VEInstrInfo.td 80.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
//===-- VEInstrInfo.td - Target Description for VE Target -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the VE instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "VEInstrFormats.td"

//===----------------------------------------------------------------------===//
// Helper functions to retrieve target constants.
//
// VE instructions have a space to hold following immediates
//   $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp.
//   $sz also has 7 bits to represent mimm or mimmfp.
//   $disp has 32 bits to represent simm32.
//
// The mimm is a special immediate value of sequential bit stream of 0 or 1.
//     `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11,
//             where `m` is equal to the number of leading zeros.
//     `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00,
//             where `m` is equal to the number of leading ones.
// Each bit of mimm's 7 bits is used like below:
//     bit 6  : If `(m)0`, this bit is 1.  Otherwise, this bit is 0.
//     bit 5-0: Represents the m (0-63).
// Use `!add(m, 64)` to generates an immediate value in pattern matchings.
//
// The floating point immediate value is not something like compacted value.
// It is simple integer representation, so it works rarely.
//     e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1).
//===----------------------------------------------------------------------===//

def ULO7 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0x7f,
                                   SDLoc(N), MVT::i32);
}]>;
def LO7 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7),
                                   SDLoc(N), MVT::i32);
}]>;
def MIMM : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(convMImmVal(getImmVal(N)),
                                   SDLoc(N), MVT::i32);
}]>;
def LO32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()),
                                   SDLoc(N), MVT::i32);
}]>;
def HI32 : SDNodeXForm<imm, [{
  // Transformation function: shift the immediate value down into the low bits.
  return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()),
                                   SDLoc(N), MVT::i32);
}]>;

def LO7FP : SDNodeXForm<fpimm, [{
  uint64_t Val = getFpImmVal(N);
  return CurDAG->getTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32);
}]>;
def MIMMFP : SDNodeXForm<fpimm, [{
  return CurDAG->getTargetConstant(convMImmVal(getFpImmVal(N)),
                                   SDLoc(N), MVT::i32);
}]>;
def LOFP32 : SDNodeXForm<fpimm, [{
  return CurDAG->getTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff),
                                   SDLoc(N), MVT::i32);
}]>;
def HIFP32 : SDNodeXForm<fpimm, [{
  return CurDAG->getTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32);
}]>;

def icond2cc : SDNodeXForm<cond, [{
  VECC::CondCode VECC = intCondCode2Icc(N->get());
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def icond2ccSwap : SDNodeXForm<cond, [{
  ISD::CondCode CC = getSetCCSwappedOperands(N->get());
  VECC::CondCode VECC = intCondCode2Icc(CC);
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def fcond2cc : SDNodeXForm<cond, [{
  VECC::CondCode VECC = fpCondCode2Fcc(N->get());
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def fcond2ccSwap : SDNodeXForm<cond, [{
  ISD::CondCode CC = getSetCCSwappedOperands(N->get());
  VECC::CondCode VECC = fpCondCode2Fcc(CC);
  return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;

def CCOP : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue(),
                                   SDLoc(N), MVT::i32);
}]>;

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//

// zero
def ZeroAsmOperand : AsmOperandClass {
  let Name = "Zero";
}
def zero : Operand<i32>, PatLeaf<(imm), [{
    return N->getSExtValue() == 0; }]> {
  let ParserMatchClass = ZeroAsmOperand;
}

// uimm0to2 - Special immediate value represents 0, 1, and 2.
def UImm0to2AsmOperand : AsmOperandClass {
  let Name = "UImm0to2";
}
def uimm0to2 : Operand<i32>, PatLeaf<(imm), [{
    return N->getZExtValue() < 3; }], ULO7> {
  let ParserMatchClass = UImm0to2AsmOperand;
}

// uimm1 - Generic immediate value.
def UImm1AsmOperand : AsmOperandClass {
  let Name = "UImm1";
}
def uimm1 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<1>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm1AsmOperand;
}

// uimm2 - Generic immediate value.
def UImm2AsmOperand : AsmOperandClass {
  let Name = "UImm2";
}
def uimm2 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<2>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm2AsmOperand;
}

// uimm3 - Generic immediate value.
def UImm3AsmOperand : AsmOperandClass {
  let Name = "UImm3";
}
def uimm3 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<3>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm3AsmOperand;
}

// uimm6 - Generic immediate value.
def UImm6AsmOperand : AsmOperandClass {
  let Name = "UImm6";
}
def uimm6 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<6>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm6AsmOperand;
}

// uimm7 - Generic immediate value.
def UImm7AsmOperand : AsmOperandClass {
  let Name = "UImm7";
}
def uimm7 : Operand<i32>, PatLeaf<(imm), [{
    return isUInt<7>(N->getZExtValue()); }], ULO7> {
  let ParserMatchClass = UImm7AsmOperand;
}

// simm7 - Generic immediate value.
def SImm7AsmOperand : AsmOperandClass {
  let Name = "SImm7";
}
def simm7 : Operand<i32>, PatLeaf<(imm), [{
    return isInt<7>(N->getSExtValue()); }], LO7> {
  let ParserMatchClass = SImm7AsmOperand;
  let DecoderMethod = "DecodeSIMM7";
}

// mimm - Special immediate value of sequential bit stream of 0 or 1.
def MImmAsmOperand : AsmOperandClass {
  let Name = "MImm";
  let ParserMethod = "parseMImmOperand";
}
def mimm : Operand<i32>, PatLeaf<(imm), [{
    return isMImmVal(getImmVal(N)); }], MIMM> {
  let ParserMatchClass = MImmAsmOperand;
  let PrintMethod = "printMImmOperand";
}

// simm7fp - Generic fp immediate value.
def simm7fp : Operand<i32>, PatLeaf<(fpimm), [{
    return isInt<7>(getFpImmVal(N));
  }], LO7FP> {
  let ParserMatchClass = SImm7AsmOperand;
  let DecoderMethod = "DecodeSIMM7";
}

// mimmfp - Special fp immediate value of sequential bit stream of 0 or 1.
def mimmfp : Operand<i32>, PatLeaf<(fpimm), [{
    return isMImmVal(getFpImmVal(N)); }], MIMMFP> {
  let ParserMatchClass = MImmAsmOperand;
  let PrintMethod = "printMImmOperand";
}

// mimmfp32 - 32 bit width mimmfp
//   Float value places at higher bits, so ignore lower 32 bits.
def mimmfp32 : Operand<i32>, PatLeaf<(fpimm), [{
    return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> {
  let ParserMatchClass = MImmAsmOperand;
  let PrintMethod = "printMImmOperand";
}

// other generic patterns to use in pattern matchings
def simm32      : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>;
def uimm32      : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def lomsbzero   : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000)
                                      == 0; }]>;
def lozero      : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff)
                                      == 0; }]>;
def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000)
                                        == 0; }]>;
def fplozero    : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff)
                                        == 0; }]>;

def CCSIOp : PatLeaf<(cond), [{
  switch (N->get()) {
  default:          return true;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE: return false;
  }
}]>;

def CCUIOp : PatLeaf<(cond), [{
  switch (N->get()) {
  default:         return true;
  case ISD::SETLT:
  case ISD::SETLE:
  case ISD::SETGT:
  case ISD::SETGE: return false;
  }
}]>;

