VEInstrInfo.td
80.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
//===-- VEInstrInfo.td - Target Description for VE Target -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the VE instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "VEInstrFormats.td"
//===----------------------------------------------------------------------===//
// Helper functions to retrieve target constants.
//
// VE instructions have a space to hold following immediates
// $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp.
// $sz also has 7 bits to represent mimm or mimmfp.
// $disp has 32 bits to represent simm32.
//
// The mimm is a special immediate value of sequential bit stream of 0 or 1.
// `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11,
// where `m` is equal to the number of leading zeros.
// `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00,
// where `m` is equal to the number of leading ones.
// Each bit of mimm's 7 bits is used like below:
// bit 6 : If `(m)0`, this bit is 1. Otherwise, this bit is 0.
// bit 5-0: Represents the m (0-63).
// Use `!add(m, 64)` to generates an immediate value in pattern matchings.
//
// The floating point immediate value is not something like compacted value.
// It is simple integer representation, so it works rarely.
// e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1).
//===----------------------------------------------------------------------===//
def ULO7 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0x7f,
SDLoc(N), MVT::i32);
}]>;
def LO7 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7),
SDLoc(N), MVT::i32);
}]>;
def MIMM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(convMImmVal(getImmVal(N)),
SDLoc(N), MVT::i32);
}]>;
def LO32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()),
SDLoc(N), MVT::i32);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()),
SDLoc(N), MVT::i32);
}]>;
def LO7FP : SDNodeXForm<fpimm, [{
uint64_t Val = getFpImmVal(N);
return CurDAG->getTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32);
}]>;
def MIMMFP : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(convMImmVal(getFpImmVal(N)),
SDLoc(N), MVT::i32);
}]>;
def LOFP32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff),
SDLoc(N), MVT::i32);
}]>;
def HIFP32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32);
}]>;
def icond2cc : SDNodeXForm<cond, [{
VECC::CondCode VECC = intCondCode2Icc(N->get());
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def icond2ccSwap : SDNodeXForm<cond, [{
ISD::CondCode CC = getSetCCSwappedOperands(N->get());
VECC::CondCode VECC = intCondCode2Icc(CC);
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def fcond2cc : SDNodeXForm<cond, [{
VECC::CondCode VECC = fpCondCode2Fcc(N->get());
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def fcond2ccSwap : SDNodeXForm<cond, [{
ISD::CondCode CC = getSetCCSwappedOperands(N->get());
VECC::CondCode VECC = fpCondCode2Fcc(CC);
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def CCOP : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(),
SDLoc(N), MVT::i32);
}]>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
// zero
def ZeroAsmOperand : AsmOperandClass {
let Name = "Zero";
}
def zero : Operand<i32>, PatLeaf<(imm), [{
return N->getSExtValue() == 0; }]> {
let ParserMatchClass = ZeroAsmOperand;
}
// uimm0to2 - Special immediate value represents 0, 1, and 2.
def UImm0to2AsmOperand : AsmOperandClass {
let Name = "UImm0to2";
}
def uimm0to2 : Operand<i32>, PatLeaf<(imm), [{
return N->getZExtValue() < 3; }], ULO7> {
let ParserMatchClass = UImm0to2AsmOperand;
}
// uimm1 - Generic immediate value.
def UImm1AsmOperand : AsmOperandClass {
let Name = "UImm1";
}
def uimm1 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<1>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm1AsmOperand;
}
// uimm2 - Generic immediate value.
def UImm2AsmOperand : AsmOperandClass {
let Name = "UImm2";
}
def uimm2 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<2>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm2AsmOperand;
}
// uimm3 - Generic immediate value.
def UImm3AsmOperand : AsmOperandClass {
let Name = "UImm3";
}
def uimm3 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<3>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm3AsmOperand;
}
// uimm6 - Generic immediate value.
def UImm6AsmOperand : AsmOperandClass {
let Name = "UImm6";
}
def uimm6 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<6>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm6AsmOperand;
}
// uimm7 - Generic immediate value.
def UImm7AsmOperand : AsmOperandClass {
let Name = "UImm7";
}
def uimm7 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<7>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm7AsmOperand;
}
// simm7 - Generic immediate value.
def SImm7AsmOperand : AsmOperandClass {
let Name = "SImm7";
}
def simm7 : Operand<i32>, PatLeaf<(imm), [{
return isInt<7>(N->getSExtValue()); }], LO7> {
let ParserMatchClass = SImm7AsmOperand;
let DecoderMethod = "DecodeSIMM7";
}
// mimm - Special immediate value of sequential bit stream of 0 or 1.
def MImmAsmOperand : AsmOperandClass {
let Name = "MImm";
let ParserMethod = "parseMImmOperand";
}
def mimm : Operand<i32>, PatLeaf<(imm), [{
return isMImmVal(getImmVal(N)); }], MIMM> {
let ParserMatchClass = MImmAsmOperand;
let PrintMethod = "printMImmOperand";
}
// simm7fp - Generic fp immediate value.
def simm7fp : Operand<i32>, PatLeaf<(fpimm), [{
return isInt<7>(getFpImmVal(N));
}], LO7FP> {
let ParserMatchClass = SImm7AsmOperand;
let DecoderMethod = "DecodeSIMM7";
}
// mimmfp - Special fp immediate value of sequential bit stream of 0 or 1.
def mimmfp : Operand<i32>, PatLeaf<(fpimm), [{
return isMImmVal(getFpImmVal(N)); }], MIMMFP> {
let ParserMatchClass = MImmAsmOperand;
let PrintMethod = "printMImmOperand";
}
// mimmfp32 - 32 bit width mimmfp
// Float value places at higher bits, so ignore lower 32 bits.
def mimmfp32 : Operand<i32>, PatLeaf<(fpimm), [{
return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> {
let ParserMatchClass = MImmAsmOperand;
let PrintMethod = "printMImmOperand";
}
// other generic patterns to use in pattern matchings
def simm32 : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>;
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def lomsbzero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000)
== 0; }]>;
def lozero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff)
== 0; }]>;
def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000)
== 0; }]>;
def fplozero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff)
== 0; }]>;
def CCSIOp : PatLeaf<(cond), [{
switch (N->get()) {
default: return true;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return false;
}
}]>;
def CCUIOp : PatLeaf<(cond), [{
switch (N->get()) {
default: return true;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return false;
}
}]>;
//===----------------------------------------------------------------------===//
// Addressing modes.
// SX-Aurora has following fields.
// sz: register or 0
// sy: register or immediate (-64 to 63)
// disp: immediate (-2147483648 to 2147483647)
//
// There are two kinds of instruction.
// ASX format uses sz + sy + disp.
// AS format uses sz + disp.
//
// Moreover, there are four kinds of assembly instruction format.
// ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)",
// "(, sz)", "(sy)", or "(sy, sz)".
// AS format uses "disp", "disp(, sz)", or "(, sz)" in general.
// AS format in RRM format uses "disp", "disp(sz)", or "(sz)".
// AS format in RRM format for host memory access uses "sz", "(sz)",
// or "disp(sz)".
//
// We defined them below.
