PPCISelLowering.cpp 670 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//

#include "PPCISelLowering.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCCCState.h"
#include "PPCCallingConv.h"
#include "PPCFrameLowering.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCPerfectShuffle.h"
#include "PPCRegisterInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "ppc-lowering"

static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);

static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);

static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);

static cl::opt<bool> DisableSCO("disable-ppc-sco",
cl::desc("disable sibling call optimization on ppc"), cl::Hidden);

static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);

static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
cl::desc("use absolute jump tables on ppc"), cl::Hidden);

STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumSiblingCalls, "Number of sibling calls");
STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");

static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);

static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);

// FIXME: Remove this once the bug has been fixed!
extern cl::opt<bool> ANDIGlueBug;

PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
                                     const PPCSubtarget &STI)
    : TargetLowering(TM), Subtarget(STI) {
  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
  // arguments are at least 4/8 bytes aligned.
  bool isPPC64 = Subtarget.isPPC64();
  setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));

  // Set up the register classes.
  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
  if (!useSoftFloat()) {
    if (hasSPE()) {
      addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
      addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
    } else {
      addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
      addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
    }
  }

  // Match BITREVERSE to customized fast code sequence in the td file.
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);

  // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);

  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
  }

  if (Subtarget.isISA3_0()) {
    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
    setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
    setTruncStoreAction(MVT::f64, MVT::f16, Legal);
    setTruncStoreAction(MVT::f32, MVT::f16, Legal);
  } else {
    // No extending loads from f16 or HW conversions back and forth.
    setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
    setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
    setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
    setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
    setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
    setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
    setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  }

  setTruncStoreAction(MVT::f64, MVT::f32, Expand);

  // PowerPC has pre-inc load and store's.
  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
  if (!Subtarget.hasSPE()) {
    setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
    setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
    setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
    setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
  }

  // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
  for (MVT VT : ScalarIntVTs) {
    setOperationAction(ISD::ADDC, VT, Legal);
    setOperationAction(ISD::ADDE, VT, Legal);
    setOperationAction(ISD::SUBC, VT, Legal);
    setOperationAction(ISD::SUBE, VT, Legal);
  }

  if (Subtarget.useCRBits()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);

    if (isPPC64 || Subtarget.hasFPCVT()) {
      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
                         isPPC64 ? MVT::i64 : MVT::i32);
      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
      AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
                        isPPC64 ? MVT::i64 : MVT::i32);
    } else {
      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    }

    // PowerPC does not support direct load/store of condition registers.
    setOperationAction(ISD::LOAD, MVT::i1, Custom);
    setOperationAction(ISD::STORE, MVT::i1, Custom);

    // FIXME: Remove this once the ANDI glue bug is fixed:
    if (ANDIGlueBug)
      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);

    for (MVT VT : MVT::integer_valuetypes()) {
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
      setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
      setTruncStoreAction(VT, MVT::i1, Expand);
    }

    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
  }

  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
  // PPC (the libcall is not available).
  setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);

  // We do not currently implement these libm ops for PowerPC.
  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);

  // PowerPC has no SREM/UREM instructions unless we are on P9
  // On P9 we may use a hardware instruction to compute the remainder.
  // When the result of both the remainder and the division is required it is
  // more efficient to compute the remainder from the result of the division
  // rather than use the remainder instruction. The instructions are legalized
  // directly because the DivRemPairsPass performs the transformation at the IR
  // level.
  if (Subtarget.isISA3_0()) {
    setOperationAction(ISD::SREM, MVT::i32, Legal);
    setOperationAction(ISD::UREM, MVT::i32, Legal);
    setOperationAction(ISD::SREM, MVT::i64, Legal);
    setOperationAction(ISD::UREM, MVT::i64, Legal);
  } else {
    setOperationAction(ISD::SREM, MVT::i32, Expand);
    setOperationAction(ISD::UREM, MVT::i32, Expand);
    setOperationAction(ISD::SREM, MVT::i64, Expand);
    setOperationAction(ISD::UREM, MVT::i64, Expand);
  }

  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);

  // Handle constrained floating-point operations of scalar.
  // TODO: Handle SPE specific operation.
  setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
  setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
  setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
  setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
  setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
  setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);

  setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
  setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
  setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
  setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
  setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
  if (Subtarget.hasVSX())
    setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);

  if (Subtarget.hasFSQRT()) {
    setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
    setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
  }

  if (Subtarget.hasFPRND()) {
    setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
    setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
    setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
    setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);

    setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
    setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
    setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
    setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
  }

  // We don't support sin/cos/sqrt/fmod/pow
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
  setOperationAction(ISD::FREM , MVT::f64, Expand);
  setOperationAction(ISD::FPOW , MVT::f64, Expand);
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
  setOperationAction(ISD::FREM , MVT::f32, Expand);
  setOperationAction(ISD::FPOW , MVT::f32, Expand);
  if (Subtarget.hasSPE()) {
    setOperationAction(ISD::FMA  , MVT::f64, Expand);
    setOperationAction(ISD::FMA  , MVT::f32, Expand);
  } else {
    setOperationAction(ISD::FMA  , MVT::f64, Legal);
    setOperationAction(ISD::FMA  , MVT::f32, Legal);
  }

  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);

  // If we're enabling GP optimizations, use hardware square root
  if (!Subtarget.hasFSQRT() &&
      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
        Subtarget.hasFRE()))
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);

  if (!Subtarget.hasFSQRT() &&
      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
        Subtarget.hasFRES()))
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);

  if (Subtarget.hasFCPSGN()) {
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
  } else {
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
  }

  if (Subtarget.hasFPRND()) {
    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    setOperationAction(ISD::FROUND, MVT::f64, Legal);

    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    setOperationAction(ISD::FROUND, MVT::f32, Legal);
  }

  // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
  // to speed up scalar BSWAP64.
  // CTPOP or CTTZ were introduced in P8/P9 respectively
  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
  if (Subtarget.hasP9Vector())
    setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
  else
    setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
  if (Subtarget.isISA3_0()) {
    setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
    setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
  } else {
    setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
  }

  if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
  } else {
    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
  }

  // PowerPC does not have ROTR
  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
  setOperationAction(ISD::ROTR, MVT::i64   , Expand);

  if (!Subtarget.useCRBits()) {
    // PowerPC does not have Select
    setOperationAction(ISD::SELECT, MVT::i32, Expand);
    setOperationAction(ISD::SELECT, MVT::i64, Expand);
    setOperationAction(ISD::SELECT, MVT::f32, Expand);
    setOperationAction(ISD::SELECT, MVT::f64, Expand);
  }

  // PowerPC wants to turn select_cc of FP into fsel when possible.
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);

  // PowerPC wants to optimize integer setcc a bit
  if (!Subtarget.useCRBits())
    setOperationAction(ISD::SETCC, MVT::i32, Custom);

  // PowerPC does not have BRCOND which requires SetCC
  if (!Subtarget.useCRBits())
    setOperationAction(ISD::BRCOND, MVT::Other, Expand);

  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);

  if (Subtarget.hasSPE()) {
    // SPE has built-in conversions
    setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
    setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
    setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
  } else {
    // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);

    // PowerPC does not have [U|S]INT_TO_FP
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
  }

  if (Subtarget.hasDirectMove() && isPPC64) {
    setOperationAction(ISD::BITCAST, MVT::f32, Legal);
    setOperationAction(ISD::BITCAST, MVT::i32, Legal);
    setOperationAction(ISD::BITCAST, MVT::i64, Legal);
    setOperationAction(ISD::BITCAST, MVT::f64, Legal);
    if (TM.Options.UnsafeFPMath) {
      setOperationAction(ISD::LRINT, MVT::f64, Legal);
      setOperationAction(ISD::LRINT, MVT::f32, Legal);
      setOperationAction(ISD::LLRINT, MVT::f64, Legal);
      setOperationAction(ISD::LLRINT, MVT::f32, Legal);
      setOperationAction(ISD::LROUND, MVT::f64, Legal);
      setOperationAction(ISD::LROUND, MVT::f32, Legal);
      setOperationAction(ISD::LLROUND, MVT::f64, Legal);
      setOperationAction(ISD::LLROUND, MVT::f32, Legal);
    }
  } else {
    setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    setOperationAction(ISD::BITCAST, MVT::f64, Expand);
  }

  // We cannot sextinreg(i1).  Expand to shifts.
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);

  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
  // support continuation, user-level threading, and etc.. As a result, no
  // other SjLj exception interfaces are implemented and please don't build
  // your own exception handling based on them.
  // LLVM/Clang supports zero-cost DWARF exception handling.
  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);

  // We want to legalize GlobalAddress and ConstantPool nodes into the
  // appropriate instructions to materialize the address.
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);

  // TRAP is legal.
  setOperationAction(ISD::TRAP, MVT::Other, Legal);

  // TRAMPOLINE is custom lowered.
  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);

  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);

  if (Subtarget.is64BitELFABI()) {
    // VAARG always uses double-word chunks, so promote anything smaller.
    setOperationAction(ISD::VAARG, MVT::i1, Promote);
    AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
    setOperationAction(ISD::VAARG, MVT::i8, Promote);
    AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
    setOperationAction(ISD::VAARG, MVT::i16, Promote);
    AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
    setOperationAction(ISD::VAARG, MVT::i32, Promote);
    AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
    setOperationAction(ISD::VAARG, MVT::Other, Expand);
  } else if (Subtarget.is32BitELFABI()) {
    // VAARG is custom lowered with the 32-bit SVR4 ABI.
    setOperationAction(ISD::VAARG, MVT::Other, Custom);
    setOperationAction(ISD::VAARG, MVT::i64, Custom);
  } else
    setOperationAction(ISD::VAARG, MVT::Other, Expand);

  // VACOPY is custom lowered with the 32-bit SVR4 ABI.
  if (Subtarget.is32BitELFABI())
    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
  else
    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);

  // Use the default implementation.
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
  setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
  setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);

  // We want to custom lower some of our intrinsics.
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);

  // To handle counter-based loop conditions.
  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);

  setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);

  // Comparisons that require checking two conditions.
  if (Subtarget.hasSPE()) {
    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
  }
  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);

  if (Subtarget.has64BitSupport()) {
    // They also have instructions for converting between i64 and fp.
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    // This is just the low 32 bits of a (signed) fp->i64 conversion.
    // We cannot do this with Promote because i64 is not a legal type.
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);

    if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
  } else {
    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    if (Subtarget.hasSPE()) {
      setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
    } else
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
  }

  // With the instructions enabled under FPCVT, we can do everything.
  if (Subtarget.hasFPCVT()) {
    if (Subtarget.has64BitSupport()) {
      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    }

    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
  }

  if (Subtarget.use64BitRegs()) {
    // 64-bit PowerPC implementations can support i64 types directly
    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    // 64-bit PowerPC wants to expand i128 shifts itself.
    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
  } else {
    // 32-bit PowerPC wants to expand i64 shifts itself.
    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
  }

  if (Subtarget.hasVSX()) {
    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
    setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
    setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
  }

  if (Subtarget.hasAltivec()) {
    for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
      setOperationAction(ISD::SADDSAT, VT, Legal);
      setOperationAction(ISD::SSUBSAT, VT, Legal);
      setOperationAction(ISD::UADDSAT, VT, Legal);
      setOperationAction(ISD::USUBSAT, VT, Legal);
    }
    // First set operation action for all vector types to expand. Then we
    // will selectively turn on ones that can be effectively codegen'd.
    for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
      // add/sub are legal for all supported vector VT's.
      setOperationAction(ISD::ADD, VT, Legal);
      setOperationAction(ISD::SUB, VT, Legal);

      // For v2i64, these are only valid with P8Vector. This is corrected after
      // the loop.
      if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
        setOperationAction(ISD::SMAX, VT, Legal);
        setOperationAction(ISD::SMIN, VT, Legal);
        setOperationAction(ISD::UMAX, VT, Legal);
        setOperationAction(ISD::UMIN, VT, Legal);
      }
      else {
        setOperationAction(ISD::SMAX, VT, Expand);
        setOperationAction(ISD::SMIN, VT, Expand);
        setOperationAction(ISD::UMAX, VT, Expand);
        setOperationAction(ISD::UMIN, VT, Expand);
      }

      if (Subtarget.hasVSX()) {
        setOperationAction(ISD::FMAXNUM, VT, Legal);
        setOperationAction(ISD::FMINNUM, VT, Legal);
      }

      // Vector instructions introduced in P8
      if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
        setOperationAction(ISD::CTPOP, VT, Legal);
        setOperationAction(ISD::CTLZ, VT, Legal);
      }
      else {
        setOperationAction(ISD::CTPOP, VT, Expand);
        setOperationAction(ISD::CTLZ, VT, Expand);
      }

      // Vector instructions introduced in P9
      if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
        setOperationAction(ISD::CTTZ, VT, Legal);
      else
        setOperationAction(ISD::CTTZ, VT, Expand);

      // We promote all shuffles to v16i8.
      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);

      // We promote all non-typed operations to v4i32.
      setOperationAction(ISD::AND   , VT, Promote);
      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
      setOperationAction(ISD::OR    , VT, Promote);
      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
      setOperationAction(ISD::XOR   , VT, Promote);
      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
      setOperationAction(ISD::LOAD  , VT, Promote);
      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
      setOperationAction(ISD::SELECT, VT, Promote);
      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
      setOperationAction(ISD::VSELECT, VT, Legal);
      setOperationAction(ISD::SELECT_CC, VT, Promote);
      AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
      setOperationAction(ISD::STORE, VT, Promote);
      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);

      // No other operations are legal.
      setOperationAction(ISD::MUL , VT, Expand);
      setOperationAction(ISD::SDIV, VT, Expand);
      setOperationAction(ISD::SREM, VT, Expand);
      setOperationAction(ISD::UDIV, VT, Expand);
      setOperationAction(ISD::UREM, VT, Expand);
      setOperationAction(ISD::FDIV, VT, Expand);
      setOperationAction(ISD::FREM, VT, Expand);
      setOperationAction(ISD::FNEG, VT, Expand);
      setOperationAction(ISD::FSQRT, VT, Expand);
      setOperationAction(ISD::FLOG, VT, Expand);
      setOperationAction(ISD::FLOG10, VT, Expand);
      setOperationAction(ISD::FLOG2, VT, Expand);
      setOperationAction(ISD::FEXP, VT, Expand);
      setOperationAction(ISD::FEXP2, VT, Expand);
      setOperationAction(ISD::FSIN, VT, Expand);
      setOperationAction(ISD::FCOS, VT, Expand);
      setOperationAction(ISD::FABS, VT, Expand);
      setOperationAction(ISD::FFLOOR, VT, Expand);
      setOperationAction(ISD::FCEIL,  VT, Expand);
      setOperationAction(ISD::FTRUNC, VT, Expand);
      setOperationAction(ISD::FRINT,  VT, Expand);
      setOperationAction(ISD::FNEARBYINT, VT, Expand);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
      setOperationAction(ISD::MULHU, VT, Expand);
      setOperationAction(ISD::MULHS, VT, Expand);
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
      setOperationAction(ISD::UDIVREM, VT, Expand);
      setOperationAction(ISD::SDIVREM, VT, Expand);
      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
      setOperationAction(ISD::FPOW, VT, Expand);
      setOperationAction(ISD::BSWAP, VT, Expand);
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
      setOperationAction(ISD::ROTL, VT, Expand);
      setOperationAction(ISD::ROTR, VT, Expand);

      for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
        setTruncStoreAction(VT, InnerVT, Expand);
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
      }
    }
    setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
    if (!Subtarget.hasP8Vector()) {
      setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
      setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
      setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
      setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
    }

    for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
      setOperationAction(ISD::ABS, VT, Custom);

    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    // with merges, splats, etc.
    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);

    // Vector truncates to sub-word integer that fit in an Altivec/VSX register
    // are cheap, so handle them before they get expanded to scalar.
    setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
    setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
    setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
    setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
    setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);

    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    setOperationAction(ISD::SELECT, MVT::v4i32,
                       Subtarget.useCRBits() ? Legal : Expand);
    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);

    // Without hasP8Altivec set, v2i64 SMAX isn't available.
    // But ABS custom lowering requires SMAX support.
    if (!Subtarget.hasP8Altivec())
      setOperationAction(ISD::ABS, MVT::v2i64, Expand);

    // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
    setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
    // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
    if (Subtarget.hasAltivec())
      for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
        setOperationAction(ISD::ROTL, VT, Legal);
    // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
    if (Subtarget.hasP8Altivec())
      setOperationAction(ISD::ROTL, MVT::v2i64, Legal);

    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);

    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    setOperationAction(ISD::FMA, MVT::v4f32, Legal);

    if (Subtarget.hasVSX()) {
      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    }

    if (Subtarget.hasP8Altivec())
      setOperationAction(ISD::MUL, MVT::v4i32, Legal);
    else
      setOperationAction(ISD::MUL, MVT::v4i32, Custom);

    setOperationAction(ISD::MUL, MVT::v8i16, Legal);
    setOperationAction(ISD::MUL, MVT::v16i8, Custom);

    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);

    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);

    // Altivec does not contain unordered floating-point compare instructions
    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);

    if (Subtarget.hasVSX()) {
      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
      if (Subtarget.hasP8Vector()) {
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
      }
      if (Subtarget.hasDirectMove() && isPPC64) {
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
      }
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);

      // The nearbyint variants are not allowed to raise the inexact exception
      // so we can only code-gen them with unsafe math.
      if (TM.Options.UnsafeFPMath) {
        setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
        setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
      }

      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
      setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
      setOperationAction(ISD::FROUND, MVT::f64, Legal);
      setOperationAction(ISD::FRINT, MVT::f64, Legal);

      setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
      setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
      setOperationAction(ISD::FROUND, MVT::f32, Legal);
      setOperationAction(ISD::FRINT, MVT::f32, Legal);

      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
      setOperationAction(ISD::FMA, MVT::v2f64, Legal);

      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);

      // Share the Altivec comparison restrictions.
      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);

      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
      setOperationAction(ISD::STORE, MVT::v2f64, Legal);

      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);

      if (Subtarget.hasP8Vector())
        addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);

      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);

      addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);

      if (Subtarget.hasP8Altivec()) {
        setOperationAction(ISD::SHL, MVT::v2i64, Legal);
        setOperationAction(ISD::SRA, MVT::v2i64, Legal);
        setOperationAction(ISD::SRL, MVT::v2i64, Legal);

        // 128 bit shifts can be accomplished via 3 instructions for SHL and
        // SRL, but not for SRA because of the instructions available:
        // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
        // doing
        setOperationAction(ISD::SHL, MVT::v1i128, Expand);
        setOperationAction(ISD::SRL, MVT::v1i128, Expand);
        setOperationAction(ISD::SRA, MVT::v1i128, Expand);

        setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
      }
      else {
        setOperationAction(ISD::SHL, MVT::v2i64, Expand);
        setOperationAction(ISD::SRA, MVT::v2i64, Expand);
        setOperationAction(ISD::SRL, MVT::v2i64, Expand);

        setOperationAction(ISD::SETCC, MVT::v2i64, Custom);

        // VSX v2i64 only supports non-arithmetic operations.
        setOperationAction(ISD::ADD, MVT::v2i64, Expand);
        setOperationAction(ISD::SUB, MVT::v2i64, Expand);
      }

      setOperationAction(ISD::SETCC, MVT::v1i128, Expand);

      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);

      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);

      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);

      // Custom handling for partial vectors of integers converted to
      // floating point. We already have optimal handling for v2i32 through
      // the DAG combine, so those aren't necessary.
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
      setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
      setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);

      setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
      setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
      setOperationAction(ISD::FABS, MVT::v4f32, Legal);
      setOperationAction(ISD::FABS, MVT::v2f64, Legal);
      setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
      setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);

      if (Subtarget.hasDirectMove())
        setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
      setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);

      // Handle constrained floating-point operations of vector.
      // The predictor is `hasVSX` because altivec instruction has
      // no exception but VSX vector instruction has.
      setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
      setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);

      setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
      setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);

      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    }

    if (Subtarget.hasP8Altivec()) {
      addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
      addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
    }

    if (Subtarget.hasP9Vector()) {
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);

      // 128 bit shifts can be accomplished via 3 instructions for SHL and
      // SRL, but not for SRA because of the instructions available:
      // VS{RL} and VS{RL}O.
      setOperationAction(ISD::SHL, MVT::v1i128, Legal);
      setOperationAction(ISD::SRL, MVT::v1i128, Legal);
      setOperationAction(ISD::SRA, MVT::v1i128, Expand);

      addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
      setOperationAction(ISD::FADD, MVT::f128, Legal);
      setOperationAction(ISD::FSUB, MVT::f128, Legal);
      setOperationAction(ISD::FDIV, MVT::f128, Legal);
      setOperationAction(ISD::FMUL, MVT::f128, Legal);
      setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
      // No extending loads to f128 on PPC.
      for (MVT FPT : MVT::fp_valuetypes())
        setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
      setOperationAction(ISD::FMA, MVT::f128, Legal);
      setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
      setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
      setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
      setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
      setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
      setCondCodeAction(ISD::SETONE, MVT::f128, Expand);

      setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
      setOperationAction(ISD::FRINT, MVT::f128, Legal);
      setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
      setOperationAction(ISD::FCEIL, MVT::f128, Legal);
      setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
      setOperationAction(ISD::FROUND, MVT::f128, Legal);

      setOperationAction(ISD::SELECT, MVT::f128, Expand);
      setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
      setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
      setTruncStoreAction(MVT::f128, MVT::f64, Expand);
      setTruncStoreAction(MVT::f128, MVT::f32, Expand);
      setOperationAction(ISD::BITCAST, MVT::i128, Custom);
      // No implementation for these ops for PowerPC.
      setOperationAction(ISD::FSIN, MVT::f128, Expand);
      setOperationAction(ISD::FCOS, MVT::f128, Expand);
      setOperationAction(ISD::FPOW, MVT::f128, Expand);
      setOperationAction(ISD::FPOWI, MVT::f128, Expand);
      setOperationAction(ISD::FREM, MVT::f128, Expand);

      // Handle constrained floating-point operations of fp128
      setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
      setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
      setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
      setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
      setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
      setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
      setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
      setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
      setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
    }

    if (Subtarget.hasP9Altivec()) {
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);