//===----------------------------------------------------------------------===//
// Addressing modes.
// SX-Aurora has following fields.
//    sz: register or 0
//    sy: register or immediate (-64 to 63)
//    disp: immediate (-2147483648 to 2147483647)
//
// There are two kinds of instruction.
//    ASX format uses sz + sy + disp.
//    AS format uses sz + disp.
//
// Moreover, there are four kinds of assembly instruction format.
//    ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)",
//    "(, sz)", "(sy)", or "(sy, sz)".
//    AS format uses "disp", "disp(, sz)", or "(, sz)" in general.
//    AS format in RRM format uses "disp", "disp(sz)", or "(sz)".
//    AS format in RRM format for host memory access uses "sz", "(sz)",
//    or "disp(sz)".
//
// We defined them below.
//
// ASX format:
//    MEMrri, MEMrii, MEMzri, MEMzii
// AS format:
//    MEMriASX, MEMziASX    : simple AS format
//    MEMriRRM, MEMziRRM    : AS format in RRM format
//    MEMriHM, MEMziHM      : AS format in RRM format for host memory access
//===----------------------------------------------------------------------===//

// DAG selections for both ASX and AS formats.
def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>;
def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>;
def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>;
def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>;
def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>;
def ADDRzi : ComplexPattern<iPTR, 2, "selectADDRzi", [], []>;

// ASX format.
def VEMEMrriAsmOperand : AsmOperandClass {
  let Name = "MEMrri";
  let ParserMethod = "parseMEMOperand";
}
def VEMEMriiAsmOperand : AsmOperandClass {
  let Name = "MEMrii";
  let ParserMethod = "parseMEMOperand";
}
def VEMEMzriAsmOperand : AsmOperandClass {
  let Name = "MEMzri";
  let ParserMethod = "parseMEMOperand";
}
def VEMEMziiAsmOperand : AsmOperandClass {
  let Name = "MEMzii";
  let ParserMethod = "parseMEMOperand";
}

// ASX format uses single assembly instruction format.
def MEMrri : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops ptr_rc, ptr_rc, i32imm);
  let ParserMatchClass = VEMEMrriAsmOperand;
}
def MEMrii : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops ptr_rc, i32imm, i32imm);
  let ParserMatchClass = VEMEMriiAsmOperand;
}
def MEMzri : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i32imm);
  let ParserMatchClass = VEMEMzriAsmOperand;
}
def MEMzii : Operand<iPTR> {
  let PrintMethod = "printMemASXOperand";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i32imm);
  let ParserMatchClass = VEMEMziiAsmOperand;
}

// AS format.
def VEMEMriAsmOperand : AsmOperandClass {
  let Name = "MEMri";
  let ParserMethod = "parseMEMAsOperand";
}
def VEMEMziAsmOperand : AsmOperandClass {
  let Name = "MEMzi";
  let ParserMethod = "parseMEMAsOperand";
}

// AS format uses multiple assembly instruction formats
//   1. AS generic assembly instruction format:
def MEMriASX : Operand<iPTR> {
  let PrintMethod = "printMemASOperandASX";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziASX : Operand<iPTR> {
  let PrintMethod = "printMemASOperandASX";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
  let ParserMatchClass = VEMEMziAsmOperand;
}

//   2. AS RRM style assembly instruction format:
def MEMriRRM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandRRM";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziRRM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandRRM";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
  let ParserMatchClass = VEMEMziAsmOperand;
}

//   3. AS HM style assembly instruction format:
def MEMriHM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandHM";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziHM : Operand<iPTR> {
  let PrintMethod = "printMemASOperandHM";
  let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
  let ParserMatchClass = VEMEMziAsmOperand;
}

//===----------------------------------------------------------------------===//
// Other operands.
//===----------------------------------------------------------------------===//

// Branch targets have OtherVT type.
def brtarget32 : Operand<OtherVT> {
  let EncoderMethod = "getBranchTargetOpValue";
  let DecoderMethod = "DecodeSIMM32";
}

// Operand for printing out a condition code.
def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; }
def CCOp : Operand<i32>, ImmLeaf<i32, [{
    return Imm >= 0 && Imm < 22; }], CCOP> {
  let PrintMethod = "printCCOperand";
  let DecoderMethod = "DecodeCCOperand";
  let EncoderMethod = "getCCOpValue";
  let ParserMatchClass = CCOpAsmOperand;
}

// Operand for a rounding mode code.
def RDOpAsmOperand : AsmOperandClass {
  let Name = "RDOp";
}
def RDOp : Operand<i32> {
  let PrintMethod = "printRDOperand";
  let DecoderMethod = "DecodeRDOperand";
  let EncoderMethod = "getRDOpValue";
  let ParserMatchClass = RDOpAsmOperand;
}

def VEhi    : SDNode<"VEISD::Hi", SDTIntUnaryOp>;
def VElo    : SDNode<"VEISD::Lo", SDTIntUnaryOp>;

//  These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>,
                                          SDTCisVT<1, i64> ]>;
def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i64>,
                                        SDTCisVT<1, i64> ]>;

def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>;
def call          : SDNode<"VEISD::CALL", SDT_SPCall,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                            SDNPVariadic]>;

def retflag       : SDNode<"VEISD::RET_FLAG", SDTNone,
                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

def getGOT        : Operand<iPTR>;

// GETFUNPLT for PIC
def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>;

// GETTLSADDR for TLS
def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall,
                        [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                         SDNPVariadic]>;

// GETSTACKTOP
def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone,
                        [SDNPHasChain, SDNPSideEffect]>;


//===----------------------------------------------------------------------===//
// VE Flag Conditions
//===----------------------------------------------------------------------===//

// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class CC_VAL<int N> : PatLeaf<(i32 N)>;
def CC_IG    : CC_VAL< 0>;  // Greater
def CC_IL    : CC_VAL< 1>;  // Less
def CC_INE   : CC_VAL< 2>;  // Not Equal
def CC_IEQ   : CC_VAL< 3>;  // Equal
def CC_IGE   : CC_VAL< 4>;  // Greater or Equal
def CC_ILE   : CC_VAL< 5>;  // Less or Equal
def CC_AF    : CC_VAL< 6>;  // Always false
def CC_G     : CC_VAL< 7>;  // Greater
def CC_L     : CC_VAL< 8>;  // Less
def CC_NE    : CC_VAL< 9>;  // Not Equal
def CC_EQ    : CC_VAL<10>;  // Equal
def CC_GE    : CC_VAL<11>;  // Greater or Equal
def CC_LE    : CC_VAL<12>;  // Less or Equal
def CC_NUM   : CC_VAL<13>;  // Number
def CC_NAN   : CC_VAL<14>;  // NaN
def CC_GNAN  : CC_VAL<15>;  // Greater or NaN
def CC_LNAN  : CC_VAL<16>;  // Less or NaN
def CC_NENAN : CC_VAL<17>;  // Not Equal or NaN
def CC_EQNAN : CC_VAL<18>;  // Equal or NaN
def CC_GENAN : CC_VAL<19>;  // Greater or Equal or NaN
def CC_LENAN : CC_VAL<20>;  // Less or Equal or NaN
def CC_AT    : CC_VAL<21>;  // Always true

//===----------------------------------------------------------------------===//
// VE Rounding Mode
//===----------------------------------------------------------------------===//

// Note that these values must be kept in sync with the VERD::RoundingMode enum
// values.
class RD_VAL<int N> : PatLeaf<(i32 N)>;
def RD_NONE  : RD_VAL< 0>;  // According to PSW
def RD_RZ    : RD_VAL< 8>;  // Round toward Zero
def RD_RP    : RD_VAL< 9>;  // Round toward Plus infinity
def RD_RM    : RD_VAL<10>;  // Round toward Minus infinity
def RD_RN    : RD_VAL<11>;  // Round to Nearest (ties to Even)
def RD_RA    : RD_VAL<12>;  // Round to Nearest (ties to Away)

//===----------------------------------------------------------------------===//
// VE Multiclasses for common instruction formats
//===----------------------------------------------------------------------===//

