RISCVInstrInfoV.td 36.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
//===-- RISCVInstrInfoV.td - RISC-V 'V' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file describes the RISC-V instructions from the standard 'V' Vector
/// extension, version 0.8.
/// This version is still experimental as the 'V' extension hasn't been
/// ratified yet.
///
//===----------------------------------------------------------------------===//

include "RISCVInstrFormatsV.td"

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

def VTypeIAsmOperand : AsmOperandClass {
  let Name = "VTypeI";
  let ParserMethod = "parseVTypeI";
  let DiagnosticType = "InvalidVTypeI";
}

def VTypeIOp : Operand<XLenVT> {
  let ParserMatchClass = VTypeIAsmOperand;
  let PrintMethod = "printVTypeI";
  let DecoderMethod = "decodeUImmOperand<11>";
}

def VRegAsmOperand : AsmOperandClass {
  let Name = "RVVRegOpOperand";
  let RenderMethod = "addRegOperands";
  let PredicateMethod = "isReg";
  let ParserMethod = "parseRegister";
}

def VRegOp : RegisterOperand<VR> {
  let ParserMatchClass = VRegAsmOperand;
  let PrintMethod = "printOperand";
}

def VMaskAsmOperand : AsmOperandClass {
  let Name = "RVVMaskRegOpOperand";
  let RenderMethod = "addRegOperands";
  let PredicateMethod = "isV0Reg";
  let ParserMethod = "parseMaskReg";
  let IsOptional = 1;
  let DefaultMethod = "defaultMaskRegOp";
  let DiagnosticType = "InvalidVMaskRegister";
}

def VMaskOp : RegisterOperand<VMV0> {
  let ParserMatchClass = VMaskAsmOperand;
  let PrintMethod = "printVMaskReg";
  let EncoderMethod = "getVMaskReg";
  let DecoderMethod = "decodeVMaskReg";
}

def simm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<5>(Imm);}]> {
  let ParserMatchClass = SImmAsmOperand<5>;
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeSImmOperand<5>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<5>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

def SImm5Plus1AsmOperand : AsmOperandClass {
  let Name = "SImm5Plus1";
  let RenderMethod = "addSImm5Plus1Operands";
  let DiagnosticType = "InvalidSImm5Plus1";
}

def simm5_plus1 : Operand<XLenVT>, ImmLeaf<XLenVT,
                                           [{return isInt<5>(Imm - 1);}]> {
  let ParserMatchClass = SImm5Plus1AsmOperand;
  let PrintMethod = "printSImm5Plus1";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<5>(Imm - 1);
    return MCOp.isBareSymbolRef();
  }];
}

//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
// load vd, (rs1), vm
class VUnitStrideLoad<RISCVMOP mop, RISCVLSUMOP lumop, RISCVWidth width,
                        string opcodestr>
    : RVInstVLU<0b000, mop, lumop, width, (outs VRegOp:$vd),
                (ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;

// load vd, (rs1), rs2, vm
class VStridedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVLS<0b000, mop, width, (outs VRegOp:$vd),
                (ins GPR:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
                "$vd, (${rs1}), $rs2$vm">;

// load vd, (rs1), vs2, vm
class VIndexedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVLX<0b000, mop, width, (outs VRegOp:$vd),
                (ins GPR:$rs1, VRegOp:$vs2, VMaskOp:$vm), opcodestr,
                "$vd, (${rs1}), $vs2$vm">;

// vl<nf>r.v vd, (rs1)
class VWholeLoad<bits<3> nf, string opcodestr>
    : RVInstVLU<nf, MOPLDUnitStrideU, LUMOPUnitStrideWholeReg,
                LSWidthVSEW, (outs VRegOp:$vd), (ins GPR:$rs1),
                opcodestr, "$vd, (${rs1})"> {
  let vm = 1;
  let Uses = [];
}
} // hasSideEffects = 0, mayLoad = 1, mayStore = 0

let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
// store vd, vs3, (rs1), vm
class VUnitStrideStore<RISCVMOP mop, RISCVLSUMOP sumop, RISCVWidth width,
                         string opcodestr>
    : RVInstVSU<0b000, mop, sumop, width, (outs),
                (ins VRegOp:$vs3, GPR:$rs1, VMaskOp:$vm), opcodestr,
                "$vs3, (${rs1})$vm">;

// store vd, vs3, (rs1), rs2, vm
class VStridedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVSS<0b000, mop, width, (outs),
                (ins VRegOp:$vs3, GPR:$rs1, GPR:$rs2, VMaskOp:$vm),
                opcodestr, "$vs3, (${rs1}), $rs2$vm">;

// store vd, vs3, (rs1), vs2, vm
class VIndexedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVSX<0b000, mop, width, (outs),
                (ins VRegOp:$vs3, GPR:$rs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vs3, (${rs1}), $vs2$vm">;

