WebAssemblyISelLowering.cpp 68.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the WebAssemblyTargetLowering class.
///
//===----------------------------------------------------------------------===//

#include "WebAssemblyISelLowering.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "WebAssemblyTargetMachine.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

#define DEBUG_TYPE "wasm-lower"

WebAssemblyTargetLowering::WebAssemblyTargetLowering(
    const TargetMachine &TM, const WebAssemblySubtarget &STI)
    : TargetLowering(TM), Subtarget(&STI) {
  auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;

  // Booleans always contain 0 or 1.
  setBooleanContents(ZeroOrOneBooleanContent);
  // Except in SIMD vectors
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
  // We don't know the microarchitecture here, so just reduce register pressure.
  setSchedulingPreference(Sched::RegPressure);
  // Tell ISel that we have a stack pointer.
  setStackPointerRegisterToSaveRestore(
      Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
  // Set up the register classes.
  addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
  addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
  addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
  addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
  if (Subtarget->hasSIMD128()) {
    addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
    addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
    addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
    addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
    addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
    addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
  }
  // Compute derived properties from the register classes.
  computeRegisterProperties(Subtarget->getRegisterInfo());

  setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
  setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
  setOperationAction(ISD::JumpTable, MVTPtr, Custom);
  setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
  setOperationAction(ISD::BRIND, MVT::Other, Custom);

  // Take the default expansion for va_arg, va_copy, and va_end. There is no
  // default action for va_start, so we do that custom.
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAARG, MVT::Other, Expand);
  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);

  for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
    // Don't expand the floating-point types to constant pools.
    setOperationAction(ISD::ConstantFP, T, Legal);
    // Expand floating-point comparisons.
    for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
                    ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
      setCondCodeAction(CC, T, Expand);
    // Expand floating-point library function operators.
    for (auto Op :
         {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
      setOperationAction(Op, T, Expand);
    // Note supported floating-point library function operators that otherwise
    // default to expand.
    for (auto Op :
         {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
      setOperationAction(Op, T, Legal);
    // Support minimum and maximum, which otherwise default to expand.
    setOperationAction(ISD::FMINIMUM, T, Legal);
    setOperationAction(ISD::FMAXIMUM, T, Legal);
    // WebAssembly currently has no builtin f16 support.
    setOperationAction(ISD::FP16_TO_FP, T, Expand);
    setOperationAction(ISD::FP_TO_FP16, T, Expand);
    setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
    setTruncStoreAction(T, MVT::f16, Expand);
  }

  // Expand unavailable integer operations.
  for (auto Op :
       {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
        ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
        ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
    for (auto T : {MVT::i32, MVT::i64})
      setOperationAction(Op, T, Expand);
    if (Subtarget->hasSIMD128())
      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
        setOperationAction(Op, T, Expand);
  }

  // SIMD-specific configuration
  if (Subtarget->hasSIMD128()) {
    // Hoist bitcasts out of shuffles
    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);

    // Support saturating add for i8x16 and i16x8
    for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
      for (auto T : {MVT::v16i8, MVT::v8i16})
        setOperationAction(Op, T, Legal);

    // Support integer abs
    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
      setOperationAction(ISD::ABS, T, Legal);

    // Custom lower BUILD_VECTORs to minimize number of replace_lanes
    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
                   MVT::v2f64})
      setOperationAction(ISD::BUILD_VECTOR, T, Custom);

    // We have custom shuffle lowering to expose the shuffle mask
    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
                   MVT::v2f64})
      setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);

    // Custom lowering since wasm shifts must have a scalar shift amount
    for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
        setOperationAction(Op, T, Custom);

    // Custom lower lane accesses to expand out variable indices
    for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
                     MVT::v2f64})
        setOperationAction(Op, T, Custom);

    // There is no i8x16.mul instruction
    setOperationAction(ISD::MUL, MVT::v16i8, Expand);

    // There are no vector select instructions
    for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT})
      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
                     MVT::v2f64})
        setOperationAction(Op, T, Expand);

    // Expand integer operations supported for scalars but not SIMD
    for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
                    ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
        setOperationAction(Op, T, Expand);

    // But we do have integer min and max operations
    for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
      for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
        setOperationAction(Op, T, Legal);

    // Expand float operations supported for scalars but not SIMD
    for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
                    ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
                    ISD::FEXP, ISD::FEXP2, ISD::FRINT})
      for (auto T : {MVT::v4f32, MVT::v2f64})
        setOperationAction(Op, T, Expand);

    // Expand operations not supported for i64x2 vectors
    for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC)
      setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom);

    // 64x2 conversions are not in the spec
    for (auto Op :
         {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
      for (auto T : {MVT::v2i64, MVT::v2f64})
        setOperationAction(Op, T, Expand);
  }

  // As a special case, these operators use the type to mean the type to
  // sign-extend from.
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
  if (!Subtarget->hasSignExt()) {
    // Sign extends are legal only when extending a vector extract
    auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
    for (auto T : {MVT::i8, MVT::i16, MVT::i32})
      setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
  }
  for (auto T : MVT::integer_fixedlen_vector_valuetypes())
    setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);

  // Dynamic stack allocation: use the default expansion.
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);

  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
  setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
  setOperationAction(ISD::CopyToReg, MVT::Other, Custom);

  // Expand these forms; we pattern-match the forms that we can handle in isel.
  for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
    for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
      setOperationAction(Op, T, Expand);

  // We have custom switch handling.
  setOperationAction(ISD::BR_JT, MVT::Other, Custom);

  // WebAssembly doesn't have:
  //  - Floating-point extending loads.
  //  - Floating-point truncating stores.
  //  - i1 extending loads.
  //  - truncating SIMD stores and most extending loads
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  for (auto T : MVT::integer_valuetypes())
    for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
      setLoadExtAction(Ext, T, MVT::i1, Promote);
  if (Subtarget->hasSIMD128()) {
    for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
                   MVT::v2f64}) {
      for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
        if (MVT(T) != MemT) {
          setTruncStoreAction(T, MemT, Expand);
          for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
            setLoadExtAction(Ext, T, MemT, Expand);
        }
      }
    }
    // But some vector extending loads are legal
    for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
      setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
      setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
      setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
    }
  }