//
// ASX format:
// MEMrri, MEMrii, MEMzri, MEMzii
// AS format:
// MEMriASX, MEMziASX : simple AS format
// MEMriRRM, MEMziRRM : AS format in RRM format
// MEMriHM, MEMziHM : AS format in RRM format for host memory access
//===----------------------------------------------------------------------===//
// DAG selections for both ASX and AS formats.
def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>;
def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>;
def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>;
def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>;
def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>;
def ADDRzi : ComplexPattern<iPTR, 2, "selectADDRzi", [], []>;
// ASX format.
def VEMEMrriAsmOperand : AsmOperandClass {
let Name = "MEMrri";
let ParserMethod = "parseMEMOperand";
}
def VEMEMriiAsmOperand : AsmOperandClass {
let Name = "MEMrii";
let ParserMethod = "parseMEMOperand";
}
def VEMEMzriAsmOperand : AsmOperandClass {
let Name = "MEMzri";
let ParserMethod = "parseMEMOperand";
}
def VEMEMziiAsmOperand : AsmOperandClass {
let Name = "MEMzii";
let ParserMethod = "parseMEMOperand";
}
// ASX format uses single assembly instruction format.
def MEMrri : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops ptr_rc, ptr_rc, i32imm);
let ParserMatchClass = VEMEMrriAsmOperand;
}
def MEMrii : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops ptr_rc, i32imm, i32imm);
let ParserMatchClass = VEMEMriiAsmOperand;
}
def MEMzri : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i32imm);
let ParserMatchClass = VEMEMzriAsmOperand;
}
def MEMzii : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i32imm);
let ParserMatchClass = VEMEMziiAsmOperand;
}
// AS format.
def VEMEMriAsmOperand : AsmOperandClass {
let Name = "MEMri";
let ParserMethod = "parseMEMAsOperand";
}
def VEMEMziAsmOperand : AsmOperandClass {
let Name = "MEMzi";
let ParserMethod = "parseMEMAsOperand";
}
// AS format uses multiple assembly instruction formats
// 1. AS generic assembly instruction format:
def MEMriASX : Operand<iPTR> {
let PrintMethod = "printMemASOperandASX";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziASX : Operand<iPTR> {
let PrintMethod = "printMemASOperandASX";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
let ParserMatchClass = VEMEMziAsmOperand;
}
// 2. AS RRM style assembly instruction format:
def MEMriRRM : Operand<iPTR> {
let PrintMethod = "printMemASOperandRRM";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziRRM : Operand<iPTR> {
let PrintMethod = "printMemASOperandRRM";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
let ParserMatchClass = VEMEMziAsmOperand;
}
// 3. AS HM style assembly instruction format:
def MEMriHM : Operand<iPTR> {
let PrintMethod = "printMemASOperandHM";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziHM : Operand<iPTR> {
let PrintMethod = "printMemASOperandHM";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
let ParserMatchClass = VEMEMziAsmOperand;
}
//===----------------------------------------------------------------------===//
// Other operands.
//===----------------------------------------------------------------------===//
// Branch targets have OtherVT type.
def brtarget32 : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let DecoderMethod = "DecodeSIMM32";
}
// Operand for printing out a condition code.
def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; }
def CCOp : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 22; }], CCOP> {
let PrintMethod = "printCCOperand";
let DecoderMethod = "DecodeCCOperand";
let EncoderMethod = "getCCOpValue";
let ParserMatchClass = CCOpAsmOperand;
}
// Operand for a rounding mode code.
def RDOpAsmOperand : AsmOperandClass {
let Name = "RDOp";
}
def RDOp : Operand<i32> {
let PrintMethod = "printRDOperand";
let DecoderMethod = "DecodeRDOperand";
let EncoderMethod = "getRDOpValue";
let ParserMatchClass = RDOpAsmOperand;
}
def VEhi : SDNode<"VEISD::Hi", SDTIntUnaryOp>;
def VElo : SDNode<"VEISD::Lo", SDTIntUnaryOp>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>;
def call : SDNode<"VEISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def retflag : SDNode<"VEISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def getGOT : Operand<iPTR>;
// GETFUNPLT for PIC
def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>;
// GETTLSADDR for TLS
def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
// GETSTACKTOP
def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
//===----------------------------------------------------------------------===//
// VE Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class CC_VAL<int N> : PatLeaf<(i32 N)>;
def CC_IG : CC_VAL< 0>; // Greater
def CC_IL : CC_VAL< 1>; // Less
def CC_INE : CC_VAL< 2>; // Not Equal
def CC_IEQ : CC_VAL< 3>; // Equal
def CC_IGE : CC_VAL< 4>; // Greater or Equal
def CC_ILE : CC_VAL< 5>; // Less or Equal
def CC_AF : CC_VAL< 6>; // Always false
def CC_G : CC_VAL< 7>; // Greater
def CC_L : CC_VAL< 8>; // Less
def CC_NE : CC_VAL< 9>; // Not Equal
def CC_EQ : CC_VAL<10>; // Equal
def CC_GE : CC_VAL<11>; // Greater or Equal
def CC_LE : CC_VAL<12>; // Less or Equal
def CC_NUM : CC_VAL<13>; // Number
def CC_NAN : CC_VAL<14>; // NaN
def CC_GNAN : CC_VAL<15>; // Greater or NaN
def CC_LNAN : CC_VAL<16>; // Less or NaN
def CC_NENAN : CC_VAL<17>; // Not Equal or NaN
def CC_EQNAN : CC_VAL<18>; // Equal or NaN
def CC_GENAN : CC_VAL<19>; // Greater or Equal or NaN
def CC_LENAN : CC_VAL<20>; // Less or Equal or NaN
def CC_AT : CC_VAL<21>; // Always true
//===----------------------------------------------------------------------===//
// VE Rounding Mode
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the VERD::RoundingMode enum
// values.
class RD_VAL<int N> : PatLeaf<(i32 N)>;
def RD_NONE : RD_VAL< 0>; // According to PSW
def RD_RZ : RD_VAL< 8>; // Round toward Zero
def RD_RP : RD_VAL< 9>; // Round toward Plus infinity
def RD_RM : RD_VAL<10>; // Round toward Minus infinity
def RD_RN : RD_VAL<11>; // Round to Nearest (ties to Even)
def RD_RA : RD_VAL<12>; // Round to Nearest (ties to Away)
//===----------------------------------------------------------------------===//
// VE Multiclasses for common instruction formats
//===----------------------------------------------------------------------===//
// Multiclass for generic RR type instructions
let hasSideEffects = 0 in
multiclass RRbm<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
// VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
// in RHS, so we use following definition.
let cy = 0 in
def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi immOp:$sy)))]>;
let cz = 0 in
def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}
// Multiclass for non-commutative RR type instructions
let hasSideEffects = 0 in
multiclass RRNCbm<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
let cy = 0 in
def ir : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), Tyi:$sz))]>;
let cz = 0 in
def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}
// Generic RR multiclass with 2 arguments.
// e.g. ADDUL, ADDSWSX, ADDSWZX, and etc.
multiclass RRm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> :
RRbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
// Generic RR multiclass for non-commutative instructions with 2 arguments.
