PPCMIPeephole.cpp 63.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
//
// This pass performs peephole optimizations to clean up ugly code
// sequences at the MachineInstruction layer.  It runs at the end of
// the SSA phases, following VSX swap removal.  A pass of dead code
// elimination follows this one for quick clean-up of any dead
// instructions introduced here.  Although we could do this as callbacks
// from the generic peephole pass, this would have a couple of bad
// effects:  it might remove optimization opportunities for VSX swap
// removal, and it would miss cleanups made possible following VSX
// swap removal.
//
//===---------------------------------------------------------------------===//

#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-mi-peepholes"

STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
STATISTIC(MultiTOCSaves,
          "Number of functions with multiple TOC saves that must be kept");
STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
STATISTIC(NumConvertedToImmediateForm,
          "Number of instructions converted to their immediate form");
STATISTIC(NumFunctionsEnteredInMIPeephole,
          "Number of functions entered in PPC MI Peepholes");
STATISTIC(NumFixedPointIterations,
          "Number of fixed-point iterations converting reg-reg instructions "
          "to reg-imm ones");
STATISTIC(NumRotatesCollapsed,
          "Number of pairs of rotate left, clear left/right collapsed");
STATISTIC(NumEXTSWAndSLDICombined,
          "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
STATISTIC(NumLoadImmZeroFoldedAndRemoved,
          "Number of LI(8) reg, 0 that are folded to r0 and removed");

static cl::opt<bool>
FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
                   cl::desc("Iterate to a fixed point when attempting to "
                            "convert reg-reg instructions to reg-imm"));

static cl::opt<bool>
ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
              cl::desc("Convert eligible reg+reg instructions to reg+imm"));

static cl::opt<bool>
    EnableSExtElimination("ppc-eliminate-signext",
                          cl::desc("enable elimination of sign-extensions"),
                          cl::init(false), cl::Hidden);

static cl::opt<bool>
    EnableZExtElimination("ppc-eliminate-zeroext",
                          cl::desc("enable elimination of zero-extensions"),
                          cl::init(false), cl::Hidden);

namespace {

struct PPCMIPeephole : public MachineFunctionPass {

  static char ID;
  const PPCInstrInfo *TII;
  MachineFunction *MF;
  MachineRegisterInfo *MRI;

  PPCMIPeephole() : MachineFunctionPass(ID) {
    initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
  }

private:
  MachineDominatorTree *MDT;
  MachinePostDominatorTree *MPDT;
  MachineBlockFrequencyInfo *MBFI;
  uint64_t EntryFreq;

  // Initialize class variables.
  void initialize(MachineFunction &MFParm);

  // Perform peepholes.
  bool simplifyCode(void);

  // Perform peepholes.
  bool eliminateRedundantCompare(void);
  bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
  bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
  bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
  void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
                      MachineInstr *MI);

public:

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<MachinePostDominatorTree>();
    AU.addRequired<MachineBlockFrequencyInfo>();
    AU.addPreserved<MachineDominatorTree>();
    AU.addPreserved<MachinePostDominatorTree>();
    AU.addPreserved<MachineBlockFrequencyInfo>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  // Main entry point for this pass.
  bool runOnMachineFunction(MachineFunction &MF) override {
    initialize(MF);
    // At this point, TOC pointer should not be used in a function that uses
    // PC-Relative addressing.
    assert((MF.getRegInfo().use_empty(PPC::X2) ||
            !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
           "TOC pointer used in a function using PC-Relative addressing!");
    if (skipFunction(MF.getFunction()))
      return false;
    return simplifyCode();
  }
};

// Initialize class variables.
void PPCMIPeephole::initialize(MachineFunction &MFParm) {
  MF = &MFParm;
  MRI = &MF->getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  MPDT = &getAnalysis<MachinePostDominatorTree>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
  EntryFreq = MBFI->getEntryFreq();
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
  LLVM_DEBUG(MF->dump());
}

static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
                                      MachineRegisterInfo *MRI) {
  assert(Op && "Invalid Operand!");
  if (!Op->isReg())
    return nullptr;

  Register Reg = Op->getReg();
  if (!Register::isVirtualRegister(Reg))
    return nullptr;

  return MRI->getVRegDef(Reg);
}

// This function returns number of known zero bits in output of MI
// starting from the most significant bit.
static unsigned
getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
  unsigned Opcode = MI->getOpcode();
  if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
      Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
    return MI->getOperand(3).getImm();

  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
      MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
    return MI->getOperand(3).getImm();

  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
      MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
    return 32 + MI->getOperand(3).getImm();

  if (Opcode == PPC::ANDI_rec) {
    uint16_t Imm = MI->getOperand(2).getImm();
    return 48 + countLeadingZeros(Imm);
  }

  if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
      Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
    // The result ranges from 0 to 32.
    return 58;

  if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
      Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
    // The result ranges from 0 to 64.
    return 57;

  if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
      Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
      Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
    return 48;

  if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
      Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
      Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
    return 56;

  if (TII->isZeroExtended(*MI))
    return 32;

  return 0;
}

// This function maintains a map for the pairs <TOC Save Instr, Keep>
// Each time a new TOC save is encountered, it checks if any of the existing
// ones are dominated by the new one. If so, it marks the existing one as
// redundant by setting it's entry in the map as false. It then adds the new
// instruction to the map with either true or false depending on if any
// existing instructions dominated the new one.
void PPCMIPeephole::UpdateTOCSaves(
  std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
  assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
  assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
         "TOC-save removal only supported on ELFv2");
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();

  MachineBasicBlock *Entry = &MF->front();
  uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();

  // If the block in which the TOC save resides is in a block that
  // post-dominates Entry, or a block that is hotter than entry (keep in mind
  // that early MachineLICM has already run so the TOC save won't be hoisted)
  // we can just do the save in the prologue.
  if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
    FI->setMustSaveTOC(true);