      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    }
  }

  if (Subtarget.hasQPX()) {
    setOperationAction(ISD::FADD, MVT::v4f64, Legal);
    setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
    setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
    setOperationAction(ISD::FREM, MVT::v4f64, Expand);

    setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
    setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);

    setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
    setOperationAction(ISD::STORE , MVT::v4f64, Custom);

    setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
    setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);

    if (!Subtarget.useCRBits())
      setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
    setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);

    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);

    setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
    setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);

    setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
    setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);

    setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
    setOperationAction(ISD::FABS , MVT::v4f64, Legal);
    setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
    setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
    setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
    setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
    setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
    setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
    setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
    setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);

    setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);

    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);

    addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);

    setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    setOperationAction(ISD::FREM, MVT::v4f32, Expand);

    setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
    setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);

    setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
    setOperationAction(ISD::STORE , MVT::v4f32, Custom);

    if (!Subtarget.useCRBits())
      setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
    setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);

    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);

    setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
    setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);

    setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
    setOperationAction(ISD::FABS , MVT::v4f32, Legal);
    setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
    setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
    setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
    setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
    setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
    setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
    setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
    setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);

    setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);

    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);

    addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);

    setOperationAction(ISD::AND , MVT::v4i1, Legal);
    setOperationAction(ISD::OR , MVT::v4i1, Legal);
    setOperationAction(ISD::XOR , MVT::v4i1, Legal);

    if (!Subtarget.useCRBits())
      setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
    setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);

    setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
    setOperationAction(ISD::STORE , MVT::v4i1, Custom);

    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);

    setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);

    addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);

    setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
    setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
    setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
    setOperationAction(ISD::FROUND, MVT::v4f64, Legal);

    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);

    setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);

    // These need to set FE_INEXACT, and so cannot be vectorized here.
    setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);

    if (TM.Options.UnsafeFPMath) {
      setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
      setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);

      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    } else {
      setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
      setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);

      setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
      setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    }

    // TODO: Handle constrained floating-point operations of v4f64
  }

  if (Subtarget.has64BitSupport())
    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);

  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);

  if (!isPPC64) {
    setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
  }

  setBooleanContents(ZeroOrOneBooleanContent);

  if (Subtarget.hasAltivec()) {
    // Altivec instructions set fields to all zeros or all ones.
    setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
  }

  if (!isPPC64) {
    // These libcalls are not available in 32-bit.
    setLibcallName(RTLIB::SHL_I128, nullptr);
    setLibcallName(RTLIB::SRL_I128, nullptr);
    setLibcallName(RTLIB::SRA_I128, nullptr);
  }

  if (!isPPC64)
    setMaxAtomicSizeInBitsSupported(32);

  setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);

  // We have target-specific dag combine patterns for the following nodes:
  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::SHL);
  setTargetDAGCombine(ISD::SRA);
  setTargetDAGCombine(ISD::SRL);
  setTargetDAGCombine(ISD::MUL);
  setTargetDAGCombine(ISD::FMA);
  setTargetDAGCombine(ISD::SINT_TO_FP);
  setTargetDAGCombine(ISD::BUILD_VECTOR);
  if (Subtarget.hasFPCVT())
    setTargetDAGCombine(ISD::UINT_TO_FP);
  setTargetDAGCombine(ISD::LOAD);
  setTargetDAGCombine(ISD::STORE);
  setTargetDAGCombine(ISD::BR_CC);
  if (Subtarget.useCRBits())
    setTargetDAGCombine(ISD::BRCOND);
  setTargetDAGCombine(ISD::BSWAP);
  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
  setTargetDAGCombine(ISD::INTRINSIC_VOID);

  setTargetDAGCombine(ISD::SIGN_EXTEND);
  setTargetDAGCombine(ISD::ZERO_EXTEND);
  setTargetDAGCombine(ISD::ANY_EXTEND);

  setTargetDAGCombine(ISD::TRUNCATE);
  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);


  if (Subtarget.useCRBits()) {
    setTargetDAGCombine(ISD::TRUNCATE);
    setTargetDAGCombine(ISD::SETCC);
    setTargetDAGCombine(ISD::SELECT_CC);
  }

  if (Subtarget.hasP9Altivec()) {
    setTargetDAGCombine(ISD::ABS);
    setTargetDAGCombine(ISD::VSELECT);
  }

  setLibcallName(RTLIB::LOG_F128, "logf128");
  setLibcallName(RTLIB::LOG2_F128, "log2f128");
  setLibcallName(RTLIB::LOG10_F128, "log10f128");
  setLibcallName(RTLIB::EXP_F128, "expf128");
  setLibcallName(RTLIB::EXP2_F128, "exp2f128");
  setLibcallName(RTLIB::SIN_F128, "sinf128");
  setLibcallName(RTLIB::COS_F128, "cosf128");
  setLibcallName(RTLIB::POW_F128, "powf128");
  setLibcallName(RTLIB::FMIN_F128, "fminf128");
  setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
  setLibcallName(RTLIB::POWI_F128, "__powikf2");
  setLibcallName(RTLIB::REM_F128, "fmodf128");

  // With 32 condition bits, we don't need to sink (and duplicate) compares
  // aggressively in CodeGenPrep.
  if (Subtarget.useCRBits()) {
    setHasMultipleConditionRegisters();
    setJumpIsExpensive();
  }

  setMinFunctionAlignment(Align(4));

  switch (Subtarget.getCPUDirective()) {
  default: break;
  case PPC::DIR_970:
  case PPC::DIR_A2:
  case PPC::DIR_E500:
  case PPC::DIR_E500mc:
  case PPC::DIR_E5500:
  case PPC::DIR_PWR4:
  case PPC::DIR_PWR5:
  case PPC::DIR_PWR5X:
  case PPC::DIR_PWR6:
  case PPC::DIR_PWR6X:
  case PPC::DIR_PWR7:
  case PPC::DIR_PWR8:
  case PPC::DIR_PWR9:
  case PPC::DIR_PWR10:
  case PPC::DIR_PWR_FUTURE:
    setPrefLoopAlignment(Align(16));
    setPrefFunctionAlignment(Align(16));
    break;
  }

  if (Subtarget.enableMachineScheduler())
    setSchedulingPreference(Sched::Source);
  else
    setSchedulingPreference(Sched::Hybrid);

  computeRegisterProperties(STI.getRegisterInfo());

  // The Freescale cores do better with aggressive inlining of memcpy and
  // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
  if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
      Subtarget.getCPUDirective() == PPC::DIR_E5500) {
    MaxStoresPerMemset = 32;
    MaxStoresPerMemsetOptSize = 16;
    MaxStoresPerMemcpy = 32;
    MaxStoresPerMemcpyOptSize = 8;
    MaxStoresPerMemmove = 32;
    MaxStoresPerMemmoveOptSize = 8;
  } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
    // The A2 also benefits from (very) aggressive inlining of memcpy and
    // friends. The overhead of a the function call, even when warm, can be
    // over one hundred cycles.
    MaxStoresPerMemset = 128;
    MaxStoresPerMemcpy = 128;
    MaxStoresPerMemmove = 128;
    MaxLoadsPerMemcmp = 128;
  } else {
    MaxLoadsPerMemcmp = 8;
    MaxLoadsPerMemcmpOptSize = 4;
  }

  // Let the subtarget (CPU) decide if a predictable select is more expensive
  // than the corresponding branch. This information is used in CGP to decide
  // when to convert selects into branches.
  PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
}

/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
  if (MaxAlign == MaxMaxAlign)
    return;
  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    if (MaxMaxAlign >= 32 &&
        VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
      MaxAlign = Align(32);
    else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
             MaxAlign < 16)
      MaxAlign = Align(16);
  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    Align EltAlign;
    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
    if (EltAlign > MaxAlign)
      MaxAlign = EltAlign;
  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    for (auto *EltTy : STy->elements()) {
      Align EltAlign;
      getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
      if (EltAlign > MaxAlign)
        MaxAlign = EltAlign;
      if (MaxAlign == MaxMaxAlign)
        break;
    }
  }
}

/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area.
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
                                                  const DataLayout &DL) const {
  // 16byte and wider vectors are passed on 16byte boundary.
  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
  Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
  if (Subtarget.hasAltivec() || Subtarget.hasQPX())
    getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16));
  return Alignment.value();
}

bool PPCTargetLowering::useSoftFloat() const {
  return Subtarget.useSoftFloat();
}

bool PPCTargetLowering::hasSPE() const {
  return Subtarget.hasSPE();
}

bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
  return VT.isScalarInteger();
}

/// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
/// type is cheaper than a multiply followed by a shift.
/// This is true for words and doublewords on 64-bit PowerPC.
bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
  if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
                              isOperationLegal(ISD::MULHU, Type)))
    return true;
  return TargetLowering::isMulhCheaperThanMulShift(Type);
}

const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((PPCISD::NodeType)Opcode) {
  case PPCISD::FIRST_NUMBER:    break;
  case PPCISD::FSEL:            return "PPCISD::FSEL";
  case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
  case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
  case PPCISD::FCFID:           return "PPCISD::FCFID";
  case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
  case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
  case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
  case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
  case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
  case PPCISD::FP_TO_UINT_IN_VSR:
                                return "PPCISD::FP_TO_UINT_IN_VSR,";
  case PPCISD::FP_TO_SINT_IN_VSR:
                                return "PPCISD::FP_TO_SINT_IN_VSR";
  case PPCISD::FRE:             return "PPCISD::FRE";
  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
  case PPCISD::VPERM:           return "PPCISD::VPERM";
  case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
  case PPCISD::XXSPLTI_SP_TO_DP:
    return "PPCISD::XXSPLTI_SP_TO_DP";
  case PPCISD::XXSPLTI32DX:
    return "PPCISD::XXSPLTI32DX";
  case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
  case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
  case PPCISD::VECSHL:          return "PPCISD::VECSHL";
  case PPCISD::CMPB:            return "PPCISD::CMPB";
  case PPCISD::Hi:              return "PPCISD::Hi";
  case PPCISD::Lo:              return "PPCISD::Lo";
  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
  case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
  case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
  case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
  case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
  case PPCISD::SRL:             return "PPCISD::SRL";
  case PPCISD::SRA:             return "PPCISD::SRA";
  case PPCISD::SHL:             return "PPCISD::SHL";
  case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
  case PPCISD::CALL:            return "PPCISD::CALL";
  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
  case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
  case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
  case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
  case PPCISD::MFVSR:           return "PPCISD::MFVSR";
  case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
  case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
  case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
  case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
  case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
    return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
  case PPCISD::ANDI_rec_1_EQ_BIT:
    return "PPCISD::ANDI_rec_1_EQ_BIT";
  case PPCISD::ANDI_rec_1_GT_BIT:
    return "PPCISD::ANDI_rec_1_GT_BIT";
  case PPCISD::VCMP:            return "PPCISD::VCMP";
  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
  case PPCISD::LBRX:            return "PPCISD::LBRX";
  case PPCISD::STBRX:           return "PPCISD::STBRX";
  case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
  case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
  case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
  case PPCISD::STXSIX:          return "PPCISD::STXSIX";
  case PPCISD::VEXTS:           return "PPCISD::VEXTS";
  case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
  case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
  case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
  case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
  case PPCISD::ST_VSR_SCAL_INT:
                                return "PPCISD::ST_VSR_SCAL_INT";
  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
  case PPCISD::BDZ:             return "PPCISD::BDZ";
  case PPCISD::MFFS:            return "PPCISD::MFFS";
  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
  case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
  case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
  case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
  case PPCISD::SC:              return "PPCISD::SC";
  case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
  case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
  case PPCISD::RFEBB:           return "PPCISD::RFEBB";
  case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
  case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
  case PPCISD::VABSD:           return "PPCISD::VABSD";
  case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
  case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
  case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
  case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
  case PPCISD::QBFLT:           return "PPCISD::QBFLT";
  case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
  case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
  case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
  case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
  case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
  case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
  case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
  case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
  case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
  case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
  }
  return nullptr;
}

EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
                                          EVT VT) const {
  if (!VT.isVector())
    return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;

  if (Subtarget.hasQPX())
    return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());

  return VT.changeVectorElementTypeToInteger();
}

bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
  assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
  return true;
}

//===----------------------------------------------------------------------===//
// Node matching predicates, for use by the tblgen matching code.
//===----------------------------------------------------------------------===//

/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDValue Op) {
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    return CFP->getValueAPF().isZero();
  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    // Maybe this has already been legalized into the constant pool?
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
        return CFP->getValueAPF().isZero();
  }
  return false;
}

/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(int Op, int Val) {
  return Op < 0 || Op == Val;
}

/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operations with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                               SelectionDAG &DAG) {
  bool IsLE = DAG.getDataLayout().isLittleEndian();
  if (ShuffleKind == 0) {
    if (IsLE)
      return false;
    for (unsigned i = 0; i != 16; ++i)
      if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
        return false;
  } else if (ShuffleKind == 2) {
    if (!IsLE)
      return false;
    for (unsigned i = 0; i != 16; ++i)
      if (!isConstantOrUndef(N->getMaskElt(i), i*2))
        return false;
  } else if (ShuffleKind == 1) {
    unsigned j = IsLE ? 0 : 1;
    for (unsigned i = 0; i != 8; ++i)
      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
        return false;
  }
  return true;
}

/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operations with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                               SelectionDAG &DAG) {
  bool IsLE = DAG.getDataLayout().isLittleEndian();
  if (ShuffleKind == 0) {
    if (IsLE)
      return false;
    for (unsigned i = 0; i != 16; i += 2)
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
        return false;
  } else if (ShuffleKind == 2) {
    if (!IsLE)
      return false;
    for (unsigned i = 0; i != 16; i += 2)
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
        return false;
  } else if (ShuffleKind == 1) {
    unsigned j = IsLE ? 0 : 2;
    for (unsigned i = 0; i != 8; i += 2)
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
        return false;
  }
  return true;
}

/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
/// current subtarget.
///
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operations with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                               SelectionDAG &DAG) {
  const PPCSubtarget& Subtarget =
      static_cast<const PPCSubtarget&>(DAG.getSubtarget());
  if (!Subtarget.hasP8Vector())
    return false;

  bool IsLE = DAG.getDataLayout().isLittleEndian();
  if (ShuffleKind == 0) {
    if (IsLE)
      return false;
    for (unsigned i = 0; i != 16; i += 4)
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
        return false;
  } else if (ShuffleKind == 2) {
    if (!IsLE)
      return false;
    for (unsigned i = 0; i != 16; i += 4)
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
        return false;
  } else if (ShuffleKind == 1) {
    unsigned j = IsLE ? 0 : 4;
    for (unsigned i = 0; i != 8; i += 4)
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
          !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
          !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
        return false;
  }
  return true;
}

/// isVMerge - Common function, used to match vmrg* shuffles.
///
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
                     unsigned LHSStart, unsigned RHSStart) {
  if (N->getValueType(0) != MVT::v16i8)
    return false;
  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
         "Unsupported merge size!");

  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
                             LHSStart+j+i*UnitSize) ||
          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
                             RHSStart+j+i*UnitSize))
        return false;
    }
  return true;
}

/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
/// The ShuffleKind distinguishes between big-endian merges with two
/// different inputs (0), either-endian merges with two identical inputs (1),
/// and little-endian merges with two different inputs (2).  For the latter,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                             unsigned ShuffleKind, SelectionDAG &DAG) {
  if (DAG.getDataLayout().isLittleEndian()) {
    if (ShuffleKind == 1) // unary
      return isVMerge(N, UnitSize, 0, 0);
    else if (ShuffleKind == 2) // swapped
      return isVMerge(N, UnitSize, 0, 16);
    else
      return false;
  } else {
    if (ShuffleKind == 1) // unary
      return isVMerge(N, UnitSize, 8, 8);
    else if (ShuffleKind == 0) // normal
      return isVMerge(N, UnitSize, 8, 24);
    else
      return false;
  }
}

/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
/// The ShuffleKind distinguishes between big-endian merges with two
/// different inputs (0), either-endian merges with two identical inputs (1),
/// and little-endian merges with two different inputs (2).  For the latter,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                             unsigned ShuffleKind, SelectionDAG &DAG) {
  if (DAG.getDataLayout().isLittleEndian()) {
    if (ShuffleKind == 1) // unary
      return isVMerge(N, UnitSize, 8, 8);
    else if (ShuffleKind == 2) // swapped
      return isVMerge(N, UnitSize, 8, 24);
    else
      return false;
  } else {
    if (ShuffleKind == 1) // unary
      return isVMerge(N, UnitSize, 0, 0);
    else if (ShuffleKind == 0) // normal
      return isVMerge(N, UnitSize, 0, 16);
    else
      return false;
  }
}

/**
 * Common function used to match vmrgew and vmrgow shuffles
 *
 * The indexOffset determines whether to look for even or odd words in
 * the shuffle mask. This is based on the of the endianness of the target
 * machine.
 *   - Little Endian:
 *     - Use offset of 0 to check for odd elements
 *     - Use offset of 4 to check for even elements
 *   - Big Endian:
 *     - Use offset of 0 to check for even elements
 *     - Use offset of 4 to check for odd elements
 * A detailed description of the vector element ordering for little endian and
 * big endian can be found at
 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
 * Targeting your applications - what little endian and big endian IBM XL C/C++
 * compiler differences mean to you
 *
 * The mask to the shuffle vector instruction specifies the indices of the
 * elements from the two input vectors to place in the result. The elements are
 * numbered in array-access order, starting with the first vector. These vectors
 * are always of type v16i8, thus each vector will contain 16 elements of size
 * 8. More info on the shuffle vector can be found in the
 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
 * Language Reference.
 *
 * The RHSStartValue indicates whether the same input vectors are used (unary)
 * or two different input vectors are used, based on the following:
 *   - If the instruction uses the same vector for both inputs, the range of the
 *     indices will be 0 to 15. In this case, the RHSStart value passed should
 *     be 0.
 *   - If the instruction has two different vectors then the range of the
 *     indices will be 0 to 31. In this case, the RHSStart value passed should
 *     be 16 (indices 0-15 specify elements in the first vector while indices 16
 *     to 31 specify elements in the second vector).
 *
 * \param[in] N The shuffle vector SD Node to analyze
 * \param[in] IndexOffset Specifies whether to look for even or odd elements
 * \param[in] RHSStartValue Specifies the starting index for the righthand input
 * vector to the shuffle_vector instruction
 * \return true iff this shuffle vector represents an even or odd word merge
 */
static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
                     unsigned RHSStartValue) {
  if (N->getValueType(0) != MVT::v16i8)
    return false;

  for (unsigned i = 0; i < 2; ++i)
    for (unsigned j = 0; j < 4; ++j)
      if (!isConstantOrUndef(N->getMaskElt(i*4+j),
                             i*RHSStartValue+j+IndexOffset) ||
          !isConstantOrUndef(N->getMaskElt(i*4+j+8),
                             i*RHSStartValue+j+IndexOffset+8))
        return false;
  return true;
}

/**
 * Determine if the specified shuffle mask is suitable for the vmrgew or
 * vmrgow instructions.
 *
 * \param[in] N The shuffle vector SD Node to analyze
 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
 * \param[in] ShuffleKind Identify the type of merge:
 *   - 0 = big-endian merge with two different inputs;
 *   - 1 = either-endian merge with two identical inputs;
 *   - 2 = little-endian merge with two different inputs (inputs are swapped for
 *     little-endian merges).
 * \param[in] DAG The current SelectionDAG
 * \return true iff this shuffle mask
 */
bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
                              unsigned ShuffleKind, SelectionDAG &DAG) {
  if (DAG.getDataLayout().isLittleEndian()) {
    unsigned indexOffset = CheckEven ? 4 : 0;
    if (ShuffleKind == 1) // Unary
      return isVMerge(N, indexOffset, 0);
    else if (ShuffleKind == 2) // swapped
      return isVMerge(N, indexOffset, 16);
    else
      return false;
  }
  else {
    unsigned indexOffset = CheckEven ? 0 : 4;
    if (ShuffleKind == 1) // Unary
      return isVMerge(N, indexOffset, 0);
    else if (ShuffleKind == 0) // Normal
      return isVMerge(N, indexOffset, 16);
    else
      return false;
  }
  return false;
}

/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
/// The ShuffleKind distinguishes between big-endian operations with two
/// different inputs (0), either-endian operations with two identical inputs
/// (1), and little-endian operations with two different inputs (2).  For the
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
                             SelectionDAG &DAG) {
  if (N->getValueType(0) != MVT::v16i8)
    return -1;

  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);

  // Find the first non-undef value in the shuffle mask.
  unsigned i;
  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
    /*search*/;

  if (i == 16) return -1;  // all undef.