// vs<nf>r.v vd, (rs1)
class VWholeStore<bits<3> nf, string opcodestr>
    : RVInstVSU<nf, MOPSTUnitStride, SUMOPUnitStrideWholeReg,
                LSWidthVSEW, (outs), (ins VRegOp:$vs3, GPR:$rs1),
                opcodestr, "$vs3, (${rs1})"> {
  let vm = 1;
  let Uses = [];
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 1

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// op vd, vs2, vs1, vm
class VALUVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, VRegOp:$vs1, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $vs1$vm">;

// op vd, vs2, vs1, v0 (without mask, use v0 as carry input)
class VALUmVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, VRegOp:$vs1, VMV0:$v0),
                opcodestr, "$vd, $vs2, $vs1, v0"> {
  let vm = 0;
}

// op vd, vs1, vs2, vm (reverse the order of vs1 and vs2)
class VALUrVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vd, $vs1, $vs2$vm">;

// op vd, vs1, vs2
class VALUVVNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
               (ins VRegOp:$vs2, VRegOp:$vs1),
               opcodestr, "$vd, $vs2, $vs1"> {
  let vm = 1;
}

// op vd, vs2, rs1, vm
class VALUVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, GPR:$rs1, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $rs1$vm">;

// op vd, vs2, rs1, v0 (without mask, use v0 as carry input)
class VALUmVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, GPR:$rs1, VMV0:$v0),
                opcodestr, "$vd, $vs2, $rs1, v0"> {
  let vm = 0;
}

// op vd, rs1, vs2, vm (reverse the order of rs1 and vs2)
class VALUrVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins GPR:$rs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vd, $rs1, $vs2$vm">;

// op vd, vs1, vs2
class VALUVXNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
               (ins VRegOp:$vs2, GPR:$rs1),
               opcodestr, "$vd, $vs2, $rs1"> {
  let vm = 1;
}

// op vd, vs2, imm, vm
class VALUVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
    : RVInstIVI<funct6, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, optype:$imm, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $imm$vm">;

// op vd, vs2, imm, v0 (without mask, use v0 as carry input)
class VALUmVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
    : RVInstIVI<funct6, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, optype:$imm, VMV0:$v0),
                opcodestr, "$vd, $vs2, $imm, v0"> {
  let vm = 0;
}

// op vd, vs2, imm, vm
class VALUVINoVm<bits<6> funct6, string opcodestr, Operand optype = simm5>
    : RVInstIVI<funct6, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, optype:$imm),
                opcodestr, "$vd, $vs2, $imm"> {
  let vm = 1;
}

// op vd, vs2, rs1, vm (Float)
class VALUVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, FPR32:$rs1, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $rs1$vm">;

// op vd, rs1, vs2, vm (Float) (with mask, reverse the order of rs1 and vs2)
class VALUrVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins FPR32:$rs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vd, $rs1, $vs2$vm">;

// op vd, vs2, vm (use vs1 as instruction encoding)
class VALUVs2<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
    : RVInstV<funct6, vs1, opv, (outs VRegOp:$vd),
               (ins VRegOp:$vs2, VMaskOp:$vm),
               opcodestr, "$vd, $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

//===----------------------------------------------------------------------===//
// Combination of instruction classes.
// Use these multiclasses to define instructions more easily.
//===----------------------------------------------------------------------===//
multiclass VALU_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">;
  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>;
}

multiclass VALU_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">;
  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
}

multiclass VALUr_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUrVV<funct6, OPIVV, opcodestr # "." # vw # "v">;
  def X : VALUrVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>;
}

multiclass VALU_IV_V<string opcodestr, bits<6> funct6> {
  def _VS  : VALUVV<funct6, OPIVV, opcodestr # ".vs">;
}

multiclass VALUr_IV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def X : VALUrVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">;
  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_MV_V<string opcodestr, bits<6> funct6> {
  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">;
}

multiclass VALU_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
  def M : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">;
}

multiclass VALU_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALUr_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUrVV<funct6, OPMVV, opcodestr # "." # vw # "v">;
  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALUr_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_MV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>;
}

multiclass VALUm_IV_V_X_I<string opcodestr, bits<6> funct6> {
  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">;
  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">;
  def IM : VALUmVI<funct6, opcodestr # ".vim">;
}

multiclass VALUm_IV_V_X<string opcodestr, bits<6> funct6> {
  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">;
  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">;
}

multiclass VALUNoVm_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5> {
  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">;
  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">;
  def I : VALUVINoVm<funct6, opcodestr # ".vi", optype>;
}

multiclass VALUNoVm_IV_V_X<string opcodestr, bits<6> funct6> {
  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">;
  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">;
}

multiclass VALU_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">;
  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">;
}

multiclass VALU_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">;
}

multiclass VALUr_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUrVV<funct6, OPFVV, opcodestr # "." # vw # "v">;
  def F : VALUrVF<funct6, OPFVF, opcodestr # "." # vw # "f">;
}

multiclass VALU_FV_V<string opcodestr, bits<6> funct6> {
  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">;
}

multiclass VALU_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>;
}

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtV] in {
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def VSETVLI : RVInstSetVLi<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei),
                           "vsetvli", "$rd, $rs1, $vtypei">;

def VSETVL : RVInstSetVL<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
                         "vsetvl", "$rd, $rs1, $rs2">;
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0