  // If we are saving the TOC in the prologue, all the TOC saves can be removed
  // from the code.
  if (FI->mustSaveTOC()) {
    for (auto &TOCSave : TOCSaves)
      TOCSave.second = false;
    // Add new instruction to map.
    TOCSaves[MI] = false;
    return;
  }

  bool Keep = true;
  for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
    MachineInstr *CurrInst = It->first;
    // If new instruction dominates an existing one, mark existing one as
    // redundant.
    if (It->second && MDT->dominates(MI, CurrInst))
      It->second = false;
    // Check if the new instruction is redundant.
    if (MDT->dominates(CurrInst, MI)) {
      Keep = false;
      break;
    }
  }
  // Add new instruction to map.
  TOCSaves[MI] = Keep;
}

// Perform peephole optimizations.
bool PPCMIPeephole::simplifyCode(void) {
  bool Simplified = false;
  MachineInstr* ToErase = nullptr;
  std::map<MachineInstr *, bool> TOCSaves;
  const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
  NumFunctionsEnteredInMIPeephole++;
  if (ConvertRegReg) {
    // Fixed-point conversion of reg/reg instructions fed by load-immediate
    // into reg/imm instructions. FIXME: This is expensive, control it with
    // an option.
    bool SomethingChanged = false;
    do {
      NumFixedPointIterations++;
      SomethingChanged = false;
      for (MachineBasicBlock &MBB : *MF) {
        for (MachineInstr &MI : MBB) {
          if (MI.isDebugInstr())
            continue;

          if (TII->convertToImmediateForm(MI)) {
            // We don't erase anything in case the def has other uses. Let DCE
            // remove it if it can be removed.
            LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
            LLVM_DEBUG(MI.dump());
            NumConvertedToImmediateForm++;
            SomethingChanged = true;
            Simplified = true;
            continue;
          }
        }
      }
    } while (SomethingChanged && FixedPointRegToImm);
  }

  for (MachineBasicBlock &MBB : *MF) {
    for (MachineInstr &MI : MBB) {

      // If the previous instruction was marked for elimination,
      // remove it now.
      if (ToErase) {
        ToErase->eraseFromParent();
        ToErase = nullptr;
      }

      // Ignore debug instructions.
      if (MI.isDebugInstr())
        continue;

      // Per-opcode peepholes.
      switch (MI.getOpcode()) {

      default:
        break;
      case PPC::LI:
      case PPC::LI8: {
        // If we are materializing a zero, look for any use operands for which
        // zero means immediate zero. All such operands can be replaced with
        // PPC::ZERO.
        if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
          break;
        unsigned MIDestReg = MI.getOperand(0).getReg();
        for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
          Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
        if (MRI->use_nodbg_empty(MIDestReg)) {
          ++NumLoadImmZeroFoldedAndRemoved;
          ToErase = &MI;
        }
        break;
      }
      case PPC::STD: {
        MachineFrameInfo &MFI = MF->getFrameInfo();
        if (MFI.hasVarSizedObjects() ||
            !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
          break;
        // When encountering a TOC save instruction, call UpdateTOCSaves
        // to add it to the TOCSaves map and mark any existing TOC saves
        // it dominates as redundant.
        if (TII->isTOCSaveMI(MI))
          UpdateTOCSaves(TOCSaves, &MI);
        break;
      }
      case PPC::XXPERMDI: {
        // Perform simplifications of 2x64 vector swaps and splats.
        // A swap is identified by an immediate value of 2, and a splat
        // is identified by an immediate value of 0 or 3.
        int Immed = MI.getOperand(3).getImm();

        if (Immed == 1)
          break;

        // For each of these simplifications, we need the two source
        // regs to match.  Unfortunately, MachineCSE ignores COPY and
        // SUBREG_TO_REG, so for example we can see
        //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
        // We have to look through chains of COPY and SUBREG_TO_REG
        // to find the real source values for comparison.
        unsigned TrueReg1 =
          TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
        unsigned TrueReg2 =
          TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);

        if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
          break;

        MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);

        if (!DefMI)
          break;

        unsigned DefOpc = DefMI->getOpcode();

        // If this is a splat fed by a splatting load, the splat is
        // redundant. Replace with a copy. This doesn't happen directly due
        // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
        // a load of a double to a vector of 64-bit integers.
        auto isConversionOfLoadAndSplat = [=]() -> bool {
          if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
            return false;
          unsigned FeedReg1 =
            TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
          if (Register::isVirtualRegister(FeedReg1)) {
            MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
            if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
              return true;
          }
          return false;
        };
        if ((Immed == 0 || Immed == 3) &&
            (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
          LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
                               "to load-and-splat/copy: ");
          LLVM_DEBUG(MI.dump());
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                  MI.getOperand(0).getReg())
              .add(MI.getOperand(1));
          ToErase = &MI;
          Simplified = true;
        }

        // If this is a splat or a swap fed by another splat, we
        // can replace it with a copy.
        if (DefOpc == PPC::XXPERMDI) {
          unsigned DefReg1 = DefMI->getOperand(1).getReg();
          unsigned DefReg2 = DefMI->getOperand(2).getReg();
          unsigned DefImmed = DefMI->getOperand(3).getImm();

          // If the two inputs are not the same register, check to see if
          // they originate from the same virtual register after only
          // copy-like instructions.
          if (DefReg1 != DefReg2) {
            unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
            unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);

            if (!(FeedReg1 == FeedReg2 &&
                  Register::isVirtualRegister(FeedReg1)))
              break;
          }

          if (DefImmed == 0 || DefImmed == 3) {
            LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
                                 "to splat/copy: ");
            LLVM_DEBUG(MI.dump());
            BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                    MI.getOperand(0).getReg())
                .add(MI.getOperand(1));
            ToErase = &MI;
            Simplified = true;
          }

          // If this is a splat fed by a swap, we can simplify modify
          // the splat to splat the other value from the swap's input
          // parameter.
          else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
            LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
            LLVM_DEBUG(MI.dump());
            MI.getOperand(1).setReg(DefReg1);
            MI.getOperand(2).setReg(DefReg2);
            MI.getOperand(3).setImm(3 - Immed);
            Simplified = true;
          }