// e.g. SUBUL, SUBUW, SUBSWSX, and etc.
multiclass RRNCm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> :
RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
// Generic RR multiclass for floating point instructions with 2 arguments.
// e.g. FADDD, FADDS, FSUBD, and etc.
multiclass RRFm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7fp, Operand mOp = mimmfp> :
RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
// Generic RR multiclass for shift instructions with 2 arguments.
// e.g. SLL, SRL, SLAWSX, and etc.
let hasSideEffects = 0 in
multiclass RRIm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]>;
let cz = 0 in
def mr : RR<opc, (outs RC:$sx), (ins mimm:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), i32:$sy))]>;
let cy = 0 in
def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm7:$sy)))]>;
let cy = 0, cz = 0 in
def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm7:$sy)))]>;
}
// Special RR multiclass for 128 bits shift left instruction.
// e.g. SLD
let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in
multiclass RRILDm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rrr : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def rmr : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def rri : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def rmi : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Special RR multiclass for 128 bits shift right instruction.
// e.g. SRD
let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in
multiclass RRIRDm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rrr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def mrr : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def rri : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def mri : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Generic RR multiclass with an argument.
// e.g. LDZ, PCNT, and BRV
let cy = 0, sy = 0, hasSideEffects = 0 in
multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"),
[(set Ty:$sx, (OpNode Ty:$sz))]>;
let cz = 0 in
def m : RR<opc, (outs RC:$sx), (ins mimm:$sz),
!strconcat(opcStr, " $sx, $sz"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>;
}
// Special RR multiclass for MRG instruction.
// e.g. MRG
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in
multiclass RRMRGm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in
def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cz = 0 in
def rm : RR<opc, (outs RC:$sx), (ins RC:$sy, mimm:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs RC:$sx), (ins simm7:$sy, mimm:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Special RR multiclass for BSWP instruction.
// e.g. BSWP
let hasSideEffects = 0 in
multiclass RRSWPm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
let cy = 0 in
def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>;
let cy = 0, cz = 0 in
def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>;
}
// Multiclass for CMOV instructions.
// e.g. CMOVL, CMOVW, CMOVD, and etc.
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0,
cfw = ? in
multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def ir : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, simm7:$sy, I64:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def rm : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, simm7:$sy, mimm:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Multiclass for floating point conversion instructions.
// e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc.
// sz{3-0} = rounding mode
let cz = 0, hasSideEffects = 0 in
multiclass CVTRDm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi> {
def r : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, RCi:$sy),
!strconcat(opcStr, "${rd} $sx, $sy")> {
bits<4> rd;
let sz{5-4} = 0;
let sz{3-0} = rd;
}
let cy = 0 in
def i : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, simm7:$sy),
!strconcat(opcStr, "${rd} $sx, $sy")> {
bits<4> rd;
let sz{5-4} = 0;
let sz{3-0} = rd;
}
}
// Multiclass for floating point conversion instructions.
// e.g. CVTDW, CVTSW, CVTDL, and etc.
let cz = 0, sz = 0, hasSideEffects = 0 in
multiclass CVTm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode = null_frag> {
def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy),
!strconcat(opcStr, " $sx, $sy"),
[(set Tyo:$sx, (OpNode Tyi:$sy))]>;
let cy = 0 in
def i : RR<opc, (outs RCo:$sx), (ins simm7:$sy),
!strconcat(opcStr, " $sx, $sy")>;
}
// Multiclass for PFCH instructions.
// e.g. PFCH
let sx = 0, hasSideEffects = 0 in
multiclass PFCHm<string opcStr, bits<8>opc> {
def rri : RM<opc, (outs), (ins MEMrri:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRrri:$addr, imm, imm, (i32 1))]>;
let cy = 0 in
def rii : RM<opc, (outs), (ins MEMrii:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRrii:$addr, imm, imm, (i32 1))]>;
let cz = 0 in
def zri : RM<opc, (outs), (ins MEMzri:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRzri:$addr, imm, imm, (i32 1))]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs), (ins MEMzii:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRzii:$addr, imm, imm, (i32 1))]>;
}
// Multiclass for CAS instructions.
// e.g. TS1AML, TS1AMW, TS2AM, and etc.
let Constraints = "$dest = $sd", DisableEncoding = "$sd",
mayStore=1, mayLoad = 1, hasSideEffects = 0 in
multiclass RRCAStgm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
Operand immOp, Operand MEM, Operand ADDR,
SDPatternOperator OpNode = null_frag> {
def r : RRM<opc, (outs RC:$dest), (ins MEM:$addr, RC:$sy, RC:$sd),
!strconcat(opcStr, " $dest, $addr, $sy"),
[(set Ty:$dest, (OpNode ADDR:$addr, Ty:$sy, Ty:$sd))]>;
let cy = 0 in
def i : RRM<opc, (outs RC:$dest), (ins MEM:$addr, immOp:$sy, RC:$sd),
!strconcat(opcStr, " $dest, $addr, $sy"),
[(set Ty:$dest, (OpNode ADDR:$addr, (Ty immOp:$sy), Ty:$sd))]>;
}
multiclass RRCASm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
Operand immOp, SDPatternOperator OpNode = null_frag> {
defm ri : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMriRRM, ADDRri, OpNode>;
let cz = 0 in
defm zi : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMziRRM, ADDRzi, OpNode>;
}
// Multiclass for branch instructions
// e.g. BCFL, BCFW, BCFD, and etc.
let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in
multiclass BCbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond,
Operand ADDR> {
let bpf = 0 /* NONE */ in
def "" : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
!strconcat(opcStr, " ", cmpStr, "$addr")>;
let bpf = 2 /* NOT TaKEN */ in
def _nt : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
!strconcat(opcStr, ".nt ", cmpStr, "$addr")>;
let bpf = 3 /* TaKEN */ in
def _t : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
!strconcat(opcStr, ".t ", cmpStr, "$addr")>;
}
multiclass BCtgm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
defm ri : BCbpfm<opcStr, cmpStr, opc, cond, MEMriASX>;
let cz = 0 in defm zi : BCbpfm<opcStr, cmpStr, opc, cond, MEMziASX>;
}
multiclass BCm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
RegisterClass RC, Operand immOp> {
let DecoderMethod = "DecodeBranchCondition" in
defm r : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, RC:$comp)>;
let DecoderMethod = "DecodeBranchCondition", cy = 0 in
defm i : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, immOp:$comp)>;
let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
cf = 15 /* AT */, isBarrier = 1 in
defm a : BCtgm<opcStrAt, "", opc, (ins)>;
let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
cf = 0 /* AF */ in
defm na : BCtgm<opcStrAf, "", opc, (ins)>;
}
// Multiclass for relative branch instructions
// e.g. BRCFL, BRCFW, BRCFD, and etc.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in
multiclass BCRbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
let bpf = 0 /* NONE */ in
def "" : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
!strconcat(opcStr, " ", cmpStr, "$imm32")>;
let bpf = 2 /* NOT TaKEN */ in
def _nt : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
!strconcat(opcStr, ".nt ", cmpStr, "$imm32")>;
let bpf = 3 /* TaKEN */ in
def _t : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
!strconcat(opcStr, ".t ", cmpStr, "$imm32")>;
}
multiclass BCRm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
RegisterClass RC, Operand immOp> {
defm rr : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, RC:$sy, RC:$sz)>;
let cy = 0 in
defm ir : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, immOp:$sy, RC:$sz)>;
let cy = 0, sy = 0, cz = 0, sz = 0, cf = 15 /* AT */, isBarrier = 1 in
defm a : BCRbpfm<opcStrAt, "", opc, (ins)>;
let cy = 0, sy = 0, cz = 0, sz = 0, cf = 0 /* AF */ in
defm na : BCRbpfm<opcStrAf, "", opc, (ins)>;
}
// Multiclass for communication register instructions.