// Vector Unit-Stride Instructions
def VLB_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStride, LSWidthVByte, "vlb.v">;
def VLH_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStride, LSWidthVHalf, "vlh.v">;
def VLW_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStride, LSWidthVWord, "vlw.v">;

def VLBU_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVByte, "vlbu.v">;
def VLHU_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVHalf, "vlhu.v">;
def VLWU_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVWord, "vlwu.v">;

def VLE_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVSEW, "vle.v">;

def VLBFF_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStrideFF, LSWidthVByte, "vlbff.v">;
def VLHFF_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStrideFF, LSWidthVHalf, "vlhff.v">;
def VLWFF_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStrideFF, LSWidthVWord, "vlwff.v">;

def VLBUFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVByte, "vlbuff.v">;
def VLHUFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVHalf, "vlhuff.v">;
def VLWUFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVWord, "vlwuff.v">;

def VLEFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVSEW, "vleff.v">;

def VSB_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVByte, "vsb.v">;
def VSH_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVHalf, "vsh.v">;
def VSW_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVWord, "vsw.v">;

def VSE_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVSEW, "vse.v">;

// Vector Strided Instructions
def VLSB_V : VStridedLoad<MOPLDStridedS, LSWidthVByte, "vlsb.v">;
def VLSH_V : VStridedLoad<MOPLDStridedS, LSWidthVHalf, "vlsh.v">;
def VLSW_V : VStridedLoad<MOPLDStridedS, LSWidthVWord, "vlsw.v">;

def VLSBU_V : VStridedLoad<MOPLDStridedU, LSWidthVByte, "vlsbu.v">;
def VLSHU_V : VStridedLoad<MOPLDStridedU, LSWidthVHalf, "vlshu.v">;
def VLSWU_V : VStridedLoad<MOPLDStridedU, LSWidthVWord, "vlswu.v">;

def VLSE_V : VStridedLoad<MOPLDStridedU, LSWidthVSEW, "vlse.v">;

def VSSB_V : VStridedStore<MOPSTStrided, LSWidthVByte, "vssb.v">;
def VSSH_V : VStridedStore<MOPSTStrided, LSWidthVHalf, "vssh.v">;
def VSSW_V : VStridedStore<MOPSTStrided, LSWidthVWord, "vssw.v">;
def VSSE_V : VStridedStore<MOPSTStrided, LSWidthVSEW, "vsse.v">;

// Vector Indexed Instructions
def VLXB_V : VIndexedLoad<MOPLDIndexedS, LSWidthVByte, "vlxb.v">;
def VLXH_V : VIndexedLoad<MOPLDIndexedS, LSWidthVHalf, "vlxh.v">;
def VLXW_V : VIndexedLoad<MOPLDIndexedS, LSWidthVWord, "vlxw.v">;

def VLXBU_V : VIndexedLoad<MOPLDIndexedU, LSWidthVByte, "vlxbu.v">;
def VLXHU_V : VIndexedLoad<MOPLDIndexedU, LSWidthVHalf, "vlxhu.v">;
def VLXWU_V : VIndexedLoad<MOPLDIndexedU, LSWidthVWord, "vlxwu.v">;

def VLXE_V : VIndexedLoad<MOPLDIndexedU, LSWidthVSEW, "vlxe.v">;

def VSXB_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVByte, "vsxb.v">;
def VSXH_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVHalf, "vsxh.v">;
def VSXW_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVWord, "vsxw.v">;
def VSXE_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVSEW, "vsxe.v">;

def VSUXB_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVByte, "vsuxb.v">;
def VSUXH_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVHalf, "vsuxh.v">;
def VSUXW_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVWord, "vsuxw.v">;
def VSUXE_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVSEW, "vsuxe.v">;

def VL1R_V : VWholeLoad<0, "vl1r.v">;
def VS1R_V : VWholeStore<0, "vs1r.v">;

// Vector Single-Width Integer Add and Subtract
defm VADD_V : VALU_IV_V_X_I<"vadd", 0b000000>;
defm VSUB_V : VALU_IV_V_X<"vsub", 0b000010>;
defm VRSUB_V : VALU_IV_X_I<"vrsub", 0b000011>;

