PPCInstrInfo.h 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H

#include "PPCRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"

#define GET_INSTRINFO_HEADER
#include "PPCGenInstrInfo.inc"

namespace llvm {

/// PPCII - This namespace holds all of the PowerPC target-specific
/// per-instruction flags.  These must match the corresponding definitions in
/// PPC.td and PPCInstrFormats.td.
namespace PPCII {
enum {
  // PPC970 Instruction Flags.  These flags describe the characteristics of the
  // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
  // raw machine instructions.

  /// PPC970_First - This instruction starts a new dispatch group, so it will
  /// always be the first one in the group.
  PPC970_First = 0x1,

  /// PPC970_Single - This instruction starts a new dispatch group and
  /// terminates it, so it will be the sole instruction in the group.
  PPC970_Single = 0x2,

  /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
  /// two dispatch pipes to be available to issue.
  PPC970_Cracked = 0x4,

  /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
  /// an instruction is issued to.
  PPC970_Shift = 3,
  PPC970_Mask = 0x07 << PPC970_Shift
};
enum PPC970_Unit {
  /// These are the various PPC970 execution unit pipelines.  Each instruction
  /// is one of these.
  PPC970_Pseudo = 0 << PPC970_Shift,   // Pseudo instruction
  PPC970_FXU    = 1 << PPC970_Shift,   // Fixed Point (aka Integer/ALU) Unit
  PPC970_LSU    = 2 << PPC970_Shift,   // Load Store Unit
  PPC970_FPU    = 3 << PPC970_Shift,   // Floating Point Unit
  PPC970_CRU    = 4 << PPC970_Shift,   // Control Register Unit
  PPC970_VALU   = 5 << PPC970_Shift,   // Vector ALU
  PPC970_VPERM  = 6 << PPC970_Shift,   // Vector Permute Unit
  PPC970_BRU    = 7 << PPC970_Shift    // Branch Unit
};

enum {
  /// Shift count to bypass PPC970 flags
  NewDef_Shift = 6,

  /// This instruction is an X-Form memory operation.
  XFormMemOp = 0x1 << NewDef_Shift,
  /// This instruction is prefixed.
  Prefixed = 0x1 << (NewDef_Shift+1)
};
} // end namespace PPCII

// Instructions that have an immediate form might be convertible to that
// form if the correct input is a result of a load immediate. In order to
// know whether the transformation is special, we might need to know some
// of the details of the two forms.
struct ImmInstrInfo {
  // Is the immediate field in the immediate form signed or unsigned?
  uint64_t SignedImm : 1;
  // Does the immediate need to be a multiple of some value?
  uint64_t ImmMustBeMultipleOf : 5;
  // Is R0/X0 treated specially by the original r+r instruction?
  // If so, in which operand?
  uint64_t ZeroIsSpecialOrig : 3;
  // Is R0/X0 treated specially by the new r+i instruction?
  // If so, in which operand?
  uint64_t ZeroIsSpecialNew : 3;
  // Is the operation commutative?
  uint64_t IsCommutative : 1;
  // The operand number to check for add-immediate def.
  uint64_t OpNoForForwarding : 3;
  // The operand number for the immediate.
  uint64_t ImmOpNo : 3;
  // The opcode of the new instruction.
  uint64_t ImmOpcode : 16;
  // The size of the immediate.
  uint64_t ImmWidth : 5;
  // The immediate should be truncated to N bits.
  uint64_t TruncateImmTo : 5;
  // Is the instruction summing the operand
  uint64_t IsSummingOperands : 1;
};

// Information required to convert an instruction to just a materialized
// immediate.
struct LoadImmediateInfo {
  unsigned Imm : 16;
  unsigned Is64Bit : 1;
  unsigned SetCR : 1;
};

// Index into the OpcodesForSpill array.
enum SpillOpcodeKey {
  SOK_Int4Spill,
  SOK_Int8Spill,
  SOK_Float8Spill,
  SOK_Float4Spill,
  SOK_CRSpill,
  SOK_CRBitSpill,
  SOK_VRVectorSpill,
  SOK_VSXVectorSpill,
  SOK_VectorFloat8Spill,
  SOK_VectorFloat4Spill,
  SOK_VRSaveSpill,
  SOK_QuadFloat8Spill,
  SOK_QuadFloat4Spill,
  SOK_QuadBitSpill,
  SOK_SpillToVSR,
  SOK_SPESpill,
  SOK_LastOpcodeSpill // This must be last on the enum.
};

