WebAssemblyFixIrreducibleControlFlow.cpp 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
//=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a pass that removes irreducible control flow.
/// Irreducible control flow means multiple-entry loops, which this pass
/// transforms to have a single entry.
///
/// Note that LLVM has a generic pass that lowers irreducible control flow, but
/// it linearizes control flow, turning diamonds into two triangles, which is
/// both unnecessary and undesirable for WebAssembly.
///
/// The big picture: We recursively process each "region", defined as a group
/// of blocks with a single entry and no branches back to that entry. A region
/// may be the entire function body, or the inner part of a loop, i.e., the
/// loop's body without branches back to the loop entry. In each region we fix
/// up multi-entry loops by adding a new block that can dispatch to each of the
/// loop entries, based on the value of a label "helper" variable, and we
/// replace direct branches to the entries with assignments to the label
/// variable and a branch to the dispatch block. Then the dispatch block is the
/// single entry in the loop containing the previous multiple entries. After
/// ensuring all the loops in a region are reducible, we recurse into them. The
/// total time complexity of this pass is:
///
///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
///     NumLoops * NumLoops)
///
/// This pass is similar to what the Relooper [1] does. Both identify looping
/// code that requires multiple entries, and resolve it in a similar way (in
/// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
/// also that like the Relooper, we implement a "minimal" intervention: we only
/// use the "label" helper for the blocks we absolutely must and no others. We
/// also prioritize code size and do not duplicate code in order to resolve
/// irreducibility. The graph algorithms for finding loops and entries and so
/// forth are also similar to the Relooper. The main differences between this
/// pass and the Relooper are:
///
///  * We just care about irreducibility, so we just look at loops.
///  * The Relooper emits structured control flow (with ifs etc.), while we
///    emit a CFG.
///
/// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
/// Proceedings of the ACM international conference companion on Object oriented
/// programming systems languages and applications companion (SPLASH '11). ACM,
/// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
/// http://doi.acm.org/10.1145/2048147.2048224
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssembly.h"
#include "WebAssemblySubtarget.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

#define DEBUG_TYPE "wasm-fix-irreducible-control-flow"

namespace {

using BlockVector = SmallVector<MachineBasicBlock *, 4>;
using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;

static BlockVector getSortedEntries(const BlockSet &Entries) {
  BlockVector SortedEntries(Entries.begin(), Entries.end());
  llvm::sort(SortedEntries,
             [](const MachineBasicBlock *A, const MachineBasicBlock *B) {
               auto ANum = A->getNumber();
               auto BNum = B->getNumber();
               return ANum < BNum;
             });
  return SortedEntries;
}

// Calculates reachability in a region. Ignores branches to blocks outside of
// the region, and ignores branches to the region entry (for the case where
// the region is the inner part of a loop).
class ReachabilityGraph {
public:
  ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
      : Entry(Entry), Blocks(Blocks) {
#ifndef NDEBUG
    // The region must have a single entry.
    for (auto *MBB : Blocks) {
      if (MBB != Entry) {
        for (auto *Pred : MBB->predecessors()) {
          assert(inRegion(Pred));
        }
      }
    }
#endif
    calculate();
  }

  bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
    assert(inRegion(From) && inRegion(To));
    auto I = Reachable.find(From);
    if (I == Reachable.end())
      return false;
    return I->second.count(To);
  }

  // "Loopers" are blocks that are in a loop. We detect these by finding blocks
  // that can reach themselves.
  const BlockSet &getLoopers() const { return Loopers; }

  // Get all blocks that are loop entries.
  const BlockSet &getLoopEntries() const { return LoopEntries; }

  // Get all blocks that enter a particular loop from outside.
  const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
    assert(inRegion(LoopEntry));
    auto I = LoopEnterers.find(LoopEntry);
    assert(I != LoopEnterers.end());
    return I->second;
  }

private:
  MachineBasicBlock *Entry;
  const BlockSet &Blocks;

