VEISelLowering.cpp 37.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
//===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that VE uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "VEISelLowering.h"
#include "MCTargetDesc/VEMCExpr.h"
#include "VEMachineFunctionInfo.h"
#include "VERegisterInfo.h"
#include "VETargetMachine.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;

#define DEBUG_TYPE "ve-lower"

//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//

static bool allocateFloat(unsigned ValNo, MVT ValVT, MVT LocVT,
                          CCValAssign::LocInfo LocInfo,
                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
  switch (LocVT.SimpleTy) {
  case MVT::f32: {
    // Allocate stack like below
    //    0      4
    //    +------+------+
    //    | empty| float|
    //    +------+------+
    // Use align=8 for dummy area to align the beginning of these 2 area.
    State.AllocateStack(4, Align(8)); // for empty area
    // Use align=4 for value to place it at just after the dummy area.
    unsigned Offset = State.AllocateStack(4, Align(4)); // for float value area
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
    return true;
  }
  default:
    return false;
  }
}

#include "VEGenCallingConv.inc"

bool VETargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  CCAssignFn *RetCC = RetCC_VE;
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC);
}

SDValue
VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                              bool IsVarArg,
                              const SmallVectorImpl<ISD::OutputArg> &Outs,
                              const SmallVectorImpl<SDValue> &OutVals,
                              const SDLoc &DL, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze return values.
  CCInfo.AnalyzeReturn(Outs, RetCC_VE);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    SDValue OutVal = OutVals[i];

    // Integer return values must be sign or zero extended by the callee.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
      break;
    case CCValAssign::ZExt:
      OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
      break;
    case CCValAssign::AExt:
      OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
      break;
    default:
      llvm_unreachable("Unknown loc info!");
    }

    assert(!VA.needsCustom() && "Unexpected custom lowering");

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain; // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps);
}

SDValue VETargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();

  // Get the base offset of the incoming arguments stack space.
  unsigned ArgsBaseOffset = 176;
  // Get the size of the preserved arguments area
  unsigned ArgsPreserved = 64;

  // Analyze arguments according to CC_VE.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  // Allocate the preserved area first.
  CCInfo.AllocateStack(ArgsPreserved, Align(8));
  // We already allocated the preserved area, so the stack offset computed
  // by CC_VE would be correct now.
  CCInfo.AnalyzeFormalArguments(Ins, CC_VE);

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    if (VA.isRegLoc()) {
      // This argument is passed in a register.
      // All integer register arguments are promoted by the caller to i64.

      // Create a virtual register for the promoted live-in value.
      unsigned VReg =
          MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT()));
      SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());

      // Get the high bits for i32 struct elements.
      if (VA.getValVT() == MVT::i32 && VA.needsCustom())
        Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
                          DAG.getConstant(32, DL, MVT::i32));

      // The caller promoted the argument, so insert an Assert?ext SDNode so we
      // won't promote the value again in this function.
      switch (VA.getLocInfo()) {
      case CCValAssign::SExt:
        Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
                          DAG.getValueType(VA.getValVT()));
        break;
      case CCValAssign::ZExt:
        Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
                          DAG.getValueType(VA.getValVT()));
        break;
      default:
        break;
      }

      // Truncate the register down to the argument type.
      if (VA.isExtInLoc())
        Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);

      InVals.push_back(Arg);
      continue;
    }

    // The registers are exhausted. This argument was passed on the stack.
    assert(VA.isMemLoc());
    // The CC_VE_Full/Half functions compute stack offsets relative to the
    // beginning of the arguments area at %fp+176.
    unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset;
    unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
    int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
    InVals.push_back(
        DAG.getLoad(VA.getValVT(), DL, Chain,
                    DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
                    MachinePointerInfo::getFixedStack(MF, FI)));
  }

  if (!IsVarArg)
    return Chain;