// e.g. LCR
let hasSideEffects = 1 in
multiclass LOADCRm<string opcStr, bits<8>opc, RegisterClass RC> {
def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, simm7:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cz = 0 in def zr : RR<opc, (outs RC:$sx), (ins zero:$sz, RC:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0, cz = 0 in
def zi : RR<opc, (outs RC:$sx), (ins zero:$sz, simm7:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Multiclass for communication register instructions.
// e.g. SCR
let hasSideEffects = 1 in
multiclass STORECRm<string opcStr, bits<8>opc, RegisterClass RC> {
def rr : RR<opc, (outs), (ins RC:$sz, RC:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in def ri : RR<opc, (outs), (ins RC:$sz, simm7:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cz = 0 in def zr : RR<opc, (outs), (ins zero:$sz, RC:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0, cz = 0 in
def zi : RR<opc, (outs), (ins zero:$sz, simm7:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Multiclass for communication register instructions.
// e.g. FIDCR
let cz = 0, hasSideEffects = 1 in
multiclass FIDCRm<string opcStr, bits<8>opc, RegisterClass RC> {
def ri : RR<opc, (outs RC:$sx), (ins RC:$sy, uimm3:$sz),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in def ii : RR<opc, (outs RC:$sx), (ins simm7:$sy, uimm3:$sz),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Multiclass for LHM instruction.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LHMm<string opcStr, bits<8> opc, RegisterClass RC> {
def ri : RRMHM<opc, (outs RC:$dest), (ins MEMriHM:$addr),
!strconcat(opcStr, " $dest, $addr")>;
let cz = 0 in
def zi : RRMHM<opc, (outs RC:$dest), (ins MEMziHM:$addr),
!strconcat(opcStr, " $dest, $addr")>;
}
// Multiclass for SHM instruction.
let mayStore = 1, hasSideEffects = 0 in
multiclass SHMm<string opcStr, bits<8> opc, RegisterClass RC> {
def ri : RRMHM<opc, (outs), (ins MEMriHM:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr")>;
let cz = 0 in
def zi : RRMHM<opc, (outs), (ins MEMziHM:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr")>;
}
//===----------------------------------------------------------------------===//
// Instructions
//
// Define all scalar instructions defined in SX-Aurora TSUBASA Architecture
// Guide here. As those mnemonics, we use mnemonics defined in Vector Engine
// Assembly Language Reference Manual.
//===----------------------------------------------------------------------===//
//-----------------------------------------------------------------------------
// Section 8.2 - Load/Store instructions
//-----------------------------------------------------------------------------
// Multiclass for generic RM instructions
multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC> {
def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cy = 0 in
def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cz = 0 in
def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
}
// Section 8.2.1 - LEA
let cx = 0, DecoderMethod = "DecodeLoadI64" in
defm LEA : RMm<"lea", 0x06, I64>;
let cx = 1, DecoderMethod = "DecodeLoadI64" in
defm LEASL : RMm<"lea.sl", 0x06, I64>;
let cx = 0, DecoderMethod = "DecodeLoadI32", isCodeGenOnly = 1 in
defm LEA32 : RMm<"lea", 0x06, I32>;
def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>;
def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>;
def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>;
def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>;
def : Pat<(add I32:$base, simm32:$disp),
(LEA32rii (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $base, sub_i32), 0,
(LO32 $disp))>;
def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp),
[(add (add node:$base, node:$idx), node:$disp),
(add (add node:$base, node:$disp), node:$idx)]>;
def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp),
(LEArii $base, (LO7 $idx), (LO32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp),
(LEArri $base, $idx, (LO32 $disp))>;
def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp),
(LEASLrii $base, (LO7 $idx), (HI32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp),
(LEASLrri $base, $idx, (HI32 $disp))>;
// Multiclass for load instructions.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRrri:$addr))]>;
let cy = 0 in
def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRrii:$addr))]>;
let cz = 0 in
def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRzri:$addr))]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRzii:$addr))]>;
}
// Section 8.2.2 - LDS
let DecoderMethod = "DecodeLoadI64" in
defm LD : LOADm<"ld", 0x01, I64, i64, load>;
def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>;
def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>;
def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>;
def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>;
// Section 8.2.3 - LDU
let DecoderMethod = "DecodeLoadF32" in
defm LDU : LOADm<"ldu", 0x02, F32, f32, load>;
// Section 8.2.4 - LDL
let DecoderMethod = "DecodeLoadI32" in
defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>;
// Section 8.2.5 - LD2B
let DecoderMethod = "DecodeLoadI32" in
defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>;
// Section 8.2.6 - LD1B
let DecoderMethod = "DecodeLoadI32" in
defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>;
// Multiclass for store instructions.
