PPCTargetTransformInfo.cpp 38 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "PPCTargetTransformInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

#define DEBUG_TYPE "ppctti"

static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);

// This is currently only used for the data prefetch pass which is only enabled
// for BG/Q by default.
static cl::opt<unsigned>
CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
              cl::desc("The loop prefetch cache line size"));

static cl::opt<bool>
EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
                cl::desc("Enable using coldcc calling conv for cold "
                         "internal functions"));

static cl::opt<bool>
LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
               cl::desc("Do not add instruction count to lsr cost model"));

// The latency of mtctr is only justified if there are more than 4
// comparisons that will be removed as a result.
static cl::opt<unsigned>
SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
                      cl::desc("Loops with a constant trip count smaller than "
                               "this value will not use the count register."));

//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//

TargetTransformInfo::PopcntSupportKind
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
    return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
             TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
  return TTI::PSK_Software;
}

int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                              TTI::TargetCostKind CostKind) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Imm, Ty, CostKind);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Basic;

    if (isInt<32>(Imm.getSExtValue())) {
      // A constant that can be materialized using lis.
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
        return TTI::TCC_Basic;

      return 2 * TTI::TCC_Basic;
    }
  }

  return 4 * TTI::TCC_Basic;
}

int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                    const APInt &Imm, Type *Ty,
                                    TTI::TargetCostKind CostKind) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                  const APInt &Imm, Type *Ty,
                                  TTI::TargetCostKind CostKind) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  unsigned ImmIdx = ~0U;
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
       ZeroFree = false;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::And:
    RunFree = true; // (for the rotate-and-mask instructions)
    LLVM_FALLTHROUGH;
  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    ShiftedFree = true;
    LLVM_FALLTHROUGH;
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    ImmIdx = 1;
    break;
  case Instruction::ICmp:
    UnsignedFree = true;
    ImmIdx = 1;
    // Zero comparisons can use record-form instructions.
    LLVM_FALLTHROUGH;
  case Instruction::Select:
    ZeroFree = true;
    break;
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Ret:
  case Instruction::Load:
  case Instruction::Store:
    break;
  }

  if (ZeroFree && Imm == 0)
    return TTI::TCC_Free;

  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;

    if (RunFree) {
      if (Imm.getBitWidth() <= 32 &&
          (isShiftedMask_32(Imm.getZExtValue()) ||
           isShiftedMask_32(~Imm.getZExtValue())))
        return TTI::TCC_Free;

      if (ST->isPPC64() &&
          (isShiftedMask_64(Imm.getZExtValue()) ||
           isShiftedMask_64(~Imm.getZExtValue())))
        return TTI::TCC_Free;
    }

    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
      return TTI::TCC_Free;

    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
      return TTI::TCC_Free;
  }

  return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

unsigned
PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
                        TTI::TargetCostKind CostKind) {
  // We already implement getCastInstrCost and getMemoryOpCost where we perform
  // the vector adjustment there.
  if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
    return BaseT::getUserCost(U, Operands, CostKind);

  if (U->getType()->isVectorTy()) {
    // Instructions that need to be split should cost more.
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
    return LT.first * BaseT::getUserCost(U, Operands, CostKind);
  }

  return BaseT::getUserCost(U, Operands, CostKind);
}

bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
                             SmallPtrSetImpl<const Value *> &Visited) {
  const PPCTargetMachine &TM = ST->getTargetMachine();

  // Loop through the inline asm constraints and look for something that
  // clobbers ctr.
  auto asmClobbersCTR = [](InlineAsm *IA) {
    InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
    for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
      InlineAsm::ConstraintInfo &C = CIV[i];
      if (C.Type != InlineAsm::isInput)
        for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
          if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
            return true;
    }
    return false;
  };