  // Otherwise, check to see if the rest of the elements are consecutively
  // numbered from this value.
  unsigned ShiftAmt = SVOp->getMaskElt(i);
  if (ShiftAmt < i) return -1;

  ShiftAmt -= i;
  bool isLE = DAG.getDataLayout().isLittleEndian();

  if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
    // Check the rest of the elements to see if they are consecutive.
    for (++i; i != 16; ++i)
      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
        return -1;
  } else if (ShuffleKind == 1) {
    // Check the rest of the elements to see if they are consecutive.
    for (++i; i != 16; ++i)
      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
        return -1;
  } else
    return -1;

  if (isLE)
    ShiftAmt = 16 - ShiftAmt;

  return ShiftAmt;
}

/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
  assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
         EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");

  // The consecutive indices need to specify an element, not part of two
  // different elements.  So abandon ship early if this isn't the case.
  if (N->getMaskElt(0) % EltSize != 0)
    return false;

  // This is a splat operation if each element of the permute is the same, and
  // if the value doesn't reference the second vector.
  unsigned ElementBase = N->getMaskElt(0);

  // FIXME: Handle UNDEF elements too!
  if (ElementBase >= 16)
    return false;

  // Check that the indices are consecutive, in the case of a multi-byte element
  // splatted with a v16i8 mask.
  for (unsigned i = 1; i != EltSize; ++i)
    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
      return false;

  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
    if (N->getMaskElt(i) < 0) continue;
    for (unsigned j = 0; j != EltSize; ++j)
      if (N->getMaskElt(i+j) != N->getMaskElt(j))
        return false;
  }
  return true;
}

/// Check that the mask is shuffling N byte elements. Within each N byte
/// element of the mask, the indices could be either in increasing or
/// decreasing order as long as they are consecutive.
/// \param[in] N the shuffle vector SD Node to analyze
/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
/// Word/DoubleWord/QuadWord).
/// \param[in] StepLen the delta indices number among the N byte element, if
/// the mask is in increasing/decreasing order then it is 1/-1.
/// \return true iff the mask is shuffling N byte elements.
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
                                   int StepLen) {
  assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
         "Unexpected element width.");
  assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");

  unsigned NumOfElem = 16 / Width;
  unsigned MaskVal[16]; //  Width is never greater than 16
  for (unsigned i = 0; i < NumOfElem; ++i) {
    MaskVal[0] = N->getMaskElt(i * Width);
    if ((StepLen == 1) && (MaskVal[0] % Width)) {
      return false;
    } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
      return false;
    }

    for (unsigned int j = 1; j < Width; ++j) {
      MaskVal[j] = N->getMaskElt(i * Width + j);
      if (MaskVal[j] != MaskVal[j-1] + StepLen) {
        return false;
      }
    }
  }

  return true;
}

bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                          unsigned &InsertAtByte, bool &Swap, bool IsLE) {
  if (!isNByteElemShuffleMask(N, 4, 1))
    return false;

  // Now we look at mask elements 0,4,8,12
  unsigned M0 = N->getMaskElt(0) / 4;
  unsigned M1 = N->getMaskElt(4) / 4;
  unsigned M2 = N->getMaskElt(8) / 4;
  unsigned M3 = N->getMaskElt(12) / 4;
  unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
  unsigned BigEndianShifts[] = { 3, 0, 1, 2 };

  // Below, let H and L be arbitrary elements of the shuffle mask
  // where H is in the range [4,7] and L is in the range [0,3].
  // H, 1, 2, 3 or L, 5, 6, 7
  if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
      (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
    ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
    InsertAtByte = IsLE ? 12 : 0;
    Swap = M0 < 4;
    return true;
  }
  // 0, H, 2, 3 or 4, L, 6, 7
  if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
      (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
    ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
    InsertAtByte = IsLE ? 8 : 4;
    Swap = M1 < 4;
    return true;
  }
  // 0, 1, H, 3 or 4, 5, L, 7
  if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
      (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
    ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
    InsertAtByte = IsLE ? 4 : 8;
    Swap = M2 < 4;
    return true;
  }
  // 0, 1, 2, H or 4, 5, 6, L
  if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
      (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
    ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
    InsertAtByte = IsLE ? 0 : 12;
    Swap = M3 < 4;
    return true;
  }

  // If both vector operands for the shuffle are the same vector, the mask will
  // contain only elements from the first one and the second one will be undef.
  if (N->getOperand(1).isUndef()) {
    ShiftElts = 0;
    Swap = true;
    unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
    if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
      InsertAtByte = IsLE ? 12 : 0;
      return true;
    }
    if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
      InsertAtByte = IsLE ? 8 : 4;
      return true;
    }
    if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
      InsertAtByte = IsLE ? 4 : 8;
      return true;
    }
    if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
      InsertAtByte = IsLE ? 0 : 12;
      return true;
    }
  }

  return false;
}

bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                               bool &Swap, bool IsLE) {
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
  // Ensure each byte index of the word is consecutive.
  if (!isNByteElemShuffleMask(N, 4, 1))
    return false;

  // Now we look at mask elements 0,4,8,12, which are the beginning of words.
  unsigned M0 = N->getMaskElt(0) / 4;
  unsigned M1 = N->getMaskElt(4) / 4;
  unsigned M2 = N->getMaskElt(8) / 4;
  unsigned M3 = N->getMaskElt(12) / 4;

  // If both vector operands for the shuffle are the same vector, the mask will
  // contain only elements from the first one and the second one will be undef.
  if (N->getOperand(1).isUndef()) {
    assert(M0 < 4 && "Indexing into an undef vector?");
    if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
      return false;

    ShiftElts = IsLE ? (4 - M0) % 4 : M0;
    Swap = false;
    return true;
  }

  // Ensure each word index of the ShuffleVector Mask is consecutive.
  if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
    return false;

  if (IsLE) {
    if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
      // Input vectors don't need to be swapped if the leading element
      // of the result is one of the 3 left elements of the second vector
      // (or if there is no shift to be done at all).
      Swap = false;
      ShiftElts = (8 - M0) % 8;
    } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
      // Input vectors need to be swapped if the leading element
      // of the result is one of the 3 left elements of the first vector
      // (or if we're shifting by 4 - thereby simply swapping the vectors).
      Swap = true;
      ShiftElts = (4 - M0) % 4;
    }

    return true;
  } else {                                          // BE
    if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
      // Input vectors don't need to be swapped if the leading element
      // of the result is one of the 4 elements of the first vector.
      Swap = false;
      ShiftElts = M0;
    } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
      // Input vectors need to be swapped if the leading element
      // of the result is one of the 4 elements of the right vector.
      Swap = true;
      ShiftElts = M0 - 4;
    }

    return true;
  }
}

bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");

  if (!isNByteElemShuffleMask(N, Width, -1))
    return false;

  for (int i = 0; i < 16; i += Width)
    if (N->getMaskElt(i) != i + Width - 1)
      return false;

  return true;
}

bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
  return isXXBRShuffleMaskHelper(N, 2);
}

bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
  return isXXBRShuffleMaskHelper(N, 4);
}

bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
  return isXXBRShuffleMaskHelper(N, 8);
}

bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
  return isXXBRShuffleMaskHelper(N, 16);
}

/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
/// if the inputs to the instruction should be swapped and set \p DM to the
/// value for the immediate.
/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
/// AND element 0 of the result comes from the first input (LE) or second input
/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
/// mask.
bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
                               bool &Swap, bool IsLE) {
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");

  // Ensure each byte index of the double word is consecutive.
  if (!isNByteElemShuffleMask(N, 8, 1))
    return false;

  unsigned M0 = N->getMaskElt(0) / 8;
  unsigned M1 = N->getMaskElt(8) / 8;
  assert(((M0 | M1) < 4) && "A mask element out of bounds?");

  // If both vector operands for the shuffle are the same vector, the mask will
  // contain only elements from the first one and the second one will be undef.
  if (N->getOperand(1).isUndef()) {
    if ((M0 | M1) < 2) {
      DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
      Swap = false;
      return true;
    } else
      return false;
  }

  if (IsLE) {
    if (M0 > 1 && M1 < 2) {
      Swap = false;
    } else if (M0 < 2 && M1 > 1) {
      M0 = (M0 + 2) % 4;
      M1 = (M1 + 2) % 4;
      Swap = true;
    } else
      return false;

    // Note: if control flow comes here that means Swap is already set above
    DM = (((~M1) & 1) << 1) + ((~M0) & 1);
    return true;
  } else { // BE
    if (M0 < 2 && M1 > 1) {
      Swap = false;
    } else if (M0 > 1 && M1 < 2) {
      M0 = (M0 + 2) % 4;
      M1 = (M1 + 2) % 4;
      Swap = true;
    } else
      return false;

    // Note: if control flow comes here that means Swap is already set above
    DM = (M0 << 1) + (M1 & 1);
    return true;
  }
}


/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
/// appropriate for PPC mnemonics (which have a big endian bias - namely
/// elements are counted from the left of the vector register).
unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
                                         SelectionDAG &DAG) {
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
  assert(isSplatShuffleMask(SVOp, EltSize));
  if (DAG.getDataLayout().isLittleEndian())
    return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
  else
    return SVOp->getMaskElt(0) / EltSize;
}

/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
/// by using a vspltis[bhw] instruction of the specified element size, return
/// the constant being splatted.  The ByteSize field indicates the number of
/// bytes of each element [124] -> [bhw].
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
  SDValue OpVal(nullptr, 0);

  // If ByteSize of the splat is bigger than the element size of the
  // build_vector, then we have a case where we are checking for a splat where
  // multiple elements of the buildvector are folded together into a single
  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
  unsigned EltSize = 16/N->getNumOperands();
  if (EltSize < ByteSize) {
    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
    SDValue UniquedVals[4];
    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");

    // See if all of the elements in the buildvector agree across.
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
      if (N->getOperand(i).isUndef()) continue;
      // If the element isn't a constant, bail fully out.
      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();

      if (!UniquedVals[i&(Multiple-1)].getNode())
        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
        return SDValue();  // no match.
    }

    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
    // either constant or undef values that are identical for each chunk.  See
    // if these chunks can form into a larger vspltis*.

    // Check to see if all of the leading entries are either 0 or -1.  If
    // neither, then this won't fit into the immediate field.
    bool LeadingZero = true;
    bool LeadingOnes = true;
    for (unsigned i = 0; i != Multiple-1; ++i) {
      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.

      LeadingZero &= isNullConstant(UniquedVals[i]);
      LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
    }
    // Finally, check the least significant entry.
    if (LeadingZero) {
      if (!UniquedVals[Multiple-1].getNode())
        return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
      if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
    }
    if (LeadingOnes) {
      if (!UniquedVals[Multiple-1].getNode())
        return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
    }

    return SDValue();
  }

  // Check to see if this buildvec has a single non-undef value in its elements.
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    if (N->getOperand(i).isUndef()) continue;
    if (!OpVal.getNode())
      OpVal = N->getOperand(i);
    else if (OpVal != N->getOperand(i))
      return SDValue();
  }

  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.

  unsigned ValSizeInBytes = EltSize;
  uint64_t Value = 0;
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
    Value = CN->getZExtValue();
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
    Value = FloatToBits(CN->getValueAPF().convertToFloat());
  }

  // If the splat value is larger than the element value, then we can never do
  // this splat.  The only case that we could fit the replicated bits into our
  // immediate field for would be zero, and we prefer to use vxor for it.
  if (ValSizeInBytes < ByteSize) return SDValue();

  // If the element value is larger than the splat value, check if it consists
  // of a repeated bit pattern of size ByteSize.
  if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
    return SDValue();

  // Properly sign extend the value.
  int MaskVal = SignExtend32(Value, ByteSize * 8);

  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
  if (MaskVal == 0) return SDValue();

  // Finally, if this value fits in a 5 bit sext field, return it
  if (SignExtend32<5>(MaskVal) == MaskVal)
    return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
  return SDValue();
}

/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
/// amount, otherwise return -1.
int PPC::isQVALIGNIShuffleMask(SDNode *N) {
  EVT VT = N->getValueType(0);
  if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
    return -1;

  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);

  // Find the first non-undef value in the shuffle mask.
  unsigned i;
  for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
    /*search*/;

  if (i == 4) return -1;  // all undef.

  // Otherwise, check to see if the rest of the elements are consecutively
  // numbered from this value.
  unsigned ShiftAmt = SVOp->getMaskElt(i);
  if (ShiftAmt < i) return -1;
  ShiftAmt -= i;

  // Check the rest of the elements to see if they are consecutive.
  for (++i; i != 4; ++i)
    if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
      return -1;

  return ShiftAmt;
}

//===----------------------------------------------------------------------===//
//  Addressing Mode Selection
//===----------------------------------------------------------------------===//

/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value.  If so, this returns true and the
/// immediate.
bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
  if (!isa<ConstantSDNode>(N))
    return false;

  Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
  if (N->getValueType(0) == MVT::i32)
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
  else
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
}
bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
  return isIntS16Immediate(Op.getNode(), Imm);
}


/// SelectAddressEVXRegReg - Given the specified address, check to see if it can
/// be represented as an indexed [r+r] operation.
bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
                                               SDValue &Index,
                                               SelectionDAG &DAG) const {
  for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
      UI != E; ++UI) {
    if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
      if (Memop->getMemoryVT() == MVT::f64) {
          Base = N.getOperand(0);
          Index = N.getOperand(1);
          return true;
      }
    }
  }
  return false;
}

/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation.  Returns false if it
/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
/// non-zero and N can be represented by a base register plus a signed 16-bit
/// displacement, make a more precise judgement by checking (displacement % \p
/// EncodingAlignment).
bool PPCTargetLowering::SelectAddressRegReg(
    SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
    MaybeAlign EncodingAlignment) const {
  // If we have a PC Relative target flag don't select as [reg+reg]. It will be
  // a [pc+imm].
  if (SelectAddressPCRel(N, Base))
    return false;

  int16_t Imm = 0;
  if (N.getOpcode() == ISD::ADD) {
    // Is there any SPE load/store (f64), which can't handle 16bit offset?
    // SPE load/store can only handle 8-bit offsets.
    if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
        return true;
    if (isIntS16Immediate(N.getOperand(1), Imm) &&
        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
      return false; // r+i
    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
      return false;    // r+i

    Base = N.getOperand(0);
    Index = N.getOperand(1);
    return true;
  } else if (N.getOpcode() == ISD::OR) {
    if (isIntS16Immediate(N.getOperand(1), Imm) &&
        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
      return false; // r+i can fold it if we can.

    // If this is an or of disjoint bitfields, we can codegen this as an add
    // (for better address arithmetic) if the LHS and RHS of the OR are provably
    // disjoint.
    KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));

    if (LHSKnown.Zero.getBoolValue()) {
      KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
      // If all of the bits are known zero on the LHS or RHS, the add won't
      // carry.
      if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
        Base = N.getOperand(0);
        Index = N.getOperand(1);
        return true;
      }
    }
  }

  return false;
}

// If we happen to be doing an i64 load or store into a stack slot that has
// less than a 4-byte alignment, then the frame-index elimination may need to
// use an indexed load or store instruction (because the offset may not be a
// multiple of 4). The extra register needed to hold the offset comes from the
// register scavenger, and it is possible that the scavenger will need to use
// an emergency spill slot. As a result, we need to make sure that a spill slot
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
// stack slot.
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
  // FIXME: This does not handle the LWA case.
  if (VT != MVT::i64)
    return;

  // NOTE: We'll exclude negative FIs here, which come from argument
  // lowering, because there are no known test cases triggering this problem
  // using packed structures (or similar). We can remove this exclusion if
  // we find such a test case. The reason why this is so test-case driven is
  // because this entire 'fixup' is only to prevent crashes (from the
  // register scavenger) on not-really-valid inputs. For example, if we have:
  //   %a = alloca i1
  //   %b = bitcast i1* %a to i64*
  //   store i64* a, i64 b
  // then the store should really be marked as 'align 1', but is not. If it
  // were marked as 'align 1' then the indexed form would have been
  // instruction-selected initially, and the problem this 'fixup' is preventing
  // won't happen regardless.
  if (FrameIdx < 0)
    return;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  if (MFI.getObjectAlign(FrameIdx) >= Align(4))
    return;

  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setHasNonRISpills();
}

/// Returns true if the address N can be represented by a base register plus
/// a signed 16-bit displacement [r+imm], and if it is not better
/// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
/// displacements that are multiples of that value.
bool PPCTargetLowering::SelectAddressRegImm(
    SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
    MaybeAlign EncodingAlignment) const {
  // FIXME dl should come from parent load or store, not from address
  SDLoc dl(N);

  // If we have a PC Relative target flag don't select as [reg+imm]. It will be
  // a [pc+imm].
  if (SelectAddressPCRel(N, Base))
    return false;

  // If this can be more profitably realized as r+r, fail.
  if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
    return false;

  if (N.getOpcode() == ISD::ADD) {
    int16_t imm = 0;
    if (isIntS16Immediate(N.getOperand(1), imm) &&
        (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
      Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
      } else {
        Base = N.getOperand(0);
      }
      return true; // [r+i]
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
      // Match LOAD (ADD (X, Lo(G))).
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
             && "Cannot handle constant offsets yet!");
      Disp = N.getOperand(1).getOperand(0);  // The global address.
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
             Disp.getOpcode() == ISD::TargetConstantPool ||
             Disp.getOpcode() == ISD::TargetJumpTable);
      Base = N.getOperand(0);
      return true;  // [&g+r]
    }
  } else if (N.getOpcode() == ISD::OR) {
    int16_t imm = 0;
    if (isIntS16Immediate(N.getOperand(1), imm) &&
        (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
      // If this is an or of disjoint bitfields, we can codegen this as an add
      // (for better address arithmetic) if the LHS and RHS of the OR are
      // provably disjoint.
      KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));

      if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
        // If all of the bits are known zero on the LHS or RHS, the add won't
        // carry.
        if (FrameIndexSDNode *FI =
              dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
        } else {
          Base = N.getOperand(0);
        }
        Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
        return true;
      }
    }
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
    // Loading from a constant address.

    // If this address fits entirely in a 16-bit sext immediate field, codegen
    // this as "d, 0"
    int16_t Imm;
    if (isIntS16Immediate(CN, Imm) &&
        (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
      Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
      Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
                             CN->getValueType(0));
      return true;
    }

    // Handle 32-bit sext immediates with LIS + addr mode.
    if ((CN->getValueType(0) == MVT::i32 ||
         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
        (!EncodingAlignment ||
         isAligned(*EncodingAlignment, CN->getZExtValue()))) {
      int Addr = (int)CN->getZExtValue();

      // Otherwise, break this down into an LIS + disp.
      Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);

      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
                                   MVT::i32);
      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
      return true;
    }
  }

  Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
  } else
    Base = N;
  return true;      // [r+0]
}

/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
                                                SDValue &Index,
                                                SelectionDAG &DAG) const {
  // Check to see if we can easily represent this as an [r+r] address.  This
  // will fail if it thinks that the address is more profitably represented as
  // reg+imm, e.g. where imm = 0.
  if (SelectAddressRegReg(N, Base, Index, DAG))
    return true;

  // If the address is the result of an add, we will utilize the fact that the
  // address calculation includes an implicit add.  However, we can reduce
  // register pressure if we do not materialize a constant just for use as the
  // index register.  We only get rid of the add if it is not an add of a
  // value and a 16-bit signed constant and both have a single use.
  int16_t imm = 0;
  if (N.getOpcode() == ISD::ADD &&
      (!isIntS16Immediate(N.getOperand(1), imm) ||
       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
    Base = N.getOperand(0);
    Index = N.getOperand(1);
    return true;
  }

  // Otherwise, do it the hard way, using R0 as the base register.
  Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
                         N.getValueType());
  Index = N;
  return true;
}

template <typename Ty> static bool isValidPCRelNode(SDValue N) {
  Ty *PCRelCand = dyn_cast<Ty>(N);
  return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
}

/// Returns true if this address is a PC Relative address.
/// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
/// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
  // This is a materialize PC Relative node. Always select this as PC Relative.
  Base = N;
  if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
    return true;
  if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
      isValidPCRelNode<GlobalAddressSDNode>(N) ||
      isValidPCRelNode<JumpTableSDNode>(N) ||
      isValidPCRelNode<BlockAddressSDNode>(N))
    return true;
  return false;
}

/// Returns true if we should use a direct load into vector instruction
/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {

  // If there are any other uses other than scalar to vector, then we should
  // keep it as a scalar load -> direct move pattern to prevent multiple
  // loads.
  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
  if (!LD)
    return false;

  EVT MemVT = LD->getMemoryVT();
  if (!MemVT.isSimple())
    return false;
  switch(MemVT.getSimpleVT().SimpleTy) {
  case MVT::i64:
    break;
  case MVT::i32:
    if (!ST.hasP8Vector())
      return false;
    break;
  case MVT::i16:
  case MVT::i8:
    if (!ST.hasP9Vector())
      return false;
    break;
  default:
    return false;
  }

  SDValue LoadedVal(N, 0);
  if (!LoadedVal.hasOneUse())
    return false;

  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
       UI != UE; ++UI)
    if (UI.getUse().get().getResNo() == 0 &&
        UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
        UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
      return false;

  return true;
}

/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                                  SDValue &Offset,
                                                  ISD::MemIndexedMode &AM,
                                                  SelectionDAG &DAG) const {
  if (DisablePPCPreinc) return false;

  bool isLoad = true;
  SDValue Ptr;
  EVT VT;
  unsigned Alignment;
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    Ptr = LD->getBasePtr();
    VT = LD->getMemoryVT();
    Alignment = LD->getAlignment();
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    Ptr = ST->getBasePtr();
    VT  = ST->getMemoryVT();
    Alignment = ST->getAlignment();
    isLoad = false;
  } else
    return false;

  // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
  // instructions because we can fold these into a more efficient instruction
  // instead, (such as LXSD).
  if (isLoad && usePartialVectorLoads(N, Subtarget)) {
    return false;
  }

  // PowerPC doesn't have preinc load/store instructions for vectors (except
  // for QPX, which does have preinc r+r forms).
  if (VT.isVector()) {
    if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
      return false;
    } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
      AM = ISD::PRE_INC;
      return true;
    }
  }

  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
    // Common code will reject creating a pre-inc form if the base pointer
    // is a frame index, or if N is a store and the base pointer is either
    // the same as or a predecessor of the value being stored.  Check for
    // those situations here, and try with swapped Base/Offset instead.
    bool Swap = false;

    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
      Swap = true;
    else if (!isLoad) {
      SDValue Val = cast<StoreSDNode>(N)->getValue();
      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
        Swap = true;
    }

    if (Swap)
      std::swap(Base, Offset);

    AM = ISD::PRE_INC;
    return true;
  }

  // LDU/STU can only handle immediates that are a multiple of 4.
  if (VT != MVT::i64) {
    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
      return false;
  } else {
    // LDU/STU need an address with at least 4-byte alignment.
    if (Alignment < 4)
      return false;

    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
      return false;
  }

  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
    // sext i32 to i64 when addr mode is r+i.
    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
        LD->getExtensionType() == ISD::SEXTLOAD &&
        isa<ConstantSDNode>(Offset))
      return false;
  }

  AM = ISD::PRE_INC;
  return true;
}

//===----------------------------------------------------------------------===//
//  LowerOperation implementation
//===----------------------------------------------------------------------===//

/// Return true if we should reference labels using a PICBase, set the HiOpFlags
/// and LoOpFlags to the target MO flags.
static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
                               unsigned &HiOpFlags, unsigned &LoOpFlags,
                               const GlobalValue *GV = nullptr) {
  HiOpFlags = PPCII::MO_HA;
  LoOpFlags = PPCII::MO_LO;