// Multiclass for generic RR type instructions
let hasSideEffects = 0 in
multiclass RRbm<string opcStr, bits<8>opc,
                RegisterClass RCo, ValueType Tyo,
                RegisterClass RCi, ValueType Tyi,
                SDPatternOperator OpNode = null_frag,
                Operand immOp = simm7, Operand mOp = mimm> {
  def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
  // VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
  // in RHS, so we use following definition.
  let cy = 0 in
  def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi immOp:$sy)))]>;
  let cz = 0 in
  def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}

// Multiclass for non-commutative RR type instructions
let hasSideEffects = 0 in
multiclass RRNCbm<string opcStr, bits<8>opc,
                RegisterClass RCo, ValueType Tyo,
                RegisterClass RCi, ValueType Tyi,
                SDPatternOperator OpNode = null_frag,
                Operand immOp = simm7, Operand mOp = mimm> {
  def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
  let cy = 0 in
  def ir : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), Tyi:$sz))]>;
  let cz = 0 in
  def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz"),
              [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}

// Generic RR multiclass with 2 arguments.
//   e.g. ADDUL, ADDSWSX, ADDSWZX, and etc.
multiclass RRm<string opcStr, bits<8>opc,
               RegisterClass RC, ValueType Ty,
               SDPatternOperator OpNode = null_frag,
               Operand immOp = simm7, Operand mOp = mimm> :
  RRbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;

// Generic RR multiclass for non-commutative instructions with 2 arguments.
//   e.g. SUBUL, SUBUW, SUBSWSX, and etc.
multiclass RRNCm<string opcStr, bits<8>opc,
                 RegisterClass RC, ValueType Ty,
                 SDPatternOperator OpNode = null_frag,
                 Operand immOp = simm7, Operand mOp = mimm> :
  RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;

// Generic RR multiclass for floating point instructions with 2 arguments.
//   e.g. FADDD, FADDS, FSUBD, and etc.
multiclass RRFm<string opcStr, bits<8>opc,
                RegisterClass RC, ValueType Ty,
                SDPatternOperator OpNode = null_frag,
                Operand immOp = simm7fp, Operand mOp = mimmfp> :
  RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;

// Generic RR multiclass for shift instructions with 2 arguments.
//   e.g. SLL, SRL, SLAWSX, and etc.
let hasSideEffects = 0 in
multiclass RRIm<string opcStr, bits<8>opc,
                RegisterClass RC, ValueType Ty,
                SDPatternOperator OpNode = null_frag> {
  def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]>;
  let cz = 0 in
  def mr : RR<opc, (outs RC:$sx), (ins mimm:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode (Ty mimm:$sz), i32:$sy))]>;
  let cy = 0 in
  def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm7:$sy)))]>;
  let cy = 0, cz = 0 in
  def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm7:$sy)))]>;
}

// Special RR multiclass for 128 bits shift left instruction.
//   e.g. SLD
let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in
multiclass RRILDm<string opcStr, bits<8>opc,
                  RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  def rrr : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cz = 0 in
  def rmr : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0 in
  def rri : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0, cz = 0 in
  def rmi : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
}

// Special RR multiclass for 128 bits shift right instruction.
//   e.g. SRD
let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in
multiclass RRIRDm<string opcStr, bits<8>opc,
                  RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  def rrr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cz = 0 in
  def mrr : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, I32:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0 in
  def rri : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0, cz = 0 in
  def mri : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, uimm7:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
}

// Generic RR multiclass with an argument.
//   e.g. LDZ, PCNT, and  BRV
let cy = 0, sy = 0, hasSideEffects = 0 in
multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
                 SDPatternOperator OpNode = null_frag> {
  def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"),
             [(set Ty:$sx, (OpNode Ty:$sz))]>;
  let cz = 0 in
  def m : RR<opc, (outs RC:$sx), (ins mimm:$sz),
             !strconcat(opcStr, " $sx, $sz"),
             [(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>;
}

// Special RR multiclass for MRG instruction.
//   e.g. MRG
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in
multiclass RRMRGm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
  def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in
  def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cz = 0 in
  def rm : RR<opc, (outs RC:$sx), (ins RC:$sy, mimm:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs RC:$sx), (ins simm7:$sy, mimm:$sz, RC:$sd),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Special RR multiclass for BSWP instruction.
//   e.g. BSWP
let hasSideEffects = 0 in
multiclass RRSWPm<string opcStr, bits<8>opc,
                  RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  let cy = 0 in
  def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>;
  let cy = 0, cz = 0 in
  def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy),
              !strconcat(opcStr, " $sx, $sz, $sy"),
              [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>;
}

// Multiclass for CMOV instructions.
//   e.g. CMOVL, CMOVW, CMOVD, and etc.
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0,
    cfw = ? in
multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
  def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0 in
  def ir : RR<opc, (outs I64:$sx),
              (ins CCOp:$cfw, simm7:$sy, I64:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cz = 0 in
  def rm : RR<opc, (outs I64:$sx),
              (ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
  let cy = 0, cz = 0 in
  def im : RR<opc, (outs I64:$sx),
              (ins CCOp:$cfw, simm7:$sy, mimm:$sz, I64:$sd),
              !strconcat(opcStr, " $sx, $sz, $sy")>;
}

// Multiclass for floating point conversion instructions.
//   e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc.
// sz{3-0} = rounding mode
let cz = 0, hasSideEffects = 0 in
multiclass CVTRDm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
                  RegisterClass RCi, ValueType Tyi> {
  def r : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, RCi:$sy),
             !strconcat(opcStr, "${rd} $sx, $sy")> {
    bits<4> rd;
    let sz{5-4} = 0;
    let sz{3-0} = rd;
  }
  let cy = 0 in
  def i : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, simm7:$sy),
             !strconcat(opcStr, "${rd} $sx, $sy")> {
    bits<4> rd;
    let sz{5-4} = 0;
    let sz{3-0} = rd;
  }
}

// Multiclass for floating point conversion instructions.
//   e.g. CVTDW, CVTSW, CVTDL, and etc.
let cz = 0, sz = 0, hasSideEffects = 0 in
multiclass CVTm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
                RegisterClass RCi, ValueType Tyi,
                SDPatternOperator OpNode = null_frag> {
  def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy),
             !strconcat(opcStr, " $sx, $sy"),
             [(set Tyo:$sx, (OpNode Tyi:$sy))]>;
  let cy = 0 in
  def i : RR<opc, (outs RCo:$sx), (ins simm7:$sy),
             !strconcat(opcStr, " $sx, $sy")>;
}

// Multiclass for PFCH instructions.
//   e.g. PFCH
let sx = 0, hasSideEffects = 0 in
multiclass PFCHm<string opcStr, bits<8>opc> {
  def rri : RM<opc, (outs), (ins MEMrri:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRrri:$addr, imm, imm, (i32 1))]>;
  let cy = 0 in
  def rii : RM<opc, (outs), (ins MEMrii:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRrii:$addr, imm, imm, (i32 1))]>;
  let cz = 0 in
  def zri : RM<opc, (outs), (ins MEMzri:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRzri:$addr, imm, imm, (i32 1))]>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs), (ins MEMzii:$addr), !strconcat(opcStr, " $addr"),
               [(prefetch ADDRzii:$addr, imm, imm, (i32 1))]>;
}

// Multiclass for CAS instructions.
//   e.g. TS1AML, TS1AMW, TS2AM, and etc.
let Constraints = "$dest = $sd", DisableEncoding = "$sd",
    mayStore=1, mayLoad = 1, hasSideEffects = 0 in
multiclass RRCAStgm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
                    Operand immOp, Operand MEM, Operand ADDR,
                    SDPatternOperator OpNode = null_frag> {
  def r : RRM<opc, (outs RC:$dest), (ins MEM:$addr, RC:$sy, RC:$sd),
              !strconcat(opcStr, " $dest, $addr, $sy"),
              [(set Ty:$dest, (OpNode ADDR:$addr, Ty:$sy, Ty:$sd))]>;
  let cy = 0 in
  def i : RRM<opc, (outs RC:$dest), (ins MEM:$addr, immOp:$sy, RC:$sd),
              !strconcat(opcStr, " $dest, $addr, $sy"),
              [(set Ty:$dest, (OpNode ADDR:$addr, (Ty immOp:$sy), Ty:$sd))]>;
}
multiclass RRCASm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
                  Operand immOp, SDPatternOperator OpNode = null_frag> {
  defm ri : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMriRRM, ADDRri, OpNode>;
  let cz = 0 in
  defm zi : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMziRRM, ADDRzi, OpNode>;
}