  // This function takes variable arguments, some of which may have been passed
  // in registers %s0-%s8.
  //
  // The va_start intrinsic needs to know the offset to the first variable
  // argument.
  // TODO: need to calculate offset correctly once we support f128.
  unsigned ArgOffset = ArgLocs.size() * 8;
  VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
  // Skip the 176 bytes of register save area.
  FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset);

  return Chain;
}

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT,
                                             const MachineFunction &MF) const {
  Register Reg = StringSwitch<Register>(RegName)
                     .Case("sp", VE::SX11)    // Stack pointer
                     .Case("fp", VE::SX9)     // Frame pointer
                     .Case("sl", VE::SX8)     // Stack limit
                     .Case("lr", VE::SX10)    // Link register
                     .Case("tp", VE::SX14)    // Thread pointer
                     .Case("outer", VE::SX12) // Outer regiser
                     .Case("info", VE::SX17)  // Info area register
                     .Case("got", VE::SX15)   // Global offset table register
                     .Case("plt", VE::SX16) // Procedure linkage table register
                     .Default(0);

  if (Reg)
    return Reg;

  report_fatal_error("Invalid register name global variable");
}

//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                    SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc DL = CLI.DL;
  SDValue Chain = CLI.Chain;
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // VE target does not yet support tail call optimization.
  CLI.IsTailCall = false;

  // Get the base offset of the outgoing arguments stack space.
  unsigned ArgsBaseOffset = 176;
  // Get the size of the preserved arguments area
  unsigned ArgsPreserved = 8 * 8u;

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  // Allocate the preserved area first.
  CCInfo.AllocateStack(ArgsPreserved, Align(8));
  // We already allocated the preserved area, so the stack offset computed
  // by CC_VE would be correct now.
  CCInfo.AnalyzeCallOperands(CLI.Outs, CC_VE);

  // VE requires to use both register and stack for varargs or no-prototyped
  // functions.
  bool UseBoth = CLI.IsVarArg;

  // Analyze operands again if it is required to store BOTH.
  SmallVector<CCValAssign, 16> ArgLocs2;
  CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(),
                  ArgLocs2, *DAG.getContext());
  if (UseBoth)
    CCInfo2.AnalyzeCallOperands(CLI.Outs, CC_VE2);

  // Get the size of the outgoing arguments stack space requirement.
  unsigned ArgsSize = CCInfo.getNextStackOffset();

  // Keep stack frames 16-byte aligned.
  ArgsSize = alignTo(ArgsSize, 16);

  // Adjust the stack pointer to make room for the arguments.
  // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
  // with more than 6 arguments.
  Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);

  // Collect the set of registers to pass to the function and their values.
  // This will be emitted as a sequence of CopyToReg nodes glued to the call
  // instruction.
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;

  // Collect chains from all the memory opeations that copy arguments to the
  // stack. They must follow the stack pointer adjustment above and precede the
  // call instruction itself.
  SmallVector<SDValue, 8> MemOpChains;

  // VE needs to get address of callee function in a register
  // So, prepare to copy it to SX12 here.

  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  // Likewise ExternalSymbol -> TargetExternalSymbol.
  SDValue Callee = CLI.Callee;

  bool IsPICCall = isPositionIndependent();

  // PC-relative references to external symbols should go through $stub.
  // If so, we need to prepare GlobalBaseReg first.
  const TargetMachine &TM = DAG.getTarget();
  const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
  const GlobalValue *GV = nullptr;
  auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee);
  if (CalleeG)
    GV = CalleeG->getGlobal();
  bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
  bool UsePlt = !Local;
  MachineFunction &MF = DAG.getMachineFunction();

  // Turn GlobalAddress/ExternalSymbol node into a value node
  // containing the address of them here.
  if (CalleeG) {
    if (IsPICCall) {
      if (UsePlt)
        Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
      Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
      Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
    } else {
      Callee =
          makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
    }
  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    if (IsPICCall) {
      if (UsePlt)
        Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
      Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
      Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee);
    } else {
      Callee =
          makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
    }
  }

  RegsToPass.push_back(std::make_pair(VE::SX12, Callee));

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = CLI.OutVals[i];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown location info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    }

    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      if (!UseBoth)
        continue;
      VA = ArgLocs2[i];
    }

    assert(VA.isMemLoc());