  // Don't use the pic base if not in PIC relocation model.
  if (IsPIC) {
    HiOpFlags |= PPCII::MO_PIC_FLAG;
    LoOpFlags |= PPCII::MO_PIC_FLAG;
  }
}

static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
                             SelectionDAG &DAG) {
  SDLoc DL(HiPart);
  EVT PtrVT = HiPart.getValueType();
  SDValue Zero = DAG.getConstant(0, DL, PtrVT);

  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);

  // With PIC, the first instruction is actually "GR+hi(&G)".
  if (isPIC)
    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);

  // Generate non-pic code that has direct accesses to the constant pool.
  // The address of the global is just (hi(&g)+lo(&g)).
  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
}

static void setUsesTOCBasePtr(MachineFunction &MF) {
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setUsesTOCBasePtr();
}

static void setUsesTOCBasePtr(SelectionDAG &DAG) {
  setUsesTOCBasePtr(DAG.getMachineFunction());
}

SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
                                       SDValue GA) const {
  const bool Is64Bit = Subtarget.isPPC64();
  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
  SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
                        : Subtarget.isAIXABI()
                              ? DAG.getRegister(PPC::R2, VT)
                              : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
  SDValue Ops[] = { GA, Reg };
  return DAG.getMemIntrinsicNode(
      PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
      MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
      MachineMemOperand::MOLoad);
}

SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
                                             SelectionDAG &DAG) const {
  EVT PtrVT = Op.getValueType();
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
  const Constant *C = CP->getConstVal();

  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
  // The actual address of the GlobalValue is stored in the TOC.
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
    if (Subtarget.isUsingPCRelativeCalls()) {
      SDLoc DL(CP);
      EVT Ty = getPointerTy(DAG.getDataLayout());
      SDValue ConstPool = DAG.getTargetConstantPool(
          C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
      return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
    }
    setUsesTOCBasePtr(DAG);
    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
    return getTOCEntry(DAG, SDLoc(CP), GA);
  }

  unsigned MOHiFlag, MOLoFlag;
  bool IsPIC = isPositionIndependent();
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);

  if (IsPIC && Subtarget.isSVR4ABI()) {
    SDValue GA =
        DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
    return getTOCEntry(DAG, SDLoc(CP), GA);
  }

  SDValue CPIHi =
      DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
  SDValue CPILo =
      DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
  return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
}

// For 64-bit PowerPC, prefer the more compact relative encodings.
// This trades 32 bits per jump table entry for one or two instructions
// on the jump site.
unsigned PPCTargetLowering::getJumpTableEncoding() const {
  if (isJumpTableRelative())
    return MachineJumpTableInfo::EK_LabelDifference32;

  return TargetLowering::getJumpTableEncoding();
}

bool PPCTargetLowering::isJumpTableRelative() const {
  if (UseAbsoluteJumpTables)
    return false;
  if (Subtarget.isPPC64() || Subtarget.isAIXABI())
    return true;
  return TargetLowering::isJumpTableRelative();
}

SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
                                                    SelectionDAG &DAG) const {
  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);

  switch (getTargetMachine().getCodeModel()) {
  case CodeModel::Small:
  case CodeModel::Medium:
    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
  default:
    return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
                       getPointerTy(DAG.getDataLayout()));
  }
}

const MCExpr *
PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                                unsigned JTI,
                                                MCContext &Ctx) const {
  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);

  switch (getTargetMachine().getCodeModel()) {
  case CodeModel::Small:
  case CodeModel::Medium:
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
  default:
    return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
  }
}

SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
  EVT PtrVT = Op.getValueType();
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);

  // isUsingPCRelativeCalls() returns true when PCRelative is enabled
  if (Subtarget.isUsingPCRelativeCalls()) {
    SDLoc DL(JT);
    EVT Ty = getPointerTy(DAG.getDataLayout());
    SDValue GA =
        DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
    SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
    return MatAddr;
  }

  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
  // The actual address of the GlobalValue is stored in the TOC.
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
    setUsesTOCBasePtr(DAG);
    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
    return getTOCEntry(DAG, SDLoc(JT), GA);
  }

  unsigned MOHiFlag, MOLoFlag;
  bool IsPIC = isPositionIndependent();
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);

  if (IsPIC && Subtarget.isSVR4ABI()) {
    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
                                        PPCII::MO_PIC_FLAG);
    return getTOCEntry(DAG, SDLoc(GA), GA);
  }

  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
  return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
}

SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
                                             SelectionDAG &DAG) const {
  EVT PtrVT = Op.getValueType();
  BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
  const BlockAddress *BA = BASDN->getBlockAddress();

  // isUsingPCRelativeCalls() returns true when PCRelative is enabled
  if (Subtarget.isUsingPCRelativeCalls()) {
    SDLoc DL(BASDN);
    EVT Ty = getPointerTy(DAG.getDataLayout());
    SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
                                           PPCII::MO_PCREL_FLAG);
    SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
    return MatAddr;
  }

  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
  // The actual BlockAddress is stored in the TOC.
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
    setUsesTOCBasePtr(DAG);
    SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
    return getTOCEntry(DAG, SDLoc(BASDN), GA);
  }

  // 32-bit position-independent ELF stores the BlockAddress in the .got.
  if (Subtarget.is32BitELFABI() && isPositionIndependent())
    return getTOCEntry(
        DAG, SDLoc(BASDN),
        DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));

  unsigned MOHiFlag, MOLoFlag;
  bool IsPIC = isPositionIndependent();
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
  return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
}

SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  // FIXME: TLS addresses currently use medium model code sequences,
  // which is the most useful form.  Eventually support for small and
  // large models could be added if users need it, at the cost of
  // additional complexity.
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  if (DAG.getTarget().useEmulatedTLS())
    return LowerToTLSEmulatedModel(GA, DAG);

  SDLoc dl(GA);
  const GlobalValue *GV = GA->getGlobal();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  bool is64bit = Subtarget.isPPC64();
  const Module *M = DAG.getMachineFunction().getFunction().getParent();
  PICLevel::Level picLevel = M->getPICLevel();

  const TargetMachine &TM = getTargetMachine();
  TLSModel::Model Model = TM.getTLSModel(GV);

  if (Model == TLSModel::LocalExec) {
    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
                                               PPCII::MO_TPREL_HA);
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
                                               PPCII::MO_TPREL_LO);
    SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
                             : DAG.getRegister(PPC::R2, MVT::i32);

    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
  }

  if (Model == TLSModel::InitialExec) {
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
                                                PPCII::MO_TLS);
    SDValue GOTPtr;
    if (is64bit) {
      setUsesTOCBasePtr(DAG);
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
      GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
                           PtrVT, GOTReg, TGA);
    } else {
      if (!TM.isPositionIndependent())
        GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
      else if (picLevel == PICLevel::SmallPIC)
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
      else
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
    }
    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
                                   PtrVT, TGA, GOTPtr);
    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
  }

  if (Model == TLSModel::GeneralDynamic) {
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
    SDValue GOTPtr;
    if (is64bit) {
      setUsesTOCBasePtr(DAG);
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
                                   GOTReg, TGA);
    } else {
      if (picLevel == PICLevel::SmallPIC)
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
      else
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
    }
    return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
                       GOTPtr, TGA, TGA);
  }

  if (Model == TLSModel::LocalDynamic) {
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
    SDValue GOTPtr;
    if (is64bit) {
      setUsesTOCBasePtr(DAG);
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
                           GOTReg, TGA);
    } else {
      if (picLevel == PICLevel::SmallPIC)
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
      else
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
    }
    SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
                                  PtrVT, GOTPtr, TGA, TGA);
    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
                                      PtrVT, TLSAddr, TGA);
    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
  }

  llvm_unreachable("Unknown TLS model!");
}

SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  EVT PtrVT = Op.getValueType();
  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
  SDLoc DL(GSDN);
  const GlobalValue *GV = GSDN->getGlobal();

  // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
  // The actual address of the GlobalValue is stored in the TOC.
  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
    if (Subtarget.isUsingPCRelativeCalls()) {
      EVT Ty = getPointerTy(DAG.getDataLayout());
      if (isAccessedAsGotIndirect(Op)) {
        SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
                                                PPCII::MO_PCREL_FLAG |
                                                    PPCII::MO_GOT_FLAG);
        SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
        SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
                                   MachinePointerInfo());
        return Load;
      } else {
        SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
                                                PPCII::MO_PCREL_FLAG);
        return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
      }
    }
    setUsesTOCBasePtr(DAG);
    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
    return getTOCEntry(DAG, DL, GA);
  }

  unsigned MOHiFlag, MOLoFlag;
  bool IsPIC = isPositionIndependent();
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);

  if (IsPIC && Subtarget.isSVR4ABI()) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
                                            GSDN->getOffset(),
                                            PPCII::MO_PIC_FLAG);
    return getTOCEntry(DAG, DL, GA);
  }

  SDValue GAHi =
    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
  SDValue GALo =
    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);

  return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
}

SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  SDLoc dl(Op);

  if (Op.getValueType() == MVT::v2i64) {
    // When the operands themselves are v2i64 values, we need to do something
    // special because VSX has no underlying comparison operations for these.
    if (Op.getOperand(0).getValueType() == MVT::v2i64) {
      // Equality can be handled by casting to the legal type for Altivec
      // comparisons, everything else needs to be expanded.
      if (CC == ISD::SETEQ || CC == ISD::SETNE) {
        return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
                 DAG.getSetCC(dl, MVT::v4i32,
                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
                   CC));
      }

      return SDValue();
    }

    // We handle most of these in the usual way.
    return Op;
  }

  // If we're comparing for equality to zero, expose the fact that this is
  // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
  // fold the new nodes.
  if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
    return V;

  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    // Leave comparisons against 0 and -1 alone for now, since they're usually
    // optimized.  FIXME: revisit this when we can custom lower all setcc
    // optimizations.
    if (C->isAllOnesValue() || C->isNullValue())
      return SDValue();
  }

  // If we have an integer seteq/setne, turn it into a compare against zero
  // by xor'ing the rhs with the lhs, which is faster than setting a
  // condition register, reading it back out, and masking the correct bit.  The
  // normal approach here uses sub to do this instead of xor.  Using xor exposes
  // the result to other bit-twiddling opportunities.
  EVT LHSVT = Op.getOperand(0).getValueType();
  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
    EVT VT = Op.getValueType();
    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
                                Op.getOperand(1));
    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
  }
  return SDValue();
}

SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  EVT VT = Node->getValueType(0);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue InChain = Node->getOperand(0);
  SDValue VAListPtr = Node->getOperand(1);
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
  SDLoc dl(Node);

  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");

  // gpr_index
  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
                                    VAListPtr, MachinePointerInfo(SV), MVT::i8);
  InChain = GprIndex.getValue(1);

  if (VT == MVT::i64) {
    // Check if GprIndex is even
    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
                                 DAG.getConstant(1, dl, MVT::i32));
    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
                                DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
                                          DAG.getConstant(1, dl, MVT::i32));
    // Align GprIndex to be even if it isn't
    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
                           GprIndex);
  }

  // fpr index is 1 byte after gpr
  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
                               DAG.getConstant(1, dl, MVT::i32));

  // fpr
  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
                                    FprPtr, MachinePointerInfo(SV), MVT::i8);
  InChain = FprIndex.getValue(1);

  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
                                       DAG.getConstant(8, dl, MVT::i32));

  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
                                        DAG.getConstant(4, dl, MVT::i32));

  // areas
  SDValue OverflowArea =
      DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
  InChain = OverflowArea.getValue(1);

  SDValue RegSaveArea =
      DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
  InChain = RegSaveArea.getValue(1);

  // select overflow_area if index > 8
  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
                            DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);

  // adjustment constant gpr_index * 4/8
  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
                                    VT.isInteger() ? GprIndex : FprIndex,
                                    DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
                                                    MVT::i32));

  // OurReg = RegSaveArea + RegConstant
  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
                               RegConstant);

  // Floating types are 32 bytes into RegSaveArea
  if (VT.isFloatingPoint())
    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
                         DAG.getConstant(32, dl, MVT::i32));

  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
                                   VT.isInteger() ? GprIndex : FprIndex,
                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
                                                   MVT::i32));

  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
                              VT.isInteger() ? VAListPtr : FprPtr,
                              MachinePointerInfo(SV), MVT::i8);

  // determine if we should load from reg_save_area or overflow_area
  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);

  // increase overflow_area by 4/8 if gpr/fpr > 8
  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
                                          dl, MVT::i32));

  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
                             OverflowAreaPlusN);

  InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
                              MachinePointerInfo(), MVT::i32);

  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
}

SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");

  // We have to copy the entire va_list struct:
  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
  return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
                       DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
                       false, true, false, MachinePointerInfo(),
                       MachinePointerInfo());
}

SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
                                                  SelectionDAG &DAG) const {
  if (Subtarget.isAIXABI())
    report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");

  return Op.getOperand(0);
}

SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
                                                SelectionDAG &DAG) const {
  if (Subtarget.isAIXABI())
    report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");

  SDValue Chain = Op.getOperand(0);
  SDValue Trmp = Op.getOperand(1); // trampoline
  SDValue FPtr = Op.getOperand(2); // nested function
  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
  SDLoc dl(Op);

  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  bool isPPC64 = (PtrVT == MVT::i64);
  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());

  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;

  Entry.Ty = IntPtrTy;
  Entry.Node = Trmp; Args.push_back(Entry);

  // TrampSize == (isPPC64 ? 48 : 40);
  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
                               isPPC64 ? MVT::i64 : MVT::i32);
  Args.push_back(Entry);

  Entry.Node = FPtr; Args.push_back(Entry);
  Entry.Node = Nest; Args.push_back(Entry);

  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
      DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));

  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
  return CallResult.second;
}

SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  EVT PtrVT = getPointerTy(MF.getDataLayout());

  SDLoc dl(Op);

  if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
    // vastart just stores the address of the VarArgsFrameIndex slot into the
    // memory location argument.
    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
                        MachinePointerInfo(SV));
  }

  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
  // We suppose the given va_list is already allocated.
  //
  // typedef struct {
  //  char gpr;     /* index into the array of 8 GPRs
  //                 * stored in the register save area
  //                 * gpr=0 corresponds to r3,
  //                 * gpr=1 to r4, etc.
  //                 */
  //  char fpr;     /* index into the array of 8 FPRs
  //                 * stored in the register save area
  //                 * fpr=0 corresponds to f1,
  //                 * fpr=1 to f2, etc.
  //                 */
  //  char *overflow_arg_area;
  //                /* location on stack that holds
  //                 * the next overflow argument
  //                 */
  //  char *reg_save_area;
  //               /* where r3:r10 and f1:f8 (if saved)
  //                * are stored
  //                */
  // } va_list[1];

  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
                                            PtrVT);
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
                                 PtrVT);

  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);

  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
  SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);

  uint64_t FPROffset = 1;
  SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);

  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();

  // Store first byte : number of int regs
  SDValue firstStore =
      DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
                        MachinePointerInfo(SV), MVT::i8);
  uint64_t nextOffset = FPROffset;
  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
                                  ConstFPROffset);

  // Store second byte : number of float regs
  SDValue secondStore =
      DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
                        MachinePointerInfo(SV, nextOffset), MVT::i8);
  nextOffset += StackOffset;
  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);

  // Store second word : arguments given on stack
  SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
                                    MachinePointerInfo(SV, nextOffset));
  nextOffset += FrameOffset;
  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);

  // Store third word : arguments given in registers
  return DAG.getStore(thirdStore, dl, FR, nextPtr,
                      MachinePointerInfo(SV, nextOffset));
}

/// FPR - The set of FP registers that should be allocated for arguments
/// on Darwin and AIX.
static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
                                PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
                                PPC::F11, PPC::F12, PPC::F13};

/// QFPR - The set of QPX registers that should be allocated for arguments.
static const MCPhysReg QFPR[] = {
    PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
    PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};

/// CalculateStackSlotSize - Calculates the size reserved for this argument on
/// the stack.
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
                                       unsigned PtrByteSize) {
  unsigned ArgSize = ArgVT.getStoreSize();
  if (Flags.isByVal())
    ArgSize = Flags.getByValSize();

  // Round up to multiples of the pointer size, except for array members,
  // which are always packed.
  if (!Flags.isInConsecutiveRegs())
    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;

  return ArgSize;
}

/// CalculateStackSlotAlignment - Calculates the alignment of this argument
/// on the stack.
static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
                                         ISD::ArgFlagsTy Flags,
                                         unsigned PtrByteSize) {
  Align Alignment(PtrByteSize);

  // Altivec parameters are padded to a 16 byte boundary.
  if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
      ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
      ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
      ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
    Alignment = Align(16);
  // QPX vector types stored in double-precision are padded to a 32 byte
  // boundary.
  else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
    Alignment = Align(32);

  // ByVal parameters are aligned as requested.
  if (Flags.isByVal()) {
    auto BVAlign = Flags.getNonZeroByValAlign();
    if (BVAlign > PtrByteSize) {
      if (BVAlign.value() % PtrByteSize != 0)
        llvm_unreachable(
            "ByVal alignment is not a multiple of the pointer size");

      Alignment = BVAlign;
    }
  }

  // Array members are always packed to their original alignment.
  if (Flags.isInConsecutiveRegs()) {
    // If the array member was split into multiple registers, the first
    // needs to be aligned to the size of the full type.  (Except for
    // ppcf128, which is only aligned as its f64 components.)
    if (Flags.isSplit() && OrigVT != MVT::ppcf128)
      Alignment = Align(OrigVT.getStoreSize());
    else
      Alignment = Align(ArgVT.getStoreSize());
  }

  return Alignment;
}

/// CalculateStackSlotUsed - Return whether this argument will use its
/// stack slot (instead of being passed in registers).  ArgOffset,
/// AvailableFPRs, and AvailableVRs must hold the current argument
/// position, and will be updated to account for this argument.
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
                                   ISD::ArgFlagsTy Flags,
                                   unsigned PtrByteSize,
                                   unsigned LinkageSize,
                                   unsigned ParamAreaSize,
                                   unsigned &ArgOffset,
                                   unsigned &AvailableFPRs,
                                   unsigned &AvailableVRs, bool HasQPX) {
  bool UseMemory = false;

  // Respect alignment of argument on the stack.
  Align Alignment =
      CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
  ArgOffset = alignTo(ArgOffset, Alignment);
  // If there's no space left in the argument save area, we must
  // use memory (this check also catches zero-sized arguments).
  if (ArgOffset >= LinkageSize + ParamAreaSize)
    UseMemory = true;

  // Allocate argument on the stack.
  ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
  if (Flags.isInConsecutiveRegsLast())
    ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
  // If we overran the argument save area, we must use memory
  // (this check catches arguments passed partially in memory)
  if (ArgOffset > LinkageSize + ParamAreaSize)
    UseMemory = true;

  // However, if the argument is actually passed in an FPR or a VR,
  // we don't use memory after all.
  if (!Flags.isByVal()) {
    if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
        // QPX registers overlap with the scalar FP registers.
        (HasQPX && (ArgVT == MVT::v4f32 ||
                    ArgVT == MVT::v4f64 ||
                    ArgVT == MVT::v4i1)))
      if (AvailableFPRs > 0) {
        --AvailableFPRs;
        return false;
      }
    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
        ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
      if (AvailableVRs > 0) {
        --AvailableVRs;
        return false;
      }
  }

  return UseMemory;
}

/// EnsureStackAlignment - Round stack frame size up from NumBytes to
/// ensure minimum alignment required for target.
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
                                     unsigned NumBytes) {
  return alignTo(NumBytes, Lowering->getStackAlign());
}

SDValue PPCTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  if (Subtarget.isAIXABI())
    return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
                                    InVals);
  if (Subtarget.is64BitELFABI())
    return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
                                       InVals);
  if (Subtarget.is32BitELFABI())
    return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
                                       InVals);

  return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
                                     InVals);
}

SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {

  // 32-bit SVR4 ABI Stack Frame Layout:
  //              +-----------------------------------+
  //        +-->  |            Back chain             |
  //        |     +-----------------------------------+
  //        |     | Floating-point register save area |
  //        |     +-----------------------------------+
  //        |     |    General register save area     |
  //        |     +-----------------------------------+
  //        |     |          CR save word             |
  //        |     +-----------------------------------+
  //        |     |         VRSAVE save word          |
  //        |     +-----------------------------------+
  //        |     |         Alignment padding         |
  //        |     +-----------------------------------+
  //        |     |     Vector register save area     |
  //        |     +-----------------------------------+
  //        |     |       Local variable space        |
  //        |     +-----------------------------------+
  //        |     |        Parameter list area        |
  //        |     +-----------------------------------+
  //        |     |           LR save word            |
  //        |     +-----------------------------------+
  // SP-->  +---  |            Back chain             |
  //              +-----------------------------------+
  //
  // Specifications:
  //   System V Application Binary Interface PowerPC Processor Supplement
  //   AltiVec Technology Programming Interface Manual

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();

  EVT PtrVT = getPointerTy(MF.getDataLayout());
  // Potential tail calls could cause overwriting of argument stack slots.
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
                       (CallConv == CallingConv::Fast));
  const Align PtrAlign(4);

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  // Reserve space for the linkage area on the stack.
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
  CCInfo.AllocateStack(LinkageSize, PtrAlign);
  if (useSoftFloat())
    CCInfo.PreAnalyzeFormalArguments(Ins);

  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
  CCInfo.clearWasPPCF128();

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];

    // Arguments stored in registers.
    if (VA.isRegLoc()) {
      const TargetRegisterClass *RC;
      EVT ValVT = VA.getValVT();

      switch (ValVT.getSimpleVT().SimpleTy) {
        default:
          llvm_unreachable("ValVT not supported by formal arguments Lowering");
        case MVT::i1:
        case MVT::i32:
          RC = &PPC::GPRCRegClass;
          break;
        case MVT::f32:
          if (Subtarget.hasP8Vector())
            RC = &PPC::VSSRCRegClass;
          else if (Subtarget.hasSPE())
            RC = &PPC::GPRCRegClass;
          else
            RC = &PPC::F4RCRegClass;
          break;
        case MVT::f64:
          if (Subtarget.hasVSX())
            RC = &PPC::VSFRCRegClass;
          else if (Subtarget.hasSPE())
            // SPE passes doubles in GPR pairs.
            RC = &PPC::GPRCRegClass;
          else
            RC = &PPC::F8RCRegClass;
          break;
        case MVT::v16i8:
        case MVT::v8i16:
        case MVT::v4i32:
          RC = &PPC::VRRCRegClass;
          break;
        case MVT::v4f32:
          RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
          break;
        case MVT::v2f64:
        case MVT::v2i64:
          RC = &PPC::VRRCRegClass;
          break;
        case MVT::v4f64:
          RC = &PPC::QFRCRegClass;
          break;
        case MVT::v4i1:
          RC = &PPC::QBRCRegClass;
          break;
      }