let mayStore = 1 in
multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rri : RM<opc, (outs), (ins MEMrri:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRrri:$addr)]>;
let cy = 0 in
def rii : RM<opc, (outs), (ins MEMrii:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRrii:$addr)]>;
let cz = 0 in
def zri : RM<opc, (outs), (ins MEMzri:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRzri:$addr)]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs), (ins MEMzii:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRzii:$addr)]>;
}
// Section 8.2.7 - STS
let DecoderMethod = "DecodeStoreI64" in
defm ST : STOREm<"st", 0x11, I64, i64, store>;
def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>;
// Section 8.2.8 - STU
let DecoderMethod = "DecodeStoreF32" in
defm STU : STOREm<"stu", 0x12, F32, f32, store>;
// Section 8.2.9 - STL
let DecoderMethod = "DecodeStoreI32" in
defm STL : STOREm<"stl", 0x13, I32, i32, store>;
// Section 8.2.10 - ST2B
let DecoderMethod = "DecodeStoreI32" in
defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>;
// Section 8.2.11 - ST1B
let DecoderMethod = "DecodeStoreI32" in
defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>;
// Section 8.2.12 - DLDS
let DecoderMethod = "DecodeLoadI64" in
defm DLD : LOADm<"dld", 0x09, I64, i64, load>;
// Section 8.2.13 - DLDU
let DecoderMethod = "DecodeLoadF32" in
defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>;
// Section 8.2.14 - DLDL
let DecoderMethod = "DecodeLoadI32" in
defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>;
// Section 8.2.15 - PFCH
let DecoderMethod = "DecodeASX" in
defm PFCH : PFCHm<"pfch", 0x0c>;
// Section 8.2.16 - TS1AM (Test and Set 1 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>;
let DecoderMethod = "DecodeTS1AMI32", cx = 1 in
defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>;
// Section 8.2.17 - TS2AM (Test and Set 2 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>;
// Section 8.2.18 - TS3AM (Test and Set 3 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>;
// Section 8.2.19 - ATMAM (Atomic AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>;
// Section 8.2.20 - CAS (Compare and Swap)
let DecoderMethod = "DecodeCASI64" in
defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7>;
let DecoderMethod = "DecodeCASI32", cx = 1 in
defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7>;
//-----------------------------------------------------------------------------
// Section 8.3 - Transfer Control Instructions
//-----------------------------------------------------------------------------
// Section 8.3.1 - FENCE (Fence)
let hasSideEffects = 1 in {
let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">;
def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> {
bits<2> kind;
let lf = kind{1};
let sf = kind{0};
}
def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> {
bits<3> kind;
let c2 = kind{2};
let c1 = kind{1};
let c0 = kind{0};
}
}
// Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in
def SVOB : RR<0x30, (outs), (ins), "svob">;
//-----------------------------------------------------------------------------
// Section 8.4 - Fixed-point Operation Instructions
//-----------------------------------------------------------------------------
// Section 8.4.1 - ADD (Add)
defm ADDUL : RRm<"addu.l", 0x48, I64, i64>;
let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>;
// Section 8.4.2 - ADS (Add Single)
defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>;
let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>;
// Section 8.4.3 - ADX (Add)
defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>;
// Section 8.4.4 - SUB (Subtract)
defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>;
let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>;
// Section 8.4.5 - SBS (Subtract Single)
defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>;
let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>;
// Section 8.4.6 - SBX (Subtract)
defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>;
// Section 8.4.7 - MPY (Multiply)
defm MULUL : RRm<"mulu.l", 0x49, I64, i64>;
let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>;
// Section 8.4.8 - MPS (Multiply Single)
defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>;
let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>;
// Section 8.4.9 - MPX (Multiply)
defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>;
// Section 8.4.10 - MPD (Multiply)
defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>;
// Section 8.4.11 - DIV (Divide)
defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>;
let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>;
// Section 8.4.12 - DVS (Divide Single)
defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>;
let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>;
// Section 8.4.13 - DVX (Divide)
defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>;
// Section 8.4.14 - CMP (Compare)
defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64>;
let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32>;
// Section 8.4.15 - CPS (Compare Single)
defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>;
let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32>;
// Section 8.4.16 - CPX (Compare)
defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64>;
// Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single)
// cx: sx/zx, cw: max/min
defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32>;
let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>;
let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32>;
let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>;
// Section 8.4.18 - CMX (Compare and Select Maximum/Minimum)
defm MAXSL : RRm<"maxs.l", 0x68, I64, i64>;
let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64>;
//-----------------------------------------------------------------------------
// Section 8.5 - Logical Operation Instructions
//-----------------------------------------------------------------------------
// Section 8.5.1 - AND (AND)
defm AND : RRm<"and", 0x44, I64, i64, and>;
let isCodeGenOnly = 1 in defm AND32 : RRm<"and", 0x44, I32, i32, and>;
// Section 8.5.2 - OR (OR)
defm OR : RRm<"or", 0x45, I64, i64, or>;
let isCodeGenOnly = 1 in defm OR32 : RRm<"or", 0x45, I32, i32, or>;
// Section 8.5.3 - XOR (Exclusive OR)
defm XOR : RRm<"xor", 0x46, I64, i64, xor>;
let isCodeGenOnly = 1 in defm XOR32 : RRm<"xor", 0x46, I32, i32, xor>;
// Section 8.5.4 - EQV (Equivalence)
defm EQV : RRm<"eqv", 0x47, I64, i64>;
// Section 8.5.5 - NND (Negate AND)
def and_not : PatFrags<(ops node:$x, node:$y),
[(and (not node:$x), node:$y)]>;
defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>;
// Section 8.5.6 - MRG (Merge)
defm MRG : RRMRGm<"mrg", 0x56, I64, i64>;
// Section 8.5.7 - LDZ (Leading Zero Count)
defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz>;
// Section 8.5.8 - PCNT (Population Count)
defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>;
// Section 8.5.9 - BRV (Bit Reverse)
defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>;
// Section 8.5.10 - BSWP (Byte Swap)
defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>;
// Section 8.5.11 - CMOV (Conditional Move)
let cw = 0, cw2 = 0 in defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64>;
let cw = 1, cw2 = 0 in defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32>;
let cw = 0, cw2 = 1 in defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64>;
let cw = 1, cw2 = 1 in defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32>;
def : MnemonicAlias<"cmov.l", "cmov.l.at">;
def : MnemonicAlias<"cmov.w", "cmov.w.at">;
def : MnemonicAlias<"cmov.d", "cmov.d.at">;
def : MnemonicAlias<"cmov.s", "cmov.s.at">;
//-----------------------------------------------------------------------------
// Section 8.6 - Shift Operation Instructions
//-----------------------------------------------------------------------------
// Section 8.6.1 - SLL (Shift Left Logical)
defm SLL : RRIm<"sll", 0x65, I64, i64, shl>;
// Section 8.6.2 - SLD (Shift Left Double)
defm SLD : RRILDm<"sld", 0x64, I64, i64>;
// Section 8.6.3 - SRL (Shift Right Logical)
defm SRL : RRIm<"srl", 0x75, I64, i64, srl>;
// Section 8.6.4 - SRD (Shift Right Double)
defm SRD : RRIRDm<"srd", 0x74, I64, i64>;
// Section 8.6.5 - SLA (Shift Left Arithmetic)
defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>;
let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>;
// Section 8.6.6 - SLAX (Shift Left Arithmetic)
defm SLAL : RRIm<"sla.l", 0x57, I64, i64>;
// Section 8.6.7 - SRA (Shift Right Arithmetic)
defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>;
let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>;
// Section 8.6.8 - SRAX (Shift Right Arithmetic)
defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>;
def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))),
(EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>;
def : Pat<(i32 (srl i32:$src, i32:$val)),
(EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$src, sub_i32), !add(32, 64)), $val), sub_i32)>;
//-----------------------------------------------------------------------------
// Section 8.7 - Floating-point Arithmetic Instructions
//-----------------------------------------------------------------------------
// Section 8.7.1 - FAD (Floating Add)
defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>;
let cx = 1 in
defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>;
// Section 8.7.2 - FSB (Floating Subtract)
defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>;
let cx = 1 in
defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>;
// Section 8.7.3 - FMP (Floating Multiply)
defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>;
let cx = 1 in
defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>;
// Section 8.7.4 - FDV (Floating Divide)
defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>;
let cx = 1 in
defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>;
// Section 8.7.5 - FCP (Floating Compare)
defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64>;
let cx = 1 in
defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, null_frag, simm7fp, mimmfp32>;
// Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single)
// cx: double/float, cw: max/min
let cw = 0, cx = 0 in
defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>;
let cw = 0, cx = 1 in
defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>;
let cw = 1, cx = 0 in
defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>;
let cw = 1, cx = 1 in
defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>;
// Section 8.7.7 - FAQ (Floating Add Quadruple)
defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128>;
// Section 8.7.8 - FSQ (Floating Subtract Quadruple)
defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128>;
// Section 8.7.9 - FMQ (Floating Subtract Quadruple)
defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128>;
// Section 8.7.10 - FCQ (Floating Compare Quadruple)
defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, null_frag, simm7fp,
mimmfp>;
// Section 8.7.11 - FIX (Convert to Fixed Point)
// cx: double/float, cw: sx/zx, sz{0-3} = round
let cx = 0, cw = 0 /* sign extend */ in
defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, i32, I64, f64>;
let cx = 0, cw = 1 /* zero extend */ in
defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, i32, I64, f64>;
let cx = 1, cw = 0 /* sign extend */ in
defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, i32, F32, f32>;
let cx = 1, cw = 1 /* zero extend */ in
defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, i32, F32, f32>;
// Section 8.7.12 - FIXX (Convert to Fixed Point)
defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, i64, I64, f64>;
// Section 8.7.13 - FLT (Convert to Floating Point)
defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>;
let cx = 1 in
defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>;
// Section 8.7.14 - FLTX (Convert to Floating Point)
defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>;
// Section 8.7.15 - CVS (Convert to Single-format)
defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>;
let cx = 1 in
defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128>;
// Section 8.7.16 - CVD (Convert to Double-format)
defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>;
let cx = 1 in
defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128>;
// Section 8.7.17 - CVQ (Convert to Single-format)
defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64>;
let cx = 1 in
defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32>;
//-----------------------------------------------------------------------------
// Section 8.8 - Branch instructions
//-----------------------------------------------------------------------------
// Section 8.8.1 - BC (Branch on Codition)
defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>;
// Indirect branch aliases
def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>;
def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>;
// Return instruction is a special case of jump.