  // Don't do anything clever with build_pairs
  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);

  // Trap lowers to wasm unreachable
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);

  // Exception handling intrinsics
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);

  setMaxAtomicSizeInBitsSupported(64);

  // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
  // consistent with the f64 and f128 names.
  setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
  setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");

  // Define the emscripten name for return address helper.
  // TODO: when implementing other WASM backends, make this generic or only do
  // this on emscripten depending on what they end up doing.
  setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");

  // Always convert switches to br_tables unless there is only one case, which
  // is equivalent to a simple branch. This reduces code size for wasm, and we
  // defer possible jump table optimizations to the VM.
  setMinimumJumpTableEntries(2);
}

TargetLowering::AtomicExpansionKind
WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
  // We have wasm instructions for these
  switch (AI->getOperation()) {
  case AtomicRMWInst::Add:
  case AtomicRMWInst::Sub:
  case AtomicRMWInst::And:
  case AtomicRMWInst::Or:
  case AtomicRMWInst::Xor:
  case AtomicRMWInst::Xchg:
    return AtomicExpansionKind::None;
  default:
    break;
  }
  return AtomicExpansionKind::CmpXChg;
}

FastISel *WebAssemblyTargetLowering::createFastISel(
    FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
  return WebAssembly::createFastISel(FuncInfo, LibInfo);
}

MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
                                                      EVT VT) const {
  unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
  if (BitWidth > 1 && BitWidth < 8)
    BitWidth = 8;

  if (BitWidth > 64) {
    // The shift will be lowered to a libcall, and compiler-rt libcalls expect
    // the count to be an i32.
    BitWidth = 32;
    assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
           "32-bit shift counts ought to be enough for anyone");
  }

  MVT Result = MVT::getIntegerVT(BitWidth);
  assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
         "Unable to represent scalar shift amount type");
  return Result;
}

// Lower an fp-to-int conversion operator from the LLVM opcode, which has an
// undefined result on invalid/overflow, to the WebAssembly opcode, which
// traps on invalid/overflow.
static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
                                       MachineBasicBlock *BB,
                                       const TargetInstrInfo &TII,
                                       bool IsUnsigned, bool Int64,
                                       bool Float64, unsigned LoweredOpcode) {
  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();

  Register OutReg = MI.getOperand(0).getReg();
  Register InReg = MI.getOperand(1).getReg();

  unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
  unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
  unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
  unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
  unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
  unsigned Eqz = WebAssembly::EQZ_I32;
  unsigned And = WebAssembly::AND_I32;
  int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
  int64_t Substitute = IsUnsigned ? 0 : Limit;
  double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
  auto &Context = BB->getParent()->getFunction().getContext();
  Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);

  const BasicBlock *LLVMBB = BB->getBasicBlock();
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
  MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
  MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);

  MachineFunction::iterator It = ++BB->getIterator();
  F->insert(It, FalseMBB);
  F->insert(It, TrueMBB);
  F->insert(It, DoneMBB);

  // Transfer the remainder of BB and its successor edges to DoneMBB.
  DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
  DoneMBB->transferSuccessorsAndUpdatePHIs(BB);

  BB->addSuccessor(TrueMBB);
  BB->addSuccessor(FalseMBB);
  TrueMBB->addSuccessor(DoneMBB);
  FalseMBB->addSuccessor(DoneMBB);

  unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
  Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
  Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
  CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
  EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
  FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
  TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));

  MI.eraseFromParent();
  // For signed numbers, we can do a single comparison to determine whether
  // fabs(x) is within range.
  if (IsUnsigned) {
    Tmp0 = InReg;
  } else {
    BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
  }
  BuildMI(BB, DL, TII.get(FConst), Tmp1)
      .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
  BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);

  // For unsigned numbers, we have to do a separate comparison with zero.
  if (IsUnsigned) {
    Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
    Register SecondCmpReg =
        MRI.createVirtualRegister(&WebAssembly::I32RegClass);
    Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
    BuildMI(BB, DL, TII.get(FConst), Tmp1)
        .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
    BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
    BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
    CmpReg = AndReg;
  }

  BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);

  // Create the CFG diamond to select between doing the conversion or using
  // the substitute value.
  BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
  BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
  BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
  BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
  BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
      .addReg(FalseReg)
      .addMBB(FalseMBB)
      .addReg(TrueReg)
      .addMBB(TrueMBB);

  return DoneMBB;
}

static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults,
                                           DebugLoc DL, MachineBasicBlock *BB,
                                           const TargetInstrInfo &TII) {
  MachineInstr &CallParams = *CallResults.getPrevNode();
  assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
  assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
         CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);

  bool IsIndirect = CallParams.getOperand(0).isReg();
  bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;

  unsigned CallOp;
  if (IsIndirect && IsRetCall) {
    CallOp = WebAssembly::RET_CALL_INDIRECT;
  } else if (IsIndirect) {
    CallOp = WebAssembly::CALL_INDIRECT;
  } else if (IsRetCall) {
    CallOp = WebAssembly::RET_CALL;
  } else {
    CallOp = WebAssembly::CALL;
  }

  MachineFunction &MF = *BB->getParent();
  const MCInstrDesc &MCID = TII.get(CallOp);
  MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));

  // Move the function pointer to the end of the arguments for indirect calls
  if (IsIndirect) {
    auto FnPtr = CallParams.getOperand(0);
    CallParams.RemoveOperand(0);
    CallParams.addOperand(FnPtr);
  }

  for (auto Def : CallResults.defs())
    MIB.add(Def);

  // Add placeholders for the type index and immediate flags
  if (IsIndirect) {
    MIB.addImm(0);
    MIB.addImm(0);
  }

  for (auto Use : CallParams.uses())
    MIB.add(Use);