          // If this is a swap fed by a swap, we can replace it
          // with a copy from the first swap's input.
          else if (Immed == 2 && DefImmed == 2) {
            LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
            LLVM_DEBUG(MI.dump());
            BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                    MI.getOperand(0).getReg())
                .add(DefMI->getOperand(1));
            ToErase = &MI;
            Simplified = true;
          }
        } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
                   (DefMI->getOperand(2).getImm() == 0 ||
                    DefMI->getOperand(2).getImm() == 3)) {
          // Splat fed by another splat - switch the output of the first
          // and remove the second.
          DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
          ToErase = &MI;
          Simplified = true;
          LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
          LLVM_DEBUG(MI.dump());
        }
        break;
      }
      case PPC::VSPLTB:
      case PPC::VSPLTH:
      case PPC::XXSPLTW: {
        unsigned MyOpcode = MI.getOpcode();
        unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
        unsigned TrueReg =
          TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
        if (!Register::isVirtualRegister(TrueReg))
          break;
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
        if (!DefMI)
          break;
        unsigned DefOpcode = DefMI->getOpcode();
        auto isConvertOfSplat = [=]() -> bool {
          if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
            return false;
          Register ConvReg = DefMI->getOperand(1).getReg();
          if (!Register::isVirtualRegister(ConvReg))
            return false;
          MachineInstr *Splt = MRI->getVRegDef(ConvReg);
          return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
            Splt->getOpcode() == PPC::XXSPLTW);
        };
        bool AlreadySplat = (MyOpcode == DefOpcode) ||
          (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
          (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
          (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
          (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
        // If the instruction[s] that feed this splat have already splat
        // the value, this splat is redundant.
        if (AlreadySplat) {
          LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
          LLVM_DEBUG(MI.dump());
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                  MI.getOperand(0).getReg())
              .add(MI.getOperand(OpNo));
          ToErase = &MI;
          Simplified = true;
        }
        // Splat fed by a shift. Usually when we align value to splat into
        // vector element zero.
        if (DefOpcode == PPC::XXSLDWI) {
          Register ShiftRes = DefMI->getOperand(0).getReg();
          Register ShiftOp1 = DefMI->getOperand(1).getReg();
          Register ShiftOp2 = DefMI->getOperand(2).getReg();
          unsigned ShiftImm = DefMI->getOperand(3).getImm();
          unsigned SplatImm = MI.getOperand(2).getImm();
          if (ShiftOp1 == ShiftOp2) {
            unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
            if (MRI->hasOneNonDBGUse(ShiftRes)) {
              LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
              LLVM_DEBUG(DefMI->dump());
              ToErase = DefMI;
            }
            Simplified = true;
            LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
                              << " to " << NewElem << " in instruction: ");
            LLVM_DEBUG(MI.dump());
            MI.getOperand(1).setReg(ShiftOp1);
            MI.getOperand(2).setImm(NewElem);
          }
        }
        break;
      }
      case PPC::XVCVDPSP: {
        // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
        unsigned TrueReg =
          TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
        if (!Register::isVirtualRegister(TrueReg))
          break;
        MachineInstr *DefMI = MRI->getVRegDef(TrueReg);

        // This can occur when building a vector of single precision or integer
        // values.
        if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
          unsigned DefsReg1 =
            TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
          unsigned DefsReg2 =
            TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
          if (!Register::isVirtualRegister(DefsReg1) ||
              !Register::isVirtualRegister(DefsReg2))
            break;
          MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
          MachineInstr *P2 = MRI->getVRegDef(DefsReg2);

          if (!P1 || !P2)
            break;

          // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
          // and set any uses of that FRSP/XSRSP (in this MI) to the source of
          // the FRSP/XSRSP.
          auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
            unsigned Opc = RoundInstr->getOpcode();
            if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
                MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
              Simplified = true;
              Register ConvReg1 = RoundInstr->getOperand(1).getReg();
              Register FRSPDefines = RoundInstr->getOperand(0).getReg();
              MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
              for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
                if (Use.getOperand(i).isReg() &&
                    Use.getOperand(i).getReg() == FRSPDefines)
                  Use.getOperand(i).setReg(ConvReg1);
              LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
              LLVM_DEBUG(RoundInstr->dump());
              LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
              LLVM_DEBUG(MI.dump());
              LLVM_DEBUG(dbgs() << "Through instruction:\n");
              LLVM_DEBUG(DefMI->dump());
              RoundInstr->eraseFromParent();
            }
          };