let Uses = [SX10], bpf = 3 /* TAKEN */, cf = 15 /* AT */, cy = 0, sy = 0,
sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1,
isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retflag)]>;
// Section 8.8.2 - BCS (Branch on Condition Single)
defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>;
// Section 8.8.3 - BCF (Branch on Condition Floating Point)
defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>;
let cx = 1 in
defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>;
// Section 8.8.4 - BCR (Branch on Condition Relative)
let cx = 0, cx2 = 0 in
defm BRCFL : BCRm<"br${cf}.l", "br.l", "braf.l", 0x18, I64, simm7>;
let cx = 1, cx2 = 0 in
defm BRCFW : BCRm<"br${cf}.w", "br.w", "braf.w", 0x18, I32, simm7>;
let cx = 0, cx2 = 1 in
defm BRCFD : BCRm<"br${cf}.d", "br.d", "braf.d", 0x18, I64, simm7fp>;
let cx = 1, cx2 = 1 in
defm BRCFS : BCRm<"br${cf}.s", "br.s", "braf.s", 0x18, F32, simm7fp>;
// Section 8.8.5 - BSIC (Branch and Save IC)
let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in
defm BSIC : RMm<"bsic", 0x08, I64>;
// Call instruction is a special case of BSIC.
let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0,
isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops),
"bsic %s10, (, $sz)", [(call i64:$sz)]>;
//-----------------------------------------------------------------------------
// Section 8.19 - Control Instructions
//-----------------------------------------------------------------------------
// Section 8.19.1 - SIC (Save Instruction Counter)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in
def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">;
// Section 8.19.2 - LPM (Load Program Mode Flags)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in
def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">;
// Section 8.19.3 - SPM (Save Program Mode Flags)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">;
// Section 8.19.4 - LFR (Load Flag Register)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in {
def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">;
let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">;
}
// Section 8.19.5 - SFR (Save Flag Register)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">;
// Section 8.19.6 - SMIR (Save Miscellaneous Register)
let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">;
}
// Section 8.19.7 - NOP (No Operation)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in
def NOP : RR<0x79, (outs), (ins), "nop">;
// Section 8.19.8 - MONC (Monitor Call)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
def MONC : RR<0x3F, (outs), (ins), "monc">;
let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">;
}
// Section 8.19.9 - LCR (Load Communication Register)
defm LCR : LOADCRm<"lcr", 0x40, I64>;
// Section 8.19.10 - SCR (Save Communication Register)
defm SCR : STORECRm<"scr", 0x50, I64>;
// Section 8.19.11 - TSCR (Test & Set Communication Register)
defm TSCR : LOADCRm<"tscr", 0x41, I64>;
// Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR)
defm FIDCR : FIDCRm<"fidcr", 0x51, I64>;
//-----------------------------------------------------------------------------
// Section 8.20 - Host Memory Access Instructions
//-----------------------------------------------------------------------------
// Section 8.20.1 - LHM (Load Host Memory)
let ry = 3, DecoderMethod = "DecodeLoadASI64" in
defm LHML : LHMm<"lhm.l", 0x21, I64>;
let ry = 2, DecoderMethod = "DecodeLoadASI64" in
defm LHMW : LHMm<"lhm.w", 0x21, I64>;
let ry = 1, DecoderMethod = "DecodeLoadASI64" in
defm LHMH : LHMm<"lhm.h", 0x21, I64>;
let ry = 0, DecoderMethod = "DecodeLoadASI64" in
defm LHMB : LHMm<"lhm.b", 0x21, I64>;
// Section 8.20.2 - SHM (Store Host Memory)
let ry = 3, DecoderMethod = "DecodeStoreASI64" in
defm SHML : SHMm<"shm.l", 0x31, I64>;
let ry = 2, DecoderMethod = "DecodeStoreASI64" in
defm SHMW : SHMm<"shm.w", 0x31, I64>;
let ry = 1, DecoderMethod = "DecodeStoreASI64" in
defm SHMH : SHMm<"shm.h", 0x31, I64>;
let ry = 0, DecoderMethod = "DecodeStoreASI64" in
defm SHMB : SHMm<"shm.b", 0x31, I64>;
//===----------------------------------------------------------------------===//
// Instructions for CodeGenOnly
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Pattern Matchings
//===----------------------------------------------------------------------===//
// Small immediates.
def : Pat<(i32 simm7:$val), (OR32im (LO7 $val), 0)>;
def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>;
// Medium immediates.
def : Pat<(i32 simm32:$val), (LEA32zii 0, 0, (LO32 $val))>;
def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>;
def : Pat<(i64 uimm32:$val), (ANDrm (LEAzii 0, 0, (LO32 $val)), !add(32, 64))>;
// Arbitrary immediates.
def : Pat<(i64 lozero:$val),
(LEASLzii 0, 0, (HI32 imm:$val))>;
def : Pat<(i64 lomsbzero:$val),
(LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>;
def : Pat<(i64 imm:$val),
(LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0,
(HI32 imm:$val))>;
// floating point
def : Pat<(f32 fpimm:$val),
(EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>;
def : Pat<(f64 fplozero:$val),
(LEASLzii 0, 0, (HIFP32 $val))>;
def : Pat<(f64 fplomsbzero:$val),
(LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>;
def : Pat<(f64 fpimm:$val),
(LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0,
(HIFP32 $val))>;
// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are unused.