  BlockSet Loopers, LoopEntries;
  DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;

  bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }

  // Maps a block to all the other blocks it can reach.
  DenseMap<MachineBasicBlock *, BlockSet> Reachable;

  void calculate() {
    // Reachability computation work list. Contains pairs of recent additions
    // (A, B) where we just added a link A => B.
    using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
    SmallVector<BlockPair, 4> WorkList;

    // Add all relevant direct branches.
    for (auto *MBB : Blocks) {
      for (auto *Succ : MBB->successors()) {
        if (Succ != Entry && inRegion(Succ)) {
          Reachable[MBB].insert(Succ);
          WorkList.emplace_back(MBB, Succ);
        }
      }
    }

    while (!WorkList.empty()) {
      MachineBasicBlock *MBB, *Succ;
      std::tie(MBB, Succ) = WorkList.pop_back_val();
      assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
      if (MBB != Entry) {
        // We recently added MBB => Succ, and that means we may have enabled
        // Pred => MBB => Succ.
        for (auto *Pred : MBB->predecessors()) {
          if (Reachable[Pred].insert(Succ).second) {
            WorkList.emplace_back(Pred, Succ);
          }
        }
      }
    }

    // Blocks that can return to themselves are in a loop.
    for (auto *MBB : Blocks) {
      if (canReach(MBB, MBB)) {
        Loopers.insert(MBB);
      }
    }
    assert(!Loopers.count(Entry));

    // Find the loop entries - loopers reachable from blocks not in that loop -
    // and those outside blocks that reach them, the "loop enterers".
    for (auto *Looper : Loopers) {
      for (auto *Pred : Looper->predecessors()) {
        // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
        // otherwise, it is a block that enters into the loop.
        if (!canReach(Looper, Pred)) {
          LoopEntries.insert(Looper);
          LoopEnterers[Looper].insert(Pred);
        }
      }
    }
  }
};

// Finds the blocks in a single-entry loop, given the loop entry and the
// list of blocks that enter the loop.
class LoopBlocks {
public:
  LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
      : Entry(Entry), Enterers(Enterers) {
    calculate();
  }

  BlockSet &getBlocks() { return Blocks; }

private:
  MachineBasicBlock *Entry;
  const BlockSet &Enterers;

  BlockSet Blocks;

  void calculate() {
    // Going backwards from the loop entry, if we ignore the blocks entering
    // from outside, we will traverse all the blocks in the loop.
    BlockVector WorkList;
    BlockSet AddedToWorkList;
    Blocks.insert(Entry);
    for (auto *Pred : Entry->predecessors()) {
      if (!Enterers.count(Pred)) {
        WorkList.push_back(Pred);
        AddedToWorkList.insert(Pred);
      }
    }

    while (!WorkList.empty()) {
      auto *MBB = WorkList.pop_back_val();
      assert(!Enterers.count(MBB));
      if (Blocks.insert(MBB).second) {
        for (auto *Pred : MBB->predecessors()) {
          if (!AddedToWorkList.count(Pred)) {
            WorkList.push_back(Pred);
            AddedToWorkList.insert(Pred);
          }
        }
      }
    }
  }
};

class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
  StringRef getPassName() const override {
    return "WebAssembly Fix Irreducible Control Flow";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
                     MachineFunction &MF);

  void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
                           MachineFunction &MF, const ReachabilityGraph &Graph);

public:
  static char ID; // Pass identification, replacement for typeid
  WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
};

bool WebAssemblyFixIrreducibleControlFlow::processRegion(
    MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
  bool Changed = false;
  // Remove irreducibility before processing child loops, which may take
  // multiple iterations.
  while (true) {
    ReachabilityGraph Graph(Entry, Blocks);

    bool FoundIrreducibility = false;

    for (auto *LoopEntry : getSortedEntries(Graph.getLoopEntries())) {
      // Find mutual entries - all entries which can reach this one, and
      // are reached by it (that always includes LoopEntry itself). All mutual
      // entries must be in the same loop, so if we have more than one, then we
      // have irreducible control flow.
      //
      // (Note that we need to sort the entries here, as otherwise the order can
      // matter: being mutual is a symmetric relationship, and each set of
      // mutuals will be handled properly no matter which we see first. However,
      // there can be multiple disjoint sets of mutuals, and which we process
      // first changes the output.)
      //
      // Note that irreducibility may involve inner loops, e.g. imagine A
      // starts one loop, and it has B inside it which starts an inner loop.
      // If we add a branch from all the way on the outside to B, then in a
      // sense B is no longer an "inner" loop, semantically speaking. We will
      // fix that irreducibility by adding a block that dispatches to either
      // either A or B, so B will no longer be an inner loop in our output.
      // (A fancier approach might try to keep it as such.)
      //
      // Note that we still need to recurse into inner loops later, to handle
      // the case where the irreducibility is entirely nested - we would not
      // be able to identify that at this point, since the enclosing loop is
      // a group of blocks all of whom can reach each other. (We'll see the
      // irreducibility after removing branches to the top of that enclosing
      // loop.)
      BlockSet MutualLoopEntries;
      MutualLoopEntries.insert(LoopEntry);
      for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
        if (OtherLoopEntry != LoopEntry &&
            Graph.canReach(LoopEntry, OtherLoopEntry) &&
            Graph.canReach(OtherLoopEntry, LoopEntry)) {
          MutualLoopEntries.insert(OtherLoopEntry);
        }
      }

      if (MutualLoopEntries.size() > 1) {
        makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
        FoundIrreducibility = true;
        Changed = true;
        break;
      }
    }
    // Only go on to actually process the inner loops when we are done
    // removing irreducible control flow and changing the graph. Modifying
    // the graph as we go is possible, and that might let us avoid looking at
    // the already-fixed loops again if we are careful, but all that is
    // complex and bug-prone. Since irreducible loops are rare, just starting
    // another iteration is best.
    if (FoundIrreducibility) {
      continue;
    }

    for (auto *LoopEntry : Graph.getLoopEntries()) {
      LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
      // Each of these calls to processRegion may change the graph, but are
      // guaranteed not to interfere with each other. The only changes we make
      // to the graph are to add blocks on the way to a loop entry. As the
      // loops are disjoint, that means we may only alter branches that exit
      // another loop, which are ignored when recursing into that other loop
      // anyhow.
      if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
        Changed = true;
      }
    }

    return Changed;
  }
}

// Given a set of entries to a single loop, create a single entry for that
// loop by creating a dispatch block for them, routing control flow using
// a helper variable. Also updates Blocks with any new blocks created, so
// that we properly track all the blocks in the region. But this does not update
// ReachabilityGraph; this will be updated in the caller of this function as
// needed.
void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
    BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
    const ReachabilityGraph &Graph) {
  assert(Entries.size() >= 2);

  // Sort the entries to ensure a deterministic build.
  BlockVector SortedEntries = getSortedEntries(Entries);

#ifndef NDEBUG
  for (auto Block : SortedEntries)
    assert(Block->getNumber() != -1);
  if (SortedEntries.size() > 1) {
    for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
         ++I) {
      auto ANum = (*I)->getNumber();
      auto BNum = (*(std::next(I)))->getNumber();
      assert(ANum != BNum);
    }
  }
#endif

  // Create a dispatch block which will contain a jump table to the entries.
  MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
  MF.insert(MF.end(), Dispatch);
  Blocks.insert(Dispatch);

  // Add the jump table.
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  MachineInstrBuilder MIB =
      BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));

  // Add the register which will be used to tell the jump table which block to
  // jump to.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
  MIB.addReg(Reg);

  // Compute the indices in the superheader, one for each bad block, and
  // add them as successors.
  DenseMap<MachineBasicBlock *, unsigned> Indices;
  for (auto *Entry : SortedEntries) {
    auto Pair = Indices.insert(std::make_pair(Entry, 0));
    assert(Pair.second);

    unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
    Pair.first->second = Index;

    MIB.addMBB(Entry);
    Dispatch->addSuccessor(Entry);
  }

  // Rewrite the problematic successors for every block that wants to reach
  // the bad blocks. For simplicity, we just introduce a new block for every
  // edge we need to rewrite. (Fancier things are possible.)

  BlockVector AllPreds;
  for (auto *Entry : SortedEntries) {
    for (auto *Pred : Entry->predecessors()) {
      if (Pred != Dispatch) {
        AllPreds.push_back(Pred);
      }
    }
  }

  // This set stores predecessors within this loop.
  DenseSet<MachineBasicBlock *> InLoop;
  for (auto *Pred : AllPreds) {
    for (auto *Entry : Pred->successors()) {
      if (!Entries.count(Entry))
        continue;
      if (Graph.canReach(Entry, Pred)) {
        InLoop.insert(Pred);
        break;
      }
    }
  }

  // Record if each entry has a layout predecessor. This map stores
  // <<loop entry, Predecessor is within the loop?>, layout predecessor>
  DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
      EntryToLayoutPred;
  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    for (auto *Entry : Pred->successors())
      if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
        EntryToLayoutPred[{Entry, PredInLoop}] = Pred;
  }

  // We need to create at most two routing blocks per entry: one for
  // predecessors outside the loop and one for predecessors inside the loop.
  // This map stores
  // <<loop entry, Predecessor is within the loop?>, routing block>
  DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
      Map;
  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    for (auto *Entry : Pred->successors()) {
      if (!Entries.count(Entry) || Map.count({Entry, PredInLoop}))
        continue;
      // If there exists a layout predecessor of this entry and this predecessor
      // is not that, we rather create a routing block after that layout
      // predecessor to save a branch.
      if (auto *OtherPred = EntryToLayoutPred.lookup({Entry, PredInLoop}))
        if (OtherPred != Pred)
          continue;

      // This is a successor we need to rewrite.
      MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
      MF.insert(Pred->isLayoutSuccessor(Entry)
                    ? MachineFunction::iterator(Entry)
                    : MF.end(),
                Routing);
      Blocks.insert(Routing);

      // Set the jump table's register of the index of the block we wish to
      // jump to, and jump to the jump table.
      BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
          .addImm(Indices[Entry]);
      BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
      Routing->addSuccessor(Dispatch);
      Map[{Entry, PredInLoop}] = Routing;
    }
  }

  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    // Remap the terminator operands and the successor list.
    for (MachineInstr &Term : Pred->terminators())
      for (auto &Op : Term.explicit_uses())
        if (Op.isMBB() && Indices.count(Op.getMBB()))
          Op.setMBB(Map[{Op.getMBB(), PredInLoop}]);

    for (auto *Succ : Pred->successors()) {
      if (!Entries.count(Succ))
        continue;
      auto *Routing = Map[{Succ, PredInLoop}];
      Pred->replaceSuccessor(Succ, Routing);
    }
  }

  // Create a fake default label, because br_table requires one.
  MIB.addMBB(MIB.getInstr()
                 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
                 .getMBB());
}

} // end anonymous namespace

char WebAssemblyFixIrreducibleControlFlow::ID = 0;
INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
                "Removes irreducible control flow", false, false)

FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
  return new WebAssemblyFixIrreducibleControlFlow();
}

bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
                       "********** Function: "
                    << MF.getName() << '\n');

  // Start the recursive process on the entire function body.
  BlockSet AllBlocks;
  for (auto &MBB : MF) {
    AllBlocks.insert(&MBB);
  }

  if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
    // We rewrote part of the function; recompute relevant things.
    MF.getRegInfo().invalidateLiveness();
    MF.RenumberBlocks();
    return true;
  }

  return false;
}