SparcInstrInfo.td 68.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the Sparc instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "SparcInstrFormats.td"

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

// True when generating 32-bit code.
def Is32Bit : Predicate<"!Subtarget->is64Bit()">;

// True when generating 64-bit code. This also implies HasV9.
def Is64Bit : Predicate<"Subtarget->is64Bit()">;

def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">,
              AssemblerPredicate<(all_of FeatureSoftMulDiv)>;

// HasV9 - This predicate is true when the target processor supports V9
// instructions.  Note that the machine may be running in 32-bit mode.
def HasV9   : Predicate<"Subtarget->isV9()">,
              AssemblerPredicate<(all_of FeatureV9)>;

// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions.  Use of this is just a hack for the isel not having proper
// costs for V8 instructions that are more expensive than their V9 ones.
def HasNoV9 : Predicate<"!Subtarget->isV9()">;

// HasVIS - This is true when the target processor has VIS extensions.
def HasVIS : Predicate<"Subtarget->isVIS()">,
             AssemblerPredicate<(all_of FeatureVIS)>;
def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
             AssemblerPredicate<(all_of FeatureVIS2)>;
def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
             AssemblerPredicate<(all_of FeatureVIS3)>;

// HasHardQuad - This is true when the target processor supports quad floating
// point instructions.
def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;

// HasLeonCASA - This is true when the target processor supports the CASA
// instruction
def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;

// HasPWRPSR - This is true when the target processor supports partial
// writes to the PSR register that only affects the ET field.
def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">,
                AssemblerPredicate<(all_of FeaturePWRPSR)>;

// HasUMAC_SMAC - This is true when the target processor supports the
// UMAC and SMAC instructions
def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;

def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">;
def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">;

// UseDeprecatedInsts - This predicate is true when the target processor is a
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
// to use when appropriate.  In either of these cases, the instruction selector
// will pick deprecated instructions.
def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;

//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//

def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;

def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;

def LO10 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
                                   MVT::i32);
}]>;

def HI22 : SDNodeXForm<imm, [{
  // Transformation function: shift the immediate value down into the low bits.
  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
                                   MVT::i32);
}]>;

// Return the complement of a HI22 immediate value.
def HI22_not : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N),
                                   MVT::i32);
}]>;

def SETHIimm : PatLeaf<(imm), [{
  return isShiftedUInt<22, 10>(N->getZExtValue());
}], HI22>;

// The N->hasOneUse() prevents the immediate from being instantiated in both
// normal and complement form.
def SETHIimm_not : PatLeaf<(i32 imm), [{
  return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue());
}], HI22_not>;

// Addressing modes.
def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;

// Address operands
def SparcMEMrrAsmOperand : AsmOperandClass {
  let Name = "MEMrr";
  let ParserMethod = "parseMEMOperand";
}

def SparcMEMriAsmOperand : AsmOperandClass {
  let Name = "MEMri";
  let ParserMethod = "parseMEMOperand";
}

def MEMrr : Operand<iPTR> {
  let PrintMethod = "printMemOperand";
  let MIOperandInfo = (ops ptr_rc, ptr_rc);
  let ParserMatchClass = SparcMEMrrAsmOperand;
}
def MEMri : Operand<iPTR> {
  let PrintMethod = "printMemOperand";
  let MIOperandInfo = (ops ptr_rc, i32imm);
  let ParserMatchClass = SparcMEMriAsmOperand;
}

def TLSSym : Operand<iPTR>;

def SparcMembarTagAsmOperand : AsmOperandClass {
  let Name = "MembarTag";
  let ParserMethod = "parseMembarTag";
}

def MembarTag : Operand<i32> {
  let PrintMethod = "printMembarTag";
  let ParserMatchClass = SparcMembarTagAsmOperand;
}

// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT> {
  let EncoderMethod = "getBranchTargetOpValue";
}

def bprtarget : Operand<OtherVT> {
  let EncoderMethod = "getBranchPredTargetOpValue";
}

def bprtarget16 : Operand<OtherVT> {
  let EncoderMethod = "getBranchOnRegTargetOpValue";
}

def calltarget : Operand<i32> {
  let EncoderMethod = "getCallTargetOpValue";
  let DecoderMethod = "DecodeCall";
}

def simm13Op : Operand<i32> {
  let DecoderMethod = "DecodeSIMM13";
}

// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
  def CCOp : Operand<i32>;

def SDTSPcmpicc :
SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
def SDTSPcmpfcc :
SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
def SDTSPbrcc :
SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDTSPselectcc :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
def SDTSPFTOI :
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDTSPITOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
def SDTSPFTOX :
SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
def SDTSPXTOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;

def SDTSPtlsadd :
SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
def SDTSPtlsld :
SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;

def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;

def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;

def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;

def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;

//  These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
                                          SDTCisVT<1, i32> ]>;
def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
                                        SDTCisVT<1, i32> ]>;

def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def call          : SDNode<"SPISD::CALL", SDT_SPCall,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                            SDNPVariadic]>;

def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;

def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                             SDNPVariadic]>;

def getPCX        : Operand<iPTR> {
  let PrintMethod = "printGetPCX";
}

//===----------------------------------------------------------------------===//
// SPARC Flag Conditions
//===----------------------------------------------------------------------===//

// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class ICC_VAL<int N> : PatLeaf<(i32 N)>;
def ICC_NE  : ICC_VAL< 9>;  // Not Equal
def ICC_E   : ICC_VAL< 1>;  // Equal
def ICC_G   : ICC_VAL<10>;  // Greater
def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
def ICC_L   : ICC_VAL< 3>;  // Less
def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
def ICC_POS : ICC_VAL<14>;  // Positive
def ICC_NEG : ICC_VAL< 6>;  // Negative
def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
def ICC_VS  : ICC_VAL< 7>;  // Overflow Set

class FCC_VAL<int N> : PatLeaf<(i32 N)>;
def FCC_U   : FCC_VAL<23>;  // Unordered
def FCC_G   : FCC_VAL<22>;  // Greater
def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
def FCC_L   : FCC_VAL<20>;  // Less
def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
def FCC_LG  : FCC_VAL<18>;  // Less or Greater
def FCC_NE  : FCC_VAL<17>;  // Not Equal
def FCC_E   : FCC_VAL<25>;  // Equal
def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
def FCC_LE  : FCC_VAL<29>;  // Less or Equal
def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
def FCC_O   : FCC_VAL<31>;  // Ordered

class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
def CPCC_3   : CPCC_VAL<39>;  // 3
def CPCC_2   : CPCC_VAL<38>;  // 2
def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
def CPCC_1   : CPCC_VAL<36>;  // 1
def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
def CPCC_0   : CPCC_VAL<41>;  // 0
def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//

/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
                 RegisterClass RC, ValueType Ty, Operand immOp,
                 InstrItinClass itin = IIC_iu_instr> {
  def rr  : F3_1<2, Op3Val,
                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
                 itin>;
  def ri  : F3_2<2, Op3Val,
                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
                 itin>;
}

/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
/// pattern.
multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
  def rr  : F3_1<2, Op3Val,
                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
                 itin>;
  def ri  : F3_2<2, Op3Val,
                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
                 itin>;
}

// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
  def rr  : F3_1<3, Op3Val,
                 (outs RC:$dst), (ins MEMrr:$addr),
                 !strconcat(OpcStr, " [$addr], $dst"),
                 [(set Ty:$dst, (OpNode ADDRrr:$addr))],
                 itin>;
  def ri  : F3_2<3, Op3Val,
                 (outs RC:$dst), (ins MEMri:$addr),
                 !strconcat(OpcStr, " [$addr], $dst"),
                 [(set Ty:$dst, (OpNode ADDRri:$addr))],
                 itin>;
}

// TODO: Instructions of the LoadASI class are currently asm only; hooking up
// CodeGen's address spaces to use these is a future task.
class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
              RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> :
  F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
                !strconcat(OpcStr, "a [$addr] $asi, $dst"),
                []>;

// LoadA multiclass - As above, but also define alternate address space variant
multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
                 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
                 InstrItinClass itin = NoItinerary> :
             Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
  def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
}

// The LDSTUB instruction is supported for asm only.
// It is unlikely that general-purpose code could make use of it.
// CAS is preferred for sparc v9.
def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
                    "ldstub [$addr], $dst", []>;
def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
                    "ldstub [$addr], $dst", []>;
def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
                         (ins MEMrr:$addr, i8imm:$asi),
                         "ldstuba [$addr] $asi, $dst", []>;

// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
  def rr  : F3_1<3, Op3Val,
                 (outs), (ins MEMrr:$addr, RC:$rd),
                 !strconcat(OpcStr, " $rd, [$addr]"),
                 [(OpNode Ty:$rd, ADDRrr:$addr)],
                 itin>;
  def ri  : F3_2<3, Op3Val,
                 (outs), (ins MEMri:$addr, RC:$rd),
                 !strconcat(OpcStr, " $rd, [$addr]"),
                 [(OpNode Ty:$rd, ADDRri:$addr)],
                 itin>;
}

// TODO: Instructions of the StoreASI class are currently asm only; hooking up
// CodeGen's address spaces to use these is a future task.
class StoreASI<string OpcStr, bits<6> Op3Val,
               SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
               InstrItinClass itin = IIC_st> :
  F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
           !strconcat(OpcStr, "a $rd, [$addr] $asi"),
           [],
           itin>;

multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
                  InstrItinClass itin = IIC_st> :
             Store<OpcStr, Op3Val, OpNode, RC, Ty> {
  def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>;
}

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
   : InstSP<outs, ins, asmstr, pattern> {
  let isCodeGenOnly = 1;
  let isPseudo = 1;
}

// GETPCX for PIC
let Defs = [O7] in {
  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
}

let Defs = [O6], Uses = [O6] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                               "!ADJCALLSTACKDOWN $amt1, $amt2",
                               [(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                            "!ADJCALLSTACKUP $amt1",
                            [(callseq_end timm:$amt1, timm:$amt2)]>;
}

let hasSideEffects = 1, mayStore = 1 in {
  let rd = 0, rs1 = 0, rs2 = 0 in
    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
                      "flushw",
                      [(flushw)]>, Requires<[HasV9]>;
  let rd = 8, rs1 = 0, simm13 = 3 in
    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
                   "ta 3",
                   [(flushw)]>;
}

// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
// instruction selection into a branch sequence.  This has to handle all
// permutations of selection between i32/f32/f64 on ICC and FCC.
// Expanded after instruction selection.
let Uses = [ICC], usesCustomInserter = 1 in {
  def SELECT_CC_Int_ICC
   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
            "; SELECT_CC_Int_ICC PSEUDO!",
            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
  def SELECT_CC_FP_ICC
   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_FP_ICC PSEUDO!",
            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;

  def SELECT_CC_DFP_ICC
   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_DFP_ICC PSEUDO!",
            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;

  def SELECT_CC_QFP_ICC
   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_QFP_ICC PSEUDO!",
            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
}

let usesCustomInserter = 1, Uses = [FCC0] in {

  def SELECT_CC_Int_FCC
   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
            "; SELECT_CC_Int_FCC PSEUDO!",
            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;

  def SELECT_CC_FP_FCC
   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_FP_FCC PSEUDO!",
            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
  def SELECT_CC_DFP_FCC
   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_DFP_FCC PSEUDO!",
            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
  def SELECT_CC_QFP_FCC
   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_QFP_FCC PSEUDO!",
            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
}

// Section B.1 - Load Integer Instructions, p. 90
let DecoderMethod = "DecodeLoadInt" in {
  defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
  defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
  defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
  defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
  defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
}

let DecoderMethod = "DecodeLoadIntPair" in
  defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;

// Section B.2 - Load Floating-point Instructions, p. 92
let DecoderMethod = "DecodeLoadFP" in {
  defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
  def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32, IIC_iu_or_fpu_instr>,
                Requires<[HasV9]>;
}
let DecoderMethod = "DecodeLoadDFP" in {
  defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
  def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
                 Requires<[HasV9]>;
}
let DecoderMethod = "DecodeLoadQFP" in
  defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
               Requires<[HasV9, HasHardQuad]>;

let DecoderMethod = "DecodeLoadCP" in
  defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>;
let DecoderMethod = "DecodeLoadCPPair" in
  defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;

let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
  let rd = 0 in {
    def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
                       "ld [$addr], %csr", []>;
    def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
                       "ld [$addr], %csr", []>;
  }
}

let DecoderMethod = "DecodeLoadFP" in
  let Defs = [FSR] in {
    let rd = 0 in {
      def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
      def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
    }
    let rd = 1 in {
      def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
      def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    }
  }

// Section B.4 - Store Integer Instructions, p. 95
let DecoderMethod = "DecodeStoreInt" in {
  defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
  defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
  defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
}

let DecoderMethod = "DecodeStoreIntPair" in
  defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>;

// Section B.5 - Store Floating-point Instructions, p. 97
let DecoderMethod = "DecodeStoreFP" in {
  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
  def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
               Requires<[HasV9]>;
}
let DecoderMethod = "DecodeStoreDFP" in {
  defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
  def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
                Requires<[HasV9]>;
}
let DecoderMethod = "DecodeStoreQFP" in
  defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
               Requires<[HasV9, HasHardQuad]>;

let DecoderMethod = "DecodeStoreCP" in
  defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>;

let DecoderMethod = "DecodeStoreCPPair" in
  defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;

let DecoderMethod = "DecodeStoreCP", rd = 0 in {
  let Defs = [CPSR] in {
    def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
                       "st %csr, [$addr]", [], IIC_st>;
    def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
                       "st %csr, [$addr]", [], IIC_st>;
  }
  let Defs = [CPQ] in {
    def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
                       "std %cq, [$addr]", [], IIC_std>;
    def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
                       "std %cq, [$addr]", [], IIC_std>;
  }
}

let DecoderMethod = "DecodeStoreFP" in {
  let rd = 0 in {
    let Defs = [FSR] in {
      def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
                     "st %fsr, [$addr]", [], IIC_st>;
      def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
                     "st %fsr, [$addr]", [], IIC_st>;
    }
    let Defs = [FQ] in {
      def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
                     "std %fq, [$addr]", [], IIC_std>;
      def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
                     "std %fq, [$addr]", [], IIC_std>;
    }
  }
  let rd = 1, Defs = [FSR] in {
    def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
  }
}

// Section B.8 - SWAP Register with Memory Instruction
// (Atomic swap)
let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
  def SWAPrr : F3_1<3, 0b001111,
                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
                 "swap [$addr], $dst",
                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
  def SWAPri : F3_2<3, 0b001111,
                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
                 "swap [$addr], $dst",
                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
  def SWAPArr : F3_1_asi<3, 0b011111,
                 (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
                 "swapa [$addr] $asi, $dst",
                 [/*FIXME: pattern?*/]>;
}


// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
                 (outs IntRegs:$rd), (ins i32imm:$imm22),
                 "sethi $imm22, $rd",
                 [(set i32:$rd, SETHIimm:$imm22)],
                 IIC_iu_instr>;

// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;

// Section B.11 - Logical Instructions, p. 106
defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;

def ANDNrr  : F3_1<2, 0b000101,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
                   "andn $rs1, $rs2, $rd",
                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
def ANDNri  : F3_2<2, 0b000101,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
                   "andn $rs1, $simm13, $rd", []>;

defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;

def ORNrr   : F3_1<2, 0b000110,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
                   "orn $rs1, $rs2, $rd",
                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
def ORNri   : F3_2<2, 0b000110,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
                   "orn $rs1, $simm13, $rd", []>;
defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;

def XNORrr  : F3_1<2, 0b000111,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
                   "xnor $rs1, $rs2, $rd",
                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
def XNORri  : F3_2<2, 0b000111,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
                   "xnor $rs1, $simm13, $rd", []>;

def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2),
          (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>;

def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2),
          (ORNrr i32:$rs1,  (SETHIi SETHIimm_not:$rs2))>;

let Defs = [ICC] in {
  defm ANDCC  : F3_12np<"andcc",  0b010001>;
  defm ANDNCC : F3_12np<"andncc", 0b010101>;
  defm ORCC   : F3_12np<"orcc",   0b010010>;
  defm ORNCC  : F3_12np<"orncc",  0b010110>;
  defm XORCC  : F3_12np<"xorcc",  0b010011>;
  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
}