          // If the input to XVCVDPSP is a vector that was built (even
          // partially) out of FRSP's, the FRSP(s) can safely be removed
          // since this instruction performs the same operation.
          if (P1 != P2) {
            removeFRSPIfPossible(P1);
            removeFRSPIfPossible(P2);
            break;
          }
          removeFRSPIfPossible(P1);
        }
        break;
      }
      case PPC::EXTSH:
      case PPC::EXTSH8:
      case PPC::EXTSH8_32_64: {
        if (!EnableSExtElimination) break;
        Register NarrowReg = MI.getOperand(1).getReg();
        if (!Register::isVirtualRegister(NarrowReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
        // If we've used a zero-extending load that we will sign-extend,
        // just do a sign-extending load.
        if (SrcMI->getOpcode() == PPC::LHZ ||
            SrcMI->getOpcode() == PPC::LHZX) {
          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
            break;
          auto is64Bit = [] (unsigned Opcode) {
            return Opcode == PPC::EXTSH8;
          };
          auto isXForm = [] (unsigned Opcode) {
            return Opcode == PPC::LHZX;
          };
          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
            if (is64Bit)
              if (isXForm) return PPC::LHAX8;
              else         return PPC::LHA8;
            else
              if (isXForm) return PPC::LHAX;
              else         return PPC::LHA;
          };
          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
                                       isXForm(SrcMI->getOpcode()));
          LLVM_DEBUG(dbgs() << "Zero-extending load\n");
          LLVM_DEBUG(SrcMI->dump());
          LLVM_DEBUG(dbgs() << "and sign-extension\n");
          LLVM_DEBUG(MI.dump());
          LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
          SrcMI->setDesc(TII->get(Opc));
          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
          ToErase = &MI;
          Simplified = true;
          NumEliminatedSExt++;
        }
        break;
      }
      case PPC::EXTSW:
      case PPC::EXTSW_32:
      case PPC::EXTSW_32_64: {
        if (!EnableSExtElimination) break;
        Register NarrowReg = MI.getOperand(1).getReg();
        if (!Register::isVirtualRegister(NarrowReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
        // If we've used a zero-extending load that we will sign-extend,
        // just do a sign-extending load.
        if (SrcMI->getOpcode() == PPC::LWZ ||
            SrcMI->getOpcode() == PPC::LWZX) {
          if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
            break;
          auto is64Bit = [] (unsigned Opcode) {
            return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
          };
          auto isXForm = [] (unsigned Opcode) {
            return Opcode == PPC::LWZX;
          };
          auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
            if (is64Bit)
              if (isXForm) return PPC::LWAX;
              else         return PPC::LWA;
            else
              if (isXForm) return PPC::LWAX_32;
              else         return PPC::LWA_32;
          };
          unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
                                       isXForm(SrcMI->getOpcode()));
          LLVM_DEBUG(dbgs() << "Zero-extending load\n");
          LLVM_DEBUG(SrcMI->dump());
          LLVM_DEBUG(dbgs() << "and sign-extension\n");
          LLVM_DEBUG(MI.dump());
          LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
          SrcMI->setDesc(TII->get(Opc));
          SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
          ToErase = &MI;
          Simplified = true;
          NumEliminatedSExt++;
        } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
                   TII->isSignExtended(*SrcMI)) {
          // We can eliminate EXTSW if the input is known to be already
          // sign-extended.
          LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
          Register TmpReg =
              MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
                  TmpReg);
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
                  MI.getOperand(0).getReg())
              .addReg(TmpReg)
              .addReg(NarrowReg)
              .addImm(PPC::sub_32);
          ToErase = &MI;
          Simplified = true;
          NumEliminatedSExt++;
        }
        break;
      }
      case PPC::RLDICL: {
        // We can eliminate RLDICL (e.g. for zero-extension)
        // if all bits to clear are already zero in the input.
        // This code assume following code sequence for zero-extension.
        //   %6 = COPY %5:sub_32; (optional)
        //   %8 = IMPLICIT_DEF;
        //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
        if (!EnableZExtElimination) break;

        if (MI.getOperand(2).getImm() != 0)
          break;

        Register SrcReg = MI.getOperand(1).getReg();
        if (!Register::isVirtualRegister(SrcReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
        if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
              SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
          break;

        MachineInstr *ImpDefMI, *SubRegMI;
        ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
        SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
        if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;

        SrcMI = SubRegMI;
        if (SubRegMI->getOpcode() == PPC::COPY) {
          Register CopyReg = SubRegMI->getOperand(1).getReg();
          if (Register::isVirtualRegister(CopyReg))
            SrcMI = MRI->getVRegDef(CopyReg);
        }

        unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
        if (MI.getOperand(3).getImm() <= KnownZeroCount) {
          LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
          BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                  MI.getOperand(0).getReg())
              .addReg(SrcReg);
          ToErase = &MI;
          Simplified = true;
          NumEliminatedZExt++;
        }
        break;
      }

      // TODO: Any instruction that has an immediate form fed only by a PHI
      // whose operands are all load immediate can be folded away. We currently
      // do this for ADD instructions, but should expand it to arithmetic and
      // binary instructions with immediate forms in the future.
      case PPC::ADD4:
      case PPC::ADD8: {
        auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
          assert(PhiOp && "Invalid Operand!");
          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);

          return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
                 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
        };

        auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
                                            MachineOperand *PhiOp) {
          assert(PhiOp && "Invalid Operand!");
          assert(DominatorOp && "Invalid Operand!");
          MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
          MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);

          // Note: the vregs only show up at odd indices position of PHI Node,
          // the even indices position save the BB info.
          for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
            MachineInstr *LiMI =
                getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
            if (!LiMI ||
                (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
                || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
                !MDT->dominates(DefDomMI, LiMI))
              return false;
          }

          return true;
        };

        MachineOperand Op1 = MI.getOperand(1);
        MachineOperand Op2 = MI.getOperand(2);
        if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
          std::swap(Op1, Op2);
        else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
          break; // We don't have an ADD fed by LI's that can be transformed

        // Now we know that Op1 is the PHI node and Op2 is the dominator
        Register DominatorReg = Op2.getReg();

        const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
                                             ? &PPC::G8RC_and_G8RC_NOX0RegClass
                                             : &PPC::GPRC_and_GPRC_NOR0RegClass;
        MRI->setRegClass(DominatorReg, TRC);

        // replace LIs with ADDIs
        MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
        for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
          MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
          LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
          LLVM_DEBUG(LiMI->dump());

          // There could be repeated registers in the PHI, e.g: %1 =
          // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
          // already replaced the def instruction, skip.
          if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
            continue;

          assert((LiMI->getOpcode() == PPC::LI ||
                  LiMI->getOpcode() == PPC::LI8) &&
                 "Invalid Opcode!");
          auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
          LiMI->RemoveOperand(1);                    // remove the imm of LI
          LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
                                                              : PPC::ADDI8));
          MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
              .addReg(DominatorReg)
              .addImm(LiImm); // restore the imm of LI
          LLVM_DEBUG(LiMI->dump());
        }

        // Replace ADD with COPY
        LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
        LLVM_DEBUG(MI.dump());
        BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
                MI.getOperand(0).getReg())
            .add(Op1);
        ToErase = &MI;
        Simplified = true;
        NumOptADDLIs++;
        break;
      }
      case PPC::RLDICR: {
        Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
                      combineSEXTAndSHL(MI, ToErase);
        break;
      }
      case PPC::RLWINM:
      case PPC::RLWINM_rec:
      case PPC::RLWINM8:
      case PPC::RLWINM8_rec: {
        unsigned FoldingReg = MI.getOperand(1).getReg();
        if (!Register::isVirtualRegister(FoldingReg))
          break;

        MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
        if (SrcMI->getOpcode() != PPC::RLWINM &&
            SrcMI->getOpcode() != PPC::RLWINM_rec &&
            SrcMI->getOpcode() != PPC::RLWINM8 &&
            SrcMI->getOpcode() != PPC::RLWINM8_rec)
          break;
        assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
                MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
                SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
               "Invalid PPC::RLWINM Instruction!");
        uint64_t SHSrc = SrcMI->getOperand(2).getImm();
        uint64_t SHMI = MI.getOperand(2).getImm();
        uint64_t MBSrc = SrcMI->getOperand(3).getImm();
        uint64_t MBMI = MI.getOperand(3).getImm();
        uint64_t MESrc = SrcMI->getOperand(4).getImm();
        uint64_t MEMI = MI.getOperand(4).getImm();

        assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
               "Invalid PPC::RLWINM Instruction!");

        // If MBMI is bigger than MEMI, we always can not get run of ones.
        // RotatedSrcMask non-wrap:
        //                 0........31|32........63
        // RotatedSrcMask:   B---E        B---E
        // MaskMI:         -----------|--E  B------
        // Result:           -----          ---      (Bad candidate)
        //
        // RotatedSrcMask wrap:
        //                 0........31|32........63
        // RotatedSrcMask: --E   B----|--E    B----
        // MaskMI:         -----------|--E  B------
        // Result:         ---   -----|---    -----  (Bad candidate)
        //
        // One special case is RotatedSrcMask is a full set mask.
        // RotatedSrcMask full:
        //                 0........31|32........63
        // RotatedSrcMask: ------EB---|-------EB---
        // MaskMI:         -----------|--E  B------
        // Result:         -----------|---  -------  (Good candidate)

        // Mark special case.
        bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);

        // For other MBMI > MEMI cases, just return.
        if ((MBMI > MEMI) && !SrcMaskFull)
          break;

        // Handle MBMI <= MEMI cases.
        APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
        // In MI, we only need low 32 bits of SrcMI, just consider about low 32
        // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
        // while in PowerPC ISA, lowerest bit is at index 63.
        APInt MaskSrc =
            APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);

        APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
        APInt FinalMask = RotatedSrcMask & MaskMI;
        uint32_t NewMB, NewME;

        // If final mask is 0, MI result should be 0 too.
        if (FinalMask.isNullValue()) {
          bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
                          MI.getOpcode() == PPC::RLWINM8_rec);

          Simplified = true;

          LLVM_DEBUG(dbgs() << "Replace Instr: ");
          LLVM_DEBUG(MI.dump());

          if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
            // Replace MI with "LI 0"
            MI.RemoveOperand(4);
            MI.RemoveOperand(3);
            MI.RemoveOperand(2);
            MI.getOperand(1).ChangeToImmediate(0);
            MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
          } else {
            // Replace MI with "ANDI_rec reg, 0"
            MI.RemoveOperand(4);
            MI.RemoveOperand(3);
            MI.getOperand(2).setImm(0);
            MI.setDesc(TII->get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
            MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
            if (SrcMI->getOperand(1).isKill()) {
              MI.getOperand(1).setIsKill(true);
              SrcMI->getOperand(1).setIsKill(false);
            } else
              // About to replace MI.getOperand(1), clear its kill flag.
              MI.getOperand(1).setIsKill(false);
          }

          LLVM_DEBUG(dbgs() << "With: ");
          LLVM_DEBUG(MI.dump());
        } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
                               NewME) && NewMB <= NewME)|| SrcMaskFull) {
          // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
          // than NewME. Otherwise we get a 64 bit value after folding, but MI
          // return a 32 bit value.

          Simplified = true;
          LLVM_DEBUG(dbgs() << "Converting Instr: ");
          LLVM_DEBUG(MI.dump());

          uint16_t NewSH = (SHSrc + SHMI) % 32;
          MI.getOperand(2).setImm(NewSH);
          // If SrcMI mask is full, no need to update MBMI and MEMI.
          if (!SrcMaskFull) {
            MI.getOperand(3).setImm(NewMB);
            MI.getOperand(4).setImm(NewME);
          }
          MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
          if (SrcMI->getOperand(1).isKill()) {
            MI.getOperand(1).setIsKill(true);
            SrcMI->getOperand(1).setIsKill(false);
          } else
            // About to replace MI.getOperand(1), clear its kill flag.
            MI.getOperand(1).setIsKill(false);

          LLVM_DEBUG(dbgs() << "To: ");
          LLVM_DEBUG(MI.dump());
        }
        if (Simplified) {
          // If FoldingReg has no non-debug use and it has no implicit def (it
          // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
          // Otherwise keep it.
          ++NumRotatesCollapsed;
          if (MRI->use_nodbg_empty(FoldingReg) && !SrcMI->hasImplicitDef()) {
            ToErase = SrcMI;
            LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
            LLVM_DEBUG(SrcMI->dump());
          }
        }
        break;
      }
      }
    }

    // If the last instruction was marked for elimination,
    // remove it now.
    if (ToErase) {
      ToErase->eraseFromParent();
      ToErase = nullptr;
    }
  }

  // Eliminate all the TOC save instructions which are redundant.
  Simplified |= eliminateRedundantTOCSaves(TOCSaves);
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
  if (FI->mustSaveTOC())
    NumTOCSavesInPrologue++;

  // We try to eliminate redundant compare instruction.
  Simplified |= eliminateRedundantCompare();

  return Simplified;
}

// helper functions for eliminateRedundantCompare
static bool isEqOrNe(MachineInstr *BI) {
  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
  unsigned PredCond = PPC::getPredicateCondition(Pred);
  return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
}

static bool isSupportedCmpOp(unsigned opCode) {
  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
          opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
          opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
          opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
}

static bool is64bitCmpOp(unsigned opCode) {
  return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
          opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
}

static bool isSignedCmpOp(unsigned opCode) {
  return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
          opCode == PPC::CMPDI || opCode == PPC::CMPWI);
}

static unsigned getSignedCmpOpCode(unsigned opCode) {
  if (opCode == PPC::CMPLD)  return PPC::CMPD;
  if (opCode == PPC::CMPLW)  return PPC::CMPW;
  if (opCode == PPC::CMPLDI) return PPC::CMPDI;
  if (opCode == PPC::CMPLWI) return PPC::CMPWI;
  return opCode;
}

// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
// (LT x) to (LE x-1)
static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
  uint64_t Imm = CMPI->getOperand(2).getImm();
  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
  if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
    return 0;

