RISCVInstrInfoF.td 17.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'F',
// Single-Precision Floating-Point instruction set extension.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDT_RISCVFMV_W_X_RV64
    : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
def SDT_RISCVFMV_X_ANYEXTW_RV64
    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;

def riscv_fmv_w_x_rv64
    : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
def riscv_fmv_x_anyextw_rv64
    : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

// Floating-point rounding mode

def FRMArg : AsmOperandClass {
  let Name = "FRMArg";
  let RenderMethod = "addFRMArgOperands";
  let DiagnosticType = "InvalidFRMArg";
}

def frmarg : Operand<XLenVT> {
  let ParserMatchClass = FRMArg;
  let PrintMethod = "printFRMArg";
  let DecoderMethod = "decodeFRMArg";
}

//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
    : RVInstR4<0b00, opcode, (outs FPR32:$rd),
               (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;

class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
                 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
                  "$rd, $rs1, $rs2, $funct3">;

class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
                RegisterClass rs1ty, string opcodestr>
    : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
              opcodestr, "$rd, $rs1">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
                      string opcodestr>
    : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
                 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
                  "$rd, $rs1, $funct3">;

class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
                           RegisterClass rdty, RegisterClass rs1ty>
    : InstAlias<OpcodeStr#" $rd, $rs1",
                (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPCmpS_rr<bits<3> funct3, string opcodestr>
    : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
      Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>;

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtF] in {
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
                  (ins GPR:$rs1, simm12:$imm12),
                   "flw", "$rd, ${imm12}(${rs1})">,
          Sched<[WriteFLD32, ReadFMemBase]>;

// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
                  (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
                   "fsw", "$rs2, ${imm12}(${rs1})">,
          Sched<[WriteFST32, ReadStoreData, ReadFMemBase]>;

def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">,
               Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">,
               Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">,
               Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">,
               Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;

def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">,
             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">,
             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">,
             Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>;
def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">,
             Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>;
def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;

def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">,
              Sched<[WriteFSqrt32, ReadFSqrt32]> {
  let rs2 = 0b00000;
}
def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;

def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">,
               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">,
               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">,
               Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">,
               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">,
               Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;

def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">,
               Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
  let rs2 = 0b00000;
}
def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;

def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">,
                Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
  let rs2 = 0b00001;
}
def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;

def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">,
              Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> {
  let rs2 = 0b00000;
}

def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
def FLT_S : FPCmpS_rr<0b001, "flt.s">;
def FLE_S : FPCmpS_rr<0b000, "fle.s">;

def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">,
               Sched<[WriteFClass32, ReadFClass32]> {
  let rs2 = 0b00000;
}

def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">,
               Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
  let rs2 = 0b00000;
}
def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;

def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">,
                Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
  let rs2 = 0b00001;
}
def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;

def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">,
              Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> {
  let rs2 = 0b00000;
}
} // Predicates = [HasStdExtF]

let Predicates = [HasStdExtF, IsRV64] in {
def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">,
                Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
  let rs2 = 0b00010;
}
def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;

def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">,
                 Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
  let rs2 = 0b00011;
}
def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;

def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">,
               Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
  let rs2 = 0b00010;
}
def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;

def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">,
                Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
  let rs2 = 0b00011;
}
def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
} // Predicates = [HasStdExtF, IsRV64]

//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtF] in {
def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;

def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;

// fgt.s/fge.s are recognised by the GNU assembler but the canonical
// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.s $rd, $rs, $rt",
                (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
def : InstAlias<"fge.s $rd, $rs, $rt",
                (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;

// The following csr instructions actually alias instructions from the base ISA.
// However, it only makes sense to support them when the F extension is enabled.
// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, FCSR.Encoding, X0), 2>;
def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs)>;
def : InstAlias<"fscsr $rs",      (CSRRW      X0, FCSR.Encoding, GPR:$rs), 2>;

// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
// zero weight.
def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, FCSR.Encoding, X0), 0>;
def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs), 0>;
def : InstAlias<"fssr $rs",       (CSRRW      X0, FCSR.Encoding, GPR:$rs), 0>;

def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, FRM.Encoding, X0), 2>;
def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, FRM.Encoding, GPR:$rs)>;
def : InstAlias<"fsrm $rs",        (CSRRW       X0, FRM.Encoding, GPR:$rs), 2>;
def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, FRM.Encoding, uimm5:$imm)>;
def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, FRM.Encoding, uimm5:$imm), 2>;

def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, FFLAGS.Encoding, X0), 2>;
def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, FFLAGS.Encoding, GPR:$rs)>;
def : InstAlias<"fsflags $rs",        (CSRRW       X0, FFLAGS.Encoding, GPR:$rs), 2>;
def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, FFLAGS.Encoding, uimm5:$imm)>;
def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, FFLAGS.Encoding, uimm5:$imm), 2>;

// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
// spellings should be supported by standard tools.
def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;

def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
def PseudoFSW  : PseudoStore<"fsw", FPR32>;
} // Predicates = [HasStdExtF]

//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//

/// Floating point constants
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;

/// Generic pattern classes
class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;

class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;

let Predicates = [HasStdExtF] in {

/// Float constants
def : Pat<(f32 (fpimm0)), (FMV_W_X X0)>;

/// Float conversion operations

// Moves (no conversion)
def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>;
def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>;

// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.

/// Float arithmetic operations

def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;

def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;

def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;

def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;

// fmadd: rs1 * rs2 + rs3
def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
          (FMADD_S $rs1, $rs2, $rs3, 0b111)>;

// fmsub: rs1 * rs2 - rs3
def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
          (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;

// fnmsub: -rs1 * rs2 + rs3
def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
          (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;

// fnmadd: -rs1 * rs2 - rs3
def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
          (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;

// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
// canonical NaN when given a signaling NaN. This doesn't match the LLVM
// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
// matches LLVM's fminnum and fmaxnum
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
def : PatFpr32Fpr32<fminnum, FMIN_S>;
def : PatFpr32Fpr32<fmaxnum, FMAX_S>;

/// Setcc

def : PatFpr32Fpr32<seteq, FEQ_S>;
def : PatFpr32Fpr32<setoeq, FEQ_S>;
def : PatFpr32Fpr32<setlt, FLT_S>;
def : PatFpr32Fpr32<setolt, FLT_S>;
def : PatFpr32Fpr32<setle, FLE_S>;
def : PatFpr32Fpr32<setole, FLE_S>;

// Define pattern expansions for setcc operations which aren't directly
// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
// Legalizer.

def : Pat<(seto FPR32:$rs1, FPR32:$rs2),
          (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
               (FEQ_S FPR32:$rs2, FPR32:$rs2))>;
def : Pat<(seto FPR32:$rs1, FPR32:$rs1),
          (FEQ_S $rs1, $rs1)>;

def : Pat<(setuo FPR32:$rs1, FPR32:$rs2),
          (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
                      (FEQ_S FPR32:$rs2, FPR32:$rs2)),
                 1)>;
def : Pat<(setuo FPR32:$rs1, FPR32:$rs1),
          (SLTIU (FEQ_S $rs1, $rs1), 1)>;

def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;

/// Loads

defm : LdPat<load, FLW>;

/// Stores

defm : StPat<store, FSW, FPR32>;

} // Predicates = [HasStdExtF]

let Predicates = [HasStdExtF, IsRV32] in {
// float->[u]int. Round-to-zero must be used.
def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;

// [u]int->float. Match GCC and default to using dynamic rounding mode.
def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
} // Predicates = [HasStdExtF, IsRV32]

let Predicates = [HasStdExtF, IsRV64] in {
def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
def : Pat<(sexti32 (riscv_fmv_x_anyextw_rv64 FPR32:$src)),
          (FMV_X_W FPR32:$src)>;

// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
// because fpto[u|s]i produces poison if the value can't fit into the target.
// We match the single case below because fcvt.wu.s sign-extends its result so
// is cheaper than fcvt.lu.s+sext.w.
def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR32:$rs1)), i32),
          (FCVT_WU_S $rs1, 0b001)>;

// FP->[u]int64
def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_L_S $rs1, 0b001)>;
def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_LU_S $rs1, 0b001)>;

// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_S_W $rs1, 0b111)>;
def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_L $rs1, 0b111)>;
def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_LU $rs1, 0b111)>;
} // Predicates = [HasStdExtF, IsRV64]