// Section B.12 - Shift Instructions, p. 107
defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;

// Section B.13 - Add Instructions, p. 108
defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;

// "LEA" forms of add (patterns to make tblgen happy)
let Predicates = [Is32Bit], isCodeGenOnly = 1 in
  def LEA_ADDri   : F3_2<2, 0b000000,
                     (outs IntRegs:$dst), (ins MEMri:$addr),
                     "add ${addr:arith}, $dst",
                     [(set iPTR:$dst, ADDRri:$addr)]>;

let Defs = [ICC] in
  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;

let Uses = [ICC] in
  defm ADDC   : F3_12np<"addx", 0b001000>;

let Uses = [ICC], Defs = [ICC] in
  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;

// Section B.15 - Subtract Instructions, p. 110
defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
let Uses = [ICC], Defs = [ICC] in
  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;

let Defs = [ICC] in
  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;

let Uses = [ICC] in
  defm SUBC   : F3_12np <"subx", 0b001100>;

// cmp (from Section A.3) is a specialized alias for subcc
let Defs = [ICC], rd = 0 in {
  def CMPrr   : F3_1<2, 0b010100,
                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
                     "cmp $rs1, $rs2",
                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
  def CMPri   : F3_2<2, 0b010100,
                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
                     "cmp $rs1, $simm13",
                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
}

// Section B.18 - Multiply Instructions, p. 113
let Defs = [Y] in {
  defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
  defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
}

let Defs = [Y, ICC] in {
  defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
  defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
}

let Defs = [Y, ICC], Uses = [Y, ICC] in {
  defm MULSCC : F3_12np<"mulscc", 0b100100>;
}

// Section B.19 - Divide Instructions, p. 115
let Uses = [Y], Defs = [Y] in {
  defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
  defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
}

let Uses = [Y], Defs = [Y, ICC] in {
  defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
  defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
}

// Section B.20 - SAVE and RESTORE, p. 117
defm SAVE    : F3_12np<"save"   , 0b111100>;
defm RESTORE : F3_12np<"restore", 0b111101>;

// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119

// unconditional branch class.
class BranchAlways<dag ins, string asmstr, list<dag> pattern>
  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
  let isBranch     = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let isBarrier    = 1;
}

let cond = 8 in
  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;


let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {

// conditional branch class:
class BranchSP<dag ins, string asmstr, list<dag> pattern>
 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;

// conditional branch with annul class:
class BranchSPA<dag ins, string asmstr, list<dag> pattern>
 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;

// Conditional branch class on %icc|%xcc with predication:
multiclass IPredBranch<string regstr, list<dag> CCPattern> {
  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
                   CCPattern,
                   IIC_iu_instr>;
  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
                   [],
                   IIC_iu_instr>;
  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
                   [],
                   IIC_iu_instr>;
  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
                   [],
                   IIC_iu_instr>;
}

} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1


// Indirect branch instructions.
let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
  def BINDrr  : F3_1<2, 0b111000,
                   (outs), (ins MEMrr:$ptr),
                   "jmp $ptr",
                   [(brind ADDRrr:$ptr)]>;
  def BINDri  : F3_2<2, 0b111000,
                   (outs), (ins MEMri:$ptr),
                   "jmp $ptr",
                   [(brind ADDRri:$ptr)]>;
}

let Uses = [ICC] in {
  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
                         "b$cond $imm22",
                        [(SPbricc bb:$imm22, imm:$cond)]>;
  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
                         "b$cond,a $imm22", []>;

  let Predicates = [HasV9], cc = 0b00 in
    defm BPI : IPredBranch<"%icc", []>;
}

// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121

let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {

// floating-point conditional branch class:
class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;

// floating-point conditional branch with annul class:
class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;

// Conditional branch class on %fcc0-%fcc3 with predication:
multiclass FPredBranch {
  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
                                         FCCRegs:$cc),
                  "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
                                         FCCRegs:$cc),
                  "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
                                         FCCRegs:$cc),
                  "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
                                         FCCRegs:$cc),
                  "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
}
} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1

let Uses = [FCC0] in {
  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
                              "fb$cond $imm22",
                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
                             "fb$cond,a $imm22", []>;
}

let Predicates = [HasV9] in
  defm BPF : FPredBranch;

// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {

// co-processor conditional branch class:
class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;

// co-processor conditional branch with annul class:
class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;

} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1

def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
                          "cb$cond $imm22",
                          [(SPbrfcc bb:$imm22, imm:$cond)]>;
def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
                           "cb$cond,a $imm22", []>;

// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O6],
    hasDelaySlot = 1, isCall = 1 in {
  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
                    "call $disp",
                    [],
                    IIC_jmp_or_call> {
    bits<30> disp;
    let op = 1;
    let Inst{29-0} = disp;
  }

  // indirect calls: special cases of JMPL.
  let isCodeGenOnly = 1, rd = 15 in {
    def CALLrr : F3_1<2, 0b111000,
                      (outs), (ins MEMrr:$ptr, variable_ops),
                      "call $ptr",
                      [(call ADDRrr:$ptr)],
                      IIC_jmp_or_call>;
    def CALLri : F3_2<2, 0b111000,
                      (outs), (ins MEMri:$ptr, variable_ops),
                      "call $ptr",
                      [(call ADDRri:$ptr)],
                      IIC_jmp_or_call>;
  }
}