// Multiclass for branch instructions
//   e.g. BCFL, BCFW, BCFD, and etc.
let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in
multiclass BCbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond,
                  Operand ADDR> {
  let bpf = 0 /* NONE */ in
  def "" : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
              !strconcat(opcStr, " ", cmpStr, "$addr")>;
  let bpf = 2 /* NOT TaKEN */ in
  def _nt : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
               !strconcat(opcStr, ".nt ", cmpStr, "$addr")>;
  let bpf = 3 /* TaKEN */ in
  def _t : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
              !strconcat(opcStr, ".t ", cmpStr, "$addr")>;
}
multiclass BCtgm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
  defm ri : BCbpfm<opcStr, cmpStr, opc, cond, MEMriASX>;
  let cz = 0 in defm zi : BCbpfm<opcStr, cmpStr, opc, cond, MEMziASX>;
}
multiclass BCm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
               RegisterClass RC, Operand immOp> {
  let DecoderMethod = "DecodeBranchCondition" in
  defm r : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, RC:$comp)>;
  let DecoderMethod = "DecodeBranchCondition", cy = 0 in
  defm i : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, immOp:$comp)>;
  let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
      cf = 15 /* AT */, isBarrier = 1 in
  defm a : BCtgm<opcStrAt, "", opc, (ins)>;
  let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
      cf = 0 /* AF */ in
  defm na : BCtgm<opcStrAf, "", opc, (ins)>;
}

// Multiclass for relative branch instructions
//   e.g. BRCFL, BRCFW, BRCFD, and etc.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in
multiclass BCRbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
  let bpf = 0 /* NONE */ in
  def "" : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
              !strconcat(opcStr, " ", cmpStr, "$imm32")>;
  let bpf = 2 /* NOT TaKEN */ in
  def _nt : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
               !strconcat(opcStr, ".nt ", cmpStr, "$imm32")>;
  let bpf = 3 /* TaKEN */ in
  def _t : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
              !strconcat(opcStr, ".t ", cmpStr, "$imm32")>;
}
multiclass BCRm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
               RegisterClass RC, Operand immOp> {
  defm rr : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, RC:$sy, RC:$sz)>;
  let cy = 0 in
  defm ir : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, immOp:$sy, RC:$sz)>;
  let cy = 0, sy = 0, cz = 0, sz = 0, cf = 15 /* AT */, isBarrier = 1 in
  defm a : BCRbpfm<opcStrAt, "", opc, (ins)>;
  let cy = 0, sy = 0, cz = 0, sz = 0, cf = 0 /* AF */ in
  defm na : BCRbpfm<opcStrAf, "", opc, (ins)>;
}

// Multiclass for communication register instructions.
//   e.g. LCR
let hasSideEffects = 1 in
multiclass LOADCRm<string opcStr, bits<8>opc, RegisterClass RC> {
  def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$sy),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, simm7:$sy),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cz = 0 in def zr : RR<opc, (outs RC:$sx), (ins zero:$sz, RC:$sy),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0, cz = 0 in
  def zi : RR<opc, (outs RC:$sx), (ins zero:$sz, simm7:$sy),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Multiclass for communication register instructions.
//   e.g. SCR
let hasSideEffects = 1 in
multiclass STORECRm<string opcStr, bits<8>opc, RegisterClass RC> {
  def rr : RR<opc, (outs), (ins RC:$sz, RC:$sy, RC:$sx),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in def ri : RR<opc, (outs), (ins RC:$sz, simm7:$sy, RC:$sx),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cz = 0 in def zr : RR<opc, (outs), (ins zero:$sz, RC:$sy, RC:$sx),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0, cz = 0 in
  def zi : RR<opc, (outs), (ins zero:$sz, simm7:$sy, RC:$sx),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Multiclass for communication register instructions.
//   e.g. FIDCR
let cz = 0, hasSideEffects = 1 in
multiclass FIDCRm<string opcStr, bits<8>opc, RegisterClass RC> {
  def ri : RR<opc, (outs RC:$sx), (ins RC:$sy, uimm3:$sz),
              !strconcat(opcStr, " $sx, $sy, $sz")>;
  let cy = 0 in def ii : RR<opc, (outs RC:$sx), (ins simm7:$sy, uimm3:$sz),
                            !strconcat(opcStr, " $sx, $sy, $sz")>;
}

// Multiclass for LHM instruction.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LHMm<string opcStr, bits<8> opc, RegisterClass RC> {
  def ri : RRMHM<opc, (outs RC:$dest), (ins MEMriHM:$addr),
                 !strconcat(opcStr, " $dest, $addr")>;
  let cz = 0 in
  def zi : RRMHM<opc, (outs RC:$dest), (ins MEMziHM:$addr),
                 !strconcat(opcStr, " $dest, $addr")>;
}

// Multiclass for SHM instruction.
let mayStore = 1, hasSideEffects = 0 in
multiclass SHMm<string opcStr, bits<8> opc, RegisterClass RC> {
  def ri : RRMHM<opc, (outs), (ins MEMriHM:$addr, RC:$sx),
                 !strconcat(opcStr, " $sx, $addr")>;
  let cz = 0 in
  def zi : RRMHM<opc, (outs), (ins MEMziHM:$addr, RC:$sx),
                 !strconcat(opcStr, " $sx, $addr")>;
}

//===----------------------------------------------------------------------===//
// Instructions
//
// Define all scalar instructions defined in SX-Aurora TSUBASA Architecture
// Guide here.  As those mnemonics, we use mnemonics defined in Vector Engine
// Assembly Language Reference Manual.
//===----------------------------------------------------------------------===//

//-----------------------------------------------------------------------------
// Section 8.2 - Load/Store instructions
//-----------------------------------------------------------------------------

// Multiclass for generic RM instructions
multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC> {
  def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
  let cy = 0 in
  def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
  let cz = 0 in
  def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
               !strconcat(opcStr, " $dest, $addr"), []>;
}

// Section 8.2.1 - LEA
let cx = 0, DecoderMethod = "DecodeLoadI64" in
defm LEA : RMm<"lea", 0x06, I64>;
let cx = 1, DecoderMethod = "DecodeLoadI64" in
defm LEASL : RMm<"lea.sl", 0x06, I64>;
let cx = 0, DecoderMethod = "DecodeLoadI32", isCodeGenOnly = 1 in
defm LEA32 : RMm<"lea", 0x06, I32>;

def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>;
def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>;
def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>;
def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>;
def : Pat<(add I32:$base, simm32:$disp),
          (LEA32rii (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $base, sub_i32), 0,
                    (LO32 $disp))>;

def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp),
                       [(add (add node:$base, node:$idx), node:$disp),
                        (add (add node:$base, node:$disp), node:$idx)]>;
def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp),
          (LEArii $base, (LO7 $idx), (LO32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp),
          (LEArri $base, $idx, (LO32 $disp))>;
def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp),
          (LEASLrii $base, (LO7 $idx), (HI32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp),
          (LEASLrri $base, $idx, (HI32 $disp))>;