// TODO Use standard expansion for shift-based lowering of sext_inreg
// Cast to i1
def : Pat<(sext_inreg I32:$src, i1),
(SRAWSXri (SLAWSXri $src, 31), 31)>;
def : Pat<(sext_inreg I64:$src, i1),
(SRALri (SLLri $src, 63), 63)>;
// Cast to i8
def : Pat<(sext_inreg I32:$src, i8),
(SRAWSXri (SLAWSXri $src, 24), 24)>;
def : Pat<(sext_inreg I64:$src, i8),
(SRALri (SLLri $src, 56), 56)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8),
(EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xff),
(AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(56, 64))>;
// Cast to i16
def : Pat<(sext_inreg I32:$src, i16),
(SRAWSXri (SLAWSXri $src, 16), 16)>;
def : Pat<(sext_inreg I64:$src, i16),
(SRALri (SLLri $src, 48), 48)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16),
(EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>;
def : Pat<(and (trunc i64:$src), 0xffff),
(AND32rm (EXTRACT_SUBREG $src, sub_i32), !add(48, 64))>;
// Cast to i32
def : Pat<(i32 (trunc i64:$src)),
(ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0)>;
def : Pat<(i32 (fp_to_sint I64:$reg)), (CVTWDSXr RD_RZ, $reg)>;
def : Pat<(i32 (fp_to_sint F32:$reg)), (CVTWSSXr RD_RZ, $reg)>;
// Cast to i64
def : Pat<(sext_inreg I64:$src, i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)),
(ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0), sub_i32)>;
def : Pat<(i64 (sext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWSXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (zext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWZXrm $sy, 0), sub_i32)>;
def : Pat<(i64 (fp_to_sint f32:$sy)), (CVTLDr RD_RZ, (CVTDSr $sy))>;
def : Pat<(i64 (fp_to_sint I64:$reg)), (CVTLDr RD_RZ, $reg)>;
// Cast to f32
def : Pat<(f32 (sint_to_fp i64:$sy)), (CVTSDr (CVTDLr i64:$sy))>;
def : Pat<(i64 (anyext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $sy, sub_i32)>;
// extload, sextload and zextload stuff
multiclass EXT64m<SDPatternOperator from,
SDPatternOperator torri,
SDPatternOperator torii,
SDPatternOperator tozri,
SDPatternOperator tozii> {
def : Pat<(i64 (from ADDRrri:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torri MEMrri:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRrii:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torii MEMrii:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRzri:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozri MEMzri:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRzii:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozii MEMzii:$addr),
sub_i32)>;
}
defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>;
defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
// anyextload
multiclass EXT32m<SDPatternOperator from,
SDPatternOperator torri,
SDPatternOperator torii,
SDPatternOperator tozri,
SDPatternOperator tozii> {
def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
}
defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
// truncstore
multiclass TRUNC64m<SDPatternOperator from,
SDPatternOperator torri,
SDPatternOperator torii,
SDPatternOperator tozri,
SDPatternOperator tozii> {
def : Pat<(from i64:$src, ADDRrri:$addr),
(torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRrii:$addr),
(torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRzri:$addr),
(tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRzii:$addr),
(tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
}
defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>;
// Address calculation and its optimization
def : Pat<(VEhi tglobaladdr:$in), (LEASLzii 0, 0, tglobaladdr:$in)>;
def : Pat<(VElo tglobaladdr:$in),
(ANDrm (LEAzii 0, 0, tglobaladdr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaladdr:$in1), (VElo tglobaladdr:$in2)),
(LEASLrii (ANDrm (LEAzii 0, 0, tglobaladdr:$in2), !add(32, 64)), 0,
(tglobaladdr:$in1))>;
// GlobalTLS address calculation and its optimization
def : Pat<(VEhi tglobaltlsaddr:$in), (LEASLzii 0, 0, tglobaltlsaddr:$in)>;
def : Pat<(VElo tglobaltlsaddr:$in),
(ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in), !add(32, 64))>;
def : Pat<(add (VEhi tglobaltlsaddr:$in1), (VElo tglobaltlsaddr:$in2)),
(LEASLrii (ANDrm (LEAzii 0, 0, tglobaltlsaddr:$in2), !add(32, 64)), 0,
(tglobaltlsaddr:$in1))>;
// Address calculation and its optimization
def : Pat<(VEhi texternalsym:$in), (LEASLzii 0, 0, texternalsym:$in)>;
def : Pat<(VElo texternalsym:$in),
(ANDrm (LEAzii 0, 0, texternalsym:$in), !add(32, 64))>;
def : Pat<(add (VEhi texternalsym:$in1), (VElo texternalsym:$in2)),
(LEASLrii (ANDrm (LEAzii 0, 0, texternalsym:$in2), !add(32, 64)), 0,
(texternalsym:$in1))>;
// Branches
def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>;
// brcc
// integer brcc
multiclass BRCCIm<ValueType ty, SDPatternOperator BrOpNode1,
SDPatternOperator BrOpNode2,
SDPatternOperator CmpOpNode1,
SDPatternOperator CmpOpNode2> {
def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr),
(BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>;
def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr),
(BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>;
def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr),
(BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l),
bb:$addr)>;
def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr),
(BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>;
}
defm : BRCCIm<i32, BRCFWrr, BRCFWir, CMPUWrr, CMPUWir>;
defm : BRCCIm<i64, BRCFLrr, BRCFLir, CMPULrr, CMPULir>;
// floating point brcc
multiclass BRCCFm<ValueType ty, SDPatternOperator BrOpNode1,
SDPatternOperator BrOpNode2> {
def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr),
(BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>;
def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr),
(BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>;
}
defm : BRCCFm<f32, BRCFSrr, BRCFSir>;
defm : BRCCFm<f64, BRCFDrr, BRCFDir>;
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
// GETGOT for PIC
let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in {
def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">;
}
// GETFUNPLT for PIC
let hasSideEffects = 0 in
def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr),
"$dst, $addr",
[(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >;
def : Pat<(GetFunPLT tglobaladdr:$dst),
(GETFUNPLT tglobaladdr:$dst)>;
def : Pat<(GetFunPLT texternalsym:$dst),
(GETFUNPLT texternalsym:$dst)>;
// GETTLSADDR for TLS
let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in
def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr),
"# GETTLSADDR $addr",
[(GetTLSAddr tglobaltlsaddr:$addr)] >;
def : Pat<(GetTLSAddr tglobaltlsaddr:$dst),
(GETTLSADDR tglobaltlsaddr:$dst)>;
let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2),
"# ADJCALLSTACKDOWN $amt, $amt2",
[(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
"# ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in
def EXTEND_STACK : Pseudo<(outs), (ins),
"# EXTEND STACK",
[]>;
let hasSideEffects = 0 in
def EXTEND_STACK_GUARD : Pseudo<(outs), (ins),
"# EXTEND STACK GUARD",
[]>;
// Dynamic stack allocation yields a __llvm_grow_stack for VE targets.