// Section B.25 - Jump and Link Instruction

// JMPL Instruction.
let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    DecoderMethod = "DecodeJMPL" in {
  def JMPLrr: F3_1<2, 0b111000,
                   (outs IntRegs:$dst), (ins MEMrr:$addr),
                   "jmpl $addr, $dst",
                   [],
                   IIC_jmp_or_call>;
  def JMPLri: F3_2<2, 0b111000,
                   (outs IntRegs:$dst), (ins MEMri:$addr),
                   "jmpl $addr, $dst",
                   [],
                   IIC_jmp_or_call>;
}

// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    isCodeGenOnly = 1 in {
  let rd = 0, rs1 = 15 in
    def RETL: F3_2<2, 0b111000,
                   (outs), (ins i32imm:$val),
                   "jmp %o7+$val",
                   [(retflag simm13:$val)],
                   IIC_jmp_or_call>;

  let rd = 0, rs1 = 31 in
    def RET: F3_2<2, 0b111000,
                  (outs), (ins i32imm:$val),
                  "jmp %i7+$val",
                  [],
                  IIC_jmp_or_call>;
}

// Section B.26 - Return from Trap Instruction
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
  def RETTrr : F3_1<2, 0b111001,
                   (outs), (ins MEMrr:$addr),
                   "rett $addr",
                   [],
                   IIC_jmp_or_call>;
  def RETTri : F3_2<2, 0b111001,
                    (outs), (ins MEMri:$addr),
                    "rett $addr",
                    [],
                    IIC_jmp_or_call>;
}


// Section B.27 - Trap on Integer Condition Codes Instruction
// conditional branch class:
let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
{
  def TRAPrr : TRAPSPrr<0b111010,
                        (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
                        "t$cond $rs1 + $rs2",
                        []>;
  def TRAPri : TRAPSPri<0b111010,
                        (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
                        "t$cond $rs1 + $imm",
                        []>;
}

multiclass TRAP<string regStr> {
  def rr : TRAPSPrr<0b111010,
                    (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
                    []>;
  def ri : TRAPSPri<0b111010,
                    (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
                    []>;
}

let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
  defm TICC : TRAP<"%icc">;


let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;

let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in
  def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>;

// Section B.28 - Read State Register Instructions
let rs2 = 0 in
  def RDASR : F3_1<2, 0b101000,
                 (outs IntRegs:$rd), (ins ASRRegs:$rs1),
                 "rd $rs1, $rd", []>;

// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
let Predicates = [HasNoV9] in {
  let rs2 = 0, rs1 = 0, Uses=[PSR] in
    def RDPSR : F3_1<2, 0b101001,
		     (outs IntRegs:$rd), (ins),
		     "rd %psr, $rd", []>;

  let rs2 = 0, rs1 = 0, Uses=[WIM] in
    def RDWIM : F3_1<2, 0b101010,
		     (outs IntRegs:$rd), (ins),
		     "rd %wim, $rd", []>;

  let rs2 = 0, rs1 = 0, Uses=[TBR] in
    def RDTBR : F3_1<2, 0b101011,
		     (outs IntRegs:$rd), (ins),
		     "rd %tbr, $rd", []>;
}

// Section B.29 - Write State Register Instructions
def WRASRrr : F3_1<2, 0b110000,
                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
                 "wr $rs1, $rs2, $rd", []>;
def WRASRri : F3_2<2, 0b110000,
                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
                 "wr $rs1, $simm13, $rd", []>;

// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
let Predicates = [HasNoV9] in {
  let Defs = [PSR], rd=0 in {
    def WRPSRrr : F3_1<2, 0b110001,
		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
		     "wr $rs1, $rs2, %psr", []>;
    def WRPSRri : F3_2<2, 0b110001,
		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
		     "wr $rs1, $simm13, %psr", []>;
  }

  let Defs = [WIM], rd=0 in {
    def WRWIMrr : F3_1<2, 0b110010,
		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
		     "wr $rs1, $rs2, %wim", []>;
    def WRWIMri : F3_2<2, 0b110010,
		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
		     "wr $rs1, $simm13, %wim", []>;
  }

  let Defs = [TBR], rd=0 in {
    def WRTBRrr : F3_1<2, 0b110011,
		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
		     "wr $rs1, $rs2, %tbr", []>;
    def WRTBRri : F3_2<2, 0b110011,
		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
		     "wr $rs1, $simm13, %tbr", []>;
  }
}

// Section B.30 - STBAR Instruction
let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;


// Section B.31 - Unimplemented Instruction
let rd = 0 in
  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
                  "unimp $imm22", []>;

// Section B.32 - Flush Instruction Memory
let rd = 0 in {
  def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
                       "flush $addr", []>;
  def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
                       "flush $addr", []>;

  // The no-arg FLUSH is only here for the benefit of the InstAlias
  // "flush", which cannot seem to use FLUSHrr, due to the inability
  // to construct a MEMrr with fixed G0 registers.
  let rs1 = 0, rs2 = 0 in
    def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
}

// Section B.33 - Floating-point Operate (FPop) Instructions

// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3u<2, 0b110100, 0b011000100,
                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
                 "fitos $rs2, $rd",
                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
                 IIC_fpu_fast_instr>;
def FITOD : F3_3u<2, 0b110100, 0b011001000,
                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
                 "fitod $rs2, $rd",
                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
                 IIC_fpu_fast_instr>;
def FITOQ : F3_3u<2, 0b110100, 0b011001100,
                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
                 "fitoq $rs2, $rd",
                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
                 Requires<[HasHardQuad]>;

// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3u<2, 0b110100, 0b011010001,
                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
                 "fstoi $rs2, $rd",
                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
                 IIC_fpu_fast_instr>;
def FDTOI : F3_3u<2, 0b110100, 0b011010010,
                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
                 "fdtoi $rs2, $rd",
                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
                 IIC_fpu_fast_instr>;
def FQTOI : F3_3u<2, 0b110100, 0b011010011,
                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
                 "fqtoi $rs2, $rd",
                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
                 Requires<[HasHardQuad]>;

// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3u<2, 0b110100, 0b011001001,
                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
                 "fstod $rs2, $rd",
                 [(set f64:$rd, (fpextend f32:$rs2))],
                 IIC_fpu_stod>;
def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
                 "fstoq $rs2, $rd",
                 [(set f128:$rd, (fpextend f32:$rs2))]>,
                 Requires<[HasHardQuad]>;
def FDTOS : F3_3u<2, 0b110100, 0b011000110,
                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
                 "fdtos $rs2, $rd",
                 [(set f32:$rd, (fpround f64:$rs2))],
                 IIC_fpu_fast_instr>;
def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
                 "fdtoq $rs2, $rd",
                 [(set f128:$rd, (fpextend f64:$rs2))]>,
                 Requires<[HasHardQuad]>;
def FQTOS : F3_3u<2, 0b110100, 0b011000111,
                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
                 "fqtos $rs2, $rd",
                 [(set f32:$rd, (fpround f128:$rs2))]>,
                 Requires<[HasHardQuad]>;
def FQTOD : F3_3u<2, 0b110100, 0b011001011,
                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
                 "fqtod $rs2, $rd",
                 [(set f64:$rd, (fpround f128:$rs2))]>,
                 Requires<[HasHardQuad]>;

// Floating-point Move Instructions, p. 144
def FMOVS : F3_3u<2, 0b110100, 0b000000001,
                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
                 "fmovs $rs2, $rd", []>;
def FNEGS : F3_3u<2, 0b110100, 0b000000101,
                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
                 "fnegs $rs2, $rd",
                 [(set f32:$rd, (fneg f32:$rs2))],
                 IIC_fpu_negs>;
def FABSS : F3_3u<2, 0b110100, 0b000001001,
                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
                 "fabss $rs2, $rd",
                 [(set f32:$rd, (fabs f32:$rs2))],
                 IIC_fpu_abs>;


// Floating-point Square Root Instructions, p.145
// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
// this will be promoted to use FSQRTD with doubles instead.
let Predicates = [HasNoFdivSqrtFix] in
def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
                  "fsqrts $rs2, $rd",
                  [(set f32:$rd, (fsqrt f32:$rs2))],
                  IIC_fpu_sqrts>;
def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                  "fsqrtd $rs2, $rd",
                  [(set f64:$rd, (fsqrt f64:$rs2))],
                  IIC_fpu_sqrtd>;
def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
                  "fsqrtq $rs2, $rd",
                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
                  Requires<[HasHardQuad]>;



// Floating-point Add and Subtract Instructions, p. 146
def FADDS  : F3_3<2, 0b110100, 0b001000001,
                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
                  "fadds $rs1, $rs2, $rd",
                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
                  IIC_fpu_fast_instr>;
def FADDD  : F3_3<2, 0b110100, 0b001000010,
                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                  "faddd $rs1, $rs2, $rd",
                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
                  IIC_fpu_fast_instr>;
def FADDQ  : F3_3<2, 0b110100, 0b001000011,
                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                  "faddq $rs1, $rs2, $rd",
                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
                  Requires<[HasHardQuad]>;

def FSUBS  : F3_3<2, 0b110100, 0b001000101,
                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
                  "fsubs $rs1, $rs2, $rd",
                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
                  IIC_fpu_fast_instr>;
def FSUBD  : F3_3<2, 0b110100, 0b001000110,
                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                  "fsubd $rs1, $rs2, $rd",
                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
                  IIC_fpu_fast_instr>;
def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                  "fsubq $rs1, $rs2, $rd",
                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
                  Requires<[HasHardQuad]>;


// Floating-point Multiply and Divide Instructions, p. 147
def FMULS  : F3_3<2, 0b110100, 0b001001001,
                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
                  "fmuls $rs1, $rs2, $rd",
                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
                  IIC_fpu_muls>,
		  Requires<[HasFMULS]>;
def FMULD  : F3_3<2, 0b110100, 0b001001010,
                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                  "fmuld $rs1, $rs2, $rd",
                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
                  IIC_fpu_muld>;
def FMULQ  : F3_3<2, 0b110100, 0b001001011,
                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                  "fmulq $rs1, $rs2, $rd",
                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
                  Requires<[HasHardQuad]>;

def FSMULD : F3_3<2, 0b110100, 0b001101001,
                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
                  "fsmuld $rs1, $rs2, $rd",
                  [(set f64:$rd, (fmul (fpextend f32:$rs1),
                                        (fpextend f32:$rs2)))],
                  IIC_fpu_muld>,
		  Requires<[HasFSMULD]>;
def FDMULQ : F3_3<2, 0b110100, 0b001101110,
                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                  "fdmulq $rs1, $rs2, $rd",
                  [(set f128:$rd, (fmul (fpextend f64:$rs1),
                                         (fpextend f64:$rs2)))]>,
                  Requires<[HasHardQuad]>;

// FDIVS generates an erratum on LEON processors, so by disabling this instruction
// this will be promoted to use FDIVD with doubles instead.
def FDIVS  : F3_3<2, 0b110100, 0b001001101,
                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
                 "fdivs $rs1, $rs2, $rd",
                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
                 IIC_fpu_divs>;
def FDIVD  : F3_3<2, 0b110100, 0b001001110,
                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                 "fdivd $rs1, $rs2, $rd",
                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
                 IIC_fpu_divd>;
def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                 "fdivq $rs1, $rs2, $rd",
                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
                 Requires<[HasHardQuad]>;

// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock in Sparc V8.
// This behavior is modeled with a forced noop after the instruction in
// DelaySlotFiller.

let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
                   "fcmps $rs1, $rs2",
                   [(SPcmpfcc f32:$rs1, f32:$rs2)],
                   IIC_fpu_fast_instr>;
  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                   "fcmpd $rs1, $rs2",
                   [(SPcmpfcc f64:$rs1, f64:$rs2)],
                   IIC_fpu_fast_instr>;
  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                   "fcmpq $rs1, $rs2",
                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
                   Requires<[HasHardQuad]>;
}

//===----------------------------------------------------------------------===//
// Instructions for Thread Local Storage(TLS).
//===----------------------------------------------------------------------===//
let isAsmParserOnly = 1 in {
def TLS_ADDrr : F3_1<2, 0b000000,
                    (outs IntRegs:$rd),
                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
                    "add $rs1, $rs2, $rd, $sym",
                    [(set i32:$rd,
                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;

let mayLoad = 1 in
  def TLS_LDrr : F3_1<3, 0b000000,
                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
                      "ld [$addr], $dst, $sym",
                      [(set i32:$dst,
                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;

let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
  def TLS_CALL : InstSP<(outs),
                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
                        "call $disp, $sym",
                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
                        IIC_jmp_or_call> {
  bits<30> disp;
  let op = 1;
  let Inst{29-0} = disp;
}
}

//===----------------------------------------------------------------------===//
// V9 Instructions
//===----------------------------------------------------------------------===//

// V9 Conditional Moves.
let Predicates = [HasV9], Constraints = "$f = $rd" in {
  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
  let Uses = [ICC], intcc = 1, cc = 0b00 in {
    def MOVICCrr
      : F4_1<0b101100, (outs IntRegs:$rd),
             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
             "mov$cond %icc, $rs2, $rd",
             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;

    def MOVICCri
      : F4_2<0b101100, (outs IntRegs:$rd),
             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
             "mov$cond %icc, $simm11, $rd",
             [(set i32:$rd,
                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
  }

  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
    def MOVFCCrr
      : F4_1<0b101100, (outs IntRegs:$rd),
             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
             "mov$cond %fcc0, $rs2, $rd",
             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
    def MOVFCCri
      : F4_2<0b101100, (outs IntRegs:$rd),
             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
             "mov$cond %fcc0, $simm11, $rd",
             [(set i32:$rd,
                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
  }

  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
    def FMOVS_ICC
      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
             "fmovs$cond %icc, $rs2, $rd",
             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
    def FMOVD_ICC
      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
               "fmovd$cond %icc, $rs2, $rd",
               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
    def FMOVQ_ICC
      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
               "fmovq$cond %icc, $rs2, $rd",
               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
               Requires<[HasHardQuad]>;
  }

  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
    def FMOVS_FCC
      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
             "fmovs$cond %fcc0, $rs2, $rd",
             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
    def FMOVD_FCC
      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
             "fmovd$cond %fcc0, $rs2, $rd",
             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
    def FMOVQ_FCC
      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
             "fmovq$cond %fcc0, $rs2, $rd",
             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
             Requires<[HasHardQuad]>;
  }

}

// Floating-Point Move Instructions, p. 164 of the V9 manual.
let Predicates = [HasV9] in {
  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                   "fmovd $rs2, $rd", []>;
  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
                   "fmovq $rs2, $rd", []>,
                   Requires<[HasHardQuad]>;
  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                   "fnegd $rs2, $rd",
                   [(set f64:$rd, (fneg f64:$rs2))]>;
  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
                   "fnegq $rs2, $rd",
                   [(set f128:$rd, (fneg f128:$rs2))]>,
                   Requires<[HasHardQuad]>;
  def FABSD : F3_3u<2, 0b110100, 0b000001010,
                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
                   "fabsd $rs2, $rd",
                   [(set f64:$rd, (fabs f64:$rs2))]>;
  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
                   "fabsq $rs2, $rd",
                   [(set f128:$rd, (fabs f128:$rs2))]>,
                   Requires<[HasHardQuad]>;
}

// Floating-point compare instruction with %fcc0-%fcc3.
def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
               "fcmps $rd, $rs1, $rs2", []>;
def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                "fcmpd $rd, $rs1, $rs2", []>;
def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                "fcmpq $rd, $rs1, $rs2", []>,
                 Requires<[HasHardQuad]>;

let hasSideEffects = 1 in {
  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
                   "fcmpes $rd, $rs1, $rs2", []>;
  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
                   "fcmped $rd, $rs1, $rs2", []>;
  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
                   "fcmpeq $rd, $rs1, $rs2", []>,
                   Requires<[HasHardQuad]>;
}

// Floating point conditional move instrucitons with %fcc0-%fcc3.
let Predicates = [HasV9] in {
  let Constraints = "$f = $rd", intcc = 0 in {
    def V9MOVFCCrr
      : F4_1<0b101100, (outs IntRegs:$rd),
             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
             "mov$cond $cc, $rs2, $rd", []>;
    def V9MOVFCCri
      : F4_2<0b101100, (outs IntRegs:$rd),
             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
             "mov$cond $cc, $simm11, $rd", []>;
    def V9FMOVS_FCC
      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
             "fmovs$cond $opf_cc, $rs2, $rd", []>;
    def V9FMOVD_FCC
      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
             "fmovd$cond $opf_cc, $rs2, $rd", []>;
    def V9FMOVQ_FCC
      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
             "fmovq$cond $opf_cc, $rs2, $rd", []>,
             Requires<[HasHardQuad]>;
  } // Constraints = "$f = $rd", ...
} // let Predicates = [hasV9]


// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
let rs1 = 0 in
  def POPCrr : F3_1<2, 0b101110,
                    (outs IntRegs:$rd), (ins IntRegs:$rs2),
                    "popc $rs2, $rd", []>, Requires<[HasV9]>;
def : Pat<(i32 (ctpop i32:$src)),
          (POPCrr (SRLri $src, 0))>;

let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13),
                    "membar $simm13", []>;

// The CAS instruction, unlike other instructions, only comes in a
// form which requires an ASI be provided. The ASI value hardcoded
// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
  def CASrr: F3_1_asi<3, 0b111100,
                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
                                     IntRegs:$swap),
                 "cas [$rs1], $rs2, $rd",
                 [(set i32:$rd,
                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;


// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
// This version can be automatically lowered from C code, selecting ASI 10
let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
  def CASAasi10: F3_1_asi<3, 0b111100,
                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
                                     IntRegs:$swap),
                 "casa [$rs1] 10, $rs2, $rd",
                 [(set i32:$rd,
                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;

// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
// CASrr, above, but with a different ASI. This version is supported for
// inline assembly lowering only.
let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
  def CASArr: F3_1_asi<3, 0b111100,
                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
                                     IntRegs:$swap, i8imm:$asi),
                 "casa [$rs1] $asi, $rs2, $rd", []>;

// TODO: Add DAG sequence to lower these instructions. Currently, only provided
// as inline assembler-supported instructions.
let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
  def SMACrr :  F3_1<2, 0b111111,
                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
                   "smac $rs1, $rs2, $rd",
                   [], IIC_smac_umac>;

  def SMACri :  F3_2<2, 0b111111,
                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
                   "smac $rs1, $simm13, $rd",
                   [], IIC_smac_umac>;

  def UMACrr :  F3_1<2, 0b111110,
                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
                   "umac $rs1, $rs2, $rd",
                   [], IIC_smac_umac>;

  def UMACri :  F3_2<2, 0b111110,
                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
                   "umac $rs1, $simm13, $rd",
                   [], IIC_smac_umac>;
}

// The partial write WRPSR instruction has a non-zero destination
// register value to separate it from the standard instruction.
let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in {
  def PWRPSRrr : F3_1<2, 0b110001,
     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
     "pwr $rs1, $rs2, %psr", []>;
  def PWRPSRri : F3_2<2, 0b110001,
     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
     "pwr $rs1, $simm13, %psr", []>;
}

let Defs = [ICC] in {
defm TADDCC   : F3_12np<"taddcc",   0b100000>;
defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;

let hasSideEffects = 1 in {
  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
}
}


// Section A.43 - Read Privileged Register Instructions
let Predicates = [HasV9] in {
let rs2 = 0 in
  def RDPR : F3_1<2, 0b101010,
                 (outs IntRegs:$rd), (ins PRRegs:$rs1),
                 "rdpr $rs1, $rd", []>;
}

// Section A.62 - Write Privileged Register Instructions
let Predicates = [HasV9] in {
  def WRPRrr : F3_1<2, 0b110010,
                   (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
                   "wrpr $rs1, $rs2, $rd", []>;
  def WRPRri : F3_2<2, 0b110010,
                   (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
                   "wrpr $rs1, $simm13, $rd", []>;
}

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// Zero immediate.
def : Pat<(i32 0),
          (ORrr (i32 G0), (i32 G0))>;
// Small immediates.
def : Pat<(i32 simm13:$val),
          (ORri (i32 G0), imm:$val)>;
// Arbitrary immediates.
def : Pat<(i32 imm:$val),
          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;


// Global addresses, constant pool entries
let Predicates = [Is32Bit] in {

def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;

// GlobalTLS addresses
def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;

// Blockaddress
def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;

// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
                        (ADDri $r, tblockaddress:$in)>;
}

// Calls:
def : Pat<(call tglobaladdr:$dst),
          (CALL tglobaladdr:$dst)>;
def : Pat<(call texternalsym:$dst),
          (CALL texternalsym:$dst)>;

// Map integer extload's to zextloads.
def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;

// zextload bool -> zextload byte
def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;

// store 0, addr -> store %g0, addr
def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;

// store bar for all atomic_fence in V8.
let Predicates = [HasNoV9] in
  def : Pat<(atomic_fence timm, timm), (STBAR)>;

let Predicates = [HasV9] in
  def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>;

// atomic_load addr -> load addr
def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;

// atomic_store val, addr -> store val, addr
def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;

// extract_vector
def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;

// build_vector
def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
          (INSERT_SUBREG
	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
            (i32 IntRegs:$a2), sub_odd)>;


include "SparcInstr64Bit.td"
include "SparcInstrVIS.td"
include "SparcInstrAliases.td"