    // Create a store off the stack pointer for this argument.
    SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT);
    // The argument area starts at %fp+176 in the callee frame,
    // %sp+176 in ours.
    SDValue PtrOff =
        DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL);
    PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
    MemOpChains.push_back(
        DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
  }

  // Emit all stores, make sure they occur before the call.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // Build a sequence of CopyToReg nodes glued together with token chain and
  // glue operands which copy the outgoing args into registers. The InGlue is
  // necessary since all emitted instructions must be stuck together in order
  // to pass the live physical registers.
  SDValue InGlue;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
                             RegsToPass[i].second, InGlue);
    InGlue = Chain.getValue(1);
  }

  // Build the operands for the call instruction itself.
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  const VERegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask =
      TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  // Make sure the CopyToReg nodes are glued to the call instruction which
  // consumes the registers.
  if (InGlue.getNode())
    Ops.push_back(InGlue);

  // Now the call itself.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops);
  InGlue = Chain.getValue(1);

  // Revert the stack pointer immediately after the call.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
                             DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
  InGlue = Chain.getValue(1);

  // Now extract the return values. This is more or less the same as
  // LowerFormalArguments.

  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Set inreg flag manually for codegen generated library calls that
  // return float.
  if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
    CLI.Ins[0].Flags.setInReg();

  RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_VE);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    unsigned Reg = VA.getLocReg();

    // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
    // reside in the same register in the high and low bits. Reuse the
    // CopyFromReg previous node to avoid duplicate copies.
    SDValue RV;
    if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
      if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
        RV = Chain.getValue(0);

    // But usually we'll create a new CopyFromReg for a different register.
    if (!RV.getNode()) {
      RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
      Chain = RV.getValue(1);
      InGlue = Chain.getValue(2);
    }

    // Get the high bits for i32 struct elements.
    if (VA.getValVT() == MVT::i32 && VA.needsCustom())
      RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
                       DAG.getConstant(32, DL, MVT::i32));

    // The callee promoted the return value, so insert an Assert?ext SDNode so
    // we won't promote the value again in this function.
    switch (VA.getLocInfo()) {
    case CCValAssign::SExt:
      RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
                       DAG.getValueType(VA.getValVT()));
      break;
    case CCValAssign::ZExt:
      RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
                       DAG.getValueType(VA.getValVT()));
      break;
    default:
      break;
    }

    // Truncate the register down to the return value type.
    if (VA.isExtInLoc())
      RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);

    InVals.push_back(RV);
  }

  return Chain;
}

/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                    bool ForCodeSize) const {
  return VT == MVT::f32 || VT == MVT::f64;
}

/// Determine if the target supports unaligned memory accesses.
///
/// This function returns true if the target allows unaligned memory accesses
/// of the specified type in the given address space. If true, it also returns
/// whether the unaligned memory access is "fast" in the last argument by
/// reference. This is used, for example, in situations where an array
/// copy/move/set is converted to a sequence of store operations. Its use
/// helps to ensure that such replacements don't generate code that causes an
/// alignment error (trap) on the target machine.
bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
                                                      unsigned AddrSpace,
                                                      unsigned Align,
                                                      MachineMemOperand::Flags,
                                                      bool *Fast) const {
  if (Fast) {
    // It's fast anytime on VE
    *Fast = true;
  }
  return true;
}

bool VETargetLowering::hasAndNot(SDValue Y) const {
  EVT VT = Y.getValueType();

  // VE doesn't have vector and not instruction.
  if (VT.isVector())
    return false;

  // VE allows different immediate values for X and Y where ~X & Y.
  // Only simm7 works for X, and only mimm works for Y on VE.  However, this
  // function is used to check whether an immediate value is OK for and-not
  // instruction as both X and Y.  Generating additional instruction to
  // retrieve an immediate value is no good since the purpose of this
  // function is to convert a series of 3 instructions to another series of
  // 3 instructions with better parallelism.  Therefore, we return false
  // for all immediate values now.
  // FIXME: Change hasAndNot function to have two operands to make it work
  //        correctly with Aurora VE.
  if (isa<ConstantSDNode>(Y))
    return false;