  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
  unsigned PredCond = PPC::getPredicateCondition(Pred);
  unsigned PredHint = PPC::getPredicateHint(Pred);
  if (PredCond == PPC::PRED_GE)
    return PPC::getPredicate(PPC::PRED_GT, PredHint);
  if (PredCond == PPC::PRED_LT)
    return PPC::getPredicate(PPC::PRED_LE, PredHint);

  return 0;
}

// We can increment immediate x in (GT x) by changing it to (GE x+1) or
// (LE x) to (LT x+1)
static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
  uint64_t Imm = CMPI->getOperand(2).getImm();
  bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
  if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
    return 0;

  PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
  unsigned PredCond = PPC::getPredicateCondition(Pred);
  unsigned PredHint = PPC::getPredicateHint(Pred);
  if (PredCond == PPC::PRED_GT)
    return PPC::getPredicate(PPC::PRED_GE, PredHint);
  if (PredCond == PPC::PRED_LE)
    return PPC::getPredicate(PPC::PRED_LT, PredHint);

  return 0;
}

// This takes a Phi node and returns a register value for the specified BB.
static unsigned getIncomingRegForBlock(MachineInstr *Phi,
                                       MachineBasicBlock *MBB) {
  for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
    MachineOperand &MO = Phi->getOperand(I);
    if (MO.getMBB() == MBB)
      return Phi->getOperand(I-1).getReg();
  }
  llvm_unreachable("invalid src basic block for this Phi node\n");
  return 0;
}

// This function tracks the source of the register through register copy.
// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
// assuming that the control comes from BB1 into BB2.
static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
                           MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
  unsigned SrcReg = Reg;
  while (1) {
    unsigned NextReg = SrcReg;
    MachineInstr *Inst = MRI->getVRegDef(SrcReg);
    if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
      NextReg = getIncomingRegForBlock(Inst, BB1);
      // We track through PHI only once to avoid infinite loop.
      BB1 = nullptr;
    }
    else if (Inst->isFullCopy())
      NextReg = Inst->getOperand(1).getReg();
    if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
      break;
    SrcReg = NextReg;
  }
  return SrcReg;
}

static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
                                          MachineBasicBlock *&PredMBB,
                                          MachineBasicBlock *&MBBtoMoveCmp,
                                          MachineRegisterInfo *MRI) {

  auto isEligibleBB = [&](MachineBasicBlock &BB) {
    auto BII = BB.getFirstInstrTerminator();
    // We optimize BBs ending with a conditional branch.
    // We check only for BCC here, not BCCLR, because BCCLR
    // will be formed only later in the pipeline.
    if (BB.succ_size() == 2 &&
        BII != BB.instr_end() &&
        (*BII).getOpcode() == PPC::BCC &&
        (*BII).getOperand(1).isReg()) {
      // We optimize only if the condition code is used only by one BCC.
      Register CndReg = (*BII).getOperand(1).getReg();
      if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
        return false;

      MachineInstr *CMPI = MRI->getVRegDef(CndReg);
      // We assume compare and branch are in the same BB for ease of analysis.
      if (CMPI->getParent() != &BB)
        return false;

      // We skip this BB if a physical register is used in comparison.
      for (MachineOperand &MO : CMPI->operands())
        if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
          return false;

      return true;
    }
    return false;
  };

  // If this BB has more than one successor, we can create a new BB and
  // move the compare instruction in the new BB.
  // So far, we do not move compare instruction to a BB having multiple
  // successors to avoid potentially increasing code size.
  auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
    return BB.succ_size() == 1;
  };

  if (!isEligibleBB(MBB))
    return false;

  unsigned NumPredBBs = MBB.pred_size();
  if (NumPredBBs == 1) {
    MachineBasicBlock *TmpMBB = *MBB.pred_begin();
    if (isEligibleBB(*TmpMBB)) {
      PredMBB = TmpMBB;
      MBBtoMoveCmp = nullptr;
      return true;
    }
  }
  else if (NumPredBBs == 2) {
    // We check for partially redundant case.
    // So far, we support cases with only two predecessors
    // to avoid increasing the number of instructions.
    MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
    MachineBasicBlock *Pred1MBB = *PI;
    MachineBasicBlock *Pred2MBB = *(PI+1);

    if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
      // We assume Pred1MBB is the BB containing the compare to be merged and
      // Pred2MBB is the BB to which we will append a compare instruction.
      // Hence we can proceed as is.
    }
    else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
      // We need to swap Pred1MBB and Pred2MBB to canonicalize.
      std::swap(Pred1MBB, Pred2MBB);
    }
    else return false;

    // Here, Pred2MBB is the BB to which we need to append a compare inst.
    // We cannot move the compare instruction if operands are not available
    // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
    MachineInstr *BI = &*MBB.getFirstInstrTerminator();
    MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
    for (int I = 1; I <= 2; I++)
      if (CMPI->getOperand(I).isReg()) {
        MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
        if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
          return false;
      }

    PredMBB = Pred1MBB;
    MBBtoMoveCmp = Pred2MBB;
    return true;
  }

  return false;
}

// This function will iterate over the input map containing a pair of TOC save
// instruction and a flag. The flag will be set to false if the TOC save is
// proven redundant. This function will erase from the basic block all the TOC
// saves marked as redundant.
bool PPCMIPeephole::eliminateRedundantTOCSaves(
    std::map<MachineInstr *, bool> &TOCSaves) {
  bool Simplified = false;
  int NumKept = 0;
  for (auto TOCSave : TOCSaves) {
    if (!TOCSave.second) {
      TOCSave.first->eraseFromParent();
      RemoveTOCSave++;
      Simplified = true;
    } else {
      NumKept++;
    }
  }

  if (NumKept > 1)
    MultiTOCSaves++;

  return Simplified;
}

// If multiple conditional branches are executed based on the (essentially)
// same comparison, we merge compare instructions into one and make multiple
// conditional branches on this comparison.
// For example,
//   if (a == 0) { ... }
//   else if (a < 0) { ... }
// can be executed by one compare and two conditional branches instead of
// two pairs of a compare and a conditional branch.
//
// This method merges two compare instructions in two MBBs and modifies the
// compare and conditional branch instructions if needed.
// For the above example, the input for this pass looks like:
//   cmplwi r3, 0
//   beq    0, .LBB0_3
//   cmpwi  r3, -1
//   bgt    0, .LBB0_4
// So, before merging two compares, we need to modify these instructions as
//   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
//   beq    0, .LBB0_3
//   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
//   bge    0, .LBB0_4

bool PPCMIPeephole::eliminateRedundantCompare(void) {
  bool Simplified = false;

  for (MachineBasicBlock &MBB2 : *MF) {
    MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;