// Define list of load and store spill opcodes.
#define Pwr8LoadOpcodes                                                        \
  {                                                                            \
    PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,    \
        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,          \
        PPC::SPILLTOVSR_LD, PPC::EVLDD                                         \
  }

#define Pwr9LoadOpcodes                                                        \
  {                                                                            \
    PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64,                \
        PPC::DFLOADf32, PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs,        \
        PPC::QVLFDXb, PPC::SPILLTOVSR_LD                                       \
  }

#define Pwr8StoreOpcodes                                                       \
  {                                                                            \
    PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
        PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, PPC::SPILL_VRSAVE, \
        PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb, PPC::SPILLTOVSR_ST,        \
        PPC::EVSTDD                                                            \
  }

#define Pwr9StoreOpcodes                                                       \
  {                                                                            \
    PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
        PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,                \
        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,         \
        PPC::SPILLTOVSR_ST                                                     \
  }

// Initialize arrays for load and store spill opcodes on supported subtargets.
#define StoreOpcodesForSpill                                                   \
  { Pwr8StoreOpcodes, Pwr9StoreOpcodes }
#define LoadOpcodesForSpill                                                    \
  { Pwr8LoadOpcodes, Pwr9LoadOpcodes }

class PPCSubtarget;
class PPCInstrInfo : public PPCGenInstrInfo {
  PPCSubtarget &Subtarget;
  const PPCRegisterInfo RI;
  const unsigned StoreSpillOpcodesArray[2][SOK_LastOpcodeSpill] =
      StoreOpcodesForSpill;
  const unsigned LoadSpillOpcodesArray[2][SOK_LastOpcodeSpill] =
      LoadOpcodesForSpill;

  void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
                           int FrameIdx, const TargetRegisterClass *RC,
                           SmallVectorImpl<MachineInstr *> &NewMIs) const;
  void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
                            unsigned DestReg, int FrameIdx,
                            const TargetRegisterClass *RC,
                            SmallVectorImpl<MachineInstr *> &NewMIs) const;

  // Replace the instruction with single LI if possible. \p DefMI must be LI or
  // LI8.
  bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
                    unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
  // If the inst is imm-form and its register operand is produced by a ADDI, put
  // the imm into the inst directly and remove the ADDI if possible.
  bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
                                     unsigned OpNoForForwarding) const;
  // If the inst is x-form and has imm-form and one of its operand is produced
  // by a LI, put the imm into the inst directly and remove the LI if possible.
  bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
                                 unsigned ConstantOpNo,
                                 MachineInstr &DefMI) const;
  // If the inst is x-form and has imm-form and one of its operand is produced
  // by an add-immediate, try to transform it when possible.
  bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
                                  unsigned ConstantOpNo, MachineInstr &DefMI,
                                  bool KillDefMI) const;
  // Try to find that, if the instruction 'MI' contains any operand that
  // could be forwarded from some inst that feeds it. If yes, return the
  // Def of that operand. And OpNoForForwarding is the operand index in
  // the 'MI' for that 'Def'. If we see another use of this Def between
  // the Def and the MI, SeenIntermediateUse becomes 'true'.
  MachineInstr *getForwardingDefMI(MachineInstr &MI,
                                   unsigned &OpNoForForwarding,
                                   bool &SeenIntermediateUse) const;

  // Can the user MI have it's source at index \p OpNoForForwarding
  // forwarded from an add-immediate that feeds it?
  bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
                                   unsigned OpNoForForwarding) const;
  bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
                                   const ImmInstrInfo &III,
                                   MachineOperand *&ImmMO,
                                   MachineOperand *&RegMO) const;
  bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
                                 const MachineInstr &DefMI,
                                 const ImmInstrInfo &III,
                                 int64_t &Imm,
                                 int64_t BaseImm = 0) const;
  bool isRegElgibleForForwarding(const MachineOperand &RegMO,
                                 const MachineInstr &DefMI,
                                 const MachineInstr &MI, bool KillDefMI,
                                 bool &IsFwdFeederRegKilled) const;
  unsigned getSpillTarget() const;
  const unsigned *getStoreOpcodesForSpillArray() const;
  const unsigned *getLoadOpcodesForSpillArray() const;
  int16_t getFMAOpIdxInfo(unsigned Opcode) const;
  void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern,
                      SmallVectorImpl<MachineInstr *> &InsInstrs,
                      SmallVectorImpl<MachineInstr *> &DelInstrs,
                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
  virtual void anchor();