// Vector Widening Integer Add/Subtract
// Refer to 11.2 Widening Vector Arithmetic Instructions
// The destination vector register group cannot overlap a source vector
// register group of a different element width (including the mask register
// if masked), otherwise an illegal instruction exception is raised.
let Constraints = "@earlyclobber $vd" in {
let RVVConstraint = WidenV in {
defm VWADDU_V : VALU_MV_V_X<"vwaddu", 0b110000>;
defm VWSUBU_V : VALU_MV_V_X<"vwsubu", 0b110010>;
defm VWADD_V : VALU_MV_V_X<"vwadd", 0b110001>;
defm VWSUB_V : VALU_MV_V_X<"vwsub", 0b110011>;
} // RVVConstraint = WidenV
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
let RVVConstraint = WidenW in {
defm VWADDU_W : VALU_MV_V_X<"vwaddu", 0b110100, "w">;
defm VWSUBU_W : VALU_MV_V_X<"vwsubu", 0b110110, "w">;
defm VWADD_W : VALU_MV_V_X<"vwadd", 0b110101, "w">;
defm VWSUB_W : VALU_MV_V_X<"vwsub", 0b110111, "w">;
} // RVVConstraint = WidenW
} // Constraints = "@earlyclobber $vd"

def : InstAlias<"vwcvt.x.x.v $vd, $vs$vm",
                (VWADD_VX VRegOp:$vd, VRegOp:$vs, X0, VMaskOp:$vm)>;
def : InstAlias<"vwcvtu.x.x.v $vd, $vs$vm",
                (VWADDU_VX VRegOp:$vd, VRegOp:$vs, X0, VMaskOp:$vm)>;

// Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
defm VADC_V : VALUm_IV_V_X_I<"vadc", 0b010000>;
defm VMADC_V : VALUm_IV_V_X_I<"vmadc", 0b010001>;
defm VMADC_V : VALUNoVm_IV_V_X_I<"vmadc", 0b010001>;
defm VSBC_V : VALUm_IV_V_X<"vsbc", 0b010010>;
defm VMSBC_V : VALUm_IV_V_X<"vmsbc", 0b010011>;
defm VMSBC_V : VALUNoVm_IV_V_X<"vmsbc", 0b010011>;

// Vector Bitwise Logical Instructions
defm VAND_V : VALU_IV_V_X_I<"vand", 0b001001>;
defm VOR_V : VALU_IV_V_X_I<"vor", 0b001010>;
defm VXOR_V : VALU_IV_V_X_I<"vxor", 0b001011>;

def : InstAlias<"vnot.v $vd, $vs$vm",
                (VXOR_VI VRegOp:$vd, VRegOp:$vs, -1, VMaskOp:$vm)>;

// Vector Single-Width Bit Shift Instructions
defm VSLL_V : VALU_IV_V_X_I<"vsll", 0b100101, uimm5>;
defm VSRL_V : VALU_IV_V_X_I<"vsrl", 0b101000, uimm5>;
defm VSRA_V : VALU_IV_V_X_I<"vsra", 0b101001, uimm5>;

// Vector Narrowing Integer Right Shift Instructions
// Refer to 11.3. Narrowing Vector Arithmetic Instructions
// The destination vector register group cannot overlap the first source
// vector register group (specified by vs2). The destination vector register
// group cannot overlap the mask register if used, unless LMUL=1.
let Constraints = "@earlyclobber $vd", RVVConstraint = Narrow in {
defm VNSRL_W : VALU_IV_V_X_I<"vnsrl", 0b101100, uimm5, "w">;
defm VNSRA_W : VALU_IV_V_X_I<"vnsra", 0b101101, uimm5, "w">;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Narrow

// Vector Integer Comparison Instructions
defm VMSEQ_V : VALU_IV_V_X_I<"vmseq", 0b011000>;
defm VMSNE_V : VALU_IV_V_X_I<"vmsne", 0b011001>;
defm VMSLTU_V : VALU_IV_V_X<"vmsltu", 0b011010>;
defm VMSLT_V : VALU_IV_V_X<"vmslt", 0b011011>;
defm VMSLEU_V : VALU_IV_V_X_I<"vmsleu", 0b011100>;
defm VMSLE_V : VALU_IV_V_X_I<"vmsle", 0b011101>;
defm VMSGTU_V : VALU_IV_X_I<"vmsgtu", 0b011110>;
defm VMSGT_V : VALU_IV_X_I<"vmsgt", 0b011111>;

def : InstAlias<"vmsgtu.vv $vd, $va, $vb$vm",
                (VMSLTU_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsgt.vv $vd, $va, $vb$vm",
                (VMSLT_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsgeu.vv $vd, $va, $vb$vm",
                (VMSLEU_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsge.vv $vd, $va, $vb$vm",
                (VMSLE_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsltu.vi $vd, $va, $imm$vm",
                (VMSLEU_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;
def : InstAlias<"vmslt.vi $vd, $va, $imm$vm",
                (VMSLE_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;
def : InstAlias<"vmsgeu.vi $vd, $va, $imm$vm",
                (VMSGTU_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;
def : InstAlias<"vmsge.vi $vd, $va, $imm$vm",
                (VMSGT_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;