// These calls are needed to probe the stack when allocating more over
// %s8 (%sl - stack limit).
let Uses = [SX11], hasSideEffects = 1 in
def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins),
"# GET STACK TOP",
[(set iPTR:$dst, (GetStackTop))]>;
// SETCC pattern matches
//
// CMP %tmp, lhs, rhs ; compare lhs and rhs
// or %res, 0, (0)1 ; initialize by 0
// CMOV %res, (63)0, %tmp ; set 1 if %tmp is true
def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrm (icond2cc $cond),
(CMPSLrr i64:$LHS, i64:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i64:$LHS, i64:$RHS, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrm (icond2cc $cond),
(CMPULrr i64:$LHS, i64:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrm (icond2cc $cond),
(CMPSWSXrr i32:$LHS, i32:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i32:$LHS, i32:$RHS, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrm (icond2cc $cond),
(CMPUWrr i32:$LHS, i32:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc f64:$LHS, f64:$RHS, cond:$cond)),
(EXTRACT_SUBREG
(CMOVDrm (fcond2cc $cond),
(FCMPDrr f64:$LHS, f64:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc f32:$LHS, f32:$RHS, cond:$cond)),
(EXTRACT_SUBREG
(CMOVSrm (fcond2cc $cond),
(FCMPSrr f32:$LHS, f32:$RHS),
!add(63, 64),
(ORim 0, 0)), sub_i32)>;
// Special SELECTCC pattern matches
// Use min/max for better performance.
//
// MAX/MIN %res, %lhs, %rhs
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGT)),
(FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGT)),
(FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGT)),
(MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGT)),
(MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGE)),
(FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGE)),
(FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGE)),
(MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGE)),
(MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLT)),
(FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLT)),
(FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLT)),
(MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLT)),
(MINSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLE)),
(FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLE)),
(FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLE)),
(MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLE)),
(MINSWSXrr $LHS, $RHS)>;
// Generic SELECTCC pattern matches
//
// CMP %tmp, %l, %r ; compare %l and %r
// or %res, %f, (0)1 ; initialize by %f
// CMOV %res, %t, %tmp ; set %t if %tmp is true
// selectcc for i64 result
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCSIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i32:$l, i32:$r, i64:$t, i64:$f, CCUIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCSIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc i64:$l, i64:$r, i64:$t, i64:$f, CCUIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f32:$l, f32:$r, i64:$t, i64:$f, cond:$cond)),
(CMOVSrr (fcond2cc $cond), (FCMPSrr $l, $r), $t, $f)>;
def : Pat<(i64 (selectcc f64:$l, f64:$r, i64:$t, i64:$f, cond:$cond)),
(CMOVDrr (fcond2cc $cond), (FCMPDrr $l, $r), $t, $f)>;
// selectcc for i32 result
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPSWSXrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc i32:$l, i32:$r, i32:$t, i32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPUWrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPSLrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc i64:$l, i64:$r, i32:$t, i32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPULrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc f32:$l, f32:$r, i32:$t, i32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVSrr (fcond2cc $cond),
(FCMPSrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(i32 (selectcc f64:$l, f64:$r, i32:$t, i32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVDrr (fcond2cc $cond),
(FCMPDrr $l, $r),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
// selectcc for f64 result
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCSIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPSWSXrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i32:$l, i32:$r, f64:$t, f64:$f, CCUIOp:$cond)),
(CMOVWrr (icond2cc $cond), (CMPUWrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCSIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPSLrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc i64:$l, i64:$r, f64:$t, f64:$f, CCUIOp:$cond)),
(CMOVLrr (icond2cc $cond), (CMPULrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f32:$l, f32:$r, f64:$t, f64:$f, cond:$cond)),
(CMOVSrr (fcond2cc $cond), (FCMPSrr $l, $r), $t, $f)>;
def : Pat<(f64 (selectcc f64:$l, f64:$r, f64:$t, f64:$f, cond:$cond)),
(CMOVDrr (fcond2cc $cond), (FCMPDrr $l, $r), $t, $f)>;
// selectcc for f32 result
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPSWSXrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc i32:$l, i32:$r, f32:$t, f32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVWrr (icond2cc $cond),
(CMPUWrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCSIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPSLrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc i64:$l, i64:$r, f32:$t, f32:$f, CCUIOp:$cond)),
(EXTRACT_SUBREG
(CMOVLrr (icond2cc $cond),
(CMPULrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc f32:$l, f32:$r, f32:$t, f32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVSrr (fcond2cc $cond),
(FCMPSrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
def : Pat<(f32 (selectcc f64:$l, f64:$r, f32:$t, f32:$f, cond:$cond)),
(EXTRACT_SUBREG
(CMOVDrr (fcond2cc $cond),
(FCMPDrr $l, $r),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (f64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
// Generic SELECT pattern matches
// Use cmov.w for all cases since %pred holds i32.
//
// CMOV.w.ne %res, %tval, %tmp ; set tval if %tmp is true
def : Pat<(i64 (select i32:$pred, i64:$t, i64:$f)),
(CMOVWrr CC_INE, $pred, $t, $f)>;
def : Pat<(i32 (select i32:$pred, i32:$t, i32:$f)),
(EXTRACT_SUBREG
(CMOVWrr CC_INE, $pred,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)),
sub_i32)>;
def : Pat<(f64 (select i32:$pred, f64:$t, f64:$f)),
(CMOVWrr CC_INE, $pred, $t, $f)>;
def : Pat<(f32 (select i32:$pred, f32:$t, f32:$f)),
(EXTRACT_SUBREG
(CMOVWrr CC_INE, $pred,
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)),
sub_f32)>;
// bitconvert
def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>;
def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>;
def : Pat<(i32 (bitconvert f32:$op)),
(EXTRACT_SUBREG (SRALri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$op, sub_f32), 32), sub_i32)>;
def : Pat<(f32 (bitconvert i32:$op)),
(EXTRACT_SUBREG (SLLri (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$op, sub_i32), 32), sub_f32)>;
// Bits operations pattern matchings.
def : Pat<(i32 (ctpop i32:$src)),
(EXTRACT_SUBREG (PCNTr (ANDrm (INSERT_SUBREG
(i64 (IMPLICIT_DEF)), $src, sub_i32), !add(32, 64))), sub_i32)>;
def : Pat<(i32 (ctlz i32:$src)),
(EXTRACT_SUBREG (LDZr (SLLri (INSERT_SUBREG
(i64 (IMPLICIT_DEF)), $src, sub_i32), 32)), sub_i32)>;
def : Pat<(i64 (bswap i64:$src)),
(BSWPri $src, 0)>;
def : Pat<(i32 (bswap i32:$src)),
(EXTRACT_SUBREG (BSWPri (INSERT_SUBREG
(i64 (IMPLICIT_DEF)), $src, sub_i32), 1), sub_i32)>;
// Several special pattern matches to optimize code
def : Pat<(i32 (and i32:$lhs, 0xff)),
(AND32rm $lhs, !add(56, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffff)),
(AND32rm $lhs, !add(48, 64))>;
def : Pat<(i32 (and i32:$lhs, 0xffffffff)),
(AND32rm $lhs, !add(32, 64))>;