    // For fully redundant case, we select two basic blocks MBB1 and MBB2
    // as an optimization target if
    // - both MBBs end with a conditional branch,
    // - MBB1 is the only predecessor of MBB2, and
    // - compare does not take a physical register as a operand in both MBBs.
    // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
    //
    // As partially redundant case, we additionally handle if MBB2 has one
    // additional predecessor, which has only one successor (MBB2).
    // In this case, we move the compare instruction originally in MBB2 into
    // MBBtoMoveCmp. This partially redundant case is typically appear by
    // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
    //
    // Overview of CFG of related basic blocks
    // Fully redundant case        Partially redundant case
    //   --------                   ----------------  --------
    //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
    //   --------                   ----------------  --------
    //      |    \                     (w/ 1 succ) \     |    \
    //      |     \                                 \    |     \
    //      |                                        \   |
    //   --------                                     --------
    //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
    //   -------- and 2 succ)                         -------- and 2 succ)
    //      |    \                                       |    \
    //      |     \                                      |     \
    //
    if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
      continue;

    MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
    MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());

    MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
    MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
    bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);

    // We cannot optimize an unsupported compare opcode or
    // a mix of 32-bit and 64-bit comaprisons
    if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
        !isSupportedCmpOp(CMPI2->getOpcode()) ||
        is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
      continue;

    unsigned NewOpCode = 0;
    unsigned NewPredicate1 = 0, NewPredicate2 = 0;
    int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
    bool SwapOperands = false;

    if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
      // Typically, unsigned comparison is used for equality check, but
      // we replace it with a signed comparison if the comparison
      // to be merged is a signed comparison.
      // In other cases of opcode mismatch, we cannot optimize this.

      // We cannot change opcode when comparing against an immediate
      // if the most significant bit of the immediate is one
      // due to the difference in sign extension.
      auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
        if (!I->getOperand(2).isImm())
          return false;
        int16_t Imm = (int16_t)I->getOperand(2).getImm();
        return Imm < 0;
      };

      if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
          CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
        NewOpCode = CMPI1->getOpcode();
      else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
               getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
        NewOpCode = CMPI2->getOpcode();
      else continue;
    }

    if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
      // In case of comparisons between two registers, these two registers
      // must be same to merge two comparisons.
      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
                                         nullptr, nullptr, MRI);
      unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
                                         nullptr, nullptr, MRI);
      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
                                         MBB1, &MBB2, MRI);
      unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
                                         MBB1, &MBB2, MRI);

      if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
        // Same pair of registers in the same order; ready to merge as is.
      }
      else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
        // Same pair of registers in different order.
        // We reverse the predicate to merge compare instructions.
        PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
        NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
        // In case of partial redundancy, we need to swap operands
        // in another compare instruction.
        SwapOperands = true;
      }
      else continue;
    }
    else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
      // In case of comparisons between a register and an immediate,
      // the operand register must be same for two compare instructions.
      unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
                                         nullptr, nullptr, MRI);
      unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
                                         MBB1, &MBB2, MRI);
      if (Cmp1Operand1 != Cmp2Operand1)
        continue;

      NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
      NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();

      // If immediate are not same, we try to adjust by changing predicate;
      // e.g. GT imm means GE (imm+1).
      if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
        int Diff = Imm1 - Imm2;
        if (Diff < -2 || Diff > 2)
          continue;

        unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
        unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
        unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
        unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
        if (Diff == 2) {
          if (PredToInc2 && PredToDec1) {
            NewPredicate2 = PredToInc2;
            NewPredicate1 = PredToDec1;
            NewImm2++;
            NewImm1--;
          }
        }
        else if (Diff == 1) {
          if (PredToInc2) {
            NewImm2++;
            NewPredicate2 = PredToInc2;
          }
          else if (PredToDec1) {
            NewImm1--;
            NewPredicate1 = PredToDec1;
          }
        }
        else if (Diff == -1) {
          if (PredToDec2) {
            NewImm2--;
            NewPredicate2 = PredToDec2;
          }
          else if (PredToInc1) {
            NewImm1++;
            NewPredicate1 = PredToInc1;
          }
        }
        else if (Diff == -2) {
          if (PredToDec2 && PredToInc1) {
            NewPredicate2 = PredToDec2;
            NewPredicate1 = PredToInc1;
            NewImm2--;
            NewImm1++;
          }
        }
      }

      // We cannot merge two compares if the immediates are not same.
      if (NewImm2 != NewImm1)
        continue;
    }

    LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
    LLVM_DEBUG(CMPI1->dump());
    LLVM_DEBUG(BI1->dump());
    LLVM_DEBUG(CMPI2->dump());
    LLVM_DEBUG(BI2->dump());

    // We adjust opcode, predicates and immediate as we determined above.
    if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
      CMPI1->setDesc(TII->get(NewOpCode));
    }
    if (NewPredicate1) {
      BI1->getOperand(0).setImm(NewPredicate1);
    }
    if (NewPredicate2) {
      BI2->getOperand(0).setImm(NewPredicate2);
    }
    if (NewImm1 != Imm1) {
      CMPI1->getOperand(2).setImm(NewImm1);
    }

    if (IsPartiallyRedundant) {
      // We touch up the compare instruction in MBB2 and move it to
      // a previous BB to handle partially redundant case.
      if (SwapOperands) {
        Register Op1 = CMPI2->getOperand(1).getReg();
        Register Op2 = CMPI2->getOperand(2).getReg();
        CMPI2->getOperand(1).setReg(Op2);
        CMPI2->getOperand(2).setReg(Op1);
      }
      if (NewImm2 != Imm2)
        CMPI2->getOperand(2).setImm(NewImm2);

      for (int I = 1; I <= 2; I++) {
        if (CMPI2->getOperand(I).isReg()) {
          MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
          if (Inst->getParent() != &MBB2)
            continue;

          assert(Inst->getOpcode() == PPC::PHI &&
                 "We cannot support if an operand comes from this BB.");
          unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
          CMPI2->getOperand(I).setReg(SrcReg);
        }
      }
      auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
      MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));