      SDValue ArgValue;
      // Transform the arguments stored in physical registers into
      // virtual ones.
      if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
        assert(i + 1 < e && "No second half of double precision argument");
        unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
        unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
        SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
        SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
        if (!Subtarget.isLittleEndian())
          std::swap (ArgValueLo, ArgValueHi);
        ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
                               ArgValueHi);
      } else {
        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
                                      ValVT == MVT::i1 ? MVT::i32 : ValVT);
        if (ValVT == MVT::i1)
          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
      }

      InVals.push_back(ArgValue);
    } else {
      // Argument stored in memory.
      assert(VA.isMemLoc());

      // Get the extended size of the argument type in stack
      unsigned ArgSize = VA.getLocVT().getStoreSize();
      // Get the actual size of the argument type
      unsigned ObjSize = VA.getValVT().getStoreSize();
      unsigned ArgOffset = VA.getLocMemOffset();
      // Stack objects in PPC32 are right justified.
      ArgOffset += ArgSize - ObjSize;
      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);

      // Create load nodes to retrieve arguments from the stack.
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      InVals.push_back(
          DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
    }
  }

  // Assign locations to all of the incoming aggregate by value arguments.
  // Aggregates passed by value are stored in the local variable space of the
  // caller's stack frame, right above the parameter list area.
  SmallVector<CCValAssign, 16> ByValArgLocs;
  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
                      ByValArgLocs, *DAG.getContext());

  // Reserve stack space for the allocations in CCInfo.
  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);

  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);

  // Area that is at least reserved in the caller of this function.
  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
  MinReservedArea = std::max(MinReservedArea, LinkageSize);

  // Set the size that is at least reserved in caller of this function.  Tail
  // call optimized function's reserved stack space needs to be aligned so that
  // taking the difference between two stack areas will result in an aligned
  // stack.
  MinReservedArea =
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
  FuncInfo->setMinReservedArea(MinReservedArea);

  SmallVector<SDValue, 8> MemOps;

  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (isVarArg) {
    static const MCPhysReg GPArgRegs[] = {
      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
    };
    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);

    static const MCPhysReg FPArgRegs[] = {
      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
      PPC::F8
    };
    unsigned NumFPArgRegs = array_lengthof(FPArgRegs);

    if (useSoftFloat() || hasSPE())
       NumFPArgRegs = 0;

    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));

    // Make room for NumGPArgRegs and NumFPArgRegs.
    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;

    FuncInfo->setVarArgsStackOffset(
      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
                            CCInfo.getNextStackOffset(), true));

    FuncInfo->setVarArgsFrameIndex(
        MFI.CreateStackObject(Depth, Align(8), false));
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);

    // The fixed integer arguments of a variadic function are stored to the
    // VarArgsFrameIndex on the stack so that they may be loaded by
    // dereferencing the result of va_next.
    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
      // Get an existing live-in vreg, or add a new one.
      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
      if (!VReg)
        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);

      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
      SDValue Store =
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
      MemOps.push_back(Store);
      // Increment the address by four for the next argument to store
      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
    }

    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
    // is set.
    // The double arguments are stored to the VarArgsFrameIndex
    // on the stack.
    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
      // Get an existing live-in vreg, or add a new one.
      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
      if (!VReg)
        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);

      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
      SDValue Store =
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
      MemOps.push_back(Store);
      // Increment the address by eight for the next argument to store
      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
                                         PtrVT);
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
    }
  }

  if (!MemOps.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);

  return Chain;
}

// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
                                             EVT ObjectVT, SelectionDAG &DAG,
                                             SDValue ArgVal,
                                             const SDLoc &dl) const {
  if (Flags.isSExt())
    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
                         DAG.getValueType(ObjectVT));
  else if (Flags.isZExt())
    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
                         DAG.getValueType(ObjectVT));

  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
}

SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  // TODO: add description of PPC stack frame format, or at least some docs.
  //
  bool isELFv2ABI = Subtarget.isELFv2ABI();
  bool isLittleEndian = Subtarget.isLittleEndian();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();

  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
         "fastcc not supported on varargs functions");

  EVT PtrVT = getPointerTy(MF.getDataLayout());
  // Potential tail calls could cause overwriting of argument stack slots.
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
                       (CallConv == CallingConv::Fast));
  unsigned PtrByteSize = 8;
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();

  static const MCPhysReg GPR[] = {
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
  };
  static const MCPhysReg VR[] = {
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
  };

  const unsigned Num_GPR_Regs = array_lengthof(GPR);
  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
  const unsigned Num_VR_Regs  = array_lengthof(VR);
  const unsigned Num_QFPR_Regs = Num_FPR_Regs;

  // Do a first pass over the arguments to determine whether the ABI
  // guarantees that our caller has allocated the parameter save area
  // on its stack frame.  In the ELFv1 ABI, this is always the case;
  // in the ELFv2 ABI, it is true if this is a vararg function or if
  // any parameter is located in a stack slot.

  bool HasParameterArea = !isELFv2ABI || isVarArg;
  unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
  unsigned NumBytes = LinkageSize;
  unsigned AvailableFPRs = Num_FPR_Regs;
  unsigned AvailableVRs = Num_VR_Regs;
  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
    if (Ins[i].Flags.isNest())
      continue;

    if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
                               PtrByteSize, LinkageSize, ParamAreaSize,
                               NumBytes, AvailableFPRs, AvailableVRs,
                               Subtarget.hasQPX()))
      HasParameterArea = true;
  }

  // Add DAG nodes to load the arguments or copy them out of registers.  On
  // entry to a function on PPC, the arguments start after the linkage area,
  // although the first ones are often in registers.

  unsigned ArgOffset = LinkageSize;
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
  unsigned &QFPR_idx = FPR_idx;
  SmallVector<SDValue, 8> MemOps;
  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
  unsigned CurArgIdx = 0;
  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
    SDValue ArgVal;
    bool needsLoad = false;
    EVT ObjectVT = Ins[ArgNo].VT;
    EVT OrigVT = Ins[ArgNo].ArgVT;
    unsigned ObjSize = ObjectVT.getStoreSize();
    unsigned ArgSize = ObjSize;
    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
    if (Ins[ArgNo].isOrigArg()) {
      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
    }
    // We re-align the argument offset for each argument, except when using the
    // fast calling convention, when we need to make sure we do that only when
    // we'll actually use a stack slot.
    unsigned CurArgOffset;
    Align Alignment;
    auto ComputeArgOffset = [&]() {
      /* Respect alignment of argument on the stack.  */
      Alignment =
          CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
      ArgOffset = alignTo(ArgOffset, Alignment);
      CurArgOffset = ArgOffset;
    };

    if (CallConv != CallingConv::Fast) {
      ComputeArgOffset();

      /* Compute GPR index associated with argument offset.  */
      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
      GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
    }

    // FIXME the codegen can be much improved in some cases.
    // We do not have to keep everything in memory.
    if (Flags.isByVal()) {
      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");

      if (CallConv == CallingConv::Fast)
        ComputeArgOffset();

      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
      ObjSize = Flags.getByValSize();
      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
      // Empty aggregate parameters do not take up registers.  Examples:
      //   struct { } a;
      //   union  { } b;
      //   int c[0];
      // etc.  However, we have to provide a place-holder in InVals, so
      // pretend we have an 8-byte item at the current address for that
      // purpose.
      if (!ObjSize) {
        int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
        InVals.push_back(FIN);
        continue;
      }

      // Create a stack object covering all stack doublewords occupied
      // by the argument.  If the argument is (fully or partially) on
      // the stack, or if the argument is fully in registers but the
      // caller has allocated the parameter save anyway, we can refer
      // directly to the caller's stack frame.  Otherwise, create a
      // local copy in our own frame.
      int FI;
      if (HasParameterArea ||
          ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
        FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
      else
        FI = MFI.CreateStackObject(ArgSize, Alignment, false);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);

      // Handle aggregates smaller than 8 bytes.
      if (ObjSize < PtrByteSize) {
        // The value of the object is its address, which differs from the
        // address of the enclosing doubleword on big-endian systems.
        SDValue Arg = FIN;
        if (!isLittleEndian) {
          SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
          Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
        }
        InVals.push_back(Arg);

        if (GPR_idx != Num_GPR_Regs) {
          unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
          FuncInfo->addLiveInAttr(VReg, Flags);
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
          SDValue Store;

          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
                                      MachinePointerInfo(&*FuncArg), ObjType);
          } else {
            // For sizes that don't fit a truncating store (3, 5, 6, 7),
            // store the whole register as-is to the parameter save area
            // slot.
            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
                                 MachinePointerInfo(&*FuncArg));
          }

          MemOps.push_back(Store);
        }
        // Whether we copied from a register or not, advance the offset
        // into the parameter save area by a full doubleword.
        ArgOffset += PtrByteSize;
        continue;
      }

      // The value of the object is its address, which is the address of
      // its first stack doubleword.
      InVals.push_back(FIN);

      // Store whatever pieces of the object are in registers to memory.
      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
        if (GPR_idx == Num_GPR_Regs)
          break;

        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
        FuncInfo->addLiveInAttr(VReg, Flags);
        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
        SDValue Addr = FIN;
        if (j) {
          SDValue Off = DAG.getConstant(j, dl, PtrVT);
          Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
        }
        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
                                     MachinePointerInfo(&*FuncArg, j));
        MemOps.push_back(Store);
        ++GPR_idx;
      }
      ArgOffset += ArgSize;
      continue;
    }

    switch (ObjectVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unhandled argument type!");
    case MVT::i1:
    case MVT::i32:
    case MVT::i64:
      if (Flags.isNest()) {
        // The 'nest' parameter, if any, is passed in R11.
        unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);

        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);

        break;
      }

      // These can be scalar arguments or elements of an integer array type
      // passed directly.  Clang may use those instead of "byval" aggregate
      // types to avoid forcing arguments to memory unnecessarily.
      if (GPR_idx != Num_GPR_Regs) {
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
        FuncInfo->addLiveInAttr(VReg, Flags);
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);

        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
          // value to MVT::i64 and then truncate to the correct register size.
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
      } else {
        if (CallConv == CallingConv::Fast)
          ComputeArgOffset();

        needsLoad = true;
        ArgSize = PtrByteSize;
      }
      if (CallConv != CallingConv::Fast || needsLoad)
        ArgOffset += 8;
      break;

    case MVT::f32:
    case MVT::f64:
      // These can be scalar arguments or elements of a float array type
      // passed directly.  The latter are used to implement ELFv2 homogenous
      // float aggregates.
      if (FPR_idx != Num_FPR_Regs) {
        unsigned VReg;

        if (ObjectVT == MVT::f32)
          VReg = MF.addLiveIn(FPR[FPR_idx],
                              Subtarget.hasP8Vector()
                                  ? &PPC::VSSRCRegClass
                                  : &PPC::F4RCRegClass);
        else
          VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
                                                ? &PPC::VSFRCRegClass
                                                : &PPC::F8RCRegClass);

        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
        ++FPR_idx;
      } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
        // once we support fp <-> gpr moves.

        // This can only ever happen in the presence of f32 array types,
        // since otherwise we never run out of FPRs before running out
        // of GPRs.
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
        FuncInfo->addLiveInAttr(VReg, Flags);
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);

        if (ObjectVT == MVT::f32) {
          if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
            ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
                                 DAG.getConstant(32, dl, MVT::i32));
          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
        }

        ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
      } else {
        if (CallConv == CallingConv::Fast)
          ComputeArgOffset();

        needsLoad = true;
      }

      // When passing an array of floats, the array occupies consecutive
      // space in the argument area; only round up to the next doubleword
      // at the end of the array.  Otherwise, each float takes 8 bytes.
      if (CallConv != CallingConv::Fast || needsLoad) {
        ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
        ArgOffset += ArgSize;
        if (Flags.isInConsecutiveRegsLast())
          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
      }
      break;
    case MVT::v4f32:
    case MVT::v4i32:
    case MVT::v8i16:
    case MVT::v16i8:
    case MVT::v2f64:
    case MVT::v2i64:
    case MVT::v1i128:
    case MVT::f128:
      if (!Subtarget.hasQPX()) {
        // These can be scalar arguments or elements of a vector array type
        // passed directly.  The latter are used to implement ELFv2 homogenous
        // vector aggregates.
        if (VR_idx != Num_VR_Regs) {
          unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
          ++VR_idx;
        } else {
          if (CallConv == CallingConv::Fast)
            ComputeArgOffset();
          needsLoad = true;
        }
        if (CallConv != CallingConv::Fast || needsLoad)
          ArgOffset += 16;
        break;
      } // not QPX

      assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
             "Invalid QPX parameter type");
      LLVM_FALLTHROUGH;

    case MVT::v4f64:
    case MVT::v4i1:
      // QPX vectors are treated like their scalar floating-point subregisters
      // (except that they're larger).
      unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
      if (QFPR_idx != Num_QFPR_Regs) {
        const TargetRegisterClass *RC;
        switch (ObjectVT.getSimpleVT().SimpleTy) {
        case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
        case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
        default:         RC = &PPC::QBRCRegClass; break;
        }

        unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
        ++QFPR_idx;
      } else {
        if (CallConv == CallingConv::Fast)
          ComputeArgOffset();
        needsLoad = true;
      }
      if (CallConv != CallingConv::Fast || needsLoad)
        ArgOffset += Sz;
      break;
    }

    // We need to load the argument to a virtual register if we determined
    // above that we ran out of physical registers of the appropriate type.
    if (needsLoad) {
      if (ObjSize < ArgSize && !isLittleEndian)
        CurArgOffset += ArgSize - ObjSize;
      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
    }

    InVals.push_back(ArgVal);
  }

  // Area that is at least reserved in the caller of this function.
  unsigned MinReservedArea;
  if (HasParameterArea)
    MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
  else
    MinReservedArea = LinkageSize;

  // Set the size that is at least reserved in caller of this function.  Tail
  // call optimized functions' reserved stack space needs to be aligned so that
  // taking the difference between two stack areas will result in an aligned
  // stack.
  MinReservedArea =
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
  FuncInfo->setMinReservedArea(MinReservedArea);

  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  // On ELFv2ABI spec, it writes:
  // C programs that are intended to be *portable* across different compilers
  // and architectures must use the header file <stdarg.h> to deal with variable
  // argument lists.
  if (isVarArg && MFI.hasVAStart()) {
    int Depth = ArgOffset;

    FuncInfo->setVarArgsFrameIndex(
      MFI.CreateFixedObject(PtrByteSize, Depth, true));
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);

    // If this function is vararg, store any remaining integer argument regs
    // to their spots on the stack so that they may be loaded by dereferencing
    // the result of va_next.
    for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
         GPR_idx < Num_GPR_Regs; ++GPR_idx) {
      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
      SDValue Store =
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
      MemOps.push_back(Store);
      // Increment the address by four for the next argument to store
      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
    }
  }

  if (!MemOps.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);

  return Chain;
}

SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  // TODO: add description of PPC stack frame format, or at least some docs.
  //
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();

  EVT PtrVT = getPointerTy(MF.getDataLayout());
  bool isPPC64 = PtrVT == MVT::i64;
  // Potential tail calls could cause overwriting of argument stack slots.
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
                       (CallConv == CallingConv::Fast));
  unsigned PtrByteSize = isPPC64 ? 8 : 4;
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
  unsigned ArgOffset = LinkageSize;
  // Area that is at least reserved in caller of this function.
  unsigned MinReservedArea = ArgOffset;

  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
  };
  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
  };
  static const MCPhysReg VR[] = {
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
  };

  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
  const unsigned Num_VR_Regs  = array_lengthof( VR);

  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;

  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;

  // In 32-bit non-varargs functions, the stack space for vectors is after the
  // stack space for non-vectors.  We do not use this space unless we have
  // too many vectors to fit in registers, something that only occurs in
  // constructed examples:), but we have to walk the arglist to figure
  // that out...for the pathological case, compute VecArgOffset as the
  // start of the vector parameter area.  Computing VecArgOffset is the
  // entire point of the following loop.
  unsigned VecArgOffset = ArgOffset;
  if (!isVarArg && !isPPC64) {
    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
         ++ArgNo) {
      EVT ObjectVT = Ins[ArgNo].VT;
      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;

      if (Flags.isByVal()) {
        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
        unsigned ObjSize = Flags.getByValSize();
        unsigned ArgSize =
                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
        VecArgOffset += ArgSize;
        continue;
      }

      switch(ObjectVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unhandled argument type!");
      case MVT::i1:
      case MVT::i32:
      case MVT::f32:
        VecArgOffset += 4;
        break;
      case MVT::i64:  // PPC64
      case MVT::f64:
        // FIXME: We are guaranteed to be !isPPC64 at this point.
        // Does MVT::i64 apply?
        VecArgOffset += 8;
        break;
      case MVT::v4f32:
      case MVT::v4i32:
      case MVT::v8i16:
      case MVT::v16i8:
        // Nothing to do, we're only looking at Nonvector args here.
        break;
      }
    }
  }
  // We've found where the vector parameter area in memory is.  Skip the
  // first 12 parameters; these don't use that memory.
  VecArgOffset = ((VecArgOffset+15)/16)*16;
  VecArgOffset += 12*16;

  // Add DAG nodes to load the arguments or copy them out of registers.  On
  // entry to a function on PPC, the arguments start after the linkage area,
  // although the first ones are often in registers.

  SmallVector<SDValue, 8> MemOps;
  unsigned nAltivecParamsAtEnd = 0;
  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
  unsigned CurArgIdx = 0;
  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
    SDValue ArgVal;
    bool needsLoad = false;
    EVT ObjectVT = Ins[ArgNo].VT;
    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
    unsigned ArgSize = ObjSize;
    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
    if (Ins[ArgNo].isOrigArg()) {
      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
    }
    unsigned CurArgOffset = ArgOffset;

    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
      if (isVarArg || isPPC64) {
        MinReservedArea = ((MinReservedArea+15)/16)*16;
        MinReservedArea += CalculateStackSlotSize(ObjectVT,
                                                  Flags,
                                                  PtrByteSize);
      } else  nAltivecParamsAtEnd++;
    } else
      // Calculate min reserved area.
      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
                                                Flags,
                                                PtrByteSize);

    // FIXME the codegen can be much improved in some cases.
    // We do not have to keep everything in memory.
    if (Flags.isByVal()) {
      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");

      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
      ObjSize = Flags.getByValSize();
      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
      // Objects of size 1 and 2 are right justified, everything else is
      // left justified.  This means the memory address is adjusted forwards.
      if (ObjSize==1 || ObjSize==2) {
        CurArgOffset = CurArgOffset + (4 - ObjSize);
      }
      // The value of the object is its address.
      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      InVals.push_back(FIN);
      if (ObjSize==1 || ObjSize==2) {
        if (GPR_idx != Num_GPR_Regs) {
          unsigned VReg;
          if (isPPC64)
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
          else
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
          SDValue Store =
              DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
                                MachinePointerInfo(&*FuncArg), ObjType);
          MemOps.push_back(Store);
          ++GPR_idx;
        }

        ArgOffset += PtrByteSize;

        continue;
      }
      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
        // Store whatever pieces of the object are in registers
        // to memory.  ArgOffset will be the address of the beginning
        // of the object.
        if (GPR_idx != Num_GPR_Regs) {
          unsigned VReg;
          if (isPPC64)
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
          else
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
          int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
                                       MachinePointerInfo(&*FuncArg, j));
          MemOps.push_back(Store);
          ++GPR_idx;
          ArgOffset += PtrByteSize;
        } else {
          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
          break;
        }
      }
      continue;
    }

    switch (ObjectVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unhandled argument type!");
    case MVT::i1:
    case MVT::i32:
      if (!isPPC64) {
        if (GPR_idx != Num_GPR_Regs) {
          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);

          if (ObjectVT == MVT::i1)
            ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);

          ++GPR_idx;
        } else {
          needsLoad = true;
          ArgSize = PtrByteSize;
        }
        // All int arguments reserve stack space in the Darwin ABI.
        ArgOffset += PtrByteSize;
        break;
      }
      LLVM_FALLTHROUGH;
    case MVT::i64:  // PPC64
      if (GPR_idx != Num_GPR_Regs) {
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);

        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
          // value to MVT::i64 and then truncate to the correct register size.
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);

        ++GPR_idx;
      } else {
        needsLoad = true;
        ArgSize = PtrByteSize;
      }
      // All int arguments reserve stack space in the Darwin ABI.
      ArgOffset += 8;
      break;

    case MVT::f32:
    case MVT::f64:
      // Every 4 bytes of argument space consumes one of the GPRs available for
      // argument passing.
      if (GPR_idx != Num_GPR_Regs) {
        ++GPR_idx;
        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
          ++GPR_idx;
      }
      if (FPR_idx != Num_FPR_Regs) {
        unsigned VReg;

        if (ObjectVT == MVT::f32)
          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
        else
          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);

        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
        ++FPR_idx;
      } else {
        needsLoad = true;
      }

      // All FP arguments reserve stack space in the Darwin ABI.
      ArgOffset += isPPC64 ? 8 : ObjSize;
      break;
    case MVT::v4f32:
    case MVT::v4i32:
    case MVT::v8i16:
    case MVT::v16i8:
      // Note that vector arguments in registers don't reserve stack space,
      // except in varargs functions.
      if (VR_idx != Num_VR_Regs) {
        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
        if (isVarArg) {
          while ((ArgOffset % 16) != 0) {
            ArgOffset += PtrByteSize;
            if (GPR_idx != Num_GPR_Regs)
              GPR_idx++;
          }
          ArgOffset += 16;
          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
        }
        ++VR_idx;
      } else {
        if (!isVarArg && !isPPC64) {
          // Vectors go after all the nonvectors.
          CurArgOffset = VecArgOffset;
          VecArgOffset += 16;
        } else {
          // Vectors are aligned.
          ArgOffset = ((ArgOffset+15)/16)*16;
          CurArgOffset = ArgOffset;
          ArgOffset += 16;
        }
        needsLoad = true;
      }
      break;
    }

    // We need to load the argument to a virtual register if we determined above
    // that we ran out of physical registers of the appropriate type.
    if (needsLoad) {
      int FI = MFI.CreateFixedObject(ObjSize,
                                     CurArgOffset + (ArgSize - ObjSize),
                                     isImmutable);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
    }

    InVals.push_back(ArgVal);
  }

  // Allow for Altivec parameters at the end, if needed.
  if (nAltivecParamsAtEnd) {
    MinReservedArea = ((MinReservedArea+15)/16)*16;
    MinReservedArea += 16*nAltivecParamsAtEnd;
  }

  // Area that is at least reserved in the caller of this function.
  MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);

  // Set the size that is at least reserved in caller of this function.  Tail
  // call optimized functions' reserved stack space needs to be aligned so that
  // taking the difference between two stack areas will result in an aligned
  // stack.
  MinReservedArea =
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
  FuncInfo->setMinReservedArea(MinReservedArea);

  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (isVarArg) {
    int Depth = ArgOffset;

    FuncInfo->setVarArgsFrameIndex(
      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
                            Depth, true));
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);

    // If this function is vararg, store any remaining integer argument regs
    // to their spots on the stack so that they may be loaded by dereferencing
    // the result of va_next.
    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
      unsigned VReg;

      if (isPPC64)
        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
      else
        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);

      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
      SDValue Store =
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
      MemOps.push_back(Store);
      // Increment the address by four for the next argument to store
      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
    }
  }

  if (!MemOps.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);

  return Chain;
}

/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
/// adjusted to accommodate the arguments for the tailcall.
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
                                   unsigned ParamSize) {

  if (!isTailCall) return 0;

  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
  unsigned CallerMinReservedArea = FI->getMinReservedArea();
  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
  // Remember only if the new adjustment is bigger.
  if (SPDiff < FI->getTailCallSPDelta())
    FI->setTailCallSPDelta(SPDiff);

  return SPDiff;
}

static bool isFunctionGlobalAddress(SDValue Callee);

static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
                              const TargetMachine &TM) {
  // It does not make sense to call callsShareTOCBase() with a caller that
  // is PC Relative since PC Relative callers do not have a TOC.
#ifndef NDEBUG
  const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
  assert(!STICaller->isUsingPCRelativeCalls() &&
         "PC Relative callers do not have a TOC and cannot share a TOC Base");
#endif

  // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
  // don't have enough information to determine if the caller and callee share
  // the same  TOC base, so we have to pessimistically assume they don't for
  // correctness.
  GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
  if (!G)
    return false;

  const GlobalValue *GV = G->getGlobal();

  // If the callee is preemptable, then the static linker will use a plt-stub
  // which saves the toc to the stack, and needs a nop after the call
  // instruction to convert to a toc-restore.
  if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
    return false;

  // Functions with PC Relative enabled may clobber the TOC in the same DSO.
  // We may need a TOC restore in the situation where the caller requires a
  // valid TOC but the callee is PC Relative and does not.
  const Function *F = dyn_cast<Function>(GV);
  const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);

  // If we have an Alias we can try to get the function from there.
  if (Alias) {
    const GlobalObject *GlobalObj = Alias->getBaseObject();
    F = dyn_cast<Function>(GlobalObj);
  }

  // If we still have no valid function pointer we do not have enough
  // information to determine if the callee uses PC Relative calls so we must
  // assume that it does.
  if (!F)
    return false;

  // If the callee uses PC Relative we cannot guarantee that the callee won't
  // clobber the TOC of the caller and so we must assume that the two
  // functions do not share a TOC base.
  const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
  if (STICallee->isUsingPCRelativeCalls())
    return false;

  // The medium and large code models are expected to provide a sufficiently
  // large TOC to provide all data addressing needs of a module with a
  // single TOC.
  if (CodeModel::Medium == TM.getCodeModel() ||
      CodeModel::Large == TM.getCodeModel())
    return true;

  // Otherwise we need to ensure callee and caller are in the same section,
  // since the linker may allocate multiple TOCs, and we don't know which
  // sections will belong to the same TOC base.
  if (!GV->isStrongDefinitionForLinker())
    return false;

  // Any explicitly-specified sections and section prefixes must also match.
  // Also, if we're using -ffunction-sections, then each function is always in
  // a different section (the same is true for COMDAT functions).
  if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
      GV->getSection() != Caller->getSection())
    return false;
  if (const auto *F = dyn_cast<Function>(GV)) {
    if (F->getSectionPrefix() != Caller->getSectionPrefix())
      return false;
  }

  return true;
}

static bool
needStackSlotPassParameters(const PPCSubtarget &Subtarget,
                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
  assert(Subtarget.is64BitELFABI());

  const unsigned PtrByteSize = 8;
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();

  static const MCPhysReg GPR[] = {
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
  };
  static const MCPhysReg VR[] = {
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
  };

  const unsigned NumGPRs = array_lengthof(GPR);
  const unsigned NumFPRs = 13;
  const unsigned NumVRs = array_lengthof(VR);
  const unsigned ParamAreaSize = NumGPRs * PtrByteSize;

  unsigned NumBytes = LinkageSize;
  unsigned AvailableFPRs = NumFPRs;
  unsigned AvailableVRs = NumVRs;

  for (const ISD::OutputArg& Param : Outs) {
    if (Param.Flags.isNest()) continue;

    if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
                               PtrByteSize, LinkageSize, ParamAreaSize,
                               NumBytes, AvailableFPRs, AvailableVRs,
                               Subtarget.hasQPX()))
      return true;
  }
  return false;
}

static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
  if (CB.arg_size() != CallerFn->arg_size())
    return false;

  auto CalleeArgIter = CB.arg_begin();
  auto CalleeArgEnd = CB.arg_end();
  Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();

  for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
    const Value* CalleeArg = *CalleeArgIter;
    const Value* CallerArg = &(*CallerArgIter);
    if (CalleeArg == CallerArg)
      continue;

    // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
    //        tail call @callee([4 x i64] undef, [4 x i64] %b)
    //      }
    // 1st argument of callee is undef and has the same type as caller.
    if (CalleeArg->getType() == CallerArg->getType() &&
        isa<UndefValue>(CalleeArg))
      continue;

    return false;
  }

  return true;
}

// Returns true if TCO is possible between the callers and callees
// calling conventions.
static bool
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
                                    CallingConv::ID CalleeCC) {
  // Tail calls are possible with fastcc and ccc.
  auto isTailCallableCC  = [] (CallingConv::ID CC){
      return  CC == CallingConv::C || CC == CallingConv::Fast;
  };
  if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
    return false;

  // We can safely tail call both fastcc and ccc callees from a c calling
  // convention caller. If the caller is fastcc, we may have less stack space
  // than a non-fastcc caller with the same signature so disable tail-calls in
  // that case.
  return CallerCC == CallingConv::C || CallerCC == CalleeCC;
}

bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
    SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
  bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;

  if (DisableSCO && !TailCallOpt) return false;

  // Variadic argument functions are not supported.
  if (isVarArg) return false;

  auto &Caller = DAG.getMachineFunction().getFunction();
  // Check that the calling conventions are compatible for tco.
  if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
    return false;

  // Caller contains any byval parameter is not supported.
  if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
    return false;

  // Callee contains any byval parameter is not supported, too.
  // Note: This is a quick work around, because in some cases, e.g.
  // caller's stack size > callee's stack size, we are still able to apply
  // sibling call optimization. For example, gcc is able to do SCO for caller1
  // in the following example, but not for caller2.
  //   struct test {
  //     long int a;
  //     char ary[56];
  //   } gTest;
  //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
  //     b->a = v.a;
  //     return 0;
  //   }
  //   void caller1(struct test a, struct test c, struct test *b) {
  //     callee(gTest, b); }
  //   void caller2(struct test *b) { callee(gTest, b); }
  if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
    return false;

  // If callee and caller use different calling conventions, we cannot pass
  // parameters on stack since offsets for the parameter area may be different.
  if (Caller.getCallingConv() != CalleeCC &&
      needStackSlotPassParameters(Subtarget, Outs))
    return false;

  // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
  // the caller and callee share the same TOC for TCO/SCO. If the caller and
  // callee potentially have different TOC bases then we cannot tail call since
  // we need to restore the TOC pointer after the call.
  // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
  // We cannot guarantee this for indirect calls or calls to external functions.
  // When PC-Relative addressing is used, the concept of the TOC is no longer
  // applicable so this check is not required.
  // Check first for indirect calls.
  if (!Subtarget.isUsingPCRelativeCalls() &&
      !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
    return false;

  // Check if we share the TOC base.
  if (!Subtarget.isUsingPCRelativeCalls() &&
      !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
    return false;

  // TCO allows altering callee ABI, so we don't have to check further.
  if (CalleeCC == CallingConv::Fast && TailCallOpt)
    return true;

  if (DisableSCO) return false;

  // If callee use the same argument list that caller is using, then we can
  // apply SCO on this case. If it is not, then we need to check if callee needs
  // stack for passing arguments.
  // PC Relative tail calls may not have a CallBase.
  // If there is no CallBase we cannot verify if we have the same argument
  // list so assume that we don't have the same argument list.
  if (CB && !hasSameArgumentList(&Caller, *CB) &&
      needStackSlotPassParameters(Subtarget, Outs))
    return false;
  else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
    return false;

  return true;
}

/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
                                                     CallingConv::ID CalleeCC,
                                                     bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                                     SelectionDAG& DAG) const {
  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
    return false;

  // Variable argument functions are not supported.
  if (isVarArg)
    return false;

  MachineFunction &MF = DAG.getMachineFunction();
  CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
    // Functions containing by val parameters are not supported.
    for (unsigned i = 0; i != Ins.size(); i++) {
       ISD::ArgFlagsTy Flags = Ins[i].Flags;
       if (Flags.isByVal()) return false;
    }

    // Non-PIC/GOT tail calls are supported.
    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
      return true;

    // At the moment we can only do local tail calls (in same module, hidden
    // or protected) if we are generating PIC.
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
      return G->getGlobal()->hasHiddenVisibility()
          || G->getGlobal()->hasProtectedVisibility();
  }

  return false;
}

/// isCallCompatibleAddress - Return the immediate to use if the specified
/// 32-bit value is representable in the immediate field of a BxA instruction.
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
  if (!C) return nullptr;

  int Addr = C->getZExtValue();
  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
      SignExtend32<26>(Addr) != Addr)
    return nullptr;  // Top 6 bits have to be sext of immediate.

  return DAG
      .getConstant(
          (int)C->getZExtValue() >> 2, SDLoc(Op),
          DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
      .getNode();
}

namespace {

struct TailCallArgumentInfo {
  SDValue Arg;
  SDValue FrameIdxOp;
  int FrameIdx = 0;

  TailCallArgumentInfo() = default;
};

} // end anonymous namespace

/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
static void StoreTailCallArgumentsToStackSlot(
    SelectionDAG &DAG, SDValue Chain,
    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
    SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
    SDValue Arg = TailCallArgs[i].Arg;
    SDValue FIN = TailCallArgs[i].FrameIdxOp;
    int FI = TailCallArgs[i].FrameIdx;
    // Store relative to framepointer.
    MemOpChains.push_back(DAG.getStore(
        Chain, dl, Arg, FIN,
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
  }
}

/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
/// the appropriate stack slot for the tail call optimized function call.
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
                                             SDValue OldRetAddr, SDValue OldFP,
                                             int SPDiff, const SDLoc &dl) {
  if (SPDiff) {
    // Calculate the new stack slot for the return address.
    MachineFunction &MF = DAG.getMachineFunction();
    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
    const PPCFrameLowering *FL = Subtarget.getFrameLowering();
    bool isPPC64 = Subtarget.isPPC64();
    int SlotSize = isPPC64 ? 8 : 4;
    int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
    int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
                                                         NewRetAddrLoc, true);
    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
                         MachinePointerInfo::getFixedStack(MF, NewRetAddr));
  }
  return Chain;
}

/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
/// the position of the argument.
static void
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
                         SDValue Arg, int SPDiff, unsigned ArgOffset,
                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
  int Offset = ArgOffset + SPDiff;
  uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
  int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
  SDValue FIN = DAG.getFrameIndex(FI, VT);
  TailCallArgumentInfo Info;
  Info.Arg = Arg;
  Info.FrameIdxOp = FIN;
  Info.FrameIdx = FI;
  TailCallArguments.push_back(Info);
}

/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
/// stack slot. Returns the chain as result and the loaded frame pointers in
/// LROpOut/FPOpout. Used when tail calling.
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
    SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
    SDValue &FPOpOut, const SDLoc &dl) const {
  if (SPDiff) {
    // Load the LR and FP stack slot for later adjusting.
    EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
    LROpOut = getReturnAddrFrameIndex(DAG);
    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
    Chain = SDValue(LROpOut.getNode(), 1);
  }
  return Chain;
}

/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size".  Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.
/// Sometimes what we are copying is the end of a larger object, the part that
/// does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
                                         SelectionDAG &DAG, const SDLoc &dl) {
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
                       Flags.getNonZeroByValAlign(), false, false, false,
                       MachinePointerInfo(), MachinePointerInfo());
}

/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
/// tail calls.
static void LowerMemOpCallTo(
    SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
    SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
    bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
    SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
  if (!isTailCall) {
    if (isVector) {
      SDValue StackPtr;
      if (isPPC64)
        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
      else
        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
                           DAG.getConstant(ArgOffset, dl, PtrVT));
    }
    MemOpChains.push_back(
        DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
    // Calculate and remember argument location.
  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
                                  TailCallArguments);
}

static void
PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
                const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
                SDValue FPOp,
                SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
  // might overwrite each other in case of tail call optimization.
  SmallVector<SDValue, 8> MemOpChains2;
  // Do not flag preceding copytoreg stuff together with the following stuff.
  InFlag = SDValue();
  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
                                    MemOpChains2, dl);
  if (!MemOpChains2.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);

  // Store the return address to the appropriate stack slot.
  Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);

  // Emit callseq_end just before tailcall node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
  InFlag = Chain.getValue(1);
}

// Is this global address that of a function that can be called by name? (as
// opposed to something that must hold a descriptor for an indirect call).
static bool isFunctionGlobalAddress(SDValue Callee) {
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
        Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
      return false;

    return G->getGlobal()->getValueType()->isFunctionTy();
  }

  return false;
}

SDValue PPCTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                    *DAG.getContext());

  CCRetInfo.AnalyzeCallResult(
      Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
               ? RetCC_PPC_Cold
               : RetCC_PPC);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    SDValue Val;

    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
                                      InFlag);
      Chain = Lo.getValue(1);
      InFlag = Lo.getValue(2);
      VA = RVLocs[++i]; // skip ahead to next loc
      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
                                      InFlag);
      Chain = Hi.getValue(1);
      InFlag = Hi.getValue(2);
      if (!Subtarget.isLittleEndian())
        std::swap (Lo, Hi);
      Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
    } else {
      Val = DAG.getCopyFromReg(Chain, dl,
                               VA.getLocReg(), VA.getLocVT(), InFlag);
      Chain = Val.getValue(1);
      InFlag = Val.getValue(2);
    }

    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::AExt:
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
      break;
    case CCValAssign::ZExt:
      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
      break;
    case CCValAssign::SExt:
      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
                           const PPCSubtarget &Subtarget, bool isPatchPoint) {
  // PatchPoint calls are not indirect.
  if (isPatchPoint)
    return false;

  if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
    return false;

  // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
  // becuase the immediate function pointer points to a descriptor instead of
  // a function entry point. The ELFv2 ABI cannot use a BLA because the function
  // pointer immediate points to the global entry point, while the BLA would
  // need to jump to the local entry point (see rL211174).
  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
      isBLACompatibleAddress(Callee, DAG))
    return false;

  return true;
}

// AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
  return Subtarget.isAIXABI() ||
         (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
}

static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
                              const Function &Caller,
                              const SDValue &Callee,
                              const PPCSubtarget &Subtarget,
                              const TargetMachine &TM) {
  if (CFlags.IsTailCall)
    return PPCISD::TC_RETURN;

  // This is a call through a function pointer.
  if (CFlags.IsIndirect) {
    // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
    // indirect calls. The save of the caller's TOC pointer to the stack will be
    // inserted into the DAG as part of call lowering. The restore of the TOC
    // pointer is modeled by using a pseudo instruction for the call opcode that
    // represents the 2 instruction sequence of an indirect branch and link,
    // immediately followed by a load of the TOC pointer from the the stack save
    // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
    // as it is not saved or used.
    return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
                                               : PPCISD::BCTRL;
  }

  if (Subtarget.isUsingPCRelativeCalls()) {
    assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
    return PPCISD::CALL_NOTOC;
  }

  // The ABIs that maintain a TOC pointer accross calls need to have a nop
  // immediately following the call instruction if the caller and callee may
  // have different TOC bases. At link time if the linker determines the calls
  // may not share a TOC base, the call is redirected to a trampoline inserted
  // by the linker. The trampoline will (among other things) save the callers
  // TOC pointer at an ABI designated offset in the linkage area and the linker
  // will rewrite the nop to be a load of the TOC pointer from the linkage area
  // into gpr2.
  if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
    return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
                                                  : PPCISD::CALL_NOP;

  return PPCISD::CALL;
}

static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
                               const SDLoc &dl, const PPCSubtarget &Subtarget) {
  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
    if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
      return SDValue(Dest, 0);

  // Returns true if the callee is local, and false otherwise.
  auto isLocalCallee = [&]() {
    const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
    const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
    const GlobalValue *GV = G ? G->getGlobal() : nullptr;

    return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
           !dyn_cast_or_null<GlobalIFunc>(GV);
  };

  // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
  // a static relocation model causes some versions of GNU LD (2.17.50, at
  // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
  // built with secure-PLT.
  bool UsePlt =
      Subtarget.is32BitELFABI() && !isLocalCallee() &&
      Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;

  // On AIX, direct function calls reference the symbol for the function's
  // entry point, which is named by prepending a "." before the function's
  // C-linkage name.
  const auto getAIXFuncEntryPointSymbolSDNode =
      [&](StringRef FuncName, bool IsDeclaration,
          const XCOFF::StorageClass &SC) {
        auto &Context = DAG.getMachineFunction().getMMI().getContext();

        MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
            Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));

        if (IsDeclaration && !S->hasRepresentedCsectSet()) {
          // On AIX, an undefined symbol needs to be associated with a
          // MCSectionXCOFF to get the correct storage mapping class.
          // In this case, XCOFF::XMC_PR.
          MCSectionXCOFF *Sec = Context.getXCOFFSection(
              S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
              SectionKind::getMetadata());
          S->setRepresentedCsect(Sec);
        }

        MVT PtrVT =
            DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
        return DAG.getMCSymbol(S, PtrVT);
      };

  if (isFunctionGlobalAddress(Callee)) {
    const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
    const GlobalValue *GV = G->getGlobal();

    if (!Subtarget.isAIXABI())
      return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
                                        UsePlt ? PPCII::MO_PLT : 0);

    assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
    const GlobalObject *GO = cast<GlobalObject>(GV);
    const XCOFF::StorageClass SC =
        TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
    return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
                                            SC);
  }

  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    const char *SymName = S->getSymbol();
    if (!Subtarget.isAIXABI())
      return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
                                         UsePlt ? PPCII::MO_PLT : 0);

    // If there exists a user-declared function whose name is the same as the
    // ExternalSymbol's, then we pick up the user-declared version.
    const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
    if (const Function *F =
            dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
      const XCOFF::StorageClass SC =
          TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
      return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
                                              SC);
    }

    return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
  }

  // No transformation needed.
  assert(Callee.getNode() && "What no callee?");
  return Callee;
}

static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
  assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
         "Expected a CALLSEQ_STARTSDNode.");

  // The last operand is the chain, except when the node has glue. If the node
  // has glue, then the last operand is the glue, and the chain is the second
  // last operand.
  SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
  if (LastValue.getValueType() != MVT::Glue)
    return LastValue;

  return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
}

// Creates the node that moves a functions address into the count register
// to prepare for an indirect call instruction.
static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
                                SDValue &Glue, SDValue &Chain,
                                const SDLoc &dl) {
  SDValue MTCTROps[] = {Chain, Callee, Glue};
  EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
  Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
                      makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
  // The glue is the second value produced.
  Glue = Chain.getValue(1);
}

static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
                                          SDValue &Glue, SDValue &Chain,
                                          SDValue CallSeqStart,
                                          const CallBase *CB, const SDLoc &dl,
                                          bool hasNest,
                                          const PPCSubtarget &Subtarget) {
  // Function pointers in the 64-bit SVR4 ABI do not point to the function
  // entry point, but to the function descriptor (the function entry point
  // address is part of the function descriptor though).
  // The function descriptor is a three doubleword structure with the
  // following fields: function entry point, TOC base address and
  // environment pointer.
  // Thus for a call through a function pointer, the following actions need
  // to be performed:
  //   1. Save the TOC of the caller in the TOC save area of its stack
  //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
  //   2. Load the address of the function entry point from the function
  //      descriptor.
  //   3. Load the TOC of the callee from the function descriptor into r2.
  //   4. Load the environment pointer from the function descriptor into
  //      r11.
  //   5. Branch to the function entry point address.
  //   6. On return of the callee, the TOC of the caller needs to be
  //      restored (this is done in FinishCall()).
  //
  // The loads are scheduled at the beginning of the call sequence, and the
  // register copies are flagged together to ensure that no other
  // operations can be scheduled in between. E.g. without flagging the
  // copies together, a TOC access in the caller could be scheduled between
  // the assignment of the callee TOC and the branch to the callee, which leads
  // to incorrect code.