// Multiclass for load instructions.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
                 SDPatternOperator OpNode = null_frag> {
  def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRrri:$addr))]>;
  let cy = 0 in
  def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRrii:$addr))]>;
  let cz = 0 in
  def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRzri:$addr))]>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
               !strconcat(opcStr, " $dest, $addr"),
               [(set Ty:$dest, (OpNode ADDRzii:$addr))]>;
}

// Section 8.2.2 - LDS
let DecoderMethod = "DecodeLoadI64" in
defm LD : LOADm<"ld", 0x01, I64, i64, load>;
def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>;
def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>;
def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>;
def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>;

// Section 8.2.3 - LDU
let DecoderMethod = "DecodeLoadF32" in
defm LDU : LOADm<"ldu", 0x02, F32, f32, load>;

// Section 8.2.4 - LDL
let DecoderMethod = "DecodeLoadI32" in
defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>;

// Section 8.2.5 - LD2B
let DecoderMethod = "DecodeLoadI32" in
defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>;

// Section 8.2.6 - LD1B
let DecoderMethod = "DecodeLoadI32" in
defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>;

// Multiclass for store instructions.
let mayStore = 1 in
multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
                  SDPatternOperator OpNode = null_frag> {
  def rri : RM<opc, (outs), (ins MEMrri:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRrri:$addr)]>;
  let cy = 0 in
  def rii : RM<opc, (outs), (ins MEMrii:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRrii:$addr)]>;
  let cz = 0 in
  def zri : RM<opc, (outs), (ins MEMzri:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRzri:$addr)]>;
  let cy = 0, cz = 0 in
  def zii : RM<opc, (outs), (ins MEMzii:$addr, RC:$sx),
               !strconcat(opcStr, " $sx, $addr"),
               [(OpNode Ty:$sx, ADDRzii:$addr)]>;
}

// Section 8.2.7 - STS
let DecoderMethod = "DecodeStoreI64" in
defm ST : STOREm<"st", 0x11, I64, i64, store>;
def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>;

// Section 8.2.8 - STU
let DecoderMethod = "DecodeStoreF32" in
defm STU : STOREm<"stu", 0x12, F32, f32, store>;

// Section 8.2.9 - STL
let DecoderMethod = "DecodeStoreI32" in
defm STL : STOREm<"stl", 0x13, I32, i32, store>;

// Section 8.2.10 - ST2B
let DecoderMethod = "DecodeStoreI32" in
defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>;

// Section 8.2.11 - ST1B
let DecoderMethod = "DecodeStoreI32" in
defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>;

// Section 8.2.12 - DLDS
let DecoderMethod = "DecodeLoadI64" in
defm DLD : LOADm<"dld", 0x09, I64, i64, load>;

// Section 8.2.13 - DLDU
let DecoderMethod = "DecodeLoadF32" in
defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>;

// Section 8.2.14 - DLDL
let DecoderMethod = "DecodeLoadI32" in
defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>;

// Section 8.2.15 - PFCH
let DecoderMethod = "DecodeASX" in
defm PFCH : PFCHm<"pfch", 0x0c>;

// Section 8.2.16 - TS1AM (Test and Set 1 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>;
let DecoderMethod = "DecodeTS1AMI32", cx = 1 in
defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>;

// Section 8.2.17 - TS2AM (Test and Set 2 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>;

// Section 8.2.18 - TS3AM (Test and Set 3 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>;

// Section 8.2.19 - ATMAM (Atomic AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>;

// Section 8.2.20 - CAS (Compare and Swap)
let DecoderMethod = "DecodeCASI64" in
defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7>;
let DecoderMethod = "DecodeCASI32", cx = 1 in
defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7>;

//-----------------------------------------------------------------------------
// Section 8.3 - Transfer Control Instructions
//-----------------------------------------------------------------------------

// Section 8.3.1 - FENCE (Fence)
let hasSideEffects = 1 in {
  let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">;
  def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> {
    bits<2> kind;
    let lf = kind{1};
    let sf = kind{0};
  }
  def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> {
    bits<3> kind;
    let c2 = kind{2};
    let c1 = kind{1};
    let c0 = kind{0};
  }
}

// Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in
def SVOB : RR<0x30, (outs), (ins), "svob">;

//-----------------------------------------------------------------------------
// Section 8.4 - Fixed-point Operation Instructions
//-----------------------------------------------------------------------------

// Section 8.4.1 - ADD (Add)
defm ADDUL : RRm<"addu.l", 0x48, I64, i64>;
let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>;

// Section 8.4.2 - ADS (Add Single)
defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>;
let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>;

// Section 8.4.3 - ADX (Add)
defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>;

// Section 8.4.4 - SUB (Subtract)
defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>;
let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>;

// Section 8.4.5 - SBS (Subtract Single)
defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>;
let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>;

// Section 8.4.6 - SBX (Subtract)
defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>;

// Section 8.4.7 - MPY (Multiply)
defm MULUL : RRm<"mulu.l", 0x49, I64, i64>;
let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>;

// Section 8.4.8 - MPS (Multiply Single)
defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>;
let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>;

// Section 8.4.9 - MPX (Multiply)
defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>;

// Section 8.4.10 - MPD (Multiply)
defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>;

// Section 8.4.11 - DIV (Divide)
defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>;
let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>;

// Section 8.4.12 - DVS (Divide Single)
defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>;
let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>;

// Section 8.4.13 - DVX (Divide)
defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>;

// Section 8.4.14 - CMP (Compare)
defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64>;
let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32>;

// Section 8.4.15 - CPS (Compare Single)
defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>;
let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32>;

// Section 8.4.16 - CPX (Compare)
defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64>;

// Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single)
// cx: sx/zx, cw: max/min
defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32>;
let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>;
let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32>;
let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>;

// Section 8.4.18 - CMX (Compare and Select Maximum/Minimum)
defm MAXSL : RRm<"maxs.l", 0x68, I64, i64>;
let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64>;

//-----------------------------------------------------------------------------
// Section 8.5 - Logical Operation Instructions
//-----------------------------------------------------------------------------

// Section 8.5.1 - AND (AND)
defm AND : RRm<"and", 0x44, I64, i64, and>;
let isCodeGenOnly = 1 in defm AND32 : RRm<"and", 0x44, I32, i32, and>;

// Section 8.5.2 - OR (OR)
defm OR : RRm<"or", 0x45, I64, i64, or>;
let isCodeGenOnly = 1 in defm OR32 : RRm<"or", 0x45, I32, i32, or>;

// Section 8.5.3 - XOR (Exclusive OR)
defm XOR : RRm<"xor", 0x46, I64, i64, xor>;
let isCodeGenOnly = 1 in defm XOR32 : RRm<"xor", 0x46, I32, i32, xor>;

// Section 8.5.4 - EQV (Equivalence)
defm EQV : RRm<"eqv", 0x47, I64, i64>;

// Section 8.5.5 - NND (Negate AND)
def and_not : PatFrags<(ops node:$x, node:$y),
                       [(and (not node:$x), node:$y)]>;
defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>;

// Section 8.5.6 - MRG (Merge)
defm MRG : RRMRGm<"mrg", 0x56, I64, i64>;

// Section 8.5.7 - LDZ (Leading Zero Count)
defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz>;

// Section 8.5.8 - PCNT (Population Count)
defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>;

// Section 8.5.9 - BRV (Bit Reverse)
defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>;

// Section 8.5.10 - BSWP (Byte Swap)
defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>;

// Section 8.5.11 - CMOV (Conditional Move)
let cw = 0, cw2 = 0 in defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64>;
let cw = 1, cw2 = 0 in defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32>;
let cw = 0, cw2 = 1 in defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64>;
let cw = 1, cw2 = 1 in defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32>;
def : MnemonicAlias<"cmov.l", "cmov.l.at">;
def : MnemonicAlias<"cmov.w", "cmov.w.at">;
def : MnemonicAlias<"cmov.d", "cmov.d.at">;
def : MnemonicAlias<"cmov.s", "cmov.s.at">;