  BB->insert(CallResults.getIterator(), MIB);
  CallParams.eraseFromParent();
  CallResults.eraseFromParent();

  return BB;
}

MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
    MachineInstr &MI, MachineBasicBlock *BB) const {
  const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("Unexpected instr type to insert");
  case WebAssembly::FP_TO_SINT_I32_F32:
    return LowerFPToInt(MI, DL, BB, TII, false, false, false,
                        WebAssembly::I32_TRUNC_S_F32);
  case WebAssembly::FP_TO_UINT_I32_F32:
    return LowerFPToInt(MI, DL, BB, TII, true, false, false,
                        WebAssembly::I32_TRUNC_U_F32);
  case WebAssembly::FP_TO_SINT_I64_F32:
    return LowerFPToInt(MI, DL, BB, TII, false, true, false,
                        WebAssembly::I64_TRUNC_S_F32);
  case WebAssembly::FP_TO_UINT_I64_F32:
    return LowerFPToInt(MI, DL, BB, TII, true, true, false,
                        WebAssembly::I64_TRUNC_U_F32);
  case WebAssembly::FP_TO_SINT_I32_F64:
    return LowerFPToInt(MI, DL, BB, TII, false, false, true,
                        WebAssembly::I32_TRUNC_S_F64);
  case WebAssembly::FP_TO_UINT_I32_F64:
    return LowerFPToInt(MI, DL, BB, TII, true, false, true,
                        WebAssembly::I32_TRUNC_U_F64);
  case WebAssembly::FP_TO_SINT_I64_F64:
    return LowerFPToInt(MI, DL, BB, TII, false, true, true,
                        WebAssembly::I64_TRUNC_S_F64);
  case WebAssembly::FP_TO_UINT_I64_F64:
    return LowerFPToInt(MI, DL, BB, TII, true, true, true,
                        WebAssembly::I64_TRUNC_U_F64);
  case WebAssembly::CALL_RESULTS:
  case WebAssembly::RET_CALL_RESULTS:
    return LowerCallResults(MI, DL, BB, TII);
  }
}

const char *
WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
  case WebAssemblyISD::FIRST_NUMBER:
  case WebAssemblyISD::FIRST_MEM_OPCODE:
    break;
#define HANDLE_NODETYPE(NODE)                                                  \
  case WebAssemblyISD::NODE:                                                   \
    return "WebAssemblyISD::" #NODE;
#define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
#include "WebAssemblyISD.def"
#undef HANDLE_MEM_NODETYPE
#undef HANDLE_NODETYPE
  }
  return nullptr;
}

std::pair<unsigned, const TargetRegisterClass *>
WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
  // First, see if this is a constraint that directly corresponds to a
  // WebAssembly register class.
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':
      assert(VT != MVT::iPTR && "Pointer MVT not expected here");
      if (Subtarget->hasSIMD128() && VT.isVector()) {
        if (VT.getSizeInBits() == 128)
          return std::make_pair(0U, &WebAssembly::V128RegClass);
      }
      if (VT.isInteger() && !VT.isVector()) {
        if (VT.getSizeInBits() <= 32)
          return std::make_pair(0U, &WebAssembly::I32RegClass);
        if (VT.getSizeInBits() <= 64)
          return std::make_pair(0U, &WebAssembly::I64RegClass);
      }
      break;
    default:
      break;
    }
  }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
  // Assume ctz is a relatively cheap operation.
  return true;
}

bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
  // Assume clz is a relatively cheap operation.
  return true;
}

bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                      const AddrMode &AM,
                                                      Type *Ty, unsigned AS,
                                                      Instruction *I) const {
  // WebAssembly offsets are added as unsigned without wrapping. The
  // isLegalAddressingMode gives us no way to determine if wrapping could be
  // happening, so we approximate this by accepting only non-negative offsets.
  if (AM.BaseOffs < 0)
    return false;

  // WebAssembly has no scale register operands.
  if (AM.Scale != 0)
    return false;

  // Everything else is legal.
  return true;
}

bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
    EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
    MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
  // WebAssembly supports unaligned accesses, though it should be declared
  // with the p2align attribute on loads and stores which do so, and there
  // may be a performance impact. We tell LLVM they're "fast" because
  // for the kinds of things that LLVM uses this for (merging adjacent stores
  // of constants, etc.), WebAssembly implementations will either want the
  // unaligned access or they'll split anyway.
  if (Fast)
    *Fast = true;
  return true;
}

bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
                                              AttributeList Attr) const {
  // The current thinking is that wasm engines will perform this optimization,
  // so we can save on code size.
  return true;
}

bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
  EVT ExtT = ExtVal.getValueType();
  EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
  return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
         (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
         (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
}

EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
                                                  LLVMContext &C,
                                                  EVT VT) const {
  if (VT.isVector())
    return VT.changeVectorElementTypeToInteger();

  // So far, all branch instructions in Wasm take an I32 condition.
  // The default TargetLowering::getSetCCResultType returns the pointer size,
  // which would be useful to reduce instruction counts when testing
  // against 64-bit pointers/values if at some point Wasm supports that.
  return EVT::getIntegerVT(C, 32);
}

bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                                   const CallInst &I,
                                                   MachineFunction &MF,
                                                   unsigned Intrinsic) const {
  switch (Intrinsic) {
  case Intrinsic::wasm_atomic_notify:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i32;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = Align(4);
    // atomic.notify instruction does not really load the memory specified with
    // this argument, but MachineMemOperand should either be load or store, so
    // we set this to a load.
    // FIXME Volatile isn't really correct, but currently all LLVM atomic
    // instructions are treated as volatiles in the backend, so we should be
    // consistent. The same applies for wasm_atomic_wait intrinsics too.
    Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
    return true;
  case Intrinsic::wasm_atomic_wait_i32:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i32;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = Align(4);
    Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
    return true;
  case Intrinsic::wasm_atomic_wait_i64:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i64;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = Align(8);
    Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
    return true;
  default:
    return false;
  }
}

//===----------------------------------------------------------------------===//
// WebAssembly Lowering private implementation.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//

static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
  MachineFunction &MF = DAG.getMachineFunction();
  DAG.getContext()->diagnose(
      DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
}

// Test whether the given calling convention is supported.
static bool callingConvSupported(CallingConv::ID CallConv) {
  // We currently support the language-independent target-independent
  // conventions. We don't yet have a way to annotate calls with properties like
  // "cold", and we don't have any call-clobbered registers, so these are mostly
  // all handled the same.
  return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
         CallConv == CallingConv::Cold ||
         CallConv == CallingConv::PreserveMost ||
         CallConv == CallingConv::PreserveAll ||
         CallConv == CallingConv::CXX_FAST_TLS ||
         CallConv == CallingConv::WASM_EmscriptenInvoke ||
         CallConv == CallingConv::Swift;
}