  // Determining the address of a TLS variable results in a function call in
  // certain TLS models.
  std::function<bool(const Value *)> memAddrUsesCTR =
      [&memAddrUsesCTR, &TM, &Visited](const Value *MemAddr) -> bool {
    // No need to traverse again if we already checked this operand.
    if (!Visited.insert(MemAddr).second)
      return false;
    const auto *GV = dyn_cast<GlobalValue>(MemAddr);
    if (!GV) {
      // Recurse to check for constants that refer to TLS global variables.
      if (const auto *CV = dyn_cast<Constant>(MemAddr))
        for (const auto &CO : CV->operands())
          if (memAddrUsesCTR(CO))
            return true;

      return false;
    }

    if (!GV->isThreadLocal())
      return false;
    TLSModel::Model Model = TM.getTLSModel(GV);
    return Model == TLSModel::GeneralDynamic ||
      Model == TLSModel::LocalDynamic;
  };

  auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
    if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
      return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);

    return false;
  };

  for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
       J != JE; ++J) {
    if (CallInst *CI = dyn_cast<CallInst>(J)) {
      // Inline ASM is okay, unless it clobbers the ctr register.
      if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
        if (asmClobbersCTR(IA))
          return true;
        continue;
      }

      if (Function *F = CI->getCalledFunction()) {
        // Most intrinsics don't become function calls, but some might.
        // sin, cos, exp and log are always calls.
        unsigned Opcode = 0;
        if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
          switch (F->getIntrinsicID()) {
          default: continue;
          // If we have a call to loop_decrement or set_loop_iterations,
          // we're definitely using CTR.
          case Intrinsic::set_loop_iterations:
          case Intrinsic::loop_decrement:
            return true;

          // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
          // because, although it does clobber the counter register, the
          // control can't then return to inside the loop unless there is also
          // an eh_sjlj_setjmp.
          case Intrinsic::eh_sjlj_setjmp:

          case Intrinsic::memcpy:
          case Intrinsic::memmove:
          case Intrinsic::memset:
          case Intrinsic::powi:
          case Intrinsic::log:
          case Intrinsic::log2:
          case Intrinsic::log10:
          case Intrinsic::exp:
          case Intrinsic::exp2:
          case Intrinsic::pow:
          case Intrinsic::sin:
          case Intrinsic::cos:
            return true;
          case Intrinsic::copysign:
            if (CI->getArgOperand(0)->getType()->getScalarType()->
                isPPC_FP128Ty())
              return true;
            else
              continue; // ISD::FCOPYSIGN is never a library call.
          case Intrinsic::fma:                Opcode = ISD::FMA;        break;
          case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
          case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
          case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
          case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
          case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
          case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
          case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
          case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
          case Intrinsic::round:              Opcode = ISD::FROUND;     break;
          case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
          case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
          case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
          case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
          case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
          case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
          }
        }

        // PowerPC does not use [US]DIVREM or other library calls for
        // operations on regular types which are not otherwise library calls
        // (i.e. soft float or atomics). If adapting for targets that do,
        // additional care is required here.

        LibFunc Func;
        if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
            LibInfo->getLibFunc(F->getName(), Func) &&
            LibInfo->hasOptimizedCodeGen(Func)) {
          // Non-read-only functions are never treated as intrinsics.
          if (!CI->onlyReadsMemory())
            return true;

          // Conversion happens only for FP calls.
          if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
            return true;

          switch (Func) {
          default: return true;
          case LibFunc_copysign:
          case LibFunc_copysignf:
            continue; // ISD::FCOPYSIGN is never a library call.
          case LibFunc_copysignl:
            return true;
          case LibFunc_fabs:
          case LibFunc_fabsf:
          case LibFunc_fabsl:
            continue; // ISD::FABS is never a library call.
          case LibFunc_sqrt:
          case LibFunc_sqrtf:
          case LibFunc_sqrtl:
            Opcode = ISD::FSQRT; break;
          case LibFunc_floor:
          case LibFunc_floorf:
          case LibFunc_floorl:
            Opcode = ISD::FFLOOR; break;
          case LibFunc_nearbyint:
          case LibFunc_nearbyintf:
          case LibFunc_nearbyintl:
            Opcode = ISD::FNEARBYINT; break;
          case LibFunc_ceil:
          case LibFunc_ceilf:
          case LibFunc_ceill:
            Opcode = ISD::FCEIL; break;
          case LibFunc_rint:
          case LibFunc_rintf:
          case LibFunc_rintl:
            Opcode = ISD::FRINT; break;
          case LibFunc_round:
          case LibFunc_roundf:
          case LibFunc_roundl:
            Opcode = ISD::FROUND; break;
          case LibFunc_trunc:
          case LibFunc_truncf:
          case LibFunc_truncl:
            Opcode = ISD::FTRUNC; break;
          case LibFunc_fmin:
          case LibFunc_fminf:
          case LibFunc_fminl:
            Opcode = ISD::FMINNUM; break;
          case LibFunc_fmax:
          case LibFunc_fmaxf:
          case LibFunc_fmaxl:
            Opcode = ISD::FMAXNUM; break;
          }
        }

        if (Opcode) {
          EVT EVTy =
              TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);

          if (EVTy == MVT::Other)
            return true;

          if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
            continue;
          else if (EVTy.isVector() &&
                   TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
            continue;

          return true;
        }
      }

      return true;
    } else if (isa<BinaryOperator>(J) &&
               (J->getType()->getScalarType()->isFP128Ty() ||
                J->getType()->getScalarType()->isPPC_FP128Ty())) {
      // Most operations on f128 or ppc_f128 values become calls.
      return true;
    } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
               isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
      CastInst *CI = cast<CastInst>(J);
      if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
          CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
          isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
          isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
        return true;
    } else if (isLargeIntegerTy(!TM.isPPC64(),
                                J->getType()->getScalarType()) &&
               (J->getOpcode() == Instruction::UDiv ||
                J->getOpcode() == Instruction::SDiv ||
                J->getOpcode() == Instruction::URem ||
                J->getOpcode() == Instruction::SRem)) {
      return true;
    } else if (!TM.isPPC64() &&
               isLargeIntegerTy(false, J->getType()->getScalarType()) &&
               (J->getOpcode() == Instruction::Shl ||
                J->getOpcode() == Instruction::AShr ||
                J->getOpcode() == Instruction::LShr)) {
      // Only on PPC32, for 128-bit integers (specifically not 64-bit
      // integers), these might be runtime calls.
      return true;
    } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
      // On PowerPC, indirect jumps use the counter register.
      return true;
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
      if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
        return true;
    }

    // FREM is always a call.
    if (J->getOpcode() == Instruction::FRem)
      return true;

    if (ST->useSoftFloat()) {
      switch(J->getOpcode()) {
      case Instruction::FAdd:
      case Instruction::FSub:
      case Instruction::FMul:
      case Instruction::FDiv:
      case Instruction::FPTrunc:
      case Instruction::FPExt:
      case Instruction::FPToUI:
      case Instruction::FPToSI:
      case Instruction::UIToFP:
      case Instruction::SIToFP:
      case Instruction::FCmp:
        return true;
      }
    }

    for (Value *Operand : J->operands())
      if (memAddrUsesCTR(Operand))
        return true;
  }

  return false;
}

bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                          AssumptionCache &AC,
                                          TargetLibraryInfo *LibInfo,
                                          HardwareLoopInfo &HWLoopInfo) {
  const PPCTargetMachine &TM = ST->getTargetMachine();
  TargetSchedModel SchedModel;
  SchedModel.init(ST);

  // Do not convert small short loops to CTR loop.
  unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
  if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
    CodeMetrics Metrics;
    for (BasicBlock *BB : L->blocks())
      Metrics.analyzeBasicBlock(BB, *this, EphValues);
    // 6 is an approximate latency for the mtctr instruction.
    if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
      return false;
  }

  // We don't want to spill/restore the counter register, and so we don't
  // want to use the counter register if the loop contains calls.
  SmallPtrSet<const Value *, 4> Visited;
  for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
       I != IE; ++I)
    if (mightUseCTR(*I, LibInfo, Visited))
      return false;

  SmallVector<BasicBlock*, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  // If there is an exit edge known to be frequently taken,
  // we should not transform this loop.
  for (auto &BB : ExitingBlocks) {
    Instruction *TI = BB->getTerminator();
    if (!TI) continue;

    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      uint64_t TrueWeight = 0, FalseWeight = 0;
      if (!BI->isConditional() ||
          !BI->extractProfMetadata(TrueWeight, FalseWeight))
        continue;

      // If the exit path is more frequent than the loop path,
      // we return here without further analysis for this loop.
      bool TrueIsExit = !L->contains(BI->getSuccessor(0));
      if (( TrueIsExit && FalseWeight < TrueWeight) ||
          (!TrueIsExit && FalseWeight > TrueWeight))
        return false;
    }
  }

  LLVMContext &C = L->getHeader()->getContext();
  HWLoopInfo.CountType = TM.isPPC64() ?
    Type::getInt64Ty(C) : Type::getInt32Ty(C);
  HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
  return true;
}

void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                         TTI::UnrollingPreferences &UP) {
  if (ST->getCPUDirective() == PPC::DIR_A2) {
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
    // helps expose latency-hiding opportunities to the instruction scheduler.
    UP.Partial = UP.Runtime = true;

    // We unroll a lot on the A2 (hundreds of instructions), and the benefits
    // often outweigh the cost of a division to compute the trip count.
    UP.AllowExpensiveTripCount = true;
  }

  BaseT::getUnrollingPreferences(L, SE, UP);
}

void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                       TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}
// This function returns true to allow using coldcc calling convention.
// Returning true results in coldcc being used for functions which are cold at
// all call sites when the callers of the functions are not calling any other
// non coldcc functions.
bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
  return EnablePPCColdCC;
}

bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
  // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
  // on combining the loads generated for consecutive accesses, and failure to
  // do so is particularly expensive. This makes it much more likely (compared
  // to only using concatenation unrolling).
  if (ST->getCPUDirective() == PPC::DIR_A2)
    return true;

  return LoopHasReductions;
}

PPCTTIImpl::TTI::MemCmpExpansionOptions
PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  TTI::MemCmpExpansionOptions Options;
  Options.LoadSizes = {8, 4, 2, 1};
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
  return Options;
}

bool PPCTTIImpl::enableInterleavedAccessVectorization() {
  return true;
}

unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
  assert(ClassID == GPRRC || ClassID == FPRRC ||
         ClassID == VRRC || ClassID == VSXRC);
  if (ST->hasVSX()) {
    assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
    return ClassID == VSXRC ? 64 : 32;
  }
  assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
  return 32;
}

unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
  if (Vector)
    return ST->hasVSX() ? VSXRC : VRRC;
  else if (Ty && (Ty->getScalarType()->isFloatTy() ||
                  Ty->getScalarType()->isDoubleTy()))
    return ST->hasVSX() ? VSXRC : FPRRC;
  else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
                  Ty->getScalarType()->isPPC_FP128Ty()))
    return VRRC;
  else if (Ty && Ty->getScalarType()->isHalfTy())
    return VSXRC;
  else
    return GPRRC;
}

const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {

  switch (ClassID) {
    default:
      llvm_unreachable("unknown register class");
      return "PPC::unknown register class";
    case GPRRC:       return "PPC::GPRRC";
    case FPRRC:       return "PPC::FPRRC";
    case VRRC:        return "PPC::VRRC";
    case VSXRC:       return "PPC::VSXRC";
  }
}

unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
  if (Vector) {
    if (ST->hasQPX()) return 256;
    if (ST->hasAltivec()) return 128;
    return 0;
  }

  if (ST->isPPC64())
    return 64;
  return 32;

}

unsigned PPCTTIImpl::getCacheLineSize() const {
  // Check first if the user specified a custom line size.
  if (CacheLineSize.getNumOccurrences() > 0)
    return CacheLineSize;

  // Starting with P7 we have a cache line size of 128.
  unsigned Directive = ST->getCPUDirective();
  // Assume that Future CPU has the same cache line size as the others.
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
      Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
      Directive == PPC::DIR_PWR_FUTURE)
    return 128;

  // On other processors return a default of 64 bytes.
  return 64;
}

unsigned PPCTTIImpl::getPrefetchDistance() const {
  // This seems like a reasonable default for the BG/Q (this pass is enabled, by
  // default, only on the BG/Q).
  return 300;
}

unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
  unsigned Directive = ST->getCPUDirective();
  // The 440 has no SIMD support, but floating-point instructions
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
  if (Directive == PPC::DIR_440)
    return 5;

  // The A2 has no SIMD support, but floating-point instructions
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
  if (Directive == PPC::DIR_A2)
    return 6;

  // FIXME: For lack of any better information, do no harm...
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
    return 1;

  // For P7 and P8, floating-point instructions have a 6-cycle latency and
  // there are two execution units, so unroll by 12x for latency hiding.
  // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
  // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
  // Assume that future is the same as the others.
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
      Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
      Directive == PPC::DIR_PWR_FUTURE)
    return 12;

  // For most things, modern systems have two execution units (and
  // out-of-order execution).
  return 2;
}

// Adjust the cost of vector instructions on targets which there is overlap
// between the vector and scalar units, thereby reducing the overall throughput
// of vector code wrt. scalar code.
int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
                                     Type *Ty2) {
  if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
    return Cost;

  std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
  // If type legalization involves splitting the vector, we don't want to
  // double the cost at every step - only the last step.
  if (LT1.first != 1 || !LT1.second.isVector())
    return Cost;

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  if (TLI->isOperationExpand(ISD, LT1.second))
    return Cost;

  if (Ty2) {
    std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
    if (LT2.first != 1 || !LT2.second.isVector())
      return Cost;
  }

  return Cost * 2;
}

int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                       TTI::TargetCostKind CostKind,
                                       TTI::OperandValueKind Op1Info,
                                       TTI::OperandValueKind Op2Info,
                                       TTI::OperandValueProperties Opd1PropInfo,
                                       TTI::OperandValueProperties Opd2PropInfo,
                                       ArrayRef<const Value *> Args,
                                       const Instruction *CxtI) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info, Opd1PropInfo,
                                         Opd2PropInfo, Args, CxtI);

  // Fallback to the default implementation.
  int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                           Op2Info,
                                           Opd1PropInfo, Opd2PropInfo);
  return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
}

int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                               Type *SubTp) {
  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

  // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
  // (at least in the sense that there need only be one non-loop-invariant
  // instruction). We need one such shuffle instruction for each actual
  // register (this is not true for arbitrary shuffles, but is true for the
  // structured types of shuffles covered by TTI::ShuffleKind).
  return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
                              nullptr);
}

int PPCTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return Opcode == Instruction::PHI ? 0 : 1;
  // Branches are assumed to be predicted.
  return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
}

int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                 TTI::TargetCostKind CostKind,
                                 const Instruction *I) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
  Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src);
  // TODO: Allow non-throughput costs that aren't binary.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost == 0 ? 0 : 1;
  return Cost;
}

int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                   TTI::TargetCostKind CostKind,
                                   const Instruction *I) {
  int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost;
  return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
}

int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
  Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);

  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
    // Double-precision scalars are already located in index #0 (or #1 if LE).
    if (ISD == ISD::EXTRACT_VECTOR_ELT &&
        Index == (ST->isLittleEndian() ? 1 : 0))
      return 0;

    return Cost;

  } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
    // Floating point scalars are already located in index #0.
    if (Index == 0)
      return 0;

    return Cost;

  } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
    if (ST->hasP9Altivec()) {
      if (ISD == ISD::INSERT_VECTOR_ELT)
        // A move-to VSR and a permute/insert.  Assume vector operation cost
        // for both (cost will be 2x on P9).
        return vectorCostAdjustment(2, Opcode, Val, nullptr);

      // It's an extract.  Maybe we can do a cheap move-from VSR.
      unsigned EltSize = Val->getScalarSizeInBits();
      if (EltSize == 64) {
        unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
        if (Index == MfvsrdIndex)
          return 1;
      } else if (EltSize == 32) {
        unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
        if (Index == MfvsrwzIndex)
          return 1;
      }

      // We need a vector extract (or mfvsrld).  Assume vector operation cost.
      // The cost of the load constant for a vector extract is disregarded
      // (invariant, easily schedulable).
      return vectorCostAdjustment(1, Opcode, Val, nullptr);
      
    } else if (ST->hasDirectMove())
      // Assume permute has standard cost.
      // Assume move-to/move-from VSR have 2x standard cost.
      return 3;
  }

  // Estimated cost of a load-hit-store delay.  This was obtained
  // experimentally as a minimum needed to prevent unprofitable
  // vectorization for the paq8p benchmark.  It may need to be
  // raised further if other unprofitable cases remain.
  unsigned LHSPenalty = 2;
  if (ISD == ISD::INSERT_VECTOR_ELT)
    LHSPenalty += 7;

  // Vector element insert/extract with Altivec is very expensive,
  // because they require store and reload with the attendant
  // processor stall for load-hit-store.  Until VSX is available,
  // these need to be estimated as very costly.
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
      ISD == ISD::INSERT_VECTOR_ELT)
    return LHSPenalty + Cost;

  return Cost;
}

int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                MaybeAlign Alignment, unsigned AddressSpace,
                                TTI::TargetCostKind CostKind,
                                const Instruction *I) {
  if (TLI->getValueType(DL, Src,  true) == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                  CostKind);
  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                    CostKind);
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return Cost;

  Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);

  bool IsAltivecType = ST->hasAltivec() &&
                       (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
                        LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
  bool IsVSXType = ST->hasVSX() &&
                   (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
  bool IsQPXType = ST->hasQPX() &&
                   (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);

  // VSX has 32b/64b load instructions. Legalization can handle loading of
  // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
  // PPCTargetLowering can't compute the cost appropriately. So here we
  // explicitly check this case.
  unsigned MemBytes = Src->getPrimitiveSizeInBits();
  if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
      (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
    return 1;

  // Aligned loads and stores are easy.
  unsigned SrcBytes = LT.second.getStoreSize();
  if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
    return Cost;

  // If we can use the permutation-based load sequence, then this is also
  // relatively cheap (not counting loop-invariant instructions): one load plus
  // one permute (the last load in a series has extra cost, but we're
  // neglecting that here). Note that on the P7, we could do unaligned loads
  // for Altivec types using the VSX instructions, but that's more expensive
  // than using the permutation-based load sequence. On the P8, that's no
  // longer true.
  if (Opcode == Instruction::Load &&
      ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
      *Alignment >= LT.second.getScalarType().getStoreSize())
    return Cost + LT.first; // Add the cost of the permutations.

  // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
  // P7, unaligned vector loads are more expensive than the permutation-based
  // load sequence, so that might be used instead, but regardless, the net cost
  // is about the same (not counting loop-invariant instructions).
  if (IsVSXType || (ST->hasVSX() && IsAltivecType))
    return Cost;

  // Newer PPC supports unaligned memory access.
  if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
    return Cost;

  // PPC in general does not support unaligned loads and stores. They'll need
  // to be decomposed based on the alignment factor.

  // Add the cost of each scalar load or store.
  assert(Alignment);
  Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);

  // For a vector type, there is also scalarization overhead (only for
  // stores, loads are expanded using the vector-load + permutation sequence,
  // which is much less expensive).
  if (Src->isVectorTy() && Opcode == Instruction::Store)
    for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
         ++i)
      Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);

  return Cost;
}

int PPCTTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  if (UseMaskForCond || UseMaskForGaps)
    return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                             Alignment, AddressSpace, CostKind,
                                             UseMaskForCond, UseMaskForGaps);

  assert(isa<VectorType>(VecTy) &&
         "Expect a vector type for interleaved memory op");

  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);

  // Firstly, the cost of load/store operation.
  int Cost =
      getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
                      CostKind);

  // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
  // (at least in the sense that there need only be one non-loop-invariant
  // instruction). For each result vector, we need one shuffle per incoming
  // vector (except that the first shuffle can take two incoming vectors
  // because it does not need to take itself).
  Cost += Factor*(LT.first-1);

  return Cost;
}

unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                           TTI::TargetCostKind CostKind) {
  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}

bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
                            LoopInfo *LI, DominatorTree *DT,
                            AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
  // Process nested loops first.
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
      return false; // Stop search.

  HardwareLoopInfo HWLoopInfo(L);

  if (!HWLoopInfo.canAnalyze(*LI))
    return false;

  if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
    return false;

  if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
    return false;

  *BI = HWLoopInfo.ExitBranch;
  return true;
}

bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                               TargetTransformInfo::LSRCost &C2) {
  // PowerPC default behaviour here is "instruction number 1st priority".
  // If LsrNoInsnsCost is set, call default implementation.
  if (!LsrNoInsnsCost)
    return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
                    C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
           std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
                    C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
  else
    return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
}