      DebugLoc DL = CMPI2->getDebugLoc();
      Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
      BuildMI(MBB2, MBB2.begin(), DL,
              TII->get(PPC::PHI), NewVReg)
        .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
        .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
      BI2->getOperand(1).setReg(NewVReg);
    }
    else {
      // We finally eliminate compare instruction in MBB2.
      BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
      CMPI2->eraseFromParent();
    }
    BI2->getOperand(1).setIsKill(true);
    BI1->getOperand(1).setIsKill(false);

    LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
    LLVM_DEBUG(CMPI1->dump());
    LLVM_DEBUG(BI1->dump());
    LLVM_DEBUG(BI2->dump());
    if (IsPartiallyRedundant) {
      LLVM_DEBUG(dbgs() << "The following compare is moved into "
                        << printMBBReference(*MBBtoMoveCmp)
                        << " to handle partial redundancy.\n");
      LLVM_DEBUG(CMPI2->dump());
    }

    Simplified = true;
  }

  return Simplified;
}

// We miss the opportunity to emit an RLDIC when lowering jump tables
// since ISEL sees only a single basic block. When selecting, the clear
// and shift left will be in different blocks.
bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
  if (MI.getOpcode() != PPC::RLDICR)
    return false;

  Register SrcReg = MI.getOperand(1).getReg();
  if (!Register::isVirtualRegister(SrcReg))
    return false;

  MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
  if (SrcMI->getOpcode() != PPC::RLDICL)
    return false;

  MachineOperand MOpSHSrc = SrcMI->getOperand(2);
  MachineOperand MOpMBSrc = SrcMI->getOperand(3);
  MachineOperand MOpSHMI = MI.getOperand(2);
  MachineOperand MOpMEMI = MI.getOperand(3);
  if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
        MOpMEMI.isImm()))
    return false;

  uint64_t SHSrc = MOpSHSrc.getImm();
  uint64_t MBSrc = MOpMBSrc.getImm();
  uint64_t SHMI = MOpSHMI.getImm();
  uint64_t MEMI = MOpMEMI.getImm();
  uint64_t NewSH = SHSrc + SHMI;
  uint64_t NewMB = MBSrc - SHMI;
  if (NewMB > 63 || NewSH > 63)
    return false;

  // The bits cleared with RLDICL are [0, MBSrc).
  // The bits cleared with RLDICR are (MEMI, 63].
  // After the sequence, the bits cleared are:
  // [0, MBSrc-SHMI) and (MEMI, 63).
  //
  // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
  if ((63 - NewSH) != MEMI)
    return false;

  LLVM_DEBUG(dbgs() << "Converting pair: ");
  LLVM_DEBUG(SrcMI->dump());
  LLVM_DEBUG(MI.dump());

  MI.setDesc(TII->get(PPC::RLDIC));
  MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
  MI.getOperand(2).setImm(NewSH);
  MI.getOperand(3).setImm(NewMB);
  MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
  SrcMI->getOperand(1).setIsKill(false);

  LLVM_DEBUG(dbgs() << "To: ");
  LLVM_DEBUG(MI.dump());
  NumRotatesCollapsed++;
  // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
  if (MRI->use_nodbg_empty(SrcReg)) {
    assert(!SrcMI->hasImplicitDef() &&
           "Not expecting an implicit def with this instr.");
    SrcMI->eraseFromParent();
  }
  return true;
}

// For case in LLVM IR
// entry:
//   %iconv = sext i32 %index to i64
//   br i1 undef label %true, label %false
// true:
//   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
// ...
// PPCISelLowering::combineSHL fails to combine, because sext and shl are in
// different BBs when conducting instruction selection. We can do a peephole
// optimization to combine these two instructions into extswsli after
// instruction selection.
bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
                                      MachineInstr *&ToErase) {
  if (MI.getOpcode() != PPC::RLDICR)
    return false;

  if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
    return false;

  assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");

  MachineOperand MOpSHMI = MI.getOperand(2);
  MachineOperand MOpMEMI = MI.getOperand(3);
  if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
    return false;

  uint64_t SHMI = MOpSHMI.getImm();
  uint64_t MEMI = MOpMEMI.getImm();
  if (SHMI + MEMI != 63)
    return false;

  Register SrcReg = MI.getOperand(1).getReg();
  if (!Register::isVirtualRegister(SrcReg))
    return false;

  MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
  if (SrcMI->getOpcode() != PPC::EXTSW &&
      SrcMI->getOpcode() != PPC::EXTSW_32_64)
    return false;

  // If the register defined by extsw has more than one use, combination is not
  // needed.
  if (!MRI->hasOneNonDBGUse(SrcReg))
    return false;

  assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
  assert(SrcMI->getOperand(1).isReg() &&
         "EXTSW's second operand should be a register");
  if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
    return false;

  LLVM_DEBUG(dbgs() << "Combining pair: ");
  LLVM_DEBUG(SrcMI->dump());
  LLVM_DEBUG(MI.dump());

  MachineInstr *NewInstr =
      BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
              SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
                                               : TII->get(PPC::EXTSWSLI_32_64),
              MI.getOperand(0).getReg())
          .add(SrcMI->getOperand(1))
          .add(MOpSHMI);
  (void)NewInstr;

  LLVM_DEBUG(dbgs() << "TO: ");
  LLVM_DEBUG(NewInstr->dump());
  ++NumEXTSWAndSLDICombined;
  ToErase = &MI;
  // SrcMI, which is extsw, is of no use now, erase it.
  SrcMI->eraseFromParent();
  return true;
}

} // end default namespace

INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
                      "PowerPC MI Peephole Optimization", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
                    "PowerPC MI Peephole Optimization", false, false)

char PPCMIPeephole::ID = 0;
FunctionPass*
llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }