VEInstrInfo.cpp 20 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
//===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the VE implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "VEInstrInfo.h"
#include "VE.h"
#include "VEMachineFunctionInfo.h"
#include "VESubtarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

#define DEBUG_TYPE "ve-instr-info"

using namespace llvm;

#define GET_INSTRINFO_CTOR_DTOR
#include "VEGenInstrInfo.inc"

// Pin the vtable to this file.
void VEInstrInfo::anchor() {}

VEInstrInfo::VEInstrInfo(VESubtarget &ST)
    : VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {}

static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); }

static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) {
  switch (CC) {
  case VECC::CC_IG:
    return VECC::CC_ILE;
  case VECC::CC_IL:
    return VECC::CC_IGE;
  case VECC::CC_INE:
    return VECC::CC_IEQ;
  case VECC::CC_IEQ:
    return VECC::CC_INE;
  case VECC::CC_IGE:
    return VECC::CC_IL;
  case VECC::CC_ILE:
    return VECC::CC_IG;
  case VECC::CC_AF:
    return VECC::CC_AT;
  case VECC::CC_G:
    return VECC::CC_LENAN;
  case VECC::CC_L:
    return VECC::CC_GENAN;
  case VECC::CC_NE:
    return VECC::CC_EQNAN;
  case VECC::CC_EQ:
    return VECC::CC_NENAN;
  case VECC::CC_GE:
    return VECC::CC_LNAN;
  case VECC::CC_LE:
    return VECC::CC_GNAN;
  case VECC::CC_NUM:
    return VECC::CC_NAN;
  case VECC::CC_NAN:
    return VECC::CC_NUM;
  case VECC::CC_GNAN:
    return VECC::CC_LE;
  case VECC::CC_LNAN:
    return VECC::CC_GE;
  case VECC::CC_NENAN:
    return VECC::CC_EQ;
  case VECC::CC_EQNAN:
    return VECC::CC_NE;
  case VECC::CC_GENAN:
    return VECC::CC_L;
  case VECC::CC_LENAN:
    return VECC::CC_G;
  case VECC::CC_AT:
    return VECC::CC_AF;
  case VECC::UNKNOWN:
    return VECC::UNKNOWN;
  }
  llvm_unreachable("Invalid cond code");
}

// Treat br.l [BRCF AT] as unconditional branch
static bool isUncondBranchOpcode(int Opc) {
  return Opc == VE::BRCFLa    || Opc == VE::BRCFWa    ||
         Opc == VE::BRCFLa_nt || Opc == VE::BRCFWa_nt ||
         Opc == VE::BRCFLa_t  || Opc == VE::BRCFWa_t  ||
         Opc == VE::BRCFDa    || Opc == VE::BRCFSa    ||
         Opc == VE::BRCFDa_nt || Opc == VE::BRCFSa_nt ||
         Opc == VE::BRCFDa_t  || Opc == VE::BRCFSa_t;
}

static bool isCondBranchOpcode(int Opc) {
  return Opc == VE::BRCFLrr    || Opc == VE::BRCFLir    ||
         Opc == VE::BRCFLrr_nt || Opc == VE::BRCFLir_nt ||
         Opc == VE::BRCFLrr_t  || Opc == VE::BRCFLir_t  ||
         Opc == VE::BRCFWrr    || Opc == VE::BRCFWir    ||
         Opc == VE::BRCFWrr_nt || Opc == VE::BRCFWir_nt ||
         Opc == VE::BRCFWrr_t  || Opc == VE::BRCFWir_t  ||
         Opc == VE::BRCFDrr    || Opc == VE::BRCFDir    ||
         Opc == VE::BRCFDrr_nt || Opc == VE::BRCFDir_nt ||
         Opc == VE::BRCFDrr_t  || Opc == VE::BRCFDir_t  ||
         Opc == VE::BRCFSrr    || Opc == VE::BRCFSir    ||
         Opc == VE::BRCFSrr_nt || Opc == VE::BRCFSir_nt ||
         Opc == VE::BRCFSrr_t  || Opc == VE::BRCFSir_t;
}

static bool isIndirectBranchOpcode(int Opc) {
  return Opc == VE::BCFLari    || Opc == VE::BCFLari    ||
         Opc == VE::BCFLari_nt || Opc == VE::BCFLari_nt ||
         Opc == VE::BCFLari_t  || Opc == VE::BCFLari_t  ||
         Opc == VE::BCFLari    || Opc == VE::BCFLari    ||
         Opc == VE::BCFLari_nt || Opc == VE::BCFLari_nt ||
         Opc == VE::BCFLari_t  || Opc == VE::BCFLari_t;
}