protected:
  /// Commutes the operands in the given instruction.
  /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
  ///
  /// Do not call this method for a non-commutable instruction or for
  /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  ///
  /// For example, we can commute rlwimi instructions, but only if the
  /// rotate amt is zero.  We also have to munge the immediates a bit.
  MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                       unsigned OpIdx1,
                                       unsigned OpIdx2) const override;

public:
  explicit PPCInstrInfo(PPCSubtarget &STI);

  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
  /// such, whenever a client has an instance of instruction info, it should
  /// always be able to get register info as well (through this method).
  ///
  const PPCRegisterInfo &getRegisterInfo() const { return RI; }

  bool isXFormMemOp(unsigned Opcode) const {
    return get(Opcode).TSFlags & PPCII::XFormMemOp;
  }
  bool isPrefixed(unsigned Opcode) const {
    return get(Opcode).TSFlags & PPCII::Prefixed;
  }

  static bool isSameClassPhysRegCopy(unsigned Opcode) {
    unsigned CopyOpcodes[] =
      { PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf,
        PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb,
        PPC::CROR, PPC::EVOR, -1U };
    for (int i = 0; CopyOpcodes[i] != -1U; i++)
      if (Opcode == CopyOpcodes[i])
        return true;
    return false;
  }

  ScheduleHazardRecognizer *
  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                               const ScheduleDAG *DAG) const override;
  ScheduleHazardRecognizer *
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                     const ScheduleDAG *DAG) const override;

  unsigned getInstrLatency(const InstrItineraryData *ItinData,
                           const MachineInstr &MI,
                           unsigned *PredCost = nullptr) const override;

  int getOperandLatency(const InstrItineraryData *ItinData,
                        const MachineInstr &DefMI, unsigned DefIdx,
                        const MachineInstr &UseMI,
                        unsigned UseIdx) const override;
  int getOperandLatency(const InstrItineraryData *ItinData,
                        SDNode *DefNode, unsigned DefIdx,
                        SDNode *UseNode, unsigned UseIdx) const override {
    return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
                                              UseNode, UseIdx);
  }

  bool hasLowDefLatency(const TargetSchedModel &SchedModel,
                        const MachineInstr &DefMI,
                        unsigned DefIdx) const override {
    // Machine LICM should hoist all instructions in low-register-pressure
    // situations; none are sufficiently free to justify leaving in a loop
    // body.
    return false;
  }

  bool useMachineCombiner() const override {
    return true;
  }

  /// When getMachineCombinerPatterns() finds patterns, this function generates
  /// the instructions that could replace the original code sequence
  void genAlternativeCodeSequence(
      MachineInstr &Root, MachineCombinerPattern Pattern,
      SmallVectorImpl<MachineInstr *> &InsInstrs,
      SmallVectorImpl<MachineInstr *> &DelInstrs,
      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;

  /// Return true when there is potentially a faster code sequence for a fma
  /// chain ending in \p Root. All potential patterns are output in the \p
  /// P array.
  bool getFMAPatterns(MachineInstr &Root,
                      SmallVectorImpl<MachineCombinerPattern> &P) const;

  /// Return true when there is potentially a faster code sequence
  /// for an instruction chain ending in <Root>. All potential patterns are
  /// output in the <Pattern> array.
  bool getMachineCombinerPatterns(
      MachineInstr &Root,
      SmallVectorImpl<MachineCombinerPattern> &P) const override;

  bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;

  /// On PowerPC, we try to reassociate FMA chain which will increase
  /// instruction size. Set extension resource length limit to 1 for edge case.
  /// Resource Length is calculated by scaled resource usage in getCycles().
  /// Because of the division in getCycles(), it returns different cycles due to
  /// legacy scaled resource usage. So new resource length may be same with
  /// legacy or 1 bigger than legacy.
  /// We need to execlude the 1 bigger case even the resource length is not
  /// perserved for more FMA chain reassociations on PowerPC.
  int getExtendResourceLenLimit() const override { return 1; }

  void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
                             MachineInstr &NewMI1,
                             MachineInstr &NewMI2) const override;

  void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const override;

  bool isCoalescableExtInstr(const MachineInstr &MI,
                             Register &SrcReg, Register &DstReg,
                             unsigned &SubIdx) const override;
  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
                                         AAResults *AA) const override;
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;

  bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
                             unsigned &SrcOpIdx2) const override;

  void insertNoop(MachineBasicBlock &MBB,
                  MachineBasicBlock::iterator MI) const override;


  // Branch analysis.
  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify) const override;
  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;

  // Select analysis.
  bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
                       Register, Register, Register, int &, int &,
                       int &) const override;
  void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                    const DebugLoc &DL, Register DstReg,
                    ArrayRef<MachineOperand> Cond, Register TrueReg,
                    Register FalseReg) const override;

  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                   const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
                   bool KillSrc) const override;

  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI,
                           Register SrcReg, bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  // Emits a register spill without updating the register class for vector
  // registers. This ensures that when we spill a vector register the
  // element order in the register is the same as it was in memory.
  void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MBBI,
                                unsigned SrcReg, bool isKill, int FrameIndex,
                                const TargetRegisterClass *RC,
                                const TargetRegisterInfo *TRI) const;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            Register DestReg, int FrameIndex,
                            const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  // Emits a register reload without updating the register class for vector
  // registers. This ensures that when we reload a vector register the
  // element order in the register is the same as it was in memory.
  void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MBBI,
                                 unsigned DestReg, int FrameIndex,
                                 const TargetRegisterClass *RC,
                                 const TargetRegisterInfo *TRI) const;

  unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;

  unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;

  bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;

  bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
                     MachineRegisterInfo *MRI) const override;

  bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
                         Register Reg) const;

  // If conversion by predication (only supported by some branch instructions).
  // All of the profitability checks always return true; it is always
  // profitable to use the predicated branches.
  bool isProfitableToIfCvt(MachineBasicBlock &MBB,
                          unsigned NumCycles, unsigned ExtraPredCycles,
                          BranchProbability Probability) const override {
    return true;
  }

  bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
                           unsigned NumT, unsigned ExtraT,
                           MachineBasicBlock &FMBB,
                           unsigned NumF, unsigned ExtraF,
                           BranchProbability Probability) const override;

  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                                 BranchProbability Probability) const override {
    return true;
  }

  bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                 MachineBasicBlock &FMBB) const override {
    return false;
  }

  // Predication support.
  bool isPredicated(const MachineInstr &MI) const override;

  bool PredicateInstruction(MachineInstr &MI,
                            ArrayRef<MachineOperand> Pred) const override;

  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                         ArrayRef<MachineOperand> Pred2) const override;

  bool DefinesPredicate(MachineInstr &MI,
                        std::vector<MachineOperand> &Pred) const override;

  // Comparison optimization.

  bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
                      Register &SrcReg2, int &Mask, int &Value) const override;

  bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
                            Register SrcReg2, int Mask, int Value,
                            const MachineRegisterInfo *MRI) const override;


  /// Return true if get the base operand, byte offset of an instruction and
  /// the memory width. Width is the size of memory that is being
  /// loaded/stored (e.g. 1, 2, 4, 8).
  bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
                                    const MachineOperand *&BaseOp,
                                    int64_t &Offset, unsigned &Width,
                                    const TargetRegisterInfo *TRI) const;

  /// Return true if two MIs access different memory addresses and false
  /// otherwise
  bool
  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
                                  const MachineInstr &MIb) const override;

  /// GetInstSize - Return the number of bytes of code the specified
  /// instruction may be.  This returns the maximum number of bytes.
  ///
  unsigned getInstSizeInBytes(const MachineInstr &MI) const override;

  void getNoop(MCInst &NopInst) const override;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;

  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;

  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const override;

  // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
  bool expandVSXMemPseudo(MachineInstr &MI) const;

  // Lower pseudo instructions after register allocation.
  bool expandPostRAPseudo(MachineInstr &MI) const override;

  static bool isVFRegister(unsigned Reg) {
    return Reg >= PPC::VF0 && Reg <= PPC::VF31;
  }
  static bool isVRRegister(unsigned Reg) {
    return Reg >= PPC::V0 && Reg <= PPC::V31;
  }
  const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
  static int getRecordFormOpcode(unsigned Opcode);

  bool isTOCSaveMI(const MachineInstr &MI) const;

  bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
                            const unsigned PhiDepth) const;

  /// Return true if the output of the instruction is always a sign-extended,
  /// i.e. 0 to 31-th bits are same as 32-th bit.
  bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
    return isSignOrZeroExtended(MI, true, depth);
  }

  /// Return true if the output of the instruction is always zero-extended,
  /// i.e. 0 to 31-th bits are all zeros
  bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
   return isSignOrZeroExtended(MI, false, depth);
  }

  bool convertToImmediateForm(MachineInstr &MI,
                              MachineInstr **KilledDef = nullptr) const;
  bool foldFrameOffset(MachineInstr &MI) const;
  bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
  bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
  bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
                                    unsigned &XFormOpcode,
                                    int64_t &OffsetOfImmInstr,
                                    ImmInstrInfo &III) const;
  bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
                             MachineInstr *&ADDIMI, int64_t &OffsetAddi,
                             int64_t OffsetImm) const;

  /// Fixup killed/dead flag for register \p RegNo between instructions [\p
  /// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate
  /// register killed/dead flags semantics, this function can be called to fix
  /// up. Before calling this function,
  /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
  /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
  ///    and possible definition for \p RegNo is \p StartMI or \p EndMI. For
  ///    pre-RA cases, definition may be \p StartMI through COPY, \p StartMI
  ///    will be adjust to true definition.
  /// 3. We can do accurate fixup for the case when all instructions between
  ///    [\p StartMI, \p EndMI] are in same basic block.
  /// 4. For the case when \p StartMI and \p EndMI are not in same basic block,
  ///    we conservatively clear kill flag for all uses of \p RegNo for pre-RA
  ///    and for post-RA, we give an assertion as without reaching definition
  ///    analysis post-RA, \p StartMI and \p EndMI are hard to keep right.
  void fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
                         unsigned RegNo) const;
  void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
  void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
                                  int64_t Imm) const;

  bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
                       bool PostRA) const;

  // In PostRA phase, try to find instruction defines \p Reg before \p MI.
  // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
  MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
                               bool &SeenIntermediateUse) const;

  /// getRegNumForOperand - some operands use different numbering schemes
  /// for the same registers. For example, a VSX instruction may have any of
  /// vs0-vs63 allocated whereas an Altivec instruction could only have
  /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
  /// register number needed for the opcode/operand number combination.
  /// The operand number argument will be useful when we need to extend this
  /// to instructions that use both Altivec and VSX numbering (for different
  /// operands).
  static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
                                      unsigned OpNo) {
    int16_t regClass = Desc.OpInfo[OpNo].RegClass;
    switch (regClass) {
      // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
      // VSX32-VSX63 during encoding/disassembling
      case PPC::VSSRCRegClassID:
      case PPC::VSFRCRegClassID:
        if (isVFRegister(Reg))
          return PPC::VSX32 + (Reg - PPC::VF0);
        break;
      // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
      // VSX32-VSX63 during encoding/disassembling
      case PPC::VSRCRegClassID:
        if (isVRRegister(Reg))
          return PPC::VSX32 + (Reg - PPC::V0);
        break;
      // Other RegClass doesn't need mapping
      default:
        break;
    }
    return Reg;
  }

  /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
  bool isBDNZ(unsigned Opcode) const;

  /// Find the hardware loop instruction used to set-up the specified loop.
  /// On PPC, we have two instructions used to set-up the hardware loop
  /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
  /// instructions to indicate the end of a loop.
  MachineInstr *
  findLoopInstr(MachineBasicBlock &PreHeader,
                SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;

  /// Analyze loop L, which must be a single-basic-block loop, and if the
  /// conditions can be understood enough produce a PipelinerLoopInfo object.
  std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
  analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
};

}

#endif