  // It's ok for generic registers.
  return true;
}

VETargetLowering::VETargetLowering(const TargetMachine &TM,
                                   const VESubtarget &STI)
    : TargetLowering(TM), Subtarget(&STI) {
  // Instructions which use registers as conditionals examine all the
  // bits (as does the pseudo SELECT_CC expansion). I don't think it
  // matters much whether it's ZeroOrOneBooleanContent, or
  // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
  // former.
  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrOneBooleanContent);

  // Set up the register classes.
  addRegisterClass(MVT::i32, &VE::I32RegClass);
  addRegisterClass(MVT::i64, &VE::I64RegClass);
  addRegisterClass(MVT::f32, &VE::F32RegClass);
  addRegisterClass(MVT::f64, &VE::I64RegClass);

  /// Load & Store {
  for (MVT FPVT : MVT::fp_valuetypes()) {
    for (MVT OtherFPVT : MVT::fp_valuetypes()) {
      // Turn FP extload into load/fpextend
      setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand);

      // Turn FP truncstore into trunc + store.
      setTruncStoreAction(FPVT, OtherFPVT, Expand);
    }
  }

  // VE doesn't have i1 sign extending load
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    setTruncStoreAction(VT, MVT::i1, Expand);
  }
  /// } Load & Store

  // Custom legalize address nodes into LO/HI parts.
  MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
  setOperationAction(ISD::BlockAddress, PtrVT, Custom);
  setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);

  /// VAARG handling {
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  // VAARG needs to be lowered to access with 8 bytes alignment.
  setOperationAction(ISD::VAARG, MVT::Other, Custom);
  // Use the default implementation.
  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
  setOperationAction(ISD::VAEND, MVT::Other, Expand);
  /// } VAARG handling

  /// Stack {
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
  /// } Stack

  /// Int Ops {
  for (MVT IntVT : {MVT::i32, MVT::i64}) {
    // VE has no REM or DIVREM operations.
    setOperationAction(ISD::UREM, IntVT, Expand);
    setOperationAction(ISD::SREM, IntVT, Expand);
    setOperationAction(ISD::SDIVREM, IntVT, Expand);
    setOperationAction(ISD::UDIVREM, IntVT, Expand);

    setOperationAction(ISD::CTTZ, IntVT, Expand);
    setOperationAction(ISD::ROTL, IntVT, Expand);
    setOperationAction(ISD::ROTR, IntVT, Expand);

    // Use isel patterns for i32 and i64
    setOperationAction(ISD::BSWAP, IntVT, Legal);
    setOperationAction(ISD::CTLZ, IntVT, Legal);
    setOperationAction(ISD::CTPOP, IntVT, Legal);

    // Use isel patterns for i64, Promote i32
    LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal;
    setOperationAction(ISD::BITREVERSE, IntVT, Act);
  }
  /// } Int Ops

  /// Conversion {
  // VE doesn't have instructions for fp<->uint, so expand them by llvm
  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);

  // fp16 not supported
  for (MVT FPVT : MVT::fp_valuetypes()) {
    setOperationAction(ISD::FP16_TO_FP, FPVT, Expand);
    setOperationAction(ISD::FP_TO_FP16, FPVT, Expand);
  }
  /// } Conversion

  setStackPointerRegisterToSaveRestore(VE::SX11);

  // Set function alignment to 16 bytes
  setMinFunctionAlignment(Align(16));

  // VE stores all argument by 8 bytes alignment
  setMinStackArgumentAlignment(Align(8));

  computeRegisterProperties(Subtarget->getRegisterInfo());
}

const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const {
#define TARGET_NODE_CASE(NAME)                                                 \
  case VEISD::NAME:                                                            \
    return "VEISD::" #NAME;
  switch ((VEISD::NodeType)Opcode) {
  case VEISD::FIRST_NUMBER:
    break;
    TARGET_NODE_CASE(Lo)
    TARGET_NODE_CASE(Hi)
    TARGET_NODE_CASE(GETFUNPLT)
    TARGET_NODE_CASE(GETSTACKTOP)
    TARGET_NODE_CASE(GETTLSADDR)
    TARGET_NODE_CASE(CALL)
    TARGET_NODE_CASE(RET_FLAG)
    TARGET_NODE_CASE(GLOBAL_BASE_REG)
  }
#undef TARGET_NODE_CASE
  return nullptr;
}

EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                         EVT VT) const {
  return MVT::i32;
}

// Convert to a target node and set target flags.
SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF,
                                          SelectionDAG &DAG) const {
  if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
    return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA),
                                      GA->getValueType(0), GA->getOffset(), TF);

  if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
    return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(),
                                     0, TF);

  if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
    return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0),
                                       TF);

  llvm_unreachable("Unhandled address SDNode");
}

// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF,
                                       SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
  SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
  return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}

// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT PtrVT = Op.getValueType();

  // Handle PIC mode first. VE needs a got load for every variable!
  if (isPositionIndependent()) {
    // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
    // function has calls.
    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
    MFI.setHasCalls(true);
    auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op);

    if (isa<ConstantPoolSDNode>(Op) ||
        (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) {
      // Create following instructions for local linkage PIC code.
      //     lea %s35, %gotoff_lo(.LCPI0_0)
      //     and %s35, %s35, (32)0
      //     lea.sl %s35, %gotoff_hi(.LCPI0_0)(%s35)
      //     adds.l %s35, %s15, %s35                  ; %s15 is GOT
      // FIXME: use lea.sl %s35, %gotoff_hi(.LCPI0_0)(%s35, %s15)
      SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32,
                                  VEMCExpr::VK_VE_GOTOFF_LO32, DAG);
      SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
      return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
    }
    // Create following instructions for not local linkage PIC code.
    //     lea %s35, %got_lo(.LCPI0_0)
    //     and %s35, %s35, (32)0
    //     lea.sl %s35, %got_hi(.LCPI0_0)(%s35)
    //     adds.l %s35, %s15, %s35                  ; %s15 is GOT
    //     ld     %s35, (,%s35)
    // FIXME: use lea.sl %s35, %gotoff_hi(.LCPI0_0)(%s35, %s15)
    SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32,
                                VEMCExpr::VK_VE_GOT_LO32, DAG);
    SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT);
    SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo);
    return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr,
                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
  }

  // This is one of the absolute code models.
  switch (getTargetMachine().getCodeModel()) {
  default:
    llvm_unreachable("Unsupported absolute code model");
  case CodeModel::Small:
  case CodeModel::Medium:
  case CodeModel::Large:
    // abs64.
    return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG);
  }
}

/// Custom Lower {

SDValue VETargetLowering::LowerGlobalAddress(SDValue Op,
                                             SelectionDAG &DAG) const {
  return makeAddress(Op, DAG);
}

SDValue VETargetLowering::LowerBlockAddress(SDValue Op,
                                            SelectionDAG &DAG) const {
  return makeAddress(Op, DAG);
}

SDValue
VETargetLowering::LowerToTLSGeneralDynamicModel(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc dl(Op);

  // Generate the following code:
  //   t1: ch,glue = callseq_start t0, 0, 0
  //   t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1
  //   t3: ch,glue = callseq_end t2, 0, 0, t2:2
  //   t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1
  SDValue Label = withTargetFlags(Op, 0, DAG);
  EVT PtrVT = Op.getValueType();

  // Lowering the machine isd will make sure everything is in the right
  // location.
  SDValue Chain = DAG.getEntryNode();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
      DAG.getMachineFunction(), CallingConv::C);
  Chain = DAG.getCALLSEQ_START(Chain, 64, 0, dl);
  SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)};
  Chain = DAG.getNode(VEISD::GETTLSADDR, dl, NodeTys, Args);
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, dl, true),
                             DAG.getIntPtrConstant(0, dl, true),
                             Chain.getValue(1), dl);
  Chain = DAG.getCopyFromReg(Chain, dl, VE::SX0, PtrVT, Chain.getValue(1));

  // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls.
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setHasCalls(true);