// Vector Integer Min/Max Instructions
defm VMINU_V : VALU_IV_V_X<"vminu", 0b000100>;
defm VMIN_V : VALU_IV_V_X<"vmin", 0b000101>;
defm VMAXU_V : VALU_IV_V_X<"vmaxu", 0b000110>;
defm VMAX_V : VALU_IV_V_X<"vmax", 0b000111>;

// Vector Single-Width Integer Multiply Instructions
defm VMUL_V : VALU_MV_V_X<"vmul", 0b100101>;
defm VMULH_V : VALU_MV_V_X<"vmulh", 0b100111>;
defm VMULHU_V : VALU_MV_V_X<"vmulhu", 0b100100>;
defm VMULHSU_V : VALU_MV_V_X<"vmulhsu", 0b100110>;

// Vector Integer Divide Instructions
defm VDIVU_V : VALU_MV_V_X<"vdivu", 0b100000>;
defm VDIV_V : VALU_MV_V_X<"vdiv", 0b100001>;
defm VREMU_V : VALU_MV_V_X<"vremu", 0b100010>;
defm VREM_V : VALU_MV_V_X<"vrem", 0b100011>;

// Vector Widening Integer Multiply Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VWMUL_V : VALU_MV_V_X<"vwmul", 0b111011>;
defm VWMULU_V : VALU_MV_V_X<"vwmulu", 0b111000>;
defm VWMULSU_V : VALU_MV_V_X<"vwmulsu", 0b111010>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Single-Width Integer Multiply-Add Instructions
defm VMACC_V : VALUr_MV_V_X<"vmacc", 0b101101>;
defm VNMSAC_V : VALUr_MV_V_X<"vnmsac", 0b101111>;
defm VMADD_V : VALUr_MV_V_X<"vmadd", 0b101001>;
defm VNMSUB_V : VALUr_MV_V_X<"vnmsub", 0b101011>;

// Vector Widening Integer Multiply-Add Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VWMACCU_V : VALUr_MV_V_X<"vwmaccu", 0b111100>;
defm VWMACC_V : VALUr_MV_V_X<"vwmacc", 0b111101>;
defm VWMACCSU_V : VALUr_MV_V_X<"vwmaccsu", 0b111111>;
defm VWMACCUS_V : VALUr_MV_X<"vwmaccus", 0b111110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Integer Merge Instructions
defm VMERGE_V : VALUm_IV_V_X_I<"vmerge", 0b010111>;

// Vector Integer Move Instructions
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vs2 = 0, vm = 1 in {
// op vd, vs1
def VMV_V_V : RVInstVV<0b010111, OPIVV, (outs VRegOp:$vd),
                       (ins VRegOp:$vs1), "vmv.v.v", "$vd, $vs1">;
// op vd, rs1
def VMV_V_X : RVInstVX<0b010111, OPIVX, (outs VRegOp:$vd),
                       (ins GPR:$rs1), "vmv.v.x", "$vd, $rs1">;
// op vd, imm
def VMV_V_I : RVInstIVI<0b010111, (outs VRegOp:$vd),
                       (ins simm5:$imm), "vmv.v.i", "$vd, $imm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

// Vector Fixed-Point Arithmetic Instructions
defm VSADDU_V : VALU_IV_V_X_I<"vsaddu", 0b100000>;
defm VSADD_V : VALU_IV_V_X_I<"vsadd", 0b100001>;
defm VSSUBU_V : VALU_IV_V_X<"vssubu", 0b100010>;
defm VSSUB_V : VALU_IV_V_X<"vssub", 0b100011>;

// Vector Single-Width Averaging Add and Subtract
defm VAADDU_V : VALU_MV_V_X<"vaaddu", 0b001000>;
defm VAADD_V : VALU_MV_V_X<"vaadd", 0b001001>;
defm VASUBU_V : VALU_MV_V_X<"vasubu", 0b001010>;
defm VASUB_V : VALU_MV_V_X<"vasub", 0b001011>;

// Vector Single-Width Fractional Multiply with Rounding and Saturation
defm VSMUL_V : VALU_IV_V_X<"vsmul", 0b100111>;

// Vector Single-Width Scaling Shift Instructions
defm VSSRL_V : VALU_IV_V_X_I<"vssrl", 0b101010, uimm5>;
defm VSSRA_V : VALU_IV_V_X_I<"vssra", 0b101011, uimm5>;

// Vector Narrowing Fixed-Point Clip Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = Narrow in {
defm VNCLIPU_W : VALU_IV_V_X_I<"vnclipu", 0b101110, uimm5, "w">;
defm VNCLIP_W : VALU_IV_V_X_I<"vnclip", 0b101111, uimm5, "w">;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Narrow

// Vector Single-Width Floating-Point Add/Subtract Instructions
defm VFADD_V : VALU_FV_V_F<"vfadd", 0b000000>;
defm VFSUB_V : VALU_FV_V_F<"vfsub", 0b000010>;
defm VFRSUB_V : VALU_FV_F<"vfrsub", 0b100111>;

// Vector Widening Floating-Point Add/Subtract Instructions
let Constraints = "@earlyclobber $vd" in {
let RVVConstraint = WidenV in {
defm VFWADD_V : VALU_FV_V_F<"vfwadd", 0b110000>;
defm VFWSUB_V : VALU_FV_V_F<"vfwsub", 0b110010>;
} // RVVConstraint = WidenV
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
let RVVConstraint = WidenW in {
defm VFWADD_W : VALU_FV_V_F<"vfwadd", 0b110100, "w">;
defm VFWSUB_W : VALU_FV_V_F<"vfwsub", 0b110110, "w">;
} // RVVConstraint = WidenW
} // Constraints = "@earlyclobber $vd"

// Vector Single-Width Floating-Point Multiply/Divide Instructions
defm VFMUL_V : VALU_FV_V_F<"vfmul", 0b100100>;
defm VFDIV_V : VALU_FV_V_F<"vfdiv", 0b100000>;
defm VFRDIV_V : VALU_FV_F<"vfrdiv", 0b100001>;

// Vector Widening Floating-Point Multiply
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VFWMUL_V : VALU_FV_V_F<"vfwmul", 0b111000>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Single-Width Floating-Point Fused Multiply-Add Instructions
defm VFMACC_V : VALUr_FV_V_F<"vfmacc", 0b101100>;
defm VFNMACC_V : VALUr_FV_V_F<"vfnmacc", 0b101101>;
defm VFMSAC_V : VALUr_FV_V_F<"vfmsac", 0b101110>;
defm VFNMSAC_V : VALUr_FV_V_F<"vfnmsac", 0b101111>;
defm VFMADD_V : VALUr_FV_V_F<"vfmadd", 0b101000>;
defm VFNMADD_V : VALUr_FV_V_F<"vfnmadd", 0b101001>;
defm VFMSUB_V : VALUr_FV_V_F<"vfmsub", 0b101010>;
defm VFNMSUB_V : VALUr_FV_V_F<"vfnmsub", 0b101011>;

// Vector Widening Floating-Point Fused Multiply-Add Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VFWMACC_V : VALUr_FV_V_F<"vfwmacc", 0b111100>;
defm VFWNMACC_V : VALUr_FV_V_F<"vfwnmacc", 0b111101>;
defm VFWMSAC_V : VALUr_FV_V_F<"vfwmsac", 0b111110>;
defm VFWNMSAC_V : VALUr_FV_V_F<"vfwnmsac", 0b111111>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Floating-Point Square-Root Instruction
defm VFSQRT_V : VALU_FV_VS2<"vfsqrt.v", 0b100011, 0b00000>;

// Vector Floating-Point MIN/MAX Instructions
defm VFMIN_V : VALU_FV_V_F<"vfmin", 0b000100>;
defm VFMAX_V : VALU_FV_V_F<"vfmax", 0b000110>;

// Vector Floating-Point Sign-Injection Instructions
defm VFSGNJ_V : VALU_FV_V_F<"vfsgnj", 0b001000>;
defm VFSGNJN_V : VALU_FV_V_F<"vfsgnjn", 0b001001>;
defm VFSGNJX_V : VALU_FV_V_F<"vfsgnjx", 0b001010>;

// Vector Floating-Point Compare Instructions
defm VMFEQ_V : VALU_FV_V_F<"vmfeq", 0b011000>;
defm VMFNE_V : VALU_FV_V_F<"vmfne", 0b011100>;
defm VMFLT_V : VALU_FV_V_F<"vmflt", 0b011011>;
defm VMFLE_V : VALU_FV_V_F<"vmfle", 0b011001>;
defm VMFGT_V : VALU_FV_F<"vmfgt", 0b011101>;
defm VMFGE_V : VALU_FV_F<"vmfge", 0b011111>;

def : InstAlias<"vmfgt.vv $vd, $va, $vb$vm",
                (VMFLT_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmfge.vv $vd, $va, $vb$vm",
                (VMFLE_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;

