end of statement
    CurlyAsEndOfStatement =
        isParsingIntelSyntax() && isParsingMSInlineAsm() &&
        (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
    if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
      return TokError("unexpected token in argument list");
  }

  // Push the immediate if we extracted one from the mnemonic.
  if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) {
    const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
                                                 getParser().getContext());
    Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
  }

  // Consume the EndOfStatement or the prefix separator Slash
  if (getLexer().is(AsmToken::EndOfStatement) ||
      (isPrefix && getLexer().is(AsmToken::Slash)))
    Parser.Lex();
  else if (CurlyAsEndOfStatement)
    // Add an actual EndOfStatement before the curly brace
    Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
                                   getLexer().getTok().getLoc(), 0);

  // This is for gas compatibility and cannot be done in td.
  // Adding "p" for some floating point with no argument.
  // For example: fsub --> fsubp
  bool IsFp =
    Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
  if (IsFp && Operands.size() == 1) {
    const char *Repl = StringSwitch<const char *>(Name)
      .Case("fsub", "fsubp")
      .Case("fdiv", "fdivp")
      .Case("fsubr", "fsubrp")
      .Case("fdivr", "fdivrp");
    static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
  }

  if ((Name == "mov" || Name == "movw" || Name == "movl") &&
      (Operands.size() == 3)) {
    X86Operand &Op1 = (X86Operand &)*Operands[1];
    X86Operand &Op2 = (X86Operand &)*Operands[2];
    SMLoc Loc = Op1.getEndLoc();
    // Moving a 32 or 16 bit value into a segment register has the same
    // behavior. Modify such instructions to always take shorter form.
    if (Op1.isReg() && Op2.isReg() &&
        X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
            Op2.getReg()) &&
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
         X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
      // Change instruction name to match new instruction.
      if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
        Name = is16BitMode() ? "movw" : "movl";
        Operands[0] = X86Operand::CreateToken(Name, NameLoc);
      }
      // Select the correct equivalent 16-/32-bit source register.
      unsigned Reg =
          getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
      Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
    }
  }

  // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
  // documented form in various unofficial manuals, so a lot of code uses it.
  if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
       Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
      Operands.size() == 3) {
    X86Operand &Op = (X86Operand &)*Operands.back();
    if (Op.isDXReg())
      Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
                                              Op.getEndLoc());
  }
  // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
  if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
       Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
      Operands.size() == 3) {
    X86Operand &Op = (X86Operand &)*Operands[1];
    if (Op.isDXReg())
      Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
                                          Op.getEndLoc());
  }

  SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
  bool HadVerifyError = false;

  // Append default arguments to "ins[bwld]"
  if (Name.startswith("ins") &&
      (Operands.size() == 1 || Operands.size() == 3) &&
      (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
       Name == "ins")) {

    AddDefaultSrcDestOperands(TmpOperands,
                              X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
                              DefaultMemDIOperand(NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Append default arguments to "outs[bwld]"
  if (Name.startswith("outs") &&
      (Operands.size() == 1 || Operands.size() == 3) &&
      (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
       Name == "outsd" || Name == "outs")) {
    AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
                              X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
  // values of $SIREG according to the mode. It would be nice if this
  // could be achieved with InstAlias in the tables.
  if (Name.startswith("lods") &&
      (Operands.size() == 1 || Operands.size() == 2) &&
      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
       Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
    TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
  // values of $DIREG according to the mode. It would be nice if this
  // could be achieved with InstAlias in the tables.
  if (Name.startswith("stos") &&
      (Operands.size() == 1 || Operands.size() == 2) &&
      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
       Name == "stosl" || Name == "stosd" || Name == "stosq")) {
    TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
  // values of $DIREG according to the mode. It would be nice if this
  // could be achieved with InstAlias in the tables.
  if (Name.startswith("scas") &&
      (Operands.size() == 1 || Operands.size() == 2) &&
      (Name == "scas" || Name == "scasb" || Name == "scasw" ||
       Name == "scasl" || Name == "scasd" || Name == "scasq")) {
    TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Add default SI and DI operands to "cmps[bwlq]".
  if (Name.startswith("cmps") &&
      (Operands.size() == 1 || Operands.size() == 3) &&
      (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
       Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
    AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
                              DefaultMemSIOperand(NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Add default SI and DI operands to "movs[bwlq]".
  if (((Name.startswith("movs") &&
        (Name == "movs" || Name == "movsb" || Name == "movsw" ||
         Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
       (Name.startswith("smov") &&
        (Name == "smov" || Name == "smovb" || Name == "smovw" ||
         Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
      (Operands.size() == 1 || Operands.size() == 3)) {
    if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
      Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
    AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
                              DefaultMemDIOperand(NameLoc));
    HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
  }

  // Check if we encountered an error for one the string insturctions
  if (HadVerifyError) {
    return HadVerifyError;
  }

  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
  // "shift <op>".
  if ((Name.startswith("shr") || Name.startswith("sar") ||
       Name.startswith("shl") || Name.startswith("sal") ||
       Name.startswith("rcl") || Name.startswith("rcr") ||
       Name.startswith("rol") || Name.startswith("ror")) &&
      Operands.size() == 3) {
    if (isParsingIntelSyntax()) {
      // Intel syntax
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
        Operands.pop_back();
    } else {
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
        Operands.erase(Operands.begin() + 1);
    }
  }

  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
  // instalias with an immediate operand yet.
  if (Name == "int" && Operands.size() == 2) {
    X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
    if (Op1.isImm())
      if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
        if (CE->getValue() == 3) {
          Operands.erase(Operands.begin() + 1);
          static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
        }
  }

  // Transforms "xlat mem8" into "xlatb"
  if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
    X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
    if (Op1.isMem8()) {
      Warning(Op1.getStartLoc(), "memory operand is only for determining the "
                                 "size, (R|E)BX will be used for the location");
      Operands.pop_back();
      static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
    }
  }

  if (Flags)
    Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
  return false;
}

bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
  const MCRegisterInfo *MRI = getContext().getRegisterInfo();

  switch (Inst.getOpcode()) {
  default: return false;
  case X86::VMOVZPQILo2PQIrr:
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    // We can get a smaller encoding by using VEX.R instead of VEX.B if one of
    // the registers is extended, but other isn't.
    if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
        MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
        MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8)
      return false;

    unsigned NewOpc;
    switch (Inst.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break;
    case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break;
    case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break;
    case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break;
    case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break;
    case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break;
    case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break;
    case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break;
    case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break;
    case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break;
    case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break;
    case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break;
    case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break;
    }
    Inst.setOpcode(NewOpc);
    return true;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    // We can get a smaller encoding by using VEX.R instead of VEX.B if one of
    // the registers is extended, but other isn't.
    if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
        MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
        MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8)
      return false;

    unsigned NewOpc;
    switch (Inst.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
    case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
    }
    Inst.setOpcode(NewOpc);
    return true;
  }
  }
}

bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
  const MCRegisterInfo *MRI = getContext().getRegisterInfo();

  switch (Inst.getOpcode()) {
  case X86::VGATHERDPDYrm:
  case X86::VGATHERDPDrm:
  case X86::VGATHERDPSYrm:
  case X86::VGATHERDPSrm:
  case X86::VGATHERQPDYrm:
  case X86::VGATHERQPDrm:
  case X86::VGATHERQPSYrm:
  case X86::VGATHERQPSrm:
  case X86::VPGATHERDDYrm:
  case X86::VPGATHERDDrm:
  case X86::VPGATHERDQYrm:
  case X86::VPGATHERDQrm:
  case X86::VPGATHERQDYrm:
  case X86::VPGATHERQDrm:
  case X86::VPGATHERQQYrm:
  case X86::VPGATHERQQrm: {
    unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
    unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
    unsigned Index =
      MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
    if (Dest == Mask || Dest == Index || Mask == Index)
      return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
                                            "registers should be distinct");
    break;
  }
  case X86::VGATHERDPDZ128rm:
  case X86::VGATHERDPDZ256rm:
  case X86::VGATHERDPDZrm:
  case X86::VGATHERDPSZ128rm:
  case X86::VGATHERDPSZ256rm:
  case X86::VGATHERDPSZrm:
  case X86::VGATHERQPDZ128rm:
  case X86::VGATHERQPDZ256rm:
  case X86::VGATHERQPDZrm:
  case X86::VGATHERQPSZ128rm:
  case X86::VGATHERQPSZ256rm:
  case X86::VGATHERQPSZrm:
  case X86::VPGATHERDDZ128rm:
  case X86::VPGATHERDDZ256rm:
  case X86::VPGATHERDDZrm:
  case X86::VPGATHERDQZ128rm:
  case X86::VPGATHERDQZ256rm:
  case X86::VPGATHERDQZrm:
  case X86::VPGATHERQDZ128rm:
  case X86::VPGATHERQDZ256rm:
  case X86::VPGATHERQDZrm:
  case X86::VPGATHERQQZ128rm:
  case X86::VPGATHERQQZ256rm:
  case X86::VPGATHERQQZrm: {
    unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
    unsigned Index =
      MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
    if (Dest == Index)
      return Warning(Ops[0]->getStartLoc(), "index and destination registers "
                                            "should be distinct");
    break;
  }
  case X86::V4FMADDPSrm:
  case X86::V4FMADDPSrmk:
  case X86::V4FMADDPSrmkz:
  case X86::V4FMADDSSrm:
  case X86::V4FMADDSSrmk:
  case X86::V4FMADDSSrmkz:
  case X86::V4FNMADDPSrm:
  case X86::V4FNMADDPSrmk:
  case X86::V4FNMADDPSrmkz:
  case X86::V4FNMADDSSrm:
  case X86::V4FNMADDSSrmk:
  case X86::V4FNMADDSSrmkz:
  case X86::VP4DPWSSDSrm:
  case X86::VP4DPWSSDSrmk:
  case X86::VP4DPWSSDSrmkz:
  case X86::VP4DPWSSDrm:
  case X86::VP4DPWSSDrmk:
  case X86::VP4DPWSSDrmkz: {
    unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
                                    X86::AddrNumOperands - 1).getReg();
    unsigned Src2Enc = MRI->getEncodingValue(Src2);
    if (Src2Enc % 4 != 0) {
      StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
      unsigned GroupStart = (Src2Enc / 4) * 4;
      unsigned GroupEnd = GroupStart + 3;
      return Warning(Ops[0]->getStartLoc(),
                     "source register '" + RegName + "' implicitly denotes '" +
                     RegName.take_front(3) + Twine(GroupStart) + "' to '" +
                     RegName.take_front(3) + Twine(GroupEnd) +
                     "' source group");
    }
    break;
  }
  }

  return false;
}

static const char *getSubtargetFeatureName(uint64_t Val);

void X86AsmParser::emitWarningForSpecialLVIInstruction(SMLoc Loc) {
  Warning(Loc, "Instruction may be vulnerable to LVI and "
               "requires manual mitigation");
  Note(SMLoc(), "See https://software.intel.com/"
                "security-software-guidance/insights/"
                "deep-dive-load-value-injection#specialinstructions"
                " for more information");
}

/// RET instructions and also instructions that indirect calls/jumps from memory
/// combine a load and a branch within a single instruction. To mitigate these
/// instructions against LVI, they must be decomposed into separate load and
/// branch instructions, with an LFENCE in between. For more details, see:
/// - X86LoadValueInjectionRetHardening.cpp
/// - X86LoadValueInjectionIndirectThunks.cpp
/// - https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
///
/// Returns `true` if a mitigation was applied or warning was emitted.
void X86AsmParser::applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out) {
  // Information on control-flow instructions that require manual mitigation can
  // be found here:
  // https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
  switch (Inst.getOpcode()) {
  case X86::RETW:
  case X86::RETL:
  case X86::RETQ:
  case X86::RETIL:
  case X86::RETIQ:
  case X86::RETIW: {
    MCInst ShlInst, FenceInst;
    bool Parse32 = is32BitMode() || Code16GCC;
    unsigned Basereg =
        is64BitMode() ? X86::RSP : (Parse32 ? X86::ESP : X86::SP);
    const MCExpr *Disp = MCConstantExpr::create(0, getContext());
    auto ShlMemOp = X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
                                          /*BaseReg=*/Basereg, /*IndexReg=*/0,
                                          /*Scale=*/1, SMLoc{}, SMLoc{}, 0);
    ShlInst.setOpcode(X86::SHL64mi);
    ShlMemOp->addMemOperands(ShlInst, 5);
    ShlInst.addOperand(MCOperand::createImm(0));
    FenceInst.setOpcode(X86::LFENCE);
    Out.emitInstruction(ShlInst, getSTI());
    Out.emitInstruction(FenceInst, getSTI());
    return;
  }
  case X86::JMP16m:
  case X86::JMP32m:
  case X86::JMP64m:
  case X86::CALL16m:
  case X86::CALL32m:
  case X86::CALL64m:
    emitWarningForSpecialLVIInstruction(Inst.getLoc());
    return;
  }
}

/// To mitigate LVI, every instruction that performs a load can be followed by
/// an LFENCE instruction to squash any potential mis-speculation. There are
/// some instructions that require additional considerations, and may requre
/// manual mitigation. For more details, see:
/// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
///
/// Returns `true` if a mitigation was applied or warning was emitted.
void X86AsmParser::applyLVILoadHardeningMitigation(MCInst &Inst,
                                                   MCStreamer &Out) {
  auto Opcode = Inst.getOpcode();
  auto Flags = Inst.getFlags();
  if ((Flags & X86::IP_HAS_REPEAT) || (Flags & X86::IP_HAS_REPEAT_NE)) {
    // Information on REP string instructions that require manual mitigation can
    // be found here:
    // https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
    switch (Opcode) {
    case X86::CMPSB:
    case X86::CMPSW:
    case X86::CMPSL:
    case X86::CMPSQ:
    case X86::SCASB:
    case X86::SCASW:
    case X86::SCASL:
    case X86::SCASQ:
      emitWarningForSpecialLVIInstruction(Inst.getLoc());
      return;
    }
  } else if (Opcode == X86::REP_PREFIX || Opcode == X86::REPNE_PREFIX) {
    // If a REP instruction is found on its own line, it may or may not be
    // followed by a vulnerable instruction. Emit a warning just in case.
    emitWarningForSpecialLVIInstruction(Inst.getLoc());
    return;
  }

  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());

  // Can't mitigate after terminators or calls. A control flow change may have
  // already occurred.
  if (MCID.isTerminator() || MCID.isCall())
    return;

  // LFENCE has the mayLoad property, don't double fence.
  if (MCID.mayLoad() && Inst.getOpcode() != X86::LFENCE) {
    MCInst FenceInst;
    FenceInst.setOpcode(X86::LFENCE);
    Out.emitInstruction(FenceInst, getSTI());
  }
}

void X86AsmParser::emitInstruction(MCInst &Inst, OperandVector &Operands,
                                   MCStreamer &Out) {
  if (LVIInlineAsmHardening &&
      getSTI().getFeatureBits()[X86::FeatureLVIControlFlowIntegrity])
    applyLVICFIMitigation(Inst, Out);

  Out.emitInstruction(Inst, getSTI());

  if (LVIInlineAsmHardening &&
      getSTI().getFeatureBits()[X86::FeatureLVILoadHardening])
    applyLVILoadHardeningMitigation(Inst, Out);
}

bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                           OperandVector &Operands,
                                           MCStreamer &Out, uint64_t &ErrorInfo,
                                           bool MatchingInlineAsm) {
  if (isParsingIntelSyntax())
    return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
                                        MatchingInlineAsm);
  return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
                                    MatchingInlineAsm);
}

void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
                                     OperandVector &Operands, MCStreamer &Out,
                                     bool MatchingInlineAsm) {
  // FIXME: This should be replaced with a real .td file alias mechanism.
  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
  // call.
  const char *Repl = StringSwitch<const char *>(Op.getToken())
                         .Case("finit", "fninit")
                         .Case("fsave", "fnsave")
                         .Case("fstcw", "fnstcw")
                         .Case("fstcww", "fnstcw")
                         .Case("fstenv", "fnstenv")
                         .Case("fstsw", "fnstsw")
                         .Case("fstsww", "fnstsw")
                         .Case("fclex", "fnclex")
                         .Default(nullptr);
  if (Repl) {
    MCInst Inst;
    Inst.setOpcode(X86::WAIT);
    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      emitInstruction(Inst, Operands, Out);
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
  }
}

bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc,
                                       const FeatureBitset &MissingFeatures,
                                       bool MatchingInlineAsm) {
  assert(MissingFeatures.any() && "Unknown missing feature!");
  SmallString<126> Msg;
  raw_svector_ostream OS(Msg);
  OS << "instruction requires:";
  for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
    if (MissingFeatures[i])
      OS << ' ' << getSubtargetFeatureName(i);
  }
  return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
}

static unsigned getPrefixes(OperandVector &Operands) {
  unsigned Result = 0;
  X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
  if (Prefix.isPrefix()) {
    Result = Prefix.getPrefix();
    Operands.pop_back();
  }
  return Result;
}

unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) {
  unsigned Opc = Inst.getOpcode();
  const MCInstrDesc &MCID = MII.get(Opc);

  if (ForcedVEXEncoding == VEXEncoding_EVEX &&
      (MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX)
    return Match_Unsupported;

  if ((ForcedVEXEncoding == VEXEncoding_VEX ||
       ForcedVEXEncoding == VEXEncoding_VEX3) &&
      (MCID.TSFlags & X86II::EncodingMask) != X86II::VEX)
    return Match_Unsupported;

  // These instructions match ambiguously with their VEX encoded counterparts
  // and appear first in the matching table. Reject them unless we're forcing
  // EVEX encoding.
  // FIXME: We really need a way to break the ambiguity.
  switch (Opc) {
  case X86::VCVTSD2SIZrm_Int:
  case X86::VCVTSD2SI64Zrm_Int:
  case X86::VCVTSS2SIZrm_Int:
  case X86::VCVTSS2SI64Zrm_Int:
  case X86::VCVTTSD2SIZrm:   case X86::VCVTTSD2SIZrm_Int:
  case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int:
  case X86::VCVTTSS2SIZrm:   case X86::VCVTTSS2SIZrm_Int:
  case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int:
    if (ForcedVEXEncoding != VEXEncoding_EVEX)
      return Match_Unsupported;
    break;
  }

  return Match_Success;
}

bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
                                              OperandVector &Operands,
                                              MCStreamer &Out,
                                              uint64_t &ErrorInfo,
                                              bool MatchingInlineAsm) {
  assert(!Operands.empty() && "Unexpect empty operand list!");
  assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
  SMRange EmptyRange = None;

  // First, handle aliases that expand to multiple instructions.
  MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands,
                    Out, MatchingInlineAsm);
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
  unsigned Prefixes = getPrefixes(Operands);

  MCInst Inst;

  // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
  // encoder.
  if (ForcedVEXEncoding == VEXEncoding_VEX3)
    Prefixes |= X86::IP_USE_VEX3;

  if (Prefixes)
    Inst.setFlags(Prefixes);

  // First, try a direct match.
  FeatureBitset MissingFeatures;
  unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo,
                                            MissingFeatures, MatchingInlineAsm,
                                            isParsingIntelSyntax());
  switch (OriginalError) {
  default: llvm_unreachable("Unexpected match result!");
  case Match_Success:
    if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
      return true;
    // Some instructions need post-processing to, for example, tweak which
    // encoding is selected. Loop on it while changes happen so the
    // individual transformations can chain off each other.
    if (!MatchingInlineAsm)
      while (processInstruction(Inst, Operands))
        ;

    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      emitInstruction(Inst, Operands, Out);
    Opcode = Inst.getOpcode();
    return false;
  case Match_InvalidImmUnsignedi4: {
    SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
    if (ErrorLoc == SMLoc())
      ErrorLoc = IDLoc;
    return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
                 EmptyRange, MatchingInlineAsm);
  }
  case Match_MissingFeature:
    return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm);
  case Match_InvalidOperand:
  case Match_MnemonicFail:
  case Match_Unsupported:
    break;
  }
  if (Op.getToken().empty()) {
    Error(IDLoc, "instruction must have size higher than 0", EmptyRange,
          MatchingInlineAsm);
    return true;
  }

  // FIXME: Ideally, we would only attempt suffix matches for things which are
  // valid prefixes, and we could just infer the right unambiguous
  // type. However, that requires substantially more matcher support than the
  // following hack.

  // Change the operand to point to a temporary token.
  StringRef Base = Op.getToken();
  SmallString<16> Tmp;
  Tmp += Base;
  Tmp += ' ';
  Op.setTokenValue(Tmp);

  // If this instruction starts with an 'f', then it is a floating point stack
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
  // 80-bit floating point, which use the suffixes s,l,t respectively.
  //
  // Otherwise, we assume that this may be an integer instruction, which comes
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
  // MemSize corresponding to Suffixes.  { 8, 16, 32, 64 }    { 32, 64, 80, 0 }
  const char *MemSize = Base[0] != 'f' ? "\x08\x10\x20\x40" : "\x20\x40\x50\0";

  // Check for the various suffix matches.
  uint64_t ErrorInfoIgnore;
  FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings.
  unsigned Match[4];

  // Some instruction like VPMULDQ is NOT the variant of VPMULD but a new one.
  // So we should make sure the suffix matcher only works for memory variant
  // that has the same size with the suffix.
  // FIXME: This flag is a workaround for legacy instructions that didn't
  // declare non suffix variant assembly.
  bool HasVectorReg = false;
  X86Operand *MemOp = nullptr;
  for (const auto &Op : Operands) {
    X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
    if (X86Op->isVectorReg())
      HasVectorReg = true;
    else if (X86Op->isMem()) {
      MemOp = X86Op;
      assert(MemOp->Mem.Size == 0 && "Memory size always 0 under ATT syntax");
      // Have we found an unqualified memory operand,
      // break. IA allows only one memory operand.
      break;
    }
  }

  for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
    Tmp.back() = Suffixes[I];
    if (MemOp && HasVectorReg)
      MemOp->Mem.Size = MemSize[I];
    Match[I] = Match_MnemonicFail;
    if (MemOp || !HasVectorReg) {
      Match[I] =
          MatchInstruction(Operands, Inst, ErrorInfoIgnore, MissingFeatures,
                           MatchingInlineAsm, isParsingIntelSyntax());
      // If this returned as a missing feature failure, remember that.
      if (Match[I] == Match_MissingFeature)
        ErrorInfoMissingFeatures = MissingFeatures;
    }
  }

  // Restore the old token.
  Op.setTokenValue(Base);

  // If exactly one matched, then we treat that as a successful match (and the
  // instruction will already have been filled in correctly, since the failing
  // matches won't have modified it).
  unsigned NumSuccessfulMatches =
      std::count(std::begin(Match), std::end(Match), Match_Success);
  if (NumSuccessfulMatches == 1) {
    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      emitInstruction(Inst, Operands, Out);
    Opcode = Inst.getOpcode();
    return false;
  }

  // Otherwise, the match failed, try to produce a decent error message.

  // If we had multiple suffix matches, then identify this as an ambiguous
  // match.
  if (NumSuccessfulMatches > 1) {
    char MatchChars[4];
    unsigned NumMatches = 0;
    for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
      if (Match[I] == Match_Success)
        MatchChars[NumMatches++] = Suffixes[I];

    SmallString<126> Msg;
    raw_svector_ostream OS(Msg);
    OS << "ambiguous instructions require an explicit suffix (could be ";
    for (unsigned i = 0; i != NumMatches; ++i) {
      if (i != 0)
        OS << ", ";
      if (i + 1 == NumMatches)
        OS << "or ";
      OS << "'" << Base << MatchChars[i] << "'";
    }
    OS << ")";
    Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
    return true;
  }

  // Okay, we know that none of the variants matched successfully.

  // If all of the instructions reported an invalid mnemonic, then the original
  // mnemonic was invalid.
  if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
    if (OriginalError == Match_MnemonicFail)
      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
                   Op.getLocRange(), MatchingInlineAsm);

    if (OriginalError == Match_Unsupported)
      return Error(IDLoc, "unsupported instruction", EmptyRange,
                   MatchingInlineAsm);

    assert(OriginalError == Match_InvalidOperand && "Unexpected error");
    // Recover location info for the operand if we know which was the problem.
    if (ErrorInfo != ~0ULL) {
      if (ErrorInfo >= Operands.size())
        return Error(IDLoc, "too few operands for instruction", EmptyRange,
                     MatchingInlineAsm);

      X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
      if (Operand.getStartLoc().isValid()) {
        SMRange OperandRange = Operand.getLocRange();
        return Error(Operand.getStartLoc(), "invalid operand for instruction",
                     OperandRange, MatchingInlineAsm);
      }
    }

    return Error(IDLoc, "invalid operand for instruction", EmptyRange,
                 MatchingInlineAsm);
  }

  // If one instruction matched as unsupported, report this as unsupported.
  if (std::count(std::begin(Match), std::end(Match),
                 Match_Unsupported) == 1) {
    return Error(IDLoc, "unsupported instruction", EmptyRange,
                 MatchingInlineAsm);
  }

  // If one instruction matched with a missing feature, report this as a
  // missing feature.
  if (std::count(std::begin(Match), std::end(Match),
                 Match_MissingFeature) == 1) {
    ErrorInfo = Match_MissingFeature;
    return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
                               MatchingInlineAsm);
  }

  // If one instruction matched with an invalid operand, report this as an
  // operand failure.
  if (std::count(std::begin(Match), std::end(Match),
                 Match_InvalidOperand) == 1) {
    return Error(IDLoc, "invalid operand for instruction", EmptyRange,
                 MatchingInlineAsm);
  }

  // If all of these were an outright failure, report it in a useless way.
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
        EmptyRange, MatchingInlineAsm);
  return true;
}

bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
                                                OperandVector &Operands,
                                                MCStreamer &Out,
                                                uint64_t &ErrorInfo,
                                                bool MatchingInlineAsm) {
  assert(!Operands.empty() && "Unexpect empty operand list!");
  assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
  StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken();
  SMRange EmptyRange = None;
  StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken();
  unsigned Prefixes = getPrefixes(Operands);

  // First, handle aliases that expand to multiple instructions.
  MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm);
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);

  MCInst Inst;

  // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
  // encoder.
  if (ForcedVEXEncoding == VEXEncoding_VEX3)
    Prefixes |= X86::IP_USE_VEX3;

  if (Prefixes)
    Inst.setFlags(Prefixes);

  // Find one unsized memory operand, if present.
  X86Operand *UnsizedMemOp = nullptr;
  for (const auto &Op : Operands) {
    X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
    if (X86Op->isMemUnsized()) {
      UnsizedMemOp = X86Op;
      // Have we found an unqualified memory operand,
      // break. IA allows only one memory operand.
      break;
    }
  }

  // Allow some instructions to have implicitly pointer-sized operands.  This is
  // compatible with gas.
  if (UnsizedMemOp) {
    static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
    for (const char *Instr : PtrSizedInstrs) {
      if (Mnemonic == Instr) {
        UnsizedMemOp->Mem.Size = getPointerWidth();
        break;
      }
    }
  }

  SmallVector<unsigned, 8> Match;
  FeatureBitset ErrorInfoMissingFeatures;
  FeatureBitset MissingFeatures;

  // If unsized push has immediate operand we should default the default pointer
  // size for the size.
  if (Mnemonic == "push" && Operands.size() == 2) {
    auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
    if (X86Op->isImm()) {
      // If it's not a constant fall through and let remainder take care of it.
      const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
      unsigned Size = getPointerWidth();
      if (CE &&
          (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
        SmallString<16> Tmp;
        Tmp += Base;
        Tmp += (is64BitMode())
                   ? "q"
                   : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
        Op.setTokenValue(Tmp);
        // Do match in ATT mode to allow explicit suffix usage.
        Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
                                         MissingFeatures, MatchingInlineAsm,
                                         false /*isParsingIntelSyntax()*/));
        Op.setTokenValue(Base);
      }
    }
  }

  // If an unsized memory operand is present, try to match with each memory
  // operand size.  In Intel assembly, the size is not part of the instruction
  // mnemonic.
  if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
    static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
    for (unsigned Size : MopSizes) {
      UnsizedMemOp->Mem.Size = Size;
      uint64_t ErrorInfoIgnore;
      unsigned LastOpcode = Inst.getOpcode();
      unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
                                    MissingFeatures, MatchingInlineAsm,
                                    isParsingIntelSyntax());
      if (Match.empty() || LastOpcode != Inst.getOpcode())
        Match.push_back(M);

      // If this returned as a missing feature failure, remember that.
      if (Match.back() == Match_MissingFeature)
        ErrorInfoMissingFeatures = MissingFeatures;
    }

    // Restore the size of the unsized memory operand if we modified it.
    UnsizedMemOp->Mem.Size = 0;
  }

  // If we haven't matched anything yet, this is not a basic integer or FPU
  // operation.  There shouldn't be any ambiguity in our mnemonic table, so try
  // matching with the unsized operand.
  if (Match.empty()) {
    Match.push_back(MatchInstruction(
        Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
        isParsingIntelSyntax()));
    // If this returned as a missing feature failure, remember that.
    if (Match.back() == Match_MissingFeature)
      ErrorInfoMissingFeatures = MissingFeatures;
  }

  // Restore the size of the unsized memory operand if we modified it.
  if (UnsizedMemOp)
    UnsizedMemOp->Mem.Size = 0;

  // If it's a bad mnemonic, all results will be the same.
  if (Match.back() == Match_MnemonicFail) {
    return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
                 Op.getLocRange(), MatchingInlineAsm);
  }

  unsigned NumSuccessfulMatches =
      std::count(std::begin(Match), std::end(Match), Match_Success);

  // If matching was ambiguous and we had size information from the frontend,
  // try again with that. This handles cases like "movxz eax, m8/m16".
  if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
      UnsizedMemOp->getMemFrontendSize()) {
    UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
    unsigned M = MatchInstruction(
        Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
        isParsingIntelSyntax());
    if (M == Match_Success)
      NumSuccessfulMatches = 1;

    // Add a rewrite that encodes the size information we used from the
    // frontend.
    InstInfo->AsmRewrites->emplace_back(
        AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
        /*Len=*/0, UnsizedMemOp->getMemFrontendSize());
  }

  // If exactly one matched, then we treat that as a successful match (and the
  // instruction will already have been filled in correctly, since the failing
  // matches won't have modified it).
  if (NumSuccessfulMatches == 1) {
    if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
      return true;
    // Some instructions need post-processing to, for example, tweak which
    // encoding is selected. Loop on it while changes happen so the individual
    // transformations can chain off each other.
    if (!MatchingInlineAsm)
      while (processInstruction(Inst, Operands))
        ;
    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      emitInstruction(Inst, Operands, Out);
    Opcode = Inst.getOpcode();
    return false;
  } else if (NumSuccessfulMatches > 1) {
    assert(UnsizedMemOp &&
           "multiple matches only possible with unsized memory operands");
    return Error(UnsizedMemOp->getStartLoc(),
                 "ambiguous operand size for instruction '" + Mnemonic + "\'",
                 UnsizedMemOp->getLocRange());
  }

  // If one instruction matched as unsupported, report this as unsupported.
  if (std::count(std::begin(Match), std::end(Match),
                 Match_Unsupported) == 1) {
    return Error(IDLoc, "unsupported instruction", EmptyRange,
                 MatchingInlineAsm);
  }

  // If one instruction matched with a missing feature, report this as a
  // missing feature.
  if (std::count(std::begin(Match), std::end(Match),
                 Match_MissingFeature) == 1) {
    ErrorInfo = Match_MissingFeature;
    return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
                               MatchingInlineAsm);
  }

  // If one instruction matched with an invalid operand, report this as an
  // operand failure.
  if (std::count(std::begin(Match), std::end(Match),
                 Match_InvalidOperand) == 1) {
    return Error(IDLoc, "invalid operand for instruction", EmptyRange,
                 MatchingInlineAsm);
  }

  if (std::count(std::begin(Match), std::end(Match),
                 Match_InvalidImmUnsignedi4) == 1) {
    SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
    if (ErrorLoc == SMLoc())
      ErrorLoc = IDLoc;
    return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
                 EmptyRange, MatchingInlineAsm);
  }

  // If all of these were an outright failure, report it in a useless way.
  return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
               MatchingInlineAsm);
}

bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
  return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
}

bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
  MCAsmParser &Parser = getParser();
  StringRef IDVal = DirectiveID.getIdentifier();
  if (IDVal.startswith(".code"))
    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
  else if (IDVal.startswith(".att_syntax")) {
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
      if (Parser.getTok().getString() == "prefix")
        Parser.Lex();
      else if (Parser.getTok().getString() == "noprefix")
        return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
                                           "supported: registers must have a "
                                           "'%' prefix in .att_syntax");
    }
    getParser().setAssemblerDialect(0);
    return false;
  } else if (IDVal.startswith(".intel_syntax")) {
    getParser().setAssemblerDialect(1);
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
      if (Parser.getTok().getString() == "noprefix")
        Parser.Lex();
      else if (Parser.getTok().getString() == "prefix")
        return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
                                           "supported: registers must not have "
                                           "a '%' prefix in .intel_syntax");
    }
    return false;
  } else if (IDVal == ".even")
    return parseDirectiveEven(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_proc")
    return parseDirectiveFPOProc(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_setframe")
    return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_pushreg")
    return parseDirectiveFPOPushReg(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_stackalloc")
    return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_stackalign")
    return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_endprologue")
    return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
  else if (IDVal == ".cv_fpo_endproc")
    return parseDirectiveFPOEndProc(DirectiveID.getLoc());
  else if (IDVal == ".seh_pushreg")
    return parseDirectiveSEHPushReg(DirectiveID.getLoc());
  else if (IDVal == ".seh_setframe")
    return parseDirectiveSEHSetFrame(DirectiveID.getLoc());
  else if (IDVal == ".seh_savereg")
    return parseDirectiveSEHSaveReg(DirectiveID.getLoc());
  else if (IDVal == ".seh_savexmm")
    return parseDirectiveSEHSaveXMM(DirectiveID.getLoc());
  else if (IDVal == ".seh_pushframe")
    return parseDirectiveSEHPushFrame(DirectiveID.getLoc());

  return true;
}

/// parseDirectiveEven
///  ::= .even
bool X86AsmParser::parseDirectiveEven(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return false;

  const MCSection *Section = getStreamer().getCurrentSectionOnly();
  if (!Section) {
    getStreamer().InitSections(false);
    Section = getStreamer().getCurrentSectionOnly();
  }
  if (Section->UseCodeAlign())
    getStreamer().emitCodeAlignment(2, 0);
  else
    getStreamer().emitValueToAlignment(2, 0, 1, 0);
  return false;
}

/// ParseDirectiveCode
///  ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
  MCAsmParser &Parser = getParser();
  Code16GCC = false;
  if (IDVal == ".code16") {
    Parser.Lex();
    if (!is16BitMode()) {
      SwitchMode(X86::Mode16Bit);
      getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
    }
  } else if (IDVal == ".code16gcc") {
    // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
    Parser.Lex();
    Code16GCC = true;
    if (!is16BitMode()) {
      SwitchMode(X86::Mode16Bit);
      getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
    }
  } else if (IDVal == ".code32") {
    Parser.Lex();
    if (!is32BitMode()) {
      SwitchMode(X86::Mode32Bit);
      getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
    }
  } else if (IDVal == ".code64") {
    Parser.Lex();
    if (!is64BitMode()) {
      SwitchMode(X86::Mode64Bit);
      getParser().getStreamer().emitAssemblerFlag(MCAF_Code64);
    }
  } else {
    Error(L, "unknown directive " + IDVal);
    return false;
  }

  return false;
}

// .cv_fpo_proc foo
bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
  MCAsmParser &Parser = getParser();
  StringRef ProcName;
  int64_t ParamsSize;
  if (Parser.parseIdentifier(ProcName))
    return Parser.TokError("expected symbol name");
  if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
    return true;
  if (!isUIntN(32, ParamsSize))
    return Parser.TokError("parameters size out of range");
  if (Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_proc' directive");
  MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
  return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
}

// .cv_fpo_setframe ebp
bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
  MCAsmParser &Parser = getParser();
  unsigned Reg;
  SMLoc DummyLoc;
  if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
      Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_setframe' directive");
  return getTargetStreamer().emitFPOSetFrame(Reg, L);
}

// .cv_fpo_pushreg ebx
bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
  MCAsmParser &Parser = getParser();
  unsigned Reg;
  SMLoc DummyLoc;
  if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
      Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
  return getTargetStreamer().emitFPOPushReg(Reg, L);
}

// .cv_fpo_stackalloc 20
bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
  MCAsmParser &Parser = getParser();
  int64_t Offset;
  if (Parser.parseIntToken(Offset, "expected offset") ||
      Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
  return getTargetStreamer().emitFPOStackAlloc(Offset, L);
}

// .cv_fpo_stackalign 8
bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
  MCAsmParser &Parser = getParser();
  int64_t Offset;
  if (Parser.parseIntToken(Offset, "expected offset") ||
      Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
  return getTargetStreamer().emitFPOStackAlign(Offset, L);
}

// .cv_fpo_endprologue
bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
  MCAsmParser &Parser = getParser();
  if (Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
  return getTargetStreamer().emitFPOEndPrologue(L);
}

// .cv_fpo_endproc
bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
  MCAsmParser &Parser = getParser();
  if (Parser.parseEOL("unexpected tokens"))
    return addErrorSuffix(" in '.cv_fpo_endproc' directive");
  return getTargetStreamer().emitFPOEndProc(L);
}

bool X86AsmParser::parseSEHRegisterNumber(unsigned RegClassID,
                                          unsigned &RegNo) {
  SMLoc startLoc = getLexer().getLoc();
  const MCRegisterInfo *MRI = getContext().getRegisterInfo();

  // Try parsing the argument as a register first.
  if (getLexer().getTok().isNot(AsmToken::Integer)) {
    SMLoc endLoc;
    if (ParseRegister(RegNo, startLoc, endLoc))
      return true;

    if (!X86MCRegisterClasses[RegClassID].contains(RegNo)) {
      return Error(startLoc,
                   "register is not supported for use with this directive");
    }
  } else {
    // Otherwise, an integer number matching the encoding of the desired
    // register may appear.
    int64_t EncodedReg;
    if (getParser().parseAbsoluteExpression(EncodedReg))
      return true;

    // The SEH register number is the same as the encoding register number. Map
    // from the encoding back to the LLVM register number.
    RegNo = 0;
    for (MCPhysReg Reg : X86MCRegisterClasses[RegClassID]) {
      if (MRI->getEncodingValue(Reg) == EncodedReg) {
        RegNo = Reg;
        break;
      }
    }
    if (RegNo == 0) {
      return Error(startLoc,
                   "incorrect register number for use with this directive");
    }
  }

  return false;
}

bool X86AsmParser::parseDirectiveSEHPushReg(SMLoc Loc) {
  unsigned Reg = 0;
  if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
    return true;

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return TokError("unexpected token in directive");

  getParser().Lex();
  getStreamer().EmitWinCFIPushReg(Reg, Loc);
  return false;
}

bool X86AsmParser::parseDirectiveSEHSetFrame(SMLoc Loc) {
  unsigned Reg = 0;
  int64_t Off;
  if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
    return true;
  if (getLexer().isNot(AsmToken::Comma))
    return TokError("you must specify a stack pointer offset");

  getParser().Lex();
  if (getParser().parseAbsoluteExpression(Off))
    return true;

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return TokError("unexpected token in directive");

  getParser().Lex();
  getStreamer().EmitWinCFISetFrame(Reg, Off, Loc);
  return false;
}

bool X86AsmParser::parseDirectiveSEHSaveReg(SMLoc Loc) {
  unsigned Reg = 0;
  int64_t Off;
  if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
    return true;
  if (getLexer().isNot(AsmToken::Comma))
    return TokError("you must specify an offset on the stack");

  getParser().Lex();
  if (getParser().parseAbsoluteExpression(Off))
    return true;

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return TokError("unexpected token in directive");

  getParser().Lex();
  getStreamer().EmitWinCFISaveReg(Reg, Off, Loc);
  return false;
}

bool X86AsmParser::parseDirectiveSEHSaveXMM(SMLoc Loc) {
  unsigned Reg = 0;
  int64_t Off;
  if (parseSEHRegisterNumber(X86::VR128XRegClassID, Reg))
    return true;
  if (getLexer().isNot(AsmToken::Comma))
    return TokError("you must specify an offset on the stack");

  getParser().Lex();
  if (getParser().parseAbsoluteExpression(Off))
    return true;

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return TokError("unexpected token in directive");

  getParser().Lex();
  getStreamer().EmitWinCFISaveXMM(Reg, Off, Loc);
  return false;
}

bool X86AsmParser::parseDirectiveSEHPushFrame(SMLoc Loc) {
  bool Code = false;
  StringRef CodeID;
  if (getLexer().is(AsmToken::At)) {
    SMLoc startLoc = getLexer().getLoc();
    getParser().Lex();
    if (!getParser().parseIdentifier(CodeID)) {
      if (CodeID != "code")
        return Error(startLoc, "expected @code");
      Code = true;
    }
  }

  if (getLexer().isNot(AsmToken::EndOfStatement))
    return TokError("unexpected token in directive");

  getParser().Lex();
  getStreamer().EmitWinCFIPushFrame(Code, Loc);
  return false;
}

// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmParser() {
  RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
  RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
}

#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_SUBTARGET_FEATURE_NAME
#include "X86GenAsmMatcher.inc"