  // Also generate code to prepare a GOT register if it is PIC.
  if (isPositionIndependent()) {
    MachineFunction &MF = DAG.getMachineFunction();
    Subtarget->getInstrInfo()->getGlobalBaseReg(&MF);
  }

  return Chain;
}

SDValue VETargetLowering::LowerGlobalTLSAddress(SDValue Op,
                                                SelectionDAG &DAG) const {
  // The current implementation of nld (2.26) doesn't allow local exec model
  // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always
  // generate the general dynamic model code sequence.
  //
  // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf
  return LowerToTLSGeneralDynamicModel(Op, DAG);
}

SDValue VETargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Need frame address to find the address of VarArgsFrameIndex.
  MF.getFrameInfo().setFrameAddressIsTaken(true);

  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  SDLoc DL(Op);
  SDValue Offset =
      DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT),
                  DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue VETargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  EVT VT = Node->getValueType(0);
  SDValue InChain = Node->getOperand(0);
  SDValue VAListPtr = Node->getOperand(1);
  EVT PtrVT = VAListPtr.getValueType();
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
  SDLoc DL(Node);
  SDValue VAList =
      DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
  SDValue Chain = VAList.getValue(1);
  SDValue NextPtr;

  if (VT == MVT::f32) {
    // float --> need special handling like below.
    //    0      4
    //    +------+------+
    //    | empty| float|
    //    +------+------+
    // Increment the pointer, VAList, by 8 to the next vaarg.
    NextPtr =
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
    // Then, adjust VAList.
    unsigned InternalOffset = 4;
    VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
                         DAG.getConstant(InternalOffset, DL, PtrVT));
  } else {
    // Increment the pointer, VAList, by 8 to the next vaarg.
    NextPtr =
        DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL));
  }

  // Store the incremented VAList to the legalized pointer.
  InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV));

  // Load the actual argument out of the pointer VAList.
  // We can't count on greater alignment than the word size.
  return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
                     std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8);
}

SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
                                                  SelectionDAG &DAG) const {
  // Generate following code.
  //   (void)__llvm_grow_stack(size);
  //   ret = GETSTACKTOP;        // pseudo instruction
  SDLoc DL(Op);

  // Get the inputs.
  SDNode *Node = Op.getNode();
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  MaybeAlign Alignment(Op.getConstantOperandVal(2));
  EVT VT = Node->getValueType(0);

  // Chain the dynamic stack allocation so that it doesn't modify the stack
  // pointer when other instructions are using the stack.
  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);

  const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
  Align StackAlign = TFI.getStackAlign();
  bool NeedsAlign = Alignment.valueOrOne() > StackAlign;

  // Prepare arguments
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Node = Size;
  Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
  Args.push_back(Entry);
  if (NeedsAlign) {
    Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT);
    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
    Args.push_back(Entry);
  }
  Type *RetTy = Type::getVoidTy(*DAG.getContext());

  EVT PtrVT = Op.getValueType();
  SDValue Callee;
  if (NeedsAlign) {
    Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0);
  } else {
    Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0);
  }

  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(DL)
      .setChain(Chain)
      .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args))
      .setDiscardResult(true);
  std::pair<SDValue, SDValue> pair = LowerCallTo(CLI);
  Chain = pair.second;
  SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain);
  if (NeedsAlign) {
    Result = DAG.getNode(ISD::ADD, DL, VT, Result,
                         DAG.getConstant((Alignment->value() - 1ULL), DL, VT));
    Result = DAG.getNode(ISD::AND, DL, VT, Result,
                         DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT));
  }
  //  Chain = Result.getValue(1);
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
                             DAG.getIntPtrConstant(0, DL, true), SDValue(), DL);

  SDValue Ops[2] = {Result, Chain};
  return DAG.getMergeValues(Ops, DL);
}

SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default:
    llvm_unreachable("Should not custom lower this!");
  case ISD::BlockAddress:
    return LowerBlockAddress(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC:
    return lowerDYNAMIC_STACKALLOC(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress:
    return LowerGlobalTLSAddress(Op, DAG);
  case ISD::VASTART:
    return LowerVASTART(Op, DAG);
  case ISD::VAARG:
    return LowerVAARG(Op, DAG);
  }
}
/// } Custom Lower