SDValue
WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
                                     SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc DL = CLI.DL;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  MachineFunction &MF = DAG.getMachineFunction();
  auto Layout = MF.getDataLayout();

  CallingConv::ID CallConv = CLI.CallConv;
  if (!callingConvSupported(CallConv))
    fail(DL, DAG,
         "WebAssembly doesn't support language-specific or target-specific "
         "calling conventions yet");
  if (CLI.IsPatchPoint)
    fail(DL, DAG, "WebAssembly doesn't support patch point yet");

  if (CLI.IsTailCall) {
    auto NoTail = [&](const char *Msg) {
      if (CLI.CB && CLI.CB->isMustTailCall())
        fail(DL, DAG, Msg);
      CLI.IsTailCall = false;
    };

    if (!Subtarget->hasTailCall())
      NoTail("WebAssembly 'tail-call' feature not enabled");

    // Varargs calls cannot be tail calls because the buffer is on the stack
    if (CLI.IsVarArg)
      NoTail("WebAssembly does not support varargs tail calls");

    // Do not tail call unless caller and callee return types match
    const Function &F = MF.getFunction();
    const TargetMachine &TM = getTargetMachine();
    Type *RetTy = F.getReturnType();
    SmallVector<MVT, 4> CallerRetTys;
    SmallVector<MVT, 4> CalleeRetTys;
    computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
    computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
    bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
                      std::equal(CallerRetTys.begin(), CallerRetTys.end(),
                                 CalleeRetTys.begin());
    if (!TypesMatch)
      NoTail("WebAssembly tail call requires caller and callee return types to "
             "match");

    // If pointers to local stack values are passed, we cannot tail call
    if (CLI.CB) {
      for (auto &Arg : CLI.CB->args()) {
        Value *Val = Arg.get();
        // Trace the value back through pointer operations
        while (true) {
          Value *Src = Val->stripPointerCastsAndAliases();
          if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
            Src = GEP->getPointerOperand();
          if (Val == Src)
            break;
          Val = Src;
        }
        if (isa<AllocaInst>(Val)) {
          NoTail(
              "WebAssembly does not support tail calling with stack arguments");
          break;
        }
      }
    }
  }

  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;

  // The generic code may have added an sret argument. If we're lowering an
  // invoke function, the ABI requires that the function pointer be the first
  // argument, so we may have to swap the arguments.
  if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
      Outs[0].Flags.isSRet()) {
    std::swap(Outs[0], Outs[1]);
    std::swap(OutVals[0], OutVals[1]);
  }

  bool HasSwiftSelfArg = false;
  bool HasSwiftErrorArg = false;
  unsigned NumFixedArgs = 0;
  for (unsigned I = 0; I < Outs.size(); ++I) {
    const ISD::OutputArg &Out = Outs[I];
    SDValue &OutVal = OutVals[I];
    HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
    HasSwiftErrorArg |= Out.Flags.isSwiftError();
    if (Out.Flags.isNest())
      fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
    if (Out.Flags.isInAlloca())
      fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
    if (Out.Flags.isInConsecutiveRegs())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
    if (Out.Flags.isInConsecutiveRegsLast())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
    if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
      auto &MFI = MF.getFrameInfo();
      int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
                                     Out.Flags.getNonZeroByValAlign(),
                                     /*isSS=*/false);
      SDValue SizeNode =
          DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
      SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
      Chain = DAG.getMemcpy(
          Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
          /*isVolatile*/ false, /*AlwaysInline=*/false,
          /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
      OutVal = FINode;
    }
    // Count the number of fixed args *after* legalization.
    NumFixedArgs += Out.IsFixed;
  }

  bool IsVarArg = CLI.IsVarArg;
  auto PtrVT = getPointerTy(Layout);

  // For swiftcc, emit additional swiftself and swifterror arguments
  // if there aren't. These additional arguments are also added for callee
  // signature They are necessary to match callee and caller signature for
  // indirect call.
  if (CallConv == CallingConv::Swift) {
    if (!HasSwiftSelfArg) {
      NumFixedArgs++;
      ISD::OutputArg Arg;
      Arg.Flags.setSwiftSelf();
      CLI.Outs.push_back(Arg);
      SDValue ArgVal = DAG.getUNDEF(PtrVT);
      CLI.OutVals.push_back(ArgVal);
    }
    if (!HasSwiftErrorArg) {
      NumFixedArgs++;
      ISD::OutputArg Arg;
      Arg.Flags.setSwiftError();
      CLI.Outs.push_back(Arg);
      SDValue ArgVal = DAG.getUNDEF(PtrVT);
      CLI.OutVals.push_back(ArgVal);
    }
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());

  if (IsVarArg) {
    // Outgoing non-fixed arguments are placed in a buffer. First
    // compute their offsets and the total amount of buffer space needed.
    for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
      const ISD::OutputArg &Out = Outs[I];
      SDValue &Arg = OutVals[I];
      EVT VT = Arg.getValueType();
      assert(VT != MVT::iPTR && "Legalized args should be concrete");
      Type *Ty = VT.getTypeForEVT(*DAG.getContext());
      Align Alignment =
          std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
      unsigned Offset =
          CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
      CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
                                        Offset, VT.getSimpleVT(),
                                        CCValAssign::Full));
    }
  }

  unsigned NumBytes = CCInfo.getAlignedCallFrameSize();

  SDValue FINode;
  if (IsVarArg && NumBytes) {
    // For non-fixed arguments, next emit stores to store the argument values
    // to the stack buffer at the offsets computed above.
    int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
                                                 Layout.getStackAlignment(),
                                                 /*isSS=*/false);
    unsigned ValNo = 0;
    SmallVector<SDValue, 8> Chains;
    for (SDValue Arg :
         make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
      assert(ArgLocs[ValNo].getValNo() == ValNo &&
             "ArgLocs should remain in order and only hold varargs args");
      unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
      FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
      SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
                                DAG.getConstant(Offset, DL, PtrVT));
      Chains.push_back(
          DAG.getStore(Chain, DL, Arg, Add,
                       MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
    }
    if (!Chains.empty())
      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
  } else if (IsVarArg) {
    FINode = DAG.getIntPtrConstant(0, DL);
  }

  if (Callee->getOpcode() == ISD::GlobalAddress) {
    // If the callee is a GlobalAddress node (quite common, every direct call
    // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
    // doesn't at MO_GOT which is not needed for direct calls.
    GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
                                        getPointerTy(DAG.getDataLayout()),
                                        GA->getOffset());
    Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
                         getPointerTy(DAG.getDataLayout()), Callee);
  }

  // Compute the operands for the CALLn node.
  SmallVector<SDValue, 16> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
  // isn't reliable.
  Ops.append(OutVals.begin(),
             IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
  // Add a pointer to the vararg buffer.
  if (IsVarArg)
    Ops.push_back(FINode);

  SmallVector<EVT, 8> InTys;
  for (const auto &In : Ins) {
    assert(!In.Flags.isByVal() && "byval is not valid for return values");
    assert(!In.Flags.isNest() && "nest is not valid for return values");
    if (In.Flags.isInAlloca())
      fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
    if (In.Flags.isInConsecutiveRegs())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
    if (In.Flags.isInConsecutiveRegsLast())
      fail(DL, DAG,
           "WebAssembly hasn't implemented cons regs last return values");
    // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
    // registers.
    InTys.push_back(In.VT);
  }

  if (CLI.IsTailCall) {
    // ret_calls do not return values to the current frame
    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
  }

  InTys.push_back(MVT::Other);
  SDVTList InTyList = DAG.getVTList(InTys);
  SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);

  for (size_t I = 0; I < Ins.size(); ++I)
    InVals.push_back(Res.getValue(I));

  // Return the chain
  return Res.getValue(Ins.size());
}

bool WebAssemblyTargetLowering::CanLowerReturn(
    CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    LLVMContext & /*Context*/) const {
  // WebAssembly can only handle returning tuples with multivalue enabled
  return Subtarget->hasMultivalue() || Outs.size() <= 1;
}

SDValue WebAssemblyTargetLowering::LowerReturn(
    SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
    SelectionDAG &DAG) const {
  assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
         "MVP WebAssembly can only return up to one value");
  if (!callingConvSupported(CallConv))
    fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");

  SmallVector<SDValue, 4> RetOps(1, Chain);
  RetOps.append(OutVals.begin(), OutVals.end());
  Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);

  // Record the number and types of the return values.
  for (const ISD::OutputArg &Out : Outs) {
    assert(!Out.Flags.isByVal() && "byval is not valid for return values");
    assert(!Out.Flags.isNest() && "nest is not valid for return values");
    assert(Out.IsFixed && "non-fixed return value is not valid");
    if (Out.Flags.isInAlloca())
      fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
    if (Out.Flags.isInConsecutiveRegs())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
    if (Out.Flags.isInConsecutiveRegsLast())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
  }

  return Chain;
}

SDValue WebAssemblyTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  if (!callingConvSupported(CallConv))
    fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");

  MachineFunction &MF = DAG.getMachineFunction();
  auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();

  // Set up the incoming ARGUMENTS value, which serves to represent the liveness
  // of the incoming values before they're represented by virtual registers.
  MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);

  bool HasSwiftErrorArg = false;
  bool HasSwiftSelfArg = false;
  for (const ISD::InputArg &In : Ins) {
    HasSwiftSelfArg |= In.Flags.isSwiftSelf();
    HasSwiftErrorArg |= In.Flags.isSwiftError();
    if (In.Flags.isInAlloca())
      fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
    if (In.Flags.isNest())
      fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
    if (In.Flags.isInConsecutiveRegs())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
    if (In.Flags.isInConsecutiveRegsLast())
      fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
    // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
    // registers.
    InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
                                           DAG.getTargetConstant(InVals.size(),
                                                                 DL, MVT::i32))
                             : DAG.getUNDEF(In.VT));

    // Record the number and types of arguments.
    MFI->addParam(In.VT);
  }

  // For swiftcc, emit additional swiftself and swifterror arguments
  // if there aren't. These additional arguments are also added for callee
  // signature They are necessary to match callee and caller signature for
  // indirect call.
  auto PtrVT = getPointerTy(MF.getDataLayout());
  if (CallConv == CallingConv::Swift) {
    if (!HasSwiftSelfArg) {
      MFI->addParam(PtrVT);
    }
    if (!HasSwiftErrorArg) {
      MFI->addParam(PtrVT);
    }
  }
  // Varargs are copied into a buffer allocated by the caller, and a pointer to
  // the buffer is passed as an argument.
  if (IsVarArg) {
    MVT PtrVT = getPointerTy(MF.getDataLayout());
    Register VarargVreg =
        MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
    MFI->setVarargBufferVreg(VarargVreg);
    Chain = DAG.getCopyToReg(
        Chain, DL, VarargVreg,
        DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
                    DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
    MFI->addParam(PtrVT);
  }

  // Record the number and types of arguments and results.
  SmallVector<MVT, 4> Params;
  SmallVector<MVT, 4> Results;
  computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
                      MF.getFunction(), DAG.getTarget(), Params, Results);
  for (MVT VT : Results)
    MFI->addResult(VT);
  // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
  // the param logic here with ComputeSignatureVTs
  assert(MFI->getParams().size() == Params.size() &&
         std::equal(MFI->getParams().begin(), MFI->getParams().end(),
                    Params.begin()));

  return Chain;
}

void WebAssemblyTargetLowering::ReplaceNodeResults(
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
  switch (N->getOpcode()) {
  case ISD::SIGN_EXTEND_INREG:
    // Do not add any results, signifying that N should not be custom lowered
    // after all. This happens because simd128 turns on custom lowering for
    // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
    // illegal type.
    break;
  default:
    llvm_unreachable(
        "ReplaceNodeResults not implemented for this op for WebAssembly!");
  }
}

//===----------------------------------------------------------------------===//
//  Custom lowering hooks.
//===----------------------------------------------------------------------===//

SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
                                                  SelectionDAG &DAG) const {
  SDLoc DL(Op);
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("unimplemented operation lowering");
    return SDValue();
  case ISD::FrameIndex:
    return LowerFrameIndex(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::ExternalSymbol:
    return LowerExternalSymbol(Op, DAG);
  case ISD::JumpTable:
    return LowerJumpTable(Op, DAG);
  case ISD::BR_JT:
    return LowerBR_JT(Op, DAG);
  case ISD::VASTART:
    return LowerVASTART(Op, DAG);
  case ISD::BlockAddress:
  case ISD::BRIND:
    fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
    return SDValue();
  case ISD::RETURNADDR:
    return LowerRETURNADDR(Op, DAG);
  case ISD::FRAMEADDR:
    return LowerFRAMEADDR(Op, DAG);
  case ISD::CopyToReg:
    return LowerCopyToReg(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT:
  case ISD::INSERT_VECTOR_ELT:
    return LowerAccessVectorElement(Op, DAG);
  case ISD::INTRINSIC_VOID:
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_W_CHAIN:
    return LowerIntrinsic(Op, DAG);
  case ISD::SIGN_EXTEND_INREG:
    return LowerSIGN_EXTEND_INREG(Op, DAG);
  case ISD::BUILD_VECTOR:
    return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:
    return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::SETCC:
    return LowerSETCC(Op, DAG);
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
    return LowerShift(Op, DAG);
  }
}

SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
                                                  SelectionDAG &DAG) const {
  SDValue Src = Op.getOperand(2);
  if (isa<FrameIndexSDNode>(Src.getNode())) {
    // CopyToReg nodes don't support FrameIndex operands. Other targets select
    // the FI to some LEA-like instruction, but since we don't have that, we
    // need to insert some kind of instruction that can take an FI operand and
    // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
    // local.copy between Op and its FI operand.
    SDValue Chain = Op.getOperand(0);
    SDLoc DL(Op);
    unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
    EVT VT = Src.getValueType();
    SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
                                                   : WebAssembly::COPY_I64,
                                    DL, VT, Src),
                 0);
    return Op.getNode()->getNumValues() == 1
               ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
               : DAG.getCopyToReg(Chain, DL, Reg, Copy,
                                  Op.getNumOperands() == 4 ? Op.getOperand(3)
                                                           : SDValue());
  }
  return SDValue();
}

SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
                                                   SelectionDAG &DAG) const {
  int FI = cast<FrameIndexSDNode>(Op)->getIndex();
  return DAG.getTargetFrameIndex(FI, Op.getValueType());
}

SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
                                                   SelectionDAG &DAG) const {
  SDLoc DL(Op);

  if (!Subtarget->getTargetTriple().isOSEmscripten()) {
    fail(DL, DAG,
         "Non-Emscripten WebAssembly hasn't implemented "
         "__builtin_return_address");
    return SDValue();
  }

  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  MakeLibCallOptions CallOptions;
  return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
                     {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
      .first;
}

SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // Non-zero depths are not supported by WebAssembly currently. Use the
  // legalizer's default expansion, which is to return 0 (what this function is
  // documented to do).
  if (Op.getConstantOperandVal(0) > 0)
    return SDValue();

  DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
  EVT VT = Op.getValueType();
  Register FP =
      Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
}

SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
                                                      SelectionDAG &DAG) const {
  SDLoc DL(Op);
  const auto *GA = cast<GlobalAddressSDNode>(Op);
  EVT VT = Op.getValueType();
  assert(GA->getTargetFlags() == 0 &&
         "Unexpected target flags on generic GlobalAddressSDNode");
  if (GA->getAddressSpace() != 0)
    fail(DL, DAG, "WebAssembly only expects the 0 address space");

  unsigned OperandFlags = 0;
  if (isPositionIndependent()) {
    const GlobalValue *GV = GA->getGlobal();
    if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
      MachineFunction &MF = DAG.getMachineFunction();
      MVT PtrVT = getPointerTy(MF.getDataLayout());
      const char *BaseName;
      if (GV->getValueType()->isFunctionTy()) {
        BaseName = MF.createExternalSymbolName("__table_base");
        OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
      }
      else {
        BaseName = MF.createExternalSymbolName("__memory_base");
        OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
      }
      SDValue BaseAddr =
          DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
                      DAG.getTargetExternalSymbol(BaseName, PtrVT));

      SDValue SymAddr = DAG.getNode(
          WebAssemblyISD::WrapperPIC, DL, VT,
          DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
                                     OperandFlags));

      return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
    } else {
      OperandFlags = WebAssemblyII::MO_GOT;
    }
  }

  return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
                     DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
                                                GA->getOffset(), OperandFlags));
}

SDValue
WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDLoc DL(Op);
  const auto *ES = cast<ExternalSymbolSDNode>(Op);
  EVT VT = Op.getValueType();
  assert(ES->getTargetFlags() == 0 &&
         "Unexpected target flags on generic ExternalSymbolSDNode");
  return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
                     DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
}

SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // There's no need for a Wrapper node because we always incorporate a jump
  // table operand into a BR_TABLE instruction, rather than ever
  // materializing it in a register.
  const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
  return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
                                JT->getTargetFlags());
}

SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Chain = Op.getOperand(0);
  const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
  SDValue Index = Op.getOperand(2);
  assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");

  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Index);

  MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
  const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;

  // Add an operand for each case.
  for (auto MBB : MBBs)
    Ops.push_back(DAG.getBasicBlock(MBB));

  // Add the first MBB as a dummy default target for now. This will be replaced
  // with the proper default target (and the preceding range check eliminated)
  // if possible by WebAssemblyFixBrTableDefaults.
  Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
  return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
}

SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());

  auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();

  SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
                                    MFI->getVarargBufferVreg(), PtrVT);
  return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
                      MachinePointerInfo(SV), 0);
}

SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
                                                  SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  unsigned IntNo;
  switch (Op.getOpcode()) {
  case ISD::INTRINSIC_VOID:
  case ISD::INTRINSIC_W_CHAIN:
    IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
    break;
  case ISD::INTRINSIC_WO_CHAIN:
    IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    break;
  default:
    llvm_unreachable("Invalid intrinsic");
  }
  SDLoc DL(Op);

  switch (IntNo) {
  default:
    return SDValue(); // Don't custom lower most intrinsics.

  case Intrinsic::wasm_lsda: {
    EVT VT = Op.getValueType();
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
    auto &Context = MF.getMMI().getContext();
    MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
                                            Twine(MF.getFunctionNumber()));
    return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
                       DAG.getMCSymbol(S, PtrVT));
  }

  case Intrinsic::wasm_throw: {
    // We only support C++ exceptions for now
    int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
    if (Tag != CPP_EXCEPTION)
      llvm_unreachable("Invalid tag!");
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
    const char *SymName = MF.createExternalSymbolName("__cpp_exception");
    SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
                                  DAG.getTargetExternalSymbol(SymName, PtrVT));
    return DAG.getNode(WebAssemblyISD::THROW, DL,
                       MVT::Other, // outchain type
                       {
                           Op.getOperand(0), // inchain
                           SymNode,          // exception symbol
                           Op.getOperand(3)  // thrown value
                       });
  }

  case Intrinsic::wasm_shuffle: {
    // Drop in-chain and replace undefs, but otherwise pass through unchanged
    SDValue Ops[18];
    size_t OpIdx = 0;
    Ops[OpIdx++] = Op.getOperand(1);
    Ops[OpIdx++] = Op.getOperand(2);
    while (OpIdx < 18) {
      const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
      if (MaskIdx.isUndef() ||
          cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
        Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
      } else {
        Ops[OpIdx++] = MaskIdx;
      }
    }
    return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
  }
  }
}

SDValue
WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
                                                  SelectionDAG &DAG) const {
  SDLoc DL(Op);
  // If sign extension operations are disabled, allow sext_inreg only if operand
  // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
  // extension operations, but allowing sext_inreg in this context lets us have
  // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
  // everywhere would be simpler in this file, but would necessitate large and
  // brittle patterns to undo the expansion and select extract_lane_s
  // instructions.
  assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
  if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
    return SDValue();

  const SDValue &Extract = Op.getOperand(0);
  MVT VecT = Extract.getOperand(0).getSimpleValueType();
  if (VecT.getVectorElementType().getSizeInBits() > 32)
    return SDValue();
  MVT ExtractedLaneT =
      cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
  MVT ExtractedVecT =
      MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
  if (ExtractedVecT == VecT)
    return Op;

  // Bitcast vector to appropriate type to ensure ISel pattern coverage
  const SDNode *Index = Extract.getOperand(1).getNode();
  if (!isa<ConstantSDNode>(Index))
    return SDValue();
  unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
  unsigned Scale =
      ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
  assert(Scale > 1);
  SDValue NewIndex =
      DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
  SDValue NewExtract = DAG.getNode(
      ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
      DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
  return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
                     Op.getOperand(1));
}

SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
                                                     SelectionDAG &DAG) const {
  SDLoc DL(Op);
  const EVT VecT = Op.getValueType();
  const EVT LaneT = Op.getOperand(0).getValueType();
  const size_t Lanes = Op.getNumOperands();
  bool CanSwizzle = VecT == MVT::v16i8;

  // BUILD_VECTORs are lowered to the instruction that initializes the highest
  // possible number of lanes at once followed by a sequence of replace_lane
  // instructions to individually initialize any remaining lanes.

  // TODO: Tune this. For example, lanewise swizzling is very expensive, so
  // swizzled lanes should be given greater weight.

  // TODO: Investigate building vectors by shuffling together vectors built by
  // separately specialized means.

  auto IsConstant = [](const SDValue &V) {
    return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
  };

  // Returns the source vector and index vector pair if they exist. Checks for:
  //   (extract_vector_elt
  //     $src,
  //     (sign_extend_inreg (extract_vector_elt $indices, $i))
  //   )
  auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
    auto Bail = std::make_pair(SDValue(), SDValue());
    if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
      return Bail;
    const SDValue &SwizzleSrc = Lane->getOperand(0);
    const SDValue &IndexExt = Lane->getOperand(1);
    if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
      return Bail;
    const SDValue &Index = IndexExt->getOperand(0);
    if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
      return Bail;
    const SDValue &SwizzleIndices = Index->getOperand(0);
    if (SwizzleSrc.getValueType() != MVT::v16i8 ||
        SwizzleIndices.getValueType() != MVT::v16i8 ||
        Index->getOperand(1)->getOpcode() != ISD::Constant ||
        Index->getConstantOperandVal(1) != I)
      return Bail;
    return std::make_pair(SwizzleSrc, SwizzleIndices);
  };

  using ValueEntry = std::pair<SDValue, size_t>;
  SmallVector<ValueEntry, 16> SplatValueCounts;

  using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
  SmallVector<SwizzleEntry, 16> SwizzleCounts;

  auto AddCount = [](auto &Counts, const auto &Val) {
    auto CountIt = std::find_if(Counts.begin(), Counts.end(),
                                [&Val](auto E) { return E.first == Val; });
    if (CountIt == Counts.end()) {
      Counts.emplace_back(Val, 1);
    } else {
      CountIt->second++;
    }
  };

  auto GetMostCommon = [](auto &Counts) {
    auto CommonIt =
        std::max_element(Counts.begin(), Counts.end(),
                         [](auto A, auto B) { return A.second < B.second; });
    assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
    return *CommonIt;
  };

  size_t NumConstantLanes = 0;

  // Count eligible lanes for each type of vector creation op
  for (size_t I = 0; I < Lanes; ++I) {
    const SDValue &Lane = Op->getOperand(I);
    if (Lane.isUndef())
      continue;

    AddCount(SplatValueCounts, Lane);

    if (IsConstant(Lane)) {
      NumConstantLanes++;
    } else if (CanSwizzle) {
      auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
      if (SwizzleSrcs.first)
        AddCount(SwizzleCounts, SwizzleSrcs);
    }
  }

  SDValue SplatValue;
  size_t NumSplatLanes;
  std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);

  SDValue SwizzleSrc;
  SDValue SwizzleIndices;
  size_t NumSwizzleLanes = 0;
  if (SwizzleCounts.size())
    std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
                          NumSwizzleLanes) = GetMostCommon(SwizzleCounts);