  // Start by loading the function address from the descriptor.
  SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
  auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
                      ? (MachineMemOperand::MODereferenceable |
                         MachineMemOperand::MOInvariant)
                      : MachineMemOperand::MONone;

  MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);

  // Registers used in building the DAG.
  const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
  const MCRegister TOCReg = Subtarget.getTOCPointerRegister();

  // Offsets of descriptor members.
  const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
  const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();

  const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
  const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;

  // One load for the functions entry point address.
  SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
                                    Alignment, MMOFlags);

  // One for loading the TOC anchor for the module that contains the called
  // function.
  SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
  SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
  SDValue TOCPtr =
      DAG.getLoad(RegVT, dl, LDChain, AddTOC,
                  MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);

  // One for loading the environment pointer.
  SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
  SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
  SDValue LoadEnvPtr =
      DAG.getLoad(RegVT, dl, LDChain, AddPtr,
                  MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);


  // Then copy the newly loaded TOC anchor to the TOC pointer.
  SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
  Chain = TOCVal.getValue(0);
  Glue = TOCVal.getValue(1);

  // If the function call has an explicit 'nest' parameter, it takes the
  // place of the environment pointer.
  assert((!hasNest || !Subtarget.isAIXABI()) &&
         "Nest parameter is not supported on AIX.");
  if (!hasNest) {
    SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
    Chain = EnvVal.getValue(0);
    Glue = EnvVal.getValue(1);
  }

  // The rest of the indirect call sequence is the same as the non-descriptor
  // DAG.
  prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
}

static void
buildCallOperands(SmallVectorImpl<SDValue> &Ops,
                  PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
                  SelectionDAG &DAG,
                  SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
                  SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
                  const PPCSubtarget &Subtarget) {
  const bool IsPPC64 = Subtarget.isPPC64();
  // MVT for a general purpose register.
  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;

  // First operand is always the chain.
  Ops.push_back(Chain);

  // If it's a direct call pass the callee as the second operand.
  if (!CFlags.IsIndirect)
    Ops.push_back(Callee);
  else {
    assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");

    // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
    // on the stack (this would have been done in `LowerCall_64SVR4` or
    // `LowerCall_AIX`). The call instruction is a pseudo instruction that
    // represents both the indirect branch and a load that restores the TOC
    // pointer from the linkage area. The operand for the TOC restore is an add
    // of the TOC save offset to the stack pointer. This must be the second
    // operand: after the chain input but before any other variadic arguments.
    // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
    // saved or used.
    if (isTOCSaveRestoreRequired(Subtarget)) {
      const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();

      SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
      SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
      Ops.push_back(AddTOC);
    }

    // Add the register used for the environment pointer.
    if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
      Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
                                    RegVT));


    // Add CTR register as callee so a bctr can be emitted later.
    if (CFlags.IsTailCall)
      Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
  }

  // If this is a tail call add stack pointer delta.
  if (CFlags.IsTailCall)
    Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));

  // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
  // no way to mark dependencies as implicit here.
  // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
  if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
       !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
    Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));

  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
  if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));

  // Add a register mask operand representing the call-preserved registers.
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const uint32_t *Mask =
      TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  // If the glue is valid, it is the last operand.
  if (Glue.getNode())
    Ops.push_back(Glue);
}

SDValue PPCTargetLowering::FinishCall(
    CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
    SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
    SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
    unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
    SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {

  if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
      Subtarget.isAIXABI())
    setUsesTOCBasePtr(DAG);

  unsigned CallOpc =
      getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
                    Subtarget, DAG.getTarget());

  if (!CFlags.IsIndirect)
    Callee = transformCallee(Callee, DAG, dl, Subtarget);
  else if (Subtarget.usesFunctionDescriptors())
    prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
                                  dl, CFlags.HasNest, Subtarget);
  else
    prepareIndirectCall(DAG, Callee, Glue, Chain, dl);

  // Build the operand list for the call instruction.
  SmallVector<SDValue, 8> Ops;
  buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
                    SPDiff, Subtarget);

  // Emit tail call.
  if (CFlags.IsTailCall) {
    // Indirect tail call when using PC Relative calls do not have the same
    // constraints.
    assert(((Callee.getOpcode() == ISD::Register &&
             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
            Callee.getOpcode() == ISD::TargetExternalSymbol ||
            Callee.getOpcode() == ISD::TargetGlobalAddress ||
            isa<ConstantSDNode>(Callee) ||
            (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
           "Expecting a global address, external symbol, absolute value, "
           "register or an indirect tail call when PC Relative calls are "
           "used.");
    // PC Relative calls also use TC_RETURN as the way to mark tail calls.
    assert(CallOpc == PPCISD::TC_RETURN &&
           "Unexpected call opcode for a tail call.");
    DAG.getMachineFunction().getFrameInfo().setHasTailCall();
    return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
  }

  std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
  Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
  DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
  Glue = Chain.getValue(1);

  // When performing tail call optimization the callee pops its arguments off
  // the stack. Account for this here so these bytes can be pushed back on in
  // PPCFrameLowering::eliminateCallFramePseudoInstr.
  int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
                         getTargetMachine().Options.GuaranteedTailCallOpt)
                            ? NumBytes
                            : 0;

  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
                             DAG.getIntPtrConstant(BytesCalleePops, dl, true),
                             Glue, dl);
  Glue = Chain.getValue(1);

  return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
                         DAG, InVals);
}

SDValue
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                             SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  bool &isTailCall                      = CLI.IsTailCall;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool isVarArg                         = CLI.IsVarArg;
  bool isPatchPoint                     = CLI.IsPatchPoint;
  const CallBase *CB                    = CLI.CB;

  if (isTailCall) {
    if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
      isTailCall = false;
    else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
      isTailCall = IsEligibleForTailCallOptimization_64SVR4(
          Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
    else
      isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
                                                     Ins, DAG);
    if (isTailCall) {
      ++NumTailCalls;
      if (!getTargetMachine().Options.GuaranteedTailCallOpt)
        ++NumSiblingCalls;

      // PC Relative calls no longer guarantee that the callee is a Global
      // Address Node. The callee could be an indirect tail call in which
      // case the SDValue for the callee could be a load (to load the address
      // of a function pointer) or it may be a register copy (to move the
      // address of the callee from a function parameter into a virtual
      // register). It may also be an ExternalSymbolSDNode (ex memcopy).
      assert((Subtarget.isUsingPCRelativeCalls() ||
              isa<GlobalAddressSDNode>(Callee)) &&
             "Callee should be an llvm::Function object.");

      LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
                        << "\nTCO callee: ");
      LLVM_DEBUG(Callee.dump());
    }
  }

  if (!isTailCall && CB && CB->isMustTailCall())
    report_fatal_error("failed to perform tail call elimination on a call "
                       "site marked musttail");

  // When long calls (i.e. indirect calls) are always used, calls are always
  // made via function pointer. If we have a function name, first translate it
  // into a pointer.
  if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
      !isTailCall)
    Callee = LowerGlobalAddress(Callee, DAG);

  CallFlags CFlags(
      CallConv, isTailCall, isVarArg, isPatchPoint,
      isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
      // hasNest
      Subtarget.is64BitELFABI() &&
          any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
      CLI.NoMerge);

  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
    return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
                            InVals, CB);

  if (Subtarget.isSVR4ABI())
    return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
                            InVals, CB);

  if (Subtarget.isAIXABI())
    return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
                         InVals, CB);

  return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
                          InVals, CB);
}

SDValue PPCTargetLowering::LowerCall_32SVR4(
    SDValue Chain, SDValue Callee, CallFlags CFlags,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const CallBase *CB) const {
  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
  // of the 32-bit SVR4 ABI stack frame layout.

  const CallingConv::ID CallConv = CFlags.CallConv;
  const bool IsVarArg = CFlags.IsVarArg;
  const bool IsTailCall = CFlags.IsTailCall;

  assert((CallConv == CallingConv::C ||
          CallConv == CallingConv::Cold ||
          CallConv == CallingConv::Fast) && "Unknown calling convention!");

  const Align PtrAlign(4);

  MachineFunction &MF = DAG.getMachineFunction();

  // Mark this function as potentially containing a function that contains a
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
  // and restoring the callers stack pointer in this functions epilog. This is
  // done because by tail calling the called function might overwrite the value
  // in this function's (MF) stack pointer stack slot 0(SP).
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
      CallConv == CallingConv::Fast)
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();

  // Count how many bytes are to be pushed on the stack, including the linkage
  // area, parameter list area and the part of the local variable space which
  // contains copies of aggregates which are passed by value.

  // Assign locations to all of the outgoing arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());

  // Reserve space for the linkage area on the stack.
  CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
                       PtrAlign);
  if (useSoftFloat())
    CCInfo.PreAnalyzeCallOperands(Outs);

  if (IsVarArg) {
    // Handle fixed and variable vector arguments differently.
    // Fixed vector arguments go into registers as long as registers are
    // available. Variable vector arguments always go into memory.
    unsigned NumArgs = Outs.size();

    for (unsigned i = 0; i != NumArgs; ++i) {
      MVT ArgVT = Outs[i].VT;
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
      bool Result;

      if (Outs[i].IsFixed) {
        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
                               CCInfo);
      } else {
        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
                                      ArgFlags, CCInfo);
      }

      if (Result) {
#ifndef NDEBUG
        errs() << "Call operand #" << i << " has unhandled type "
             << EVT(ArgVT).getEVTString() << "\n";
#endif
        llvm_unreachable(nullptr);
      }
    }
  } else {
    // All arguments are treated the same.
    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
  }
  CCInfo.clearWasPPCF128();

  // Assign locations to all of the outgoing aggregate by value arguments.
  SmallVector<CCValAssign, 16> ByValArgLocs;
  CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());

  // Reserve stack space for the allocations in CCInfo.
  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);

  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);

  // Size of the linkage area, parameter list area and the part of the local
  // space variable where copies of aggregates which are passed by value are
  // stored.
  unsigned NumBytes = CCByValInfo.getNextStackOffset();

  // Calculate by how many bytes the stack has to be adjusted in case of tail
  // call optimization.
  int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
  SDValue CallSeqStart = Chain;

  // Load the return address and frame pointer so it can be moved somewhere else
  // later.
  SDValue LROp, FPOp;
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);

  // Set up a copy of the stack pointer for use loading and storing any
  // arguments that may not fit in the registers available for argument
  // passing.
  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
  SmallVector<SDValue, 8> MemOpChains;

  bool seenFloatArg = false;
  // Walk the register/memloc assignments, inserting copies/loads.
  // i - Tracks the index into the list of registers allocated for the call
  // RealArgIdx - Tracks the index into the list of actual function arguments
  // j - Tracks the index into the list of byval arguments
  for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
       i != e;
       ++i, ++RealArgIdx) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[RealArgIdx];
    ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;

    if (Flags.isByVal()) {
      // Argument is an aggregate which is passed by value, thus we need to
      // create a copy of it in the local variable space of the current stack
      // frame (which is the stack frame of the caller) and pass the address of
      // this copy to the callee.
      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
      CCValAssign &ByValVA = ByValArgLocs[j++];
      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");

      // Memory reserved in the local variable space of the callers stack frame.
      unsigned LocMemOffset = ByValVA.getLocMemOffset();

      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
                           StackPtr, PtrOff);

      // Create a copy of the argument in the local area of the current
      // stack frame.
      SDValue MemcpyCall =
        CreateCopyOfByValArgument(Arg, PtrOff,
                                  CallSeqStart.getNode()->getOperand(0),
                                  Flags, DAG, dl);

      // This must go outside the CALLSEQ_START..END.
      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
                                                     SDLoc(MemcpyCall));
      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
                             NewCallSeqStart.getNode());
      Chain = CallSeqStart = NewCallSeqStart;

      // Pass the address of the aggregate copy on the stack either in a
      // physical register or in the parameter list area of the current stack
      // frame to the callee.
      Arg = PtrOff;
    }

    // When useCRBits() is true, there can be i1 arguments.
    // It is because getRegisterType(MVT::i1) => MVT::i1,
    // and for other integer types getRegisterType() => MVT::i32.
    // Extend i1 and ensure callee will get i32.
    if (Arg.getValueType() == MVT::i1)
      Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
                        dl, MVT::i32, Arg);

    if (VA.isRegLoc()) {
      seenFloatArg |= VA.getLocVT().isFloatingPoint();
      // Put argument in a physical register.
      if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
        bool IsLE = Subtarget.isLittleEndian();
        SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
                        DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
        RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
        SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
                           DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
        RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
                             SVal.getValue(0)));
      } else
        RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    } else {
      // Put argument in the parameter list area of the current stack frame.
      assert(VA.isMemLoc());
      unsigned LocMemOffset = VA.getLocMemOffset();

      if (!IsTailCall) {
        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
                             StackPtr, PtrOff);

        MemOpChains.push_back(
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
      } else {
        // Calculate and remember argument location.
        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
                                 TailCallArguments);
      }
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // Set CR bit 6 to true if this is a vararg call with floating args passed in
  // registers.
  if (IsVarArg) {
    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
    SDValue Ops[] = { Chain, InFlag };

    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
                        dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));

    InFlag = Chain.getValue(1);
  }

  if (IsTailCall)
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
                    TailCallArguments);

  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
}

// Copy an argument into memory, being careful to do this outside the
// call sequence for the call to which the argument belongs.
SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
    SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
    SelectionDAG &DAG, const SDLoc &dl) const {
  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
                        CallSeqStart.getNode()->getOperand(0),
                        Flags, DAG, dl);
  // The MEMCPY must go outside the CALLSEQ_START..END.
  int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
                                                 SDLoc(MemcpyCall));
  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
                         NewCallSeqStart.getNode());
  return NewCallSeqStart;
}

SDValue PPCTargetLowering::LowerCall_64SVR4(
    SDValue Chain, SDValue Callee, CallFlags CFlags,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const CallBase *CB) const {
  bool isELFv2ABI = Subtarget.isELFv2ABI();
  bool isLittleEndian = Subtarget.isLittleEndian();
  unsigned NumOps = Outs.size();
  bool IsSibCall = false;
  bool IsFastCall = CFlags.CallConv == CallingConv::Fast;

  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  unsigned PtrByteSize = 8;

  MachineFunction &MF = DAG.getMachineFunction();

  if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
    IsSibCall = true;

  // Mark this function as potentially containing a function that contains a
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
  // and restoring the callers stack pointer in this functions epilog. This is
  // done because by tail calling the called function might overwrite the value
  // in this function's (MF) stack pointer stack slot 0(SP).
  if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();

  assert(!(IsFastCall && CFlags.IsVarArg) &&
         "fastcc not supported on varargs functions");

  // Count how many bytes are to be pushed on the stack, including the linkage
  // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
  // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
  // area is 32 bytes reserved space for [SP][CR][LR][TOC].
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
  unsigned NumBytes = LinkageSize;
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
  unsigned &QFPR_idx = FPR_idx;

  static const MCPhysReg GPR[] = {
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
  };
  static const MCPhysReg VR[] = {
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
  };

  const unsigned NumGPRs = array_lengthof(GPR);
  const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
  const unsigned NumVRs  = array_lengthof(VR);
  const unsigned NumQFPRs = NumFPRs;

  // On ELFv2, we can avoid allocating the parameter area if all the arguments
  // can be passed to the callee in registers.
  // For the fast calling convention, there is another check below.
  // Note: We should keep consistent with LowerFormalArguments_64SVR4()
  bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
  if (!HasParameterArea) {
    unsigned ParamAreaSize = NumGPRs * PtrByteSize;
    unsigned AvailableFPRs = NumFPRs;
    unsigned AvailableVRs = NumVRs;
    unsigned NumBytesTmp = NumBytes;
    for (unsigned i = 0; i != NumOps; ++i) {
      if (Outs[i].Flags.isNest()) continue;
      if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
                                PtrByteSize, LinkageSize, ParamAreaSize,
                                NumBytesTmp, AvailableFPRs, AvailableVRs,
                                Subtarget.hasQPX()))
        HasParameterArea = true;
    }
  }

  // When using the fast calling convention, we don't provide backing for
  // arguments that will be in registers.
  unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;

  // Avoid allocating parameter area for fastcc functions if all the arguments
  // can be passed in the registers.
  if (IsFastCall)
    HasParameterArea = false;

  // Add up all the space actually used.
  for (unsigned i = 0; i != NumOps; ++i) {
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    EVT ArgVT = Outs[i].VT;
    EVT OrigVT = Outs[i].ArgVT;

    if (Flags.isNest())
      continue;

    if (IsFastCall) {
      if (Flags.isByVal()) {
        NumGPRsUsed += (Flags.getByValSize()+7)/8;
        if (NumGPRsUsed > NumGPRs)
          HasParameterArea = true;
      } else {
        switch (ArgVT.getSimpleVT().SimpleTy) {
        default: llvm_unreachable("Unexpected ValueType for argument!");
        case MVT::i1:
        case MVT::i32:
        case MVT::i64:
          if (++NumGPRsUsed <= NumGPRs)
            continue;
          break;
        case MVT::v4i32:
        case MVT::v8i16:
        case MVT::v16i8:
        case MVT::v2f64:
        case MVT::v2i64:
        case MVT::v1i128:
        case MVT::f128:
          if (++NumVRsUsed <= NumVRs)
            continue;
          break;
        case MVT::v4f32:
          // When using QPX, this is handled like a FP register, otherwise, it
          // is an Altivec register.
          if (Subtarget.hasQPX()) {
            if (++NumFPRsUsed <= NumFPRs)
              continue;
          } else {
            if (++NumVRsUsed <= NumVRs)
              continue;
          }
          break;
        case MVT::f32:
        case MVT::f64:
        case MVT::v4f64: // QPX
        case MVT::v4i1:  // QPX
          if (++NumFPRsUsed <= NumFPRs)
            continue;
          break;
        }
        HasParameterArea = true;
      }
    }

    /* Respect alignment of argument on the stack.  */
    auto Alignement =
        CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
    NumBytes = alignTo(NumBytes, Alignement);

    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
    if (Flags.isInConsecutiveRegsLast())
      NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
  }

  unsigned NumBytesActuallyUsed = NumBytes;

  // In the old ELFv1 ABI,
  // the prolog code of the callee may store up to 8 GPR argument registers to
  // the stack, allowing va_start to index over them in memory if its varargs.
  // Because we cannot tell if this is needed on the caller side, we have to
  // conservatively assume that it is needed.  As such, make sure we have at
  // least enough stack space for the caller to store the 8 GPRs.
  // In the ELFv2 ABI, we allocate the parameter area iff a callee
  // really requires memory operands, e.g. a vararg function.
  if (HasParameterArea)
    NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
  else
    NumBytes = LinkageSize;

  // Tail call needs the stack to be aligned.
  if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);

  int SPDiff = 0;

  // Calculate by how many bytes the stack has to be adjusted in case of tail
  // call optimization.
  if (!IsSibCall)
    SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);

  // To protect arguments on the stack from being clobbered in a tail call,
  // force all the loads to happen before doing any other lowering.
  if (CFlags.IsTailCall)
    Chain = DAG.getStackArgumentTokenFactor(Chain);

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass
  if (!IsSibCall)
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
  SDValue CallSeqStart = Chain;

  // Load the return address and frame pointer so it can be move somewhere else
  // later.
  SDValue LROp, FPOp;
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);

  // Set up a copy of the stack pointer for use loading and storing any
  // arguments that may not fit in the registers available for argument
  // passing.
  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);

  // Figure out which arguments are going to go in registers, and which in
  // memory.  Also, if this is a vararg function, floating point operations
  // must be stored to our stack, and loaded into integer regs as well, if
  // any integer regs are available for argument passing.
  unsigned ArgOffset = LinkageSize;

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;

  SmallVector<SDValue, 8> MemOpChains;
  for (unsigned i = 0; i != NumOps; ++i) {
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    EVT ArgVT = Outs[i].VT;
    EVT OrigVT = Outs[i].ArgVT;

    // PtrOff will be used to store the current argument to the stack if a
    // register cannot be found for it.
    SDValue PtrOff;

    // We re-align the argument offset for each argument, except when using the
    // fast calling convention, when we need to make sure we do that only when
    // we'll actually use a stack slot.
    auto ComputePtrOff = [&]() {
      /* Respect alignment of argument on the stack.  */
      auto Alignment =
          CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
      ArgOffset = alignTo(ArgOffset, Alignment);

      PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());

      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
    };

    if (!IsFastCall) {
      ComputePtrOff();

      /* Compute GPR index associated with argument offset.  */
      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
      GPR_idx = std::min(GPR_idx, NumGPRs);
    }

    // Promote integers to 64-bit values.
    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
    }

    // FIXME memcpy is used way more than necessary.  Correctness first.
    // Note: "by value" is code for passing a structure by value, not
    // basic types.
    if (Flags.isByVal()) {
      // Note: Size includes alignment padding, so
      //   struct x { short a; char b; }
      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
      // These are the proper values we need for right-justifying the
      // aggregate in a parameter register.
      unsigned Size = Flags.getByValSize();

      // An empty aggregate parameter takes up no storage and no
      // registers.
      if (Size == 0)
        continue;

      if (IsFastCall)
        ComputePtrOff();

      // All aggregates smaller than 8 bytes must be passed right-justified.
      if (Size==1 || Size==2 || Size==4) {
        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
        if (GPR_idx != NumGPRs) {
          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
                                        MachinePointerInfo(), VT);
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));

          ArgOffset += PtrByteSize;
          continue;
        }
      }

      if (GPR_idx == NumGPRs && Size < 8) {
        SDValue AddPtr = PtrOff;
        if (!isLittleEndian) {
          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
                                          PtrOff.getValueType());
          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
        }
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
                                                          CallSeqStart,
                                                          Flags, DAG, dl);
        ArgOffset += PtrByteSize;
        continue;
      }
      // Copy entire object into memory.  There are cases where gcc-generated
      // code assumes it is there, even if it could be put entirely into
      // registers.  (This is not what the doc says.)

      // FIXME: The above statement is likely due to a misunderstanding of the
      // documents.  All arguments must be copied into the parameter area BY
      // THE CALLEE in the event that the callee takes the address of any
      // formal argument.  That has not yet been implemented.  However, it is
      // reasonable to use the stack area as a staging area for the register
      // load.