static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
                            SmallVectorImpl<MachineOperand> &Cond) {
  Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm()));
  Cond.push_back(LastInst->getOperand(1));
  Cond.push_back(LastInst->getOperand(2));
  Target = LastInst->getOperand(3).getMBB();
}

bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                                MachineBasicBlock *&FBB,
                                SmallVectorImpl<MachineOperand> &Cond,
                                bool AllowModify) const {
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return false;

  if (!isUnpredicatedTerminator(*I))
    return false;

  // Get the last instruction in the block.
  MachineInstr *LastInst = &*I;
  unsigned LastOpc = LastInst->getOpcode();

  // If there is only one terminator instruction, process it.
  if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
    if (isUncondBranchOpcode(LastOpc)) {
      TBB = LastInst->getOperand(0).getMBB();
      return false;
    }
    if (isCondBranchOpcode(LastOpc)) {
      // Block ends with fall-through condbranch.
      parseCondBranch(LastInst, TBB, Cond);
      return false;
    }
    return true; // Can't handle indirect branch.
  }

  // Get the instruction before it if it is a terminator.
  MachineInstr *SecondLastInst = &*I;
  unsigned SecondLastOpc = SecondLastInst->getOpcode();

  // If AllowModify is true and the block ends with two or more unconditional
  // branches, delete all but the first unconditional branch.
  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
    while (isUncondBranchOpcode(SecondLastOpc)) {
      LastInst->eraseFromParent();
      LastInst = SecondLastInst;
      LastOpc = LastInst->getOpcode();
      if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
        // Return now the only terminator is an unconditional branch.
        TBB = LastInst->getOperand(0).getMBB();
        return false;
      }
      SecondLastInst = &*I;
      SecondLastOpc = SecondLastInst->getOpcode();
    }
  }

  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
    return true;

  // If the block ends with a B and a Bcc, handle it.
  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    parseCondBranch(SecondLastInst, TBB, Cond);
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  }

  // If the block ends with two unconditional branches, handle it.  The second
  // one is not executed.
  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    TBB = SecondLastInst->getOperand(0).getMBB();
    return false;
  }

  // ...likewise if it ends with an indirect branch followed by an unconditional
  // branch.
  if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    I = LastInst;
    if (AllowModify)
      I->eraseFromParent();
    return true;
  }

  // Otherwise, can't handle this.
  return true;
}

unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *TBB,
                                   MachineBasicBlock *FBB,
                                   ArrayRef<MachineOperand> Cond,
                                   const DebugLoc &DL, int *BytesAdded) const {
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 3 || Cond.size() == 0) &&
         "VE branch conditions should have three component!");
  assert(!BytesAdded && "code size not handled");
  if (Cond.empty()) {
    // Uncondition branch
    assert(!FBB && "Unconditional branch with multiple successors!");
    BuildMI(&MBB, DL, get(VE::BRCFLa_t))
        .addMBB(TBB);
    return 1;
  }

  // Conditional branch
  //   (BRCFir CC sy sz addr)
  assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented");

  unsigned opc[2];
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  MachineFunction *MF = MBB.getParent();
  const MachineRegisterInfo &MRI = MF->getRegInfo();
  unsigned Reg = Cond[2].getReg();
  if (IsIntegerCC(Cond[0].getImm())) {
    if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
      opc[0] = VE::BRCFWir;
      opc[1] = VE::BRCFWrr;
    } else {
      opc[0] = VE::BRCFLir;
      opc[1] = VE::BRCFLrr;
    }
  } else {
    if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
      opc[0] = VE::BRCFSir;
      opc[1] = VE::BRCFSrr;
    } else {
      opc[0] = VE::BRCFDir;
      opc[1] = VE::BRCFDrr;
    }
  }
  if (Cond[1].isImm()) {
      BuildMI(&MBB, DL, get(opc[0]))
          .add(Cond[0]) // condition code
          .add(Cond[1]) // lhs
          .add(Cond[2]) // rhs
          .addMBB(TBB);
  } else {
      BuildMI(&MBB, DL, get(opc[1]))
          .add(Cond[0])
          .add(Cond[1])
          .add(Cond[2])
          .addMBB(TBB);
  }

  if (!FBB)
    return 1;

  BuildMI(&MBB, DL, get(VE::BRCFLa_t))
      .addMBB(FBB);
  return 2;
}

unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                   int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  MachineBasicBlock::iterator I = MBB.end();
  unsigned Count = 0;
  while (I != MBB.begin()) {
    --I;

    if (I->isDebugValue())
      continue;

    if (!isUncondBranchOpcode(I->getOpcode()) &&
        !isCondBranchOpcode(I->getOpcode()))
      break; // Not a branch

    I->eraseFromParent();
    I = MBB.end();
    ++Count;
  }
  return Count;
}

bool VEInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  VECC::CondCode CC = static_cast<VECC::CondCode>(Cond[0].getImm());
  Cond[0].setImm(GetOppositeBranchCondition(CC));
  return false;
}

static bool IsAliasOfSX(Register Reg) {
  return VE::I8RegClass.contains(Reg) || VE::I16RegClass.contains(Reg) ||
         VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) ||
         VE::F32RegClass.contains(Reg);
}

void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator I, const DebugLoc &DL,
                              MCRegister DestReg, MCRegister SrcReg,
                              bool KillSrc) const {

  if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) {
    BuildMI(MBB, I, DL, get(VE::ORri), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .addImm(0);
  } else {
    const TargetRegisterInfo *TRI = &getRegisterInfo();
    dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI)
           << " to " << printReg(DestReg, TRI) << "\n";
    llvm_unreachable("Impossible reg-to-reg copy");
  }
}

/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  if (MI.getOpcode() == VE::LDrii ||    // I64
      MI.getOpcode() == VE::LDLSXrii || // I32
      MI.getOpcode() == VE::LDUrii      // F32
  ) {
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() &&
        MI.getOperand(3).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                         int &FrameIndex) const {
  if (MI.getOpcode() == VE::STrii ||  // I64
      MI.getOpcode() == VE::STLrii || // I32
      MI.getOpcode() == VE::STUrii    // F32
  ) {
    if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
        MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return MI.getOperand(3).getReg();
    }
  }
  return 0;
}

void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator I,
                                      Register SrcReg, bool isKill, int FI,
                                      const TargetRegisterClass *RC,
                                      const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  MachineFunction *MF = MBB.getParent();
  const MachineFrameInfo &MFI = MF->getFrameInfo();
  MachineMemOperand *MMO = MF->getMachineMemOperand(
      MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
      MFI.getObjectSize(FI), MFI.getObjectAlign(FI));

  // On the order of operands here: think "[FrameIdx + 0] = SrcReg".
  if (RC == &VE::I64RegClass) {
    BuildMI(MBB, I, DL, get(VE::STrii))
        .addFrameIndex(FI)
        .addImm(0)
        .addImm(0)
        .addReg(SrcReg, getKillRegState(isKill))
        .addMemOperand(MMO);
  } else if (RC == &VE::I32RegClass) {
    BuildMI(MBB, I, DL, get(VE::STLrii))
        .addFrameIndex(FI)
        .addImm(0)
        .addImm(0)
        .addReg(SrcReg, getKillRegState(isKill))
        .addMemOperand(MMO);
  } else if (RC == &VE::F32RegClass) {
    BuildMI(MBB, I, DL, get(VE::STUrii))
        .addFrameIndex(FI)
        .addImm(0)
        .addImm(0)
        .addReg(SrcReg, getKillRegState(isKill))
        .addMemOperand(MMO);
  } else
    report_fatal_error("Can't store this register to stack slot");
}

void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator I,
                                       Register DestReg, int FI,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  MachineFunction *MF = MBB.getParent();
  const MachineFrameInfo &MFI = MF->getFrameInfo();
  MachineMemOperand *MMO = MF->getMachineMemOperand(
      MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
      MFI.getObjectSize(FI), MFI.getObjectAlign(FI));

  if (RC == &VE::I64RegClass) {
    BuildMI(MBB, I, DL, get(VE::LDrii), DestReg)
        .addFrameIndex(FI)
        .addImm(0)
        .addImm(0)
        .addMemOperand(MMO);
  } else if (RC == &VE::I32RegClass) {
    BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg)
        .addFrameIndex(FI)
        .addImm(0)
        .addImm(0)
        .addMemOperand(MMO);
  } else if (RC == &VE::F32RegClass) {
    BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg)
        .addFrameIndex(FI)
        .addImm(0)
        .addImm(0)
        .addMemOperand(MMO);
  } else
    report_fatal_error("Can't load this register from stack slot");
}

Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
  VEMachineFunctionInfo *VEFI = MF->getInfo<VEMachineFunctionInfo>();
  Register GlobalBaseReg = VEFI->getGlobalBaseReg();
  if (GlobalBaseReg != 0)
    return GlobalBaseReg;

  // We use %s15 (%got) as a global base register
  GlobalBaseReg = VE::SX15;

  // Insert a pseudo instruction to set the GlobalBaseReg into the first
  // MBB of the function
  MachineBasicBlock &FirstMBB = MF->front();
  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
  DebugLoc dl;
  BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg);
  VEFI->setGlobalBaseReg(GlobalBaseReg);
  return GlobalBaseReg;
}

bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case VE::EXTEND_STACK: {
    return expandExtendStackPseudo(MI);
  }
  case VE::EXTEND_STACK_GUARD: {
    MI.eraseFromParent(); // The pseudo instruction is gone now.
    return true;
  }
  case VE::GETSTACKTOP: {
    return expandGetStackTopPseudo(MI);
  }
  }
  return false;
}

bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
  const VEInstrInfo &TII = *STI.getInstrInfo();
  DebugLoc dl = MBB.findDebugLoc(MI);

  // Create following instructions and multiple basic blocks.
  //
  // thisBB:
  //   brge.l.t %sp, %sl, sinkBB
  // syscallBB:
  //   ld      %s61, 0x18(, %tp)        // load param area
  //   or      %s62, 0, %s0             // spill the value of %s0
  //   lea     %s63, 0x13b              // syscall # of grow
  //   shm.l   %s63, 0x0(%s61)          // store syscall # at addr:0
  //   shm.l   %sl, 0x8(%s61)           // store old limit at addr:8
  //   shm.l   %sp, 0x10(%s61)          // store new limit at addr:16
  //   monc                             // call monitor
  //   or      %s0, 0, %s62             // restore the value of %s0
  // sinkBB:

  // Create new MBB
  MachineBasicBlock *BB = &MBB;
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = ++(BB->getIterator());
  MF.insert(It, syscallMBB);
  MF.insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  std::next(std::next(MachineBasicBlock::iterator(MI))),
                  BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(syscallMBB);
  BB->addSuccessor(sinkMBB);
  BuildMI(BB, dl, TII.get(VE::BRCFLrr_t))
      .addImm(VECC::CC_IGE)
      .addReg(VE::SX11) // %sp
      .addReg(VE::SX8)  // %sl
      .addMBB(sinkMBB);

  BB = syscallMBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61)
      .addReg(VE::SX14)
      .addImm(0)
      .addImm(0x18);
  BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62)
      .addReg(VE::SX0)
      .addImm(0);
  BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63)
      .addImm(0)
      .addImm(0)
      .addImm(0x13b);
  BuildMI(BB, dl, TII.get(VE::SHMLri))
      .addReg(VE::SX61)
      .addImm(0)
      .addReg(VE::SX63);
  BuildMI(BB, dl, TII.get(VE::SHMLri))
      .addReg(VE::SX61)
      .addImm(8)
      .addReg(VE::SX8);
  BuildMI(BB, dl, TII.get(VE::SHMLri))
      .addReg(VE::SX61)
      .addImm(16)
      .addReg(VE::SX11);
  BuildMI(BB, dl, TII.get(VE::MONC));

  BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0)
      .addReg(VE::SX62)
      .addImm(0);

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return true;
}

bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const {
  MachineBasicBlock *MBB = MI.getParent();
  MachineFunction &MF = *MBB->getParent();
  const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
  const VEInstrInfo &TII = *STI.getInstrInfo();
  DebugLoc DL = MBB->findDebugLoc(MI);

  // Create following instruction
  //
  //   dst = %sp + target specific frame + the size of parameter area

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const VEFrameLowering &TFL = *STI.getFrameLowering();

  // The VE ABI requires a reserved 176 bytes area at the top
  // of stack as described in VESubtarget.cpp.  So, we adjust it here.
  unsigned NumBytes = STI.getAdjustedFrameSize(0);

  // Also adds the size of parameter area.
  if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF))
    NumBytes += MFI.getMaxCallFrameSize();

  BuildMI(*MBB, MI, DL, TII.get(VE::LEArii))
      .addDef(MI.getOperand(0).getReg())
      .addReg(VE::SX11)
      .addImm(0)
      .addImm(NumBytes);

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return true;
}