//-----------------------------------------------------------------------------
// Section 8.6 - Shift Operation Instructions
//-----------------------------------------------------------------------------

// Section 8.6.1 - SLL (Shift Left Logical)
defm SLL : RRIm<"sll", 0x65, I64, i64, shl>;

// Section 8.6.2 - SLD (Shift Left Double)
defm SLD : RRILDm<"sld", 0x64, I64, i64>;

// Section 8.6.3 - SRL (Shift Right Logical)
defm SRL : RRIm<"srl", 0x75, I64, i64, srl>;

// Section 8.6.4 - SRD (Shift Right Double)
defm SRD : RRIRDm<"srd", 0x74, I64, i64>;

// Section 8.6.5 - SLA (Shift Left Arithmetic)
defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>;
let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>;

// Section 8.6.6 - SLAX (Shift Left Arithmetic)
defm SLAL : RRIm<"sla.l", 0x57, I64, i64>;

// Section 8.6.7 - SRA (Shift Right Arithmetic)
defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>;
let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>;

// Section 8.6.8 - SRAX (Shift Right Arithmetic)
defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>;

def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))),
          (EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>;
def : Pat<(i32 (srl i32:$src, i32:$val)),
          (EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $src, sub_i32), !add(32, 64)), $val), sub_i32)>;

//-----------------------------------------------------------------------------
// Section 8.7 - Floating-point Arithmetic Instructions
//-----------------------------------------------------------------------------

// Section 8.7.1 - FAD (Floating Add)
defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>;
let cx = 1 in
defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>;

// Section 8.7.2 - FSB (Floating Subtract)
defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>;
let cx = 1 in
defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>;

// Section 8.7.3 - FMP (Floating Multiply)
defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>;
let cx = 1 in
defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>;

// Section 8.7.4 - FDV (Floating Divide)
defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>;
let cx = 1 in
defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>;

// Section 8.7.5 - FCP (Floating Compare)
defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64>;
let cx = 1 in
defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, null_frag, simm7fp, mimmfp32>;

// Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single)
// cx: double/float, cw: max/min
let cw = 0, cx = 0 in
defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>;
let cw = 0, cx = 1 in
defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>;
let cw = 1, cx = 0 in
defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>;
let cw = 1, cx = 1 in
defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>;

// Section 8.7.7 - FAQ (Floating Add Quadruple)
defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128>;

// Section 8.7.8 - FSQ (Floating Subtract Quadruple)
defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128>;

// Section 8.7.9 - FMQ (Floating Subtract Quadruple)
defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128>;

// Section 8.7.10 - FCQ (Floating Compare Quadruple)
defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, null_frag, simm7fp,
                    mimmfp>;

// Section 8.7.11 - FIX (Convert to Fixed Point)
// cx: double/float, cw: sx/zx, sz{0-3} = round
let cx = 0, cw = 0 /* sign extend */ in
defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, i32, I64, f64>;
let cx = 0, cw = 1 /* zero extend */ in
defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, i32, I64, f64>;
let cx = 1, cw = 0 /* sign extend */ in
defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, i32, F32, f32>;
let cx = 1, cw = 1 /* zero extend */ in
defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, i32, F32, f32>;

// Section 8.7.12 - FIXX (Convert to Fixed Point)
defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, i64, I64, f64>;

// Section 8.7.13 - FLT (Convert to Floating Point)
defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>;
let cx = 1 in
defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>;

// Section 8.7.14 - FLTX (Convert to Floating Point)
defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>;

// Section 8.7.15 - CVS (Convert to Single-format)
defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>;
let cx = 1 in
defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128>;

// Section 8.7.16 - CVD (Convert to Double-format)
defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>;
let cx = 1 in
defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128>;

// Section 8.7.17 - CVQ (Convert to Single-format)
defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64>;
let cx = 1 in
defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32>;

//-----------------------------------------------------------------------------
// Section 8.8 - Branch instructions
//-----------------------------------------------------------------------------

// Section 8.8.1 - BC (Branch on Codition)
defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>;

// Indirect branch aliases
def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>;
def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>;

// Return instruction is a special case of jump.
let Uses = [SX10], bpf = 3 /* TAKEN */, cf = 15 /* AT */, cy = 0, sy = 0,
    sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1,
    isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retflag)]>;

// Section 8.8.2 - BCS (Branch on Condition Single)
defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>;

// Section 8.8.3 - BCF (Branch on Condition Floating Point)
defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>;
let cx = 1 in
defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>;

// Section 8.8.4 - BCR (Branch on Condition Relative)
let cx = 0, cx2 = 0 in
defm BRCFL : BCRm<"br${cf}.l", "br.l", "braf.l", 0x18, I64, simm7>;
let cx = 1, cx2 = 0 in
defm BRCFW : BCRm<"br${cf}.w", "br.w", "braf.w", 0x18, I32, simm7>;
let cx = 0, cx2 = 1 in
defm BRCFD : BCRm<"br${cf}.d", "br.d", "braf.d", 0x18, I64, simm7fp>;
let cx = 1, cx2 = 1 in
defm BRCFS : BCRm<"br${cf}.s", "br.s", "braf.s", 0x18, F32, simm7fp>;

// Section 8.8.5 - BSIC (Branch and Save IC)
let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in
defm BSIC : RMm<"bsic", 0x08, I64>;

// Call instruction is a special case of BSIC.
let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0,
    isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops),
               "bsic %s10, (, $sz)", [(call i64:$sz)]>;

//-----------------------------------------------------------------------------
// Section 8.19 - Control Instructions
//-----------------------------------------------------------------------------

// Section 8.19.1 - SIC (Save Instruction Counter)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in
def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">;

// Section 8.19.2 - LPM (Load Program Mode Flags)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in
def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">;

// Section 8.19.3 - SPM (Save Program Mode Flags)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">;

// Section 8.19.4 - LFR (Load Flag Register)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in {
  def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">;
  let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">;
}

// Section 8.19.5 - SFR (Save Flag Register)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">;

// Section 8.19.6 - SMIR (Save Miscellaneous Register)
let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
  def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">;
}

// Section 8.19.7 - NOP (No Operation)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in
def NOP : RR<0x79, (outs), (ins), "nop">;

// Section 8.19.8 - MONC (Monitor Call)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
  def MONC : RR<0x3F, (outs), (ins), "monc">;
  let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">;
}

// Section 8.19.9 - LCR (Load Communication Register)
defm LCR : LOADCRm<"lcr", 0x40, I64>;

// Section 8.19.10 - SCR (Save Communication Register)
defm SCR : STORECRm<"scr", 0x50, I64>;

// Section 8.19.11 - TSCR (Test & Set Communication Register)
defm TSCR : LOADCRm<"tscr", 0x41, I64>;

// Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR)
defm FIDCR : FIDCRm<"fidcr", 0x51, I64>;

//-----------------------------------------------------------------------------
// Section 8.20 - Host Memory Access Instructions
//-----------------------------------------------------------------------------

// Section 8.20.1 - LHM (Load Host Memory)
let ry = 3, DecoderMethod = "DecodeLoadASI64" in
defm LHML : LHMm<"lhm.l", 0x21, I64>;
let ry = 2, DecoderMethod = "DecodeLoadASI64" in
defm LHMW : LHMm<"lhm.w", 0x21, I64>;
let ry = 1, DecoderMethod = "DecodeLoadASI64" in
defm LHMH : LHMm<"lhm.h", 0x21, I64>;
let ry = 0, DecoderMethod = "DecodeLoadASI64" in
defm LHMB : LHMm<"lhm.b", 0x21, I64>;