// Vector Floating-Point Classify Instruction
defm VFCLASS_V : VALU_FV_VS2<"vfclass.v", 0b100011, 0b10000>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// Vector Floating-Point Merge Instruction
def VFMERGE_VFM : RVInstVX<0b010111, OPFVF, (outs VRegOp:$vd),
                           (ins VRegOp:$vs2, FPR32:$rs1, VMV0:$v0),
                           "vfmerge.vfm", "$vd, $vs2, $rs1, v0"> {
  let vm = 0;
}

// Vector Floating-Point Move Instruction
def VFMV_V_F : RVInstVX<0b010111, OPFVF, (outs VRegOp:$vd),
                       (ins FPR32:$rs1), "vfmv.v.f", "$vd, $rs1"> {
  let vs2 = 0;
  let vm = 1;
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

// Single-Width Floating-Point/Integer Type-Convert Instructions
defm VFCVT_XU_F_V : VALU_FV_VS2<"vfcvt.xu.f.v", 0b100010, 0b00000>;
defm VFCVT_X_F_V : VALU_FV_VS2<"vfcvt.x.f.v", 0b100010, 0b00001>;
defm VFCVT_F_XU_V : VALU_FV_VS2<"vfcvt.f.xu.v", 0b100010, 0b00010>;
defm VFCVT_F_X_V : VALU_FV_VS2<"vfcvt.f.x.v", 0b100010, 0b00011>;

// Widening Floating-Point/Integer Type-Convert Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt in {
defm VFWCVT_XU_F_V : VALU_FV_VS2<"vfwcvt.xu.f.v", 0b100010, 0b01000>;
defm VFWCVT_X_F_V : VALU_FV_VS2<"vfwcvt.x.f.v", 0b100010, 0b01001>;
defm VFWCVT_F_XU_V : VALU_FV_VS2<"vfwcvt.f.xu.v", 0b100010, 0b01010>;
defm VFWCVT_F_X_V : VALU_FV_VS2<"vfwcvt.f.x.v", 0b100010, 0b01011>;
defm VFWCVT_F_F_V : VALU_FV_VS2<"vfwcvt.f.f.v", 0b100010, 0b01100>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt

// Narrowing Floating-Point/Integer Type-Convert Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = Narrow in {
defm VFNCVT_XU_F_W : VALU_FV_VS2<"vfncvt.xu.f.w", 0b100010, 0b10000>;
defm VFNCVT_X_F_W : VALU_FV_VS2<"vfncvt.x.f.w", 0b100010, 0b10001>;
defm VFNCVT_F_XU_W : VALU_FV_VS2<"vfncvt.f.xu.w", 0b100010, 0b10010>;
defm VFNCVT_F_X_W : VALU_FV_VS2<"vfncvt.f.x.w", 0b100010, 0b10011>;
defm VFNCVT_F_F_W : VALU_FV_VS2<"vfncvt.f.f.w", 0b100010, 0b10100>;
defm VFNCVT_ROD_F_F_W : VALU_FV_VS2<"vfncvt.rod.f.f.w", 0b100010, 0b10101>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Narrow

// Vector Single-Width Integer Reduction Instructions
defm VREDSUM : VALU_MV_V<"vredsum", 0b000000>;
defm VREDMAXU : VALU_MV_V<"vredmaxu", 0b000110>;
defm VREDMAX : VALU_MV_V<"vredmax", 0b000111>;
defm VREDMINU : VALU_MV_V<"vredminu", 0b000100>;
defm VREDMIN : VALU_MV_V<"vredmin", 0b000101>;
defm VREDAND : VALU_MV_V<"vredand", 0b000001>;
defm VREDOR : VALU_MV_V<"vredor", 0b000010>;
defm VREDXOR : VALU_MV_V<"vredxor", 0b000011>;

// Vector Widening Integer Reduction Instructions
let Constraints = "@earlyclobber $vd" in {
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
defm VWREDSUMU : VALU_IV_V<"vwredsumu", 0b110000>;
defm VWREDSUM : VALU_IV_V<"vwredsum", 0b110001>;
} // Constraints = "@earlyclobber $vd"

// Vector Single-Width Floating-Point Reduction Instructions
defm VFREDOSUM : VALU_FV_V<"vfredosum", 0b000011>;
defm VFREDSUM : VALU_FV_V<"vfredsum", 0b000001>;
defm VFREDMAX : VALU_FV_V<"vfredmax", 0b000111>;
defm VFREDMIN : VALU_FV_V<"vfredmin", 0b000101>;

// Vector Widening Floating-Point Reduction Instructions
let Constraints = "@earlyclobber $vd" in {
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
defm VFWREDOSUM : VALU_FV_V<"vfwredosum", 0b110011>;
defm VFWREDSUM : VALU_FV_V<"vfwredsum", 0b110001>;
} // Constraints = "@earlyclobber $vd"

