PPCTargetMachine.cpp 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
//===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the PowerPC target.
//
//===----------------------------------------------------------------------===//

#include "PPCTargetMachine.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "PPC.h"
#include "PPCMachineScheduler.h"
#include "PPCMacroFusion.h"
#include "PPCSubtarget.h"
#include "PPCTargetObjectFile.h"
#include "PPCTargetTransformInfo.h"
#include "TargetInfo/PowerPCTargetInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <memory>
#include <string>

using namespace llvm;


static cl::opt<bool>
    EnableBranchCoalescing("enable-ppc-branch-coalesce", cl::Hidden,
                           cl::desc("enable coalescing of duplicate branches for PPC"));
static cl::
opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden,
                        cl::desc("Disable CTR loops for PPC"));

static cl::
opt<bool> DisableInstrFormPrep("disable-ppc-instr-form-prep", cl::Hidden,
                            cl::desc("Disable PPC loop instr form prep"));

static cl::opt<bool>
VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early",
  cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early"));

static cl::
opt<bool> DisableVSXSwapRemoval("disable-ppc-vsx-swap-removal", cl::Hidden,
                                cl::desc("Disable VSX Swap Removal for PPC"));

static cl::
opt<bool> DisableQPXLoadSplat("disable-ppc-qpx-load-splat", cl::Hidden,
                              cl::desc("Disable QPX load splat simplification"));

static cl::
opt<bool> DisableMIPeephole("disable-ppc-peephole", cl::Hidden,
                            cl::desc("Disable machine peepholes for PPC"));

static cl::opt<bool>
EnableGEPOpt("ppc-gep-opt", cl::Hidden,
             cl::desc("Enable optimizations on complex GEPs"),
             cl::init(true));

static cl::opt<bool>
EnablePrefetch("enable-ppc-prefetching",
                  cl::desc("enable software prefetching on PPC"),
                  cl::init(false), cl::Hidden);

static cl::opt<bool>
EnableExtraTOCRegDeps("enable-ppc-extra-toc-reg-deps",
                      cl::desc("Add extra TOC register dependencies"),
                      cl::init(true), cl::Hidden);

static cl::opt<bool>
EnableMachineCombinerPass("ppc-machine-combiner",
                          cl::desc("Enable the machine combiner pass"),
                          cl::init(true), cl::Hidden);

static cl::opt<bool>
  ReduceCRLogical("ppc-reduce-cr-logicals",
                  cl::desc("Expand eligible cr-logical binary ops to branches"),
                  cl::init(true), cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCTarget() {
  // Register the targets
  RegisterTargetMachine<PPCTargetMachine> A(getThePPC32Target());
  RegisterTargetMachine<PPCTargetMachine> B(getThePPC64Target());
  RegisterTargetMachine<PPCTargetMachine> C(getThePPC64LETarget());

  PassRegistry &PR = *PassRegistry::getPassRegistry();
#ifndef NDEBUG
  initializePPCCTRLoopsVerifyPass(PR);
#endif
  initializePPCLoopInstrFormPrepPass(PR);
  initializePPCTOCRegDepsPass(PR);
  initializePPCEarlyReturnPass(PR);
  initializePPCVSXCopyPass(PR);
  initializePPCVSXFMAMutatePass(PR);
  initializePPCVSXSwapRemovalPass(PR);
  initializePPCReduceCRLogicalsPass(PR);
  initializePPCBSelPass(PR);
  initializePPCBranchCoalescingPass(PR);
  initializePPCQPXLoadSplatPass(PR);
  initializePPCBoolRetToIntPass(PR);
  initializePPCExpandISELPass(PR);
  initializePPCPreEmitPeepholePass(PR);
  initializePPCTLSDynamicCallPass(PR);
  initializePPCMIPeepholePass(PR);
  initializePPCLowerMASSVEntriesPass(PR);
}

/// Return the datalayout string of a subtarget.
static std::string getDataLayoutString(const Triple &T) {
  bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le;
  std::string Ret;

  // Most PPC* platforms are big endian, PPC64LE is little endian.
  if (T.getArch() == Triple::ppc64le)
    Ret = "e";
  else
    Ret = "E";

  Ret += DataLayout::getManglingComponent(T);

  // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit
  // pointers.
  if (!is64Bit || T.getOS() == Triple::Lv2)
    Ret += "-p:32:32";

  // Note, the alignment values for f64 and i64 on ppc64 in Darwin
  // documentation are wrong; these are correct (i.e. "what gcc does").
  if (is64Bit || !T.isOSDarwin())
    Ret += "-i64:64";
  else
    Ret += "-f64:32:64";

  // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones.
  if (is64Bit)
    Ret += "-n32:64";
  else
    Ret += "-n32";

  return Ret;
}

static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL,
                                      const Triple &TT) {
  std::string FullFS = std::string(FS);

  // Make sure 64-bit features are available when CPUname is generic
  if (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le) {
    if (!FullFS.empty())
      FullFS = "+64bit," + FullFS;
    else
      FullFS = "+64bit";
  }

  if (OL >= CodeGenOpt::Default) {
    if (!FullFS.empty())
      FullFS = "+crbits," + FullFS;
    else
      FullFS = "+crbits";
  }

  if (OL != CodeGenOpt::None) {
    if (!FullFS.empty())
      FullFS = "+invariant-function-descriptors," + FullFS;
    else
      FullFS = "+invariant-function-descriptors";
  }

  return FullFS;
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSDarwin())
    return std::make_unique<TargetLoweringObjectFileMachO>();

  if (TT.isOSAIX())
    return std::make_unique<TargetLoweringObjectFileXCOFF>();

  return std::make_unique<PPC64LinuxTargetObjectFile>();
}

static PPCTargetMachine::PPCABI computeTargetABI(const Triple &TT,
                                                 const TargetOptions &Options) {
  if (TT.isOSDarwin())
    report_fatal_error("Darwin is no longer supported for PowerPC");
  
  if (Options.MCOptions.getABIName().startswith("elfv1"))
    return PPCTargetMachine::PPC_ABI_ELFv1;
  else if (Options.MCOptions.getABIName().startswith("elfv2"))
    return PPCTargetMachine::PPC_ABI_ELFv2;

  assert(Options.MCOptions.getABIName().empty() &&
         "Unknown target-abi option!");

  if (TT.isMacOSX())
    return PPCTargetMachine::PPC_ABI_UNKNOWN;

  switch (TT.getArch()) {
  case Triple::ppc64le:
    return PPCTargetMachine::PPC_ABI_ELFv2;
  case Triple::ppc64:
    return PPCTargetMachine::PPC_ABI_ELFv1;
  default:
    return PPCTargetMachine::PPC_ABI_UNKNOWN;
  }
}

static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           Optional<Reloc::Model> RM) {
  assert((!TT.isOSAIX() || !RM.hasValue() || *RM == Reloc::PIC_) &&
         "Invalid relocation model for AIX.");

  if (RM.hasValue())
    return *RM;

  // Darwin defaults to dynamic-no-pic.
  if (TT.isOSDarwin())
    return Reloc::DynamicNoPIC;

  // Big Endian PPC and AIX default to PIC.
  if (TT.getArch() == Triple::ppc64 || TT.isOSAIX())
    return Reloc::PIC_;

  // Rest are static by default.
  return Reloc::Static;
}

static CodeModel::Model getEffectivePPCCodeModel(const Triple &TT,
                                                 Optional<CodeModel::Model> CM,
                                                 bool JIT) {
  if (CM) {
    if (*CM == CodeModel::Tiny)
      report_fatal_error("Target does not support the tiny CodeModel", false);
    if (*CM == CodeModel::Kernel)
      report_fatal_error("Target does not support the kernel CodeModel", false);
    return *CM;
  }

  if (JIT)
    return CodeModel::Small;
  if (TT.isOSAIX())
    return CodeModel::Small;

  assert(TT.isOSBinFormatELF() && "All remaining PPC OSes are ELF based.");

  if (TT.isArch32Bit())
    return CodeModel::Small;

  assert(TT.isArch64Bit() && "Unsupported PPC architecture.");
  return CodeModel::Medium;
}


static ScheduleDAGInstrs *createPPCMachineScheduler(MachineSchedContext *C) {
  const PPCSubtarget &ST = C->MF->getSubtarget<PPCSubtarget>();
  ScheduleDAGMILive *DAG =
    new ScheduleDAGMILive(C, ST.usePPCPreRASchedStrategy() ?
                          std::make_unique<PPCPreRASchedStrategy>(C) :
                          std::make_unique<GenericScheduler>(C));
  // add DAG Mutations here.
  DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
  if (ST.hasFusion())
    DAG->addMutation(createPowerPCMacroFusionDAGMutation());

  return DAG;
}

static ScheduleDAGInstrs *createPPCPostMachineScheduler(
  MachineSchedContext *C) {
  const PPCSubtarget &ST = C->MF->getSubtarget<PPCSubtarget>();
  ScheduleDAGMI *DAG =
    new ScheduleDAGMI(C, ST.usePPCPostRASchedStrategy() ?
                      std::make_unique<PPCPostRASchedStrategy>(C) :
                      std::make_unique<PostGenericScheduler>(C), true);
  // add DAG Mutations here.
  if (ST.hasFusion())
    DAG->addMutation(createPowerPCMacroFusionDAGMutation());
  return DAG;
}

// The FeatureString here is a little subtle. We are modifying the feature
// string with what are (currently) non-function specific overrides as it goes
// into the LLVMTargetMachine constructor and then using the stored value in the
// Subtarget constructor below it.
PPCTargetMachine::PPCTargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   const TargetOptions &Options,
                                   Optional<Reloc::Model> RM,
                                   Optional<CodeModel::Model> CM,
                                   CodeGenOpt::Level OL, bool JIT)
    : LLVMTargetMachine(T, getDataLayoutString(TT), TT, CPU,
                        computeFSAdditions(FS, OL, TT), Options,
                        getEffectiveRelocModel(TT, RM),
                        getEffectivePPCCodeModel(TT, CM, JIT), OL),
      TLOF(createTLOF(getTargetTriple())),
      TargetABI(computeTargetABI(TT, Options)) {
  initAsmInfo();
}

PPCTargetMachine::~PPCTargetMachine() = default;

const PPCSubtarget *
PPCTargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
                        ? CPUAttr.getValueAsString().str()
                        : TargetCPU;
  std::string FS = !FSAttr.hasAttribute(Attribute::None)
                       ? FSAttr.getValueAsString().str()
                       : TargetFS;

  // FIXME: This is related to the code below to reset the target options,
  // we need to know whether or not the soft float flag is set on the
  // function before we can generate a subtarget. We also need to use
  // it as a key for the subtarget since that can be the only difference
  // between two functions.
  bool SoftFloat =
      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
  // If the soft float attribute is set on the function turn on the soft float
  // subtarget feature.
  if (SoftFloat)
    FS += FS.empty() ? "-hard-float" : ",-hard-float";

  auto &I = SubtargetMap[CPU + FS];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<PPCSubtarget>(
        TargetTriple, CPU,
        // FIXME: It would be good to have the subtarget additions here
        // not necessary. Anything that turns them on/off (overrides) ends
        // up being put at the end of the feature string, but the defaults
        // shouldn't require adding them. Fixing this means pulling Feature64Bit
        // out of most of the target cpus in the .td file and making it set only
        // as part of initialization via the TargetTriple.
        computeFSAdditions(FS, getOptLevel(), getTargetTriple()), *this);
  }
  return I.get();
}

//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//

namespace {

/// PPC Code Generator Pass Configuration Options.
class PPCPassConfig : public TargetPassConfig {
public:
  PPCPassConfig(PPCTargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {
    // At any optimization level above -O0 we use the Machine Scheduler and not
    // the default Post RA List Scheduler.
    if (TM.getOptLevel() != CodeGenOpt::None)
      substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
  }

  PPCTargetMachine &getPPCTargetMachine() const {
    return getTM<PPCTargetMachine>();
  }

  void addIRPasses() override;
  bool addPreISel() override;
  bool addILPOpts() override;
  bool addInstSelector() override;
  void addMachineSSAOptimization() override;
  void addPreRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    return createPPCMachineScheduler(C);
  }
  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    return createPPCPostMachineScheduler(C);
  }
};

} // end anonymous namespace

TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new PPCPassConfig(*this, PM);
}

void PPCPassConfig::addIRPasses() {
  if (TM->getOptLevel() != CodeGenOpt::None)
    addPass(createPPCBoolRetToIntPass());
  addPass(createAtomicExpandPass());

  // Lower generic MASSV routines to PowerPC subtarget-specific entries.
  addPass(createPPCLowerMASSVEntriesPass());
  
  // For the BG/Q (or if explicitly requested), add explicit data prefetch
  // intrinsics.
  bool UsePrefetching = TM->getTargetTriple().getVendor() == Triple::BGQ &&
                        getOptLevel() != CodeGenOpt::None;
  if (EnablePrefetch.getNumOccurrences() > 0)
    UsePrefetching = EnablePrefetch;
  if (UsePrefetching)
    addPass(createLoopDataPrefetchPass());

  if (TM->getOptLevel() >= CodeGenOpt::Default && EnableGEPOpt) {
    // Call SeparateConstOffsetFromGEP pass to extract constants within indices
    // and lower a GEP with multiple indices to either arithmetic operations or
    // multiple GEPs with single index.
    addPass(createSeparateConstOffsetFromGEPPass(true));
    // Call EarlyCSE pass to find and remove subexpressions in the lowered
    // result.
    addPass(createEarlyCSEPass());
    // Do loop invariant code motion in case part of the lowered result is
    // invariant.
    addPass(createLICMPass());
  }

  TargetPassConfig::addIRPasses();
}

bool PPCPassConfig::addPreISel() {
  if (!DisableInstrFormPrep && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCLoopInstrFormPrepPass(getPPCTargetMachine()));

  if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
    addPass(createHardwareLoopsPass());

  return false;
}

bool PPCPassConfig::addILPOpts() {
  addPass(&EarlyIfConverterID);

  if (EnableMachineCombinerPass)
    addPass(&MachineCombinerID);

  return true;
}

bool PPCPassConfig::addInstSelector() {
  // Install an instruction selector.
  addPass(createPPCISelDag(getPPCTargetMachine(), getOptLevel()));

#ifndef NDEBUG
  if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCCTRLoopsVerify());
#endif

  addPass(createPPCVSXCopyPass());
  return false;
}

void PPCPassConfig::addMachineSSAOptimization() {
  // PPCBranchCoalescingPass need to be done before machine sinking
  // since it merges empty blocks.
  if (EnableBranchCoalescing && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCBranchCoalescingPass());
  TargetPassConfig::addMachineSSAOptimization();
  // For little endian, remove where possible the vector swap instructions
  // introduced at code generation to normalize vector element order.
  if (TM->getTargetTriple().getArch() == Triple::ppc64le &&
      !DisableVSXSwapRemoval)
    addPass(createPPCVSXSwapRemovalPass());
  // Reduce the number of cr-logical ops.
  if (ReduceCRLogical && getOptLevel() != CodeGenOpt::None)
    addPass(createPPCReduceCRLogicalsPass());
  // Target-specific peephole cleanups performed after instruction
  // selection.
  if (!DisableMIPeephole) {
    addPass(createPPCMIPeepholePass());
    addPass(&DeadMachineInstructionElimID);
  }
}

void PPCPassConfig::addPreRegAlloc() {
  if (getOptLevel() != CodeGenOpt::None) {
    initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
    insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID,
               &PPCVSXFMAMutateID);
  }

  // FIXME: We probably don't need to run these for -fPIE.
  if (getPPCTargetMachine().isPositionIndependent()) {
    // FIXME: LiveVariables should not be necessary here!
    // PPCTLSDynamicCallPass uses LiveIntervals which previously dependent on
    // LiveVariables. This (unnecessary) dependency has been removed now,
    // however a stage-2 clang build fails without LiveVariables computed here.
    addPass(&LiveVariablesID);
    addPass(createPPCTLSDynamicCallPass());
  }
  if (EnableExtraTOCRegDeps)
    addPass(createPPCTOCRegDepsPass());

  if (getOptLevel() != CodeGenOpt::None)
    addPass(&MachinePipelinerID);
}

void PPCPassConfig::addPreSched2() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(&IfConverterID);

    // This optimization must happen after anything that might do store-to-load
    // forwarding. Here we're after RA (and, thus, when spills are inserted)
    // but before post-RA scheduling.
    if (!DisableQPXLoadSplat)
      addPass(createPPCQPXLoadSplatPass());
  }
}

void PPCPassConfig::addPreEmitPass() {
  addPass(createPPCPreEmitPeepholePass());
  addPass(createPPCExpandISELPass());

  if (getOptLevel() != CodeGenOpt::None)
    addPass(createPPCEarlyReturnPass());
  // Must run branch selection immediately preceding the asm printer.
  addPass(createPPCBranchSelectionPass());
}

TargetTransformInfo
PPCTargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(PPCTTIImpl(this, F));
}

static MachineSchedRegistry
PPCPreRASchedRegistry("ppc-prera",
                      "Run PowerPC PreRA specific scheduler",
                      createPPCMachineScheduler);

static MachineSchedRegistry
PPCPostRASchedRegistry("ppc-postra",
                       "Run PowerPC PostRA specific scheduler",
                       createPPCPostMachineScheduler);