// Section 8.20.2 - SHM (Store Host Memory)
let ry = 3, DecoderMethod = "DecodeStoreASI64" in
defm SHML : SHMm<"shm.l", 0x31, I64>;
let ry = 2, DecoderMethod = "DecodeStoreASI64" in
defm SHMW : SHMm<"shm.w", 0x31, I64>;
let ry = 1, DecoderMethod = "DecodeStoreASI64" in
defm SHMH : SHMm<"shm.h", 0x31, I64>;
let ry = 0, DecoderMethod = "DecodeStoreASI64" in
defm SHMB : SHMm<"shm.b", 0x31, I64>;

//===----------------------------------------------------------------------===//
// Instructions for CodeGenOnly
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pattern Matchings
//===----------------------------------------------------------------------===//

// Small immediates.
def : Pat<(i32 simm7:$val), (OR32im (LO7 $val), 0)>;
def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>;
// Medium immediates.
def : Pat<(i32 simm32:$val), (LEA32zii 0, 0, (LO32 $val))>;
def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>;
def : Pat<(i64 uimm32:$val), (ANDrm (LEAzii 0, 0, (LO32 $val)), !add(32, 64))>;
// Arbitrary immediates.
def : Pat<(i64 lozero:$val),
          (LEASLzii 0, 0, (HI32 imm:$val))>;
def : Pat<(i64 lomsbzero:$val),
          (LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>;
def : Pat<(i64 imm:$val),
          (LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0,
                    (HI32 imm:$val))>;

// floating point
def : Pat<(f32 fpimm:$val),
          (EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>;
def : Pat<(f64 fplozero:$val),
          (LEASLzii 0, 0, (HIFP32 $val))>;
def : Pat<(f64 fplomsbzero:$val),
          (LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>;
def : Pat<(f64 fpimm:$val),
          (LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0,
                    (HIFP32 $val))>;

// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are unused.

// TODO Use standard expansion for shift-based lowering of sext_inreg

// Cast to i1
def : Pat<(sext_inreg I32:$src, i1),
          (SRAWSXri (SLAWSXri $src, 31), 31)>;
def : Pat<(sext_inreg I64:$src, i1),
          (SRALri (SLLri $src, 63), 63)>;

// Cast to i8
def : Pat<(sext_inreg I32:$src, i8),
          (SRAWSXri (SLAWSXri $src, 24), 24)>;
def : Pat<(sext_inreg I64:$src, i8),
          (SRALri (SLLri $src, 56), 56)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8),
          (EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xff),
          (AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(56, 64))>;

// Cast to i16
def : Pat<(sext_inreg I32:$src, i16),
          (SRAWSXri (SLAWSXri $src, 16), 16)>;
def : Pat<(sext_inreg I64:$src, i16),
          (SRALri (SLLri $src, 48), 48)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16),
          (EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xffff),
          (AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(48, 64))>;

// Cast to i32
def : Pat<(i32 (trunc i64:$src)),
          (ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0)>;
def : Pat<(i32 (fp_to_sint I64:$reg)), (CVTWDSXr RD_RZ, $reg)>;
def : Pat<(i32 (fp_to_sint F32:$reg)), (CVTWSSXr RD_RZ, $reg)>;

// Cast to i64
def : Pat<(sext_inreg I64:$src, i32),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            (ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0), sub_i32)>;
def : Pat<(i64 (sext i32:$sy)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWSXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (zext i32:$sy)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWZXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (fp_to_sint f32:$sy)), (CVTLDr RD_RZ, (CVTDSr $sy))>;
def : Pat<(i64 (fp_to_sint I64:$reg)), (CVTLDr RD_RZ, $reg)>;

// Cast to f32
def : Pat<(f32 (sint_to_fp i64:$sy)), (CVTSDr (CVTDLr i64:$sy))>;

def : Pat<(i64 (anyext i32:$sy)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $sy, sub_i32)>;


// extload, sextload and zextload stuff
multiclass EXT64m<SDPatternOperator from,
                  SDPatternOperator torri,
                  SDPatternOperator torii,
                  SDPatternOperator tozri,
                  SDPatternOperator tozii> {
  def : Pat<(i64 (from ADDRrri:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torri MEMrri:$addr),
                           sub_i32)>;
  def : Pat<(i64 (from ADDRrii:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torii MEMrii:$addr),
                           sub_i32)>;
  def : Pat<(i64 (from ADDRzri:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozri MEMzri:$addr),
                           sub_i32)>;
  def : Pat<(i64 (from ADDRzii:$addr)),
            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozii MEMzii:$addr),
                           sub_i32)>;
}
defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>;
defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;

// anyextload
multiclass EXT32m<SDPatternOperator from,
                  SDPatternOperator torri,
                  SDPatternOperator torii,
                  SDPatternOperator tozri,
                  SDPatternOperator tozii> {
  def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
  def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
  def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
  def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
}
defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;

// truncstore
multiclass TRUNC64m<SDPatternOperator from,
                    SDPatternOperator torri,
                    SDPatternOperator torii,
                    SDPatternOperator tozri,
                    SDPatternOperator tozii> {
  def : Pat<(from i64:$src, ADDRrri:$addr),
            (torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
  def : Pat<(from i64:$src, ADDRrii:$addr),
            (torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
  def : Pat<(from i64:$src, ADDRzri:$addr),
            (tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
  def : Pat<(from i64:$src, ADDRzii:$addr),
            (tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
}
defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>;

// Address calculation and its optimization
def : Pat<(VEhi tglobaladdr:$in), (LEASLzii 0, 0, tglobaladdr:$in)>;
def : Pat<(VElo tglobaladdr:$in),
          (ANDrm (LEAzii 0, 0, tglobaladdr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaladdr:$in1), (VElo tglobaladdr:$in2)),
          (LEASLrii (ANDrm (LEAzii 0, 0, tglobaladdr:$in2), !add(32, 64)), 0,
                    (tglobaladdr:$in1))>;

// GlobalTLS address calculation and its optimization
def : Pat<(VEhi tglobaltlsaddr:$in), (LEASLzii 0, 0, tglobaltlsaddr:$in)>;
def : Pat<(VElo tglobaltlsaddr:$in),
          (ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaltlsaddr:$in1), (VElo tglobaltlsaddr:$in2)),
          (LEASLrii (ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in2), !add(32, 64)), 0,
                    (tglobaltlsaddr:$in1))>;

// Address calculation and its optimization
def : Pat<(VEhi texternalsym:$in), (LEASLzii 0, 0, texternalsym:$in)>;
def : Pat<(VElo texternalsym:$in),
          (ANDrm (LEAzii 0, 0, texternalsym:$in), !add(32, 64))>;
def : Pat<(add (VEhi texternalsym:$in1), (VElo texternalsym:$in2)),
          (LEASLrii (ANDrm (LEAzii 0, 0, texternalsym:$in2), !add(32, 64)), 0,
                    (texternalsym:$in1))>;

// Branches
def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>;

// brcc
// integer brcc
multiclass BRCCIm<ValueType ty, SDPatternOperator BrOpNode1,
                 SDPatternOperator BrOpNode2,
                 SDPatternOperator CmpOpNode1,
                 SDPatternOperator CmpOpNode2> {
  def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr),
            (BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>;
  def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr),
            (BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>;
  def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr),
            (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l),
                       bb:$addr)>;
  def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr),
            (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>;
}
defm : BRCCIm<i32, BRCFWrr, BRCFWir, CMPUWrr, CMPUWir>;
defm : BRCCIm<i64, BRCFLrr, BRCFLir, CMPULrr, CMPULir>;

// floating point brcc
multiclass BRCCFm<ValueType ty, SDPatternOperator BrOpNode1,
                 SDPatternOperator BrOpNode2> {
  def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr),
            (BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>;
  def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr),
            (BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>;
}
defm : BRCCFm<f32, BRCFSrr, BRCFSir>;
defm : BRCCFm<f64, BRCFDrr, BRCFDir>;

//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//

// GETGOT for PIC
let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in {
  def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">;
}

// GETFUNPLT for PIC
let hasSideEffects = 0 in
def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr),
                       "$dst, $addr",
                       [(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >;

def : Pat<(GetFunPLT tglobaladdr:$dst),
          (GETFUNPLT tglobaladdr:$dst)>;
def : Pat<(GetFunPLT texternalsym:$dst),
          (GETFUNPLT texternalsym:$dst)>;

// GETTLSADDR for TLS
let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in
def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr),
                        "# GETTLSADDR $addr",
                        [(GetTLSAddr tglobaltlsaddr:$addr)] >;

def : Pat<(GetTLSAddr tglobaltlsaddr:$dst),
          (GETTLSADDR tglobaltlsaddr:$dst)>;

let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2),
                              "# ADJCALLSTACKDOWN $amt, $amt2",
                              [(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                            "# ADJCALLSTACKUP $amt1",
                            [(callseq_end timm:$amt1, timm:$amt2)]>;
}

let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in
def EXTEND_STACK : Pseudo<(outs), (ins),
                          "# EXTEND STACK",
                          []>;
let  hasSideEffects = 0 in
def EXTEND_STACK_GUARD : Pseudo<(outs), (ins),
                                "# EXTEND STACK GUARD",
                                []>;

// Dynamic stack allocation yields a __llvm_grow_stack for VE targets.
// These calls are needed to probe the stack when allocating more over
// %s8 (%sl - stack limit).

let Uses = [SX11], hasSideEffects = 1 in
def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins),
                         "# GET STACK TOP",
                         [(set iPTR:$dst, (GetStackTop))]>;
// SETCC pattern matches
//
//   CMP  %tmp, lhs, rhs     ; compare lhs and rhs
//   or   %res, 0, (0)1      ; initialize by 0
//   CMOV %res, (63)0, %tmp  ; set 1 if %tmp is true

def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrm (icond2cc $cond),
                       (CMPSLrr i64:$LHS, i64:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrm (icond2cc $cond),
                       (CMPULrr i64:$LHS, i64:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrm (icond2cc $cond),
                       (CMPSWSXrr i32:$LHS, i32:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrm (icond2cc $cond),
                       (CMPUWrr i32:$LHS, i32:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc f64:$LHS, f64:$RHS, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVDrm (fcond2cc $cond),
                       (FCMPDrr f64:$LHS, f64:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

def : Pat<(i32 (setcc f32:$LHS, f32:$RHS, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVSrm (fcond2cc $cond),
                       (FCMPSrr f32:$LHS, f32:$RHS),
                       !add(63, 64),
                       (ORim 0, 0)), sub_i32)>;

// Special SELECTCC pattern matches
// Use min/max for better performance.
//
//   MAX/MIN  %res, %lhs, %rhs

def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGT)),
          (FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGT)),
          (FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGT)),
          (MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGT)),
          (MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGE)),
          (FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGE)),
          (FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGE)),
          (MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGE)),
          (MAXSWSXrr $LHS, $RHS)>;

def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLT)),
          (FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLT)),
          (FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLT)),
          (MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLT)),
          (MINSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLE)),
          (FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLE)),
          (FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLE)),
          (MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLE)),
          (MINSWSXrr $LHS, $RHS)>;

// Generic SELECTCC pattern matches
//
//   CMP  %tmp, %l, %r       ; compare %l and %r
//   or   %res, %f, (0)1     ; initialize by %f
//   CMOV %res, %t, %tmp     ; set %t if %tmp is true

// selectcc for i64 result
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCSIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCUIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCSIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCUIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f32:$l, f32:$r, i64:$t, i64:$f, cond:$cond)),
          (CMOVSrr (fcond2cc $cond), (FCMPSrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f64:$l, f64:$r, i64:$t, i64:$f, cond:$cond)),
          (CMOVDrr (fcond2cc $cond), (FCMPDrr $l, $r), $t, $f)>;

// selectcc for i32 result
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPSWSXrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPUWrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPSLrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPULrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc f32:$l, f32:$r, i32:$t, i32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVSrr (fcond2cc $cond),
                       (FCMPSrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;
def : Pat<(i32 (selectcc f64:$l, f64:$r, i32:$t, i32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVDrr (fcond2cc $cond),
                       (FCMPDrr $l, $r),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;

// selectcc for f64 result
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCSIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCUIOp:$cond)),
          (CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCSIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCUIOp:$cond)),
          (CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f32:$l, f32:$r, f64:$t, f64:$f, cond:$cond)),
          (CMOVSrr (fcond2cc $cond), (FCMPSrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f64:$l, f64:$r, f64:$t, f64:$f, cond:$cond)),
          (CMOVDrr (fcond2cc $cond), (FCMPDrr $l, $r), $t, $f)>;

// selectcc for f32 result
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPSWSXrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVWrr (icond2cc $cond),
                       (CMPUWrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCSIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPSLrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCUIOp:$cond)),
          (EXTRACT_SUBREG
              (CMOVLrr (icond2cc $cond),
                       (CMPULrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc f32:$l, f32:$r, f32:$t, f32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVSrr (fcond2cc $cond),
                       (FCMPSrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;
def : Pat<(f32 (selectcc f64:$l, f64:$r, f32:$t, f32:$f, cond:$cond)),
          (EXTRACT_SUBREG
              (CMOVDrr (fcond2cc $cond),
                       (FCMPDrr $l, $r),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
              sub_f32)>;

// Generic SELECT pattern matches
// Use cmov.w for all cases since %pred holds i32.
//
//   CMOV.w.ne %res, %tval, %tmp  ; set tval if %tmp is true

def : Pat<(i64 (select i32:$pred, i64:$t, i64:$f)),
          (CMOVWrr CC_INE, $pred, $t, $f)>;

def : Pat<(i32 (select i32:$pred, i32:$t, i32:$f)),
          (EXTRACT_SUBREG
              (CMOVWrr CC_INE, $pred,
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
                       (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
              sub_i32)>;

def : Pat<(f64 (select i32:$pred, f64:$t, f64:$f)),
          (CMOVWrr CC_INE, $pred, $t, $f)>;

def : Pat<(f32 (select i32:$pred, f32:$t, f32:$f)),
          (EXTRACT_SUBREG
            (CMOVWrr CC_INE, $pred,
                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32),
                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)),
            sub_f32)>;

// bitconvert
def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>;
def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>;

def : Pat<(i32 (bitconvert f32:$op)),
          (EXTRACT_SUBREG (SRALri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $op, sub_f32), 32), sub_i32)>;
def : Pat<(f32 (bitconvert i32:$op)),
          (EXTRACT_SUBREG (SLLri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
            $op, sub_i32), 32), sub_f32)>;

// Bits operations pattern matchings.
def : Pat<(i32 (ctpop i32:$src)),
          (EXTRACT_SUBREG (PCNTr (ANDrm (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)), $src, sub_i32), !add(32, 64))), sub_i32)>;
def : Pat<(i32 (ctlz i32:$src)),
          (EXTRACT_SUBREG (LDZr (SLLri (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)), $src, sub_i32), 32)), sub_i32)>;
def : Pat<(i64 (bswap i64:$src)),
          (BSWPri $src, 0)>;
def : Pat<(i32 (bswap i32:$src)),
          (EXTRACT_SUBREG (BSWPri (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)), $src, sub_i32), 1), sub_i32)>;

// Several special pattern matches to optimize code

def : Pat<(i32 (and i32:$lhs, 0xff)),
          (AND32rm $lhs, !add(56, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffff)),
          (AND32rm $lhs, !add(48, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffffffff)),
          (AND32rm $lhs, !add(32, 64))>;