// Vector Mask-Register Logical Instructions
defm VMAND_M : VALU_MV_Mask<"vmand", 0b011001, "m">;
defm VMNAND_M : VALU_MV_Mask<"vmnand", 0b011101, "m">;
defm VMANDNOT_M : VALU_MV_Mask<"vmandnot", 0b011000, "m">;
defm VMXOR_M : VALU_MV_Mask<"vmxor", 0b011011, "m">;
defm VMOR_M : VALU_MV_Mask<"vmor", 0b011010, "m">;
defm VMNOR_M : VALU_MV_Mask<"vmnor", 0b011110, "m">;
defm VMORNOT_M : VALU_MV_Mask<"vmornot", 0b011100, "m">;
defm VMXNOR_M : VALU_MV_Mask<"vmxnor", 0b011111, "m">;

def : InstAlias<"vmcpy.m $vd, $vs",
                (VMAND_MM VRegOp:$vd, VRegOp:$vs, VRegOp:$vs)>;
def : InstAlias<"vmclr.m $vd",
                (VMXOR_MM VRegOp:$vd, VRegOp:$vd, VRegOp:$vd)>;
def : InstAlias<"vmset.m $vd",
                (VMXNOR_MM VRegOp:$vd, VRegOp:$vd, VRegOp:$vd)>;
def : InstAlias<"vmnot.m $vd, $vs",
                (VMNAND_MM VRegOp:$vd, VRegOp:$vs, VRegOp:$vs)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// Vector mask population count vpopc
def VPOPC_M : RVInstV<0b010000, 0b10000, OPMVV, (outs GPR:$vd),
                        (ins VRegOp:$vs2, VMaskOp:$vm),
                        "vpopc.m", "$vd, $vs2$vm">;

// vfirst find-first-set mask bit
def VFIRST_M : RVInstV<0b010000, 0b10001, OPMVV, (outs GPR:$vd),
                        (ins VRegOp:$vs2, VMaskOp:$vm),
                        "vfirst.m", "$vd, $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

// vmsbf.m set-before-first mask bit
defm VMSBF_M : VALU_MV_VS2<"vmsbf.m", 0b010100, 0b00001>;

// vmsif.m set-including-first mask bit
defm VMSIF_M : VALU_MV_VS2<"vmsif.m", 0b010100, 0b00011>;

// vmsof.m set-only-first mask bit
defm VMSOF_M : VALU_MV_VS2<"vmsof.m", 0b010100, 0b00010>;

// Vector Iota Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Iota in {
defm VIOTA_M : VALU_MV_VS2<"viota.m", 0b010100, 0b10000>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Iota

// Vector Element Index Instruction
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
def VID_V : RVInstV<0b010100, 0b10001, OPMVV, (outs VRegOp:$vd),
                      (ins VMaskOp:$vm), "vid.v", "$vd$vm"> {
  let vs2 = 0;
}

// Integer Scalar Move Instructions
let vm = 1 in {
def VMV_X_S : RVInstV<0b010000, 0b00000, OPMVV, (outs GPR:$vd),
                      (ins VRegOp:$vs2), "vmv.x.s", "$vd, $vs2">;
def VMV_S_X : RVInstV2<0b010000, 0b00000, OPMVX, (outs VRegOp:$vd),
                      (ins GPR:$rs1), "vmv.s.x", "$vd, $rs1">;

}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1 in {
// Floating-Point Scalar Move Instructions
def VFMV_F_S : RVInstV<0b010000, 0b00000, OPFVV, (outs FPR32:$vd),
                      (ins VRegOp:$vs2), "vfmv.f.s", "$vd, $vs2">;
def VFMV_S_F : RVInstV2<0b010000, 0b00000, OPFVF, (outs VRegOp:$vd),
                      (ins FPR32:$rs1), "vfmv.s.f", "$vd, $rs1">;

} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1

// Vector Slide Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
defm VSLIDEUP_V : VALU_IV_X_I<"vslideup", 0b001110, uimm5>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
defm VSLIDEDOWN_V : VALU_IV_X_I<"vslidedown", 0b001111, uimm5>;

let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
defm VSLIDE1UP_V : VALU_MV_X<"vslide1up", 0b001110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
defm VSLIDE1DOWN_V : VALU_MV_X<"vslide1down", 0b001111>;

// Vector Register Gather Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather in {
defm VRGATHER_V : VALU_IV_V_X_I<"vrgather", 0b001100, uimm5>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather

// Vector Compress Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress in {
defm VCOMPRESS_V : VALU_MV_Mask<"vcompress", 0b010111>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
foreach nf = [1, 2, 4, 8] in {
  def VMV#nf#R_V  : RVInstV<0b100111, !add(nf, -1), OPIVI, (outs VRegOp:$vd),
                            (ins VRegOp:$vs2), "vmv" # nf # "r.v",
                            "$vd, $vs2"> {
    let Uses = [];
    let vm = 1;
  }
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
} // Predicates = [HasStdExtV]