  // Predicate returning true if the lane is properly initialized by the
  // original instruction
  std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
  SDValue Result;
  // Prefer swizzles over vector consts over splats
  if (NumSwizzleLanes >= NumSplatLanes &&
      (!Subtarget->hasUnimplementedSIMD128() ||
       NumSwizzleLanes >= NumConstantLanes)) {
    Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
                         SwizzleIndices);
    auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
    IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
      return Swizzled == GetSwizzleSrcs(I, Lane);
    };
  } else if (NumConstantLanes >= NumSplatLanes &&
             Subtarget->hasUnimplementedSIMD128()) {
    SmallVector<SDValue, 16> ConstLanes;
    for (const SDValue &Lane : Op->op_values()) {
      if (IsConstant(Lane)) {
        ConstLanes.push_back(Lane);
      } else if (LaneT.isFloatingPoint()) {
        ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
      } else {
        ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
      }
    }
    Result = DAG.getBuildVector(VecT, DL, ConstLanes);
    IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
      return IsConstant(Lane);
    };
  }
  if (!Result) {
    // Use a splat, but possibly a load_splat
    LoadSDNode *SplattedLoad;
    if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
        SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
      Result = DAG.getMemIntrinsicNode(
          WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
          {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
           SplattedLoad->getOffset()},
          SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
    } else {
      Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
    }
    IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
      return Lane == SplatValue;
    };
  }

  // Add replace_lane instructions for any unhandled values
  for (size_t I = 0; I < Lanes; ++I) {
    const SDValue &Lane = Op->getOperand(I);
    if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
      Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
                           DAG.getConstant(I, DL, MVT::i32));
  }

  return Result;
}

SDValue
WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDLoc DL(Op);
  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
  MVT VecType = Op.getOperand(0).getSimpleValueType();
  assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
  size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;

  // Space for two vector args and sixteen mask indices
  SDValue Ops[18];
  size_t OpIdx = 0;
  Ops[OpIdx++] = Op.getOperand(0);
  Ops[OpIdx++] = Op.getOperand(1);

  // Expand mask indices to byte indices and materialize them as operands
  for (int M : Mask) {
    for (size_t J = 0; J < LaneBytes; ++J) {
      // Lower undefs (represented by -1 in mask) to zero
      uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
      Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
    }
  }

  return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
}

SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDLoc DL(Op);
  // The legalizer does not know how to expand the comparison modes of i64x2
  // vectors because no comparison modes are supported. We could solve this by
  // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes
  // (which return i64x2 results) as well. So instead we manually unroll i64x2
  // comparisons here.
  assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
  SmallVector<SDValue, 2> LHS, RHS;
  DAG.ExtractVectorElements(Op->getOperand(0), LHS);
  DAG.ExtractVectorElements(Op->getOperand(1), RHS);
  const SDValue &CC = Op->getOperand(2);
  auto MakeLane = [&](unsigned I) {
    return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
                       DAG.getConstant(uint64_t(-1), DL, MVT::i64),
                       DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
  };
  return DAG.getBuildVector(Op->getValueType(0), DL,
                            {MakeLane(0), MakeLane(1)});
}

SDValue
WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
                                                    SelectionDAG &DAG) const {
  // Allow constant lane indices, expand variable lane indices
  SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
  if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
    return Op;
  else
    // Perform default expansion
    return SDValue();
}

static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
  EVT LaneT = Op.getSimpleValueType().getVectorElementType();
  // 32-bit and 64-bit unrolled shifts will have proper semantics
  if (LaneT.bitsGE(MVT::i32))
    return DAG.UnrollVectorOp(Op.getNode());
  // Otherwise mask the shift value to get proper semantics from 32-bit shift
  SDLoc DL(Op);
  size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
  SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
  unsigned ShiftOpcode = Op.getOpcode();
  SmallVector<SDValue, 16> ShiftedElements;
  DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
  SmallVector<SDValue, 16> ShiftElements;
  DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
  SmallVector<SDValue, 16> UnrolledOps;
  for (size_t i = 0; i < NumLanes; ++i) {
    SDValue MaskedShiftValue =
        DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
    SDValue ShiftedValue = ShiftedElements[i];
    if (ShiftOpcode == ISD::SRA)
      ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
                                 ShiftedValue, DAG.getValueType(LaneT));
    UnrolledOps.push_back(
        DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
  }
  return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
}

SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDLoc DL(Op);

  // Only manually lower vector shifts
  assert(Op.getSimpleValueType().isVector());

  auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
  if (!ShiftVal)
    return unrollVectorShift(Op, DAG);

  // Use anyext because none of the high bits can affect the shift
  ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);

  unsigned Opcode;
  switch (Op.getOpcode()) {
  case ISD::SHL:
    Opcode = WebAssemblyISD::VEC_SHL;
    break;
  case ISD::SRA:
    Opcode = WebAssemblyISD::VEC_SHR_S;
    break;
  case ISD::SRL:
    Opcode = WebAssemblyISD::VEC_SHR_U;
    break;
  default:
    llvm_unreachable("unexpected opcode");
  }

  return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
}

//===----------------------------------------------------------------------===//
//   Custom DAG combine hooks
//===----------------------------------------------------------------------===//
static SDValue
performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
  auto &DAG = DCI.DAG;
  auto Shuffle = cast<ShuffleVectorSDNode>(N);

  // Hoist vector bitcasts that don't change the number of lanes out of unary
  // shuffles, where they are less likely to get in the way of other combines.
  // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
  //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
  SDValue Bitcast = N->getOperand(0);
  if (Bitcast.getOpcode() != ISD::BITCAST)
    return SDValue();
  if (!N->getOperand(1).isUndef())
    return SDValue();
  SDValue CastOp = Bitcast.getOperand(0);
  MVT SrcType = CastOp.getSimpleValueType();
  MVT DstType = Bitcast.getSimpleValueType();
  if (!SrcType.is128BitVector() ||
      SrcType.getVectorNumElements() != DstType.getVectorNumElements())
    return SDValue();
  SDValue NewShuffle = DAG.getVectorShuffle(
      SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
  return DAG.getBitcast(DstType, NewShuffle);
}

SDValue
WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
                                             DAGCombinerInfo &DCI) const {
  switch (N->getOpcode()) {
  default:
    return SDValue();
  case ISD::VECTOR_SHUFFLE:
    return performVECTOR_SHUFFLECombine(N, DCI);
  }
}