      // Skip this for small aggregates, as we will use the same slot for a
      // right-justified copy, below.
      if (Size >= 8)
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
                                                          CallSeqStart,
                                                          Flags, DAG, dl);

      // When a register is available, pass a small aggregate right-justified.
      if (Size < 8 && GPR_idx != NumGPRs) {
        // The easiest way to get this right-justified in a register
        // is to copy the structure into the rightmost portion of a
        // local variable slot, then load the whole slot into the
        // register.
        // FIXME: The memcpy seems to produce pretty awful code for
        // small aggregates, particularly for packed ones.
        // FIXME: It would be preferable to use the slot in the
        // parameter save area instead of a new local variable.
        SDValue AddPtr = PtrOff;
        if (!isLittleEndian) {
          SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
        }
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
                                                          CallSeqStart,
                                                          Flags, DAG, dl);

        // Load the slot into the register.
        SDValue Load =
            DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
        MemOpChains.push_back(Load.getValue(1));
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));

        // Done with this argument.
        ArgOffset += PtrByteSize;
        continue;
      }

      // For aggregates larger than PtrByteSize, copy the pieces of the
      // object that fit into registers from the parameter save area.
      for (unsigned j=0; j<Size; j+=PtrByteSize) {
        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
        if (GPR_idx != NumGPRs) {
          SDValue Load =
              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
          ArgOffset += PtrByteSize;
        } else {
          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
          break;
        }
      }
      continue;
    }

    switch (Arg.getSimpleValueType().SimpleTy) {
    default: llvm_unreachable("Unexpected ValueType for argument!");
    case MVT::i1:
    case MVT::i32:
    case MVT::i64:
      if (Flags.isNest()) {
        // The 'nest' parameter, if any, is passed in R11.
        RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
        break;
      }

      // These can be scalar arguments or elements of an integer array type
      // passed directly.  Clang may use those instead of "byval" aggregate
      // types to avoid forcing arguments to memory unnecessarily.
      if (GPR_idx != NumGPRs) {
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
      } else {
        if (IsFastCall)
          ComputePtrOff();

        assert(HasParameterArea &&
               "Parameter area must exist to pass an argument in memory.");
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         true, CFlags.IsTailCall, false, MemOpChains,
                         TailCallArguments, dl);
        if (IsFastCall)
          ArgOffset += PtrByteSize;
      }
      if (!IsFastCall)
        ArgOffset += PtrByteSize;
      break;
    case MVT::f32:
    case MVT::f64: {
      // These can be scalar arguments or elements of a float array type
      // passed directly.  The latter are used to implement ELFv2 homogenous
      // float aggregates.

      // Named arguments go into FPRs first, and once they overflow, the
      // remaining arguments go into GPRs and then the parameter save area.
      // Unnamed arguments for vararg functions always go to GPRs and
      // then the parameter save area.  For now, put all arguments to vararg
      // routines always in both locations (FPR *and* GPR or stack slot).
      bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
      bool NeededLoad = false;

      // First load the argument into the next available FPR.
      if (FPR_idx != NumFPRs)
        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));

      // Next, load the argument into GPR or stack slot if needed.
      if (!NeedGPROrStack)
        ;
      else if (GPR_idx != NumGPRs && !IsFastCall) {
        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
        // once we support fp <-> gpr moves.

        // In the non-vararg case, this can only ever happen in the
        // presence of f32 array types, since otherwise we never run
        // out of FPRs before running out of GPRs.
        SDValue ArgVal;

        // Double values are always passed in a single GPR.
        if (Arg.getValueType() != MVT::f32) {
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);

        // Non-array float values are extended and passed in a GPR.
        } else if (!Flags.isInConsecutiveRegs()) {
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);

        // If we have an array of floats, we collect every odd element
        // together with its predecessor into one GPR.
        } else if (ArgOffset % PtrByteSize != 0) {
          SDValue Lo, Hi;
          Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
          Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
          if (!isLittleEndian)
            std::swap(Lo, Hi);
          ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);

        // The final element, if even, goes into the first half of a GPR.
        } else if (Flags.isInConsecutiveRegsLast()) {
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
          if (!isLittleEndian)
            ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
                                 DAG.getConstant(32, dl, MVT::i32));

        // Non-final even elements are skipped; they will be handled
        // together the with subsequent argument on the next go-around.
        } else
          ArgVal = SDValue();

        if (ArgVal.getNode())
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
      } else {
        if (IsFastCall)
          ComputePtrOff();

        // Single-precision floating-point values are mapped to the
        // second (rightmost) word of the stack doubleword.
        if (Arg.getValueType() == MVT::f32 &&
            !isLittleEndian && !Flags.isInConsecutiveRegs()) {
          SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
        }

        assert(HasParameterArea &&
               "Parameter area must exist to pass an argument in memory.");
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         true, CFlags.IsTailCall, false, MemOpChains,
                         TailCallArguments, dl);

        NeededLoad = true;
      }
      // When passing an array of floats, the array occupies consecutive
      // space in the argument area; only round up to the next doubleword
      // at the end of the array.  Otherwise, each float takes 8 bytes.
      if (!IsFastCall || NeededLoad) {
        ArgOffset += (Arg.getValueType() == MVT::f32 &&
                      Flags.isInConsecutiveRegs()) ? 4 : 8;
        if (Flags.isInConsecutiveRegsLast())
          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
      }
      break;
    }
    case MVT::v4f32:
    case MVT::v4i32:
    case MVT::v8i16:
    case MVT::v16i8:
    case MVT::v2f64:
    case MVT::v2i64:
    case MVT::v1i128:
    case MVT::f128:
      if (!Subtarget.hasQPX()) {
      // These can be scalar arguments or elements of a vector array type
      // passed directly.  The latter are used to implement ELFv2 homogenous
      // vector aggregates.

      // For a varargs call, named arguments go into VRs or on the stack as
      // usual; unnamed arguments always go to the stack or the corresponding
      // GPRs when within range.  For now, we always put the value in both
      // locations (or even all three).
      if (CFlags.IsVarArg) {
        assert(HasParameterArea &&
               "Parameter area must exist if we have a varargs call.");
        // We could elide this store in the case where the object fits
        // entirely in R registers.  Maybe later.
        SDValue Store =
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
        MemOpChains.push_back(Store);
        if (VR_idx != NumVRs) {
          SDValue Load =
              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
        }
        ArgOffset += 16;
        for (unsigned i=0; i<16; i+=PtrByteSize) {
          if (GPR_idx == NumGPRs)
            break;
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
                                   DAG.getConstant(i, dl, PtrVT));
          SDValue Load =
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
        }
        break;
      }

      // Non-varargs Altivec params go into VRs or on the stack.
      if (VR_idx != NumVRs) {
        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
      } else {
        if (IsFastCall)
          ComputePtrOff();

        assert(HasParameterArea &&
               "Parameter area must exist to pass an argument in memory.");
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         true, CFlags.IsTailCall, true, MemOpChains,
                         TailCallArguments, dl);
        if (IsFastCall)
          ArgOffset += 16;
      }

      if (!IsFastCall)
        ArgOffset += 16;
      break;
      } // not QPX

      assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
             "Invalid QPX parameter type");

      LLVM_FALLTHROUGH;
    case MVT::v4f64:
    case MVT::v4i1: {
      bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
      if (CFlags.IsVarArg) {
        assert(HasParameterArea &&
               "Parameter area must exist if we have a varargs call.");
        // We could elide this store in the case where the object fits
        // entirely in R registers.  Maybe later.
        SDValue Store =
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
        MemOpChains.push_back(Store);
        if (QFPR_idx != NumQFPRs) {
          SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
                                     PtrOff, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
        }
        ArgOffset += (IsF32 ? 16 : 32);
        for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
          if (GPR_idx == NumGPRs)
            break;
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
                                   DAG.getConstant(i, dl, PtrVT));
          SDValue Load =
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
        }
        break;
      }

      // Non-varargs QPX params go into registers or on the stack.
      if (QFPR_idx != NumQFPRs) {
        RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
      } else {
        if (IsFastCall)
          ComputePtrOff();

        assert(HasParameterArea &&
               "Parameter area must exist to pass an argument in memory.");
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         true, CFlags.IsTailCall, true, MemOpChains,
                         TailCallArguments, dl);
        if (IsFastCall)
          ArgOffset += (IsF32 ? 16 : 32);
      }

      if (!IsFastCall)
        ArgOffset += (IsF32 ? 16 : 32);
      break;
      }
    }
  }

  assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
         "mismatch in size of parameter area");
  (void)NumBytesActuallyUsed;

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  // Check if this is an indirect call (MTCTR/BCTRL).
  // See prepareDescriptorIndirectCall and buildCallOperands for more
  // information about calls through function pointers in the 64-bit SVR4 ABI.
  if (CFlags.IsIndirect) {
    // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
    // caller in the TOC save area.
    if (isTOCSaveRestoreRequired(Subtarget)) {
      assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
      // Load r2 into a virtual register and store it to the TOC save area.
      setUsesTOCBasePtr(DAG);
      SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
      // TOC save area offset.
      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
      SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
      Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
                           MachinePointerInfo::getStack(
                               DAG.getMachineFunction(), TOCSaveOffset));
    }
    // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
    // This does not mean the MTCTR instruction must use R12; it's easier
    // to model this as an extra parameter, so do that.
    if (isELFv2ABI && !CFlags.IsPatchPoint)
      RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
  }

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  if (CFlags.IsTailCall && !IsSibCall)
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
                    TailCallArguments);

  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
}

SDValue PPCTargetLowering::LowerCall_Darwin(
    SDValue Chain, SDValue Callee, CallFlags CFlags,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const CallBase *CB) const {
  unsigned NumOps = Outs.size();

  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  bool isPPC64 = PtrVT == MVT::i64;
  unsigned PtrByteSize = isPPC64 ? 8 : 4;

  MachineFunction &MF = DAG.getMachineFunction();

  // Mark this function as potentially containing a function that contains a
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
  // and restoring the callers stack pointer in this functions epilog. This is
  // done because by tail calling the called function might overwrite the value
  // in this function's (MF) stack pointer stack slot 0(SP).
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
      CFlags.CallConv == CallingConv::Fast)
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();

  // Count how many bytes are to be pushed on the stack, including the linkage
  // area, and parameter passing area.  We start with 24/48 bytes, which is
  // prereserved space for [SP][CR][LR][3 x unused].
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
  unsigned NumBytes = LinkageSize;

  // Add up all the space actually used.
  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
  // they all go in registers, but we must reserve stack space for them for
  // possible use by the caller.  In varargs or 64-bit calls, parameters are
  // assigned stack space in order, with padding so Altivec parameters are
  // 16-byte aligned.
  unsigned nAltivecParamsAtEnd = 0;
  for (unsigned i = 0; i != NumOps; ++i) {
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    EVT ArgVT = Outs[i].VT;
    // Varargs Altivec parameters are padded to a 16 byte boundary.
    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
      if (!CFlags.IsVarArg && !isPPC64) {
        // Non-varargs Altivec parameters go after all the non-Altivec
        // parameters; handle those later so we know how much padding we need.
        nAltivecParamsAtEnd++;
        continue;
      }
      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
      NumBytes = ((NumBytes+15)/16)*16;
    }
    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
  }

  // Allow for Altivec parameters at the end, if needed.
  if (nAltivecParamsAtEnd) {
    NumBytes = ((NumBytes+15)/16)*16;
    NumBytes += 16*nAltivecParamsAtEnd;
  }

  // The prolog code of the callee may store up to 8 GPR argument registers to
  // the stack, allowing va_start to index over them in memory if its varargs.
  // Because we cannot tell if this is needed on the caller side, we have to
  // conservatively assume that it is needed.  As such, make sure we have at
  // least enough stack space for the caller to store the 8 GPRs.
  NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);

  // Tail call needs the stack to be aligned.
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
      CFlags.CallConv == CallingConv::Fast)
    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);

  // Calculate by how many bytes the stack has to be adjusted in case of tail
  // call optimization.
  int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);

  // To protect arguments on the stack from being clobbered in a tail call,
  // force all the loads to happen before doing any other lowering.
  if (CFlags.IsTailCall)
    Chain = DAG.getStackArgumentTokenFactor(Chain);

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
  SDValue CallSeqStart = Chain;

  // Load the return address and frame pointer so it can be move somewhere else
  // later.
  SDValue LROp, FPOp;
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);

  // Set up a copy of the stack pointer for use loading and storing any
  // arguments that may not fit in the registers available for argument
  // passing.
  SDValue StackPtr;
  if (isPPC64)
    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
  else
    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);

  // Figure out which arguments are going to go in registers, and which in
  // memory.  Also, if this is a vararg function, floating point operations
  // must be stored to our stack, and loaded into integer regs as well, if
  // any integer regs are available for argument passing.
  unsigned ArgOffset = LinkageSize;
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;

  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
  };
  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
  };
  static const MCPhysReg VR[] = {
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
  };
  const unsigned NumGPRs = array_lengthof(GPR_32);
  const unsigned NumFPRs = 13;
  const unsigned NumVRs  = array_lengthof(VR);

  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;

  SmallVector<SDValue, 8> MemOpChains;
  for (unsigned i = 0; i != NumOps; ++i) {
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;

    // PtrOff will be used to store the current argument to the stack if a
    // register cannot be found for it.
    SDValue PtrOff;

    PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());

    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);

    // On PPC64, promote integers to 64-bit values.
    if (isPPC64 && Arg.getValueType() == MVT::i32) {
      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
    }

    // FIXME memcpy is used way more than necessary.  Correctness first.
    // Note: "by value" is code for passing a structure by value, not
    // basic types.
    if (Flags.isByVal()) {
      unsigned Size = Flags.getByValSize();
      // Very small objects are passed right-justified.  Everything else is
      // passed left-justified.
      if (Size==1 || Size==2) {
        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
        if (GPR_idx != NumGPRs) {
          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
                                        MachinePointerInfo(), VT);
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));

          ArgOffset += PtrByteSize;
        } else {
          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
                                          PtrOff.getValueType());
          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
                                                            CallSeqStart,
                                                            Flags, DAG, dl);
          ArgOffset += PtrByteSize;
        }
        continue;
      }
      // Copy entire object into memory.  There are cases where gcc-generated
      // code assumes it is there, even if it could be put entirely into
      // registers.  (This is not what the doc says.)
      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
                                                        CallSeqStart,
                                                        Flags, DAG, dl);

      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
      // copy the pieces of the object that fit into registers from the
      // parameter save area.
      for (unsigned j=0; j<Size; j+=PtrByteSize) {
        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
        if (GPR_idx != NumGPRs) {
          SDValue Load =
              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
          ArgOffset += PtrByteSize;
        } else {
          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
          break;
        }
      }
      continue;
    }

    switch (Arg.getSimpleValueType().SimpleTy) {
    default: llvm_unreachable("Unexpected ValueType for argument!");
    case MVT::i1:
    case MVT::i32:
    case MVT::i64:
      if (GPR_idx != NumGPRs) {
        if (Arg.getValueType() == MVT::i1)
          Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);

        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
      } else {
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         isPPC64, CFlags.IsTailCall, false, MemOpChains,
                         TailCallArguments, dl);
      }
      ArgOffset += PtrByteSize;
      break;
    case MVT::f32:
    case MVT::f64:
      if (FPR_idx != NumFPRs) {
        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));

        if (CFlags.IsVarArg) {
          SDValue Store =
              DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
          MemOpChains.push_back(Store);

          // Float varargs are always shadowed in available integer registers
          if (GPR_idx != NumGPRs) {
            SDValue Load =
                DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
            MemOpChains.push_back(Load.getValue(1));
            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
          }
          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
            SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
            SDValue Load =
                DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
            MemOpChains.push_back(Load.getValue(1));
            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
          }
        } else {
          // If we have any FPRs remaining, we may also have GPRs remaining.
          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
          // GPRs.
          if (GPR_idx != NumGPRs)
            ++GPR_idx;
          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
            ++GPR_idx;
        }
      } else
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         isPPC64, CFlags.IsTailCall, false, MemOpChains,
                         TailCallArguments, dl);
      if (isPPC64)
        ArgOffset += 8;
      else
        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
      break;
    case MVT::v4f32:
    case MVT::v4i32:
    case MVT::v8i16:
    case MVT::v16i8:
      if (CFlags.IsVarArg) {
        // These go aligned on the stack, or in the corresponding R registers
        // when within range.  The Darwin PPC ABI doc claims they also go in
        // V registers; in fact gcc does this only for arguments that are
        // prototyped, not for those that match the ...  We do it for all
        // arguments, seems to work.
        while (ArgOffset % 16 !=0) {
          ArgOffset += PtrByteSize;
          if (GPR_idx != NumGPRs)
            GPR_idx++;
        }
        // We could elide this store in the case where the object fits
        // entirely in R registers.  Maybe later.
        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
                             DAG.getConstant(ArgOffset, dl, PtrVT));
        SDValue Store =
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
        MemOpChains.push_back(Store);
        if (VR_idx != NumVRs) {
          SDValue Load =
              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
        }
        ArgOffset += 16;
        for (unsigned i=0; i<16; i+=PtrByteSize) {
          if (GPR_idx == NumGPRs)
            break;
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
                                   DAG.getConstant(i, dl, PtrVT));
          SDValue Load =
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
          MemOpChains.push_back(Load.getValue(1));
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
        }
        break;
      }

      // Non-varargs Altivec params generally go in registers, but have
      // stack space allocated at the end.
      if (VR_idx != NumVRs) {
        // Doesn't have GPR space allocated.
        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
      } else if (nAltivecParamsAtEnd==0) {
        // We are emitting Altivec params in order.
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                         isPPC64, CFlags.IsTailCall, true, MemOpChains,
                         TailCallArguments, dl);
        ArgOffset += 16;
      }
      break;
    }
  }
  // If all Altivec parameters fit in registers, as they usually do,
  // they get stack space following the non-Altivec parameters.  We
  // don't track this here because nobody below needs it.
  // If there are more Altivec parameters than fit in registers emit
  // the stores here.
  if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
    unsigned j = 0;
    // Offset is aligned; skip 1st 12 params which go in V registers.
    ArgOffset = ((ArgOffset+15)/16)*16;
    ArgOffset += 12*16;
    for (unsigned i = 0; i != NumOps; ++i) {
      SDValue Arg = OutVals[i];
      EVT ArgType = Outs[i].VT;
      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
        if (++j > NumVRs) {
          SDValue PtrOff;
          // We are emitting Altivec params in order.
          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
                           isPPC64, CFlags.IsTailCall, true, MemOpChains,
                           TailCallArguments, dl);
          ArgOffset += 16;
        }
      }
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  // On Darwin, R12 must contain the address of an indirect callee.  This does
  // not mean the MTCTR instruction must use R12; it's easier to model this as
  // an extra parameter, so do that.
  if (CFlags.IsIndirect) {
    assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
                                                   PPC::R12), Callee));
  }

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  if (CFlags.IsTailCall)
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
                    TailCallArguments);

  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
}

static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
                   CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
                   CCState &State) {

  const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
      State.getMachineFunction().getSubtarget());
  const bool IsPPC64 = Subtarget.isPPC64();
  const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;

  assert((!ValVT.isInteger() ||
          (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
         "Integer argument exceeds register size: should have been legalized");

  if (ValVT == MVT::f128)
    report_fatal_error("f128 is unimplemented on AIX.");

  if (ArgFlags.isNest())
    report_fatal_error("Nest arguments are unimplemented.");

  if (ValVT.isVector() || LocVT.isVector())
    report_fatal_error("Vector arguments are unimplemented on AIX.");

  static const MCPhysReg GPR_32[] = {// 32-bit registers.
                                     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
                                     PPC::R7, PPC::R8, PPC::R9, PPC::R10};
  static const MCPhysReg GPR_64[] = {// 64-bit registers.
                                     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
                                     PPC::X7, PPC::X8, PPC::X9, PPC::X10};

  if (ArgFlags.isByVal()) {
    if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
      report_fatal_error("Pass-by-value arguments with alignment greater than "
                         "register width are not supported.");

    const unsigned ByValSize = ArgFlags.getByValSize();

    // An empty aggregate parameter takes up no storage and no registers,
    // but needs a MemLoc for a stack slot for the formal arguments side.
    if (ByValSize == 0) {
      State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
                                       State.getNextStackOffset(), RegVT,
                                       LocInfo));
      return false;
    }

    const unsigned StackSize = alignTo(ByValSize, PtrAlign);
    unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
    for (const unsigned E = Offset + StackSize; Offset < E;
         Offset += PtrAlign.value()) {
      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
        State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
      else {
        State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
                                         Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
                                         LocInfo));
        break;
      }
    }
    return false;
  }

  // Arguments always reserve parameter save area.
  switch (ValVT.SimpleTy) {
  default:
    report_fatal_error("Unhandled value type for argument.");
  case MVT::i64:
    // i64 arguments should have been split to i32 for PPC32.
    assert(IsPPC64 && "PPC32 should have split i64 values.");
    LLVM_FALLTHROUGH;
  case MVT::i1:
  case MVT::i32: {
    const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
    // AIX integer arguments are always passed in register width.
    if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
      LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
                                  : CCValAssign::LocInfo::ZExt;
    if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
    else
      State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));

    return false;
  }
  case MVT::f32:
  case MVT::f64: {
    // Parameter save area (PSA) is reserved even if the float passes in fpr.
    const unsigned StoreSize = LocVT.getStoreSize();
    // Floats are always 4-byte aligned in the PSA on AIX.
    // This includes f64 in 64-bit mode for ABI compatibility.
    const unsigned Offset =
        State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
    unsigned FReg = State.AllocateReg(FPR);
    if (FReg)
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));

    // Reserve and initialize GPRs or initialize the PSA as required.
    for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
        assert(FReg && "An FPR should be available when a GPR is reserved.");
        if (State.isVarArg()) {
          // Successfully reserved GPRs are only initialized for vararg calls.
          // Custom handling is required for:
          //   f64 in PPC32 needs to be split into 2 GPRs.
          //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
          State.addLoc(
              CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
        }
      } else {
        // If there are insufficient GPRs, the PSA needs to be initialized.
        // Initialization occurs even if an FPR was initialized for
        // compatibility with the AIX XL compiler. The full memory for the
        // argument will be initialized even if a prior word is saved in GPR.
        // A custom memLoc is used when the argument also passes in FPR so
        // that the callee handling can skip over it easily.
        State.addLoc(
            FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
                                             LocInfo)
                 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
        break;
      }
    }

    return false;
  }
  }
  return true;
}

static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
                                                    bool IsPPC64) {
  assert((IsPPC64 || SVT != MVT::i64) &&
         "i64 should have been split for 32-bit codegen.");

  switch (SVT) {
  default:
    report_fatal_error("Unexpected value type for formal argument");
  case MVT::i1:
  case MVT::i32:
  case MVT::i64:
    return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
  case MVT::f32:
    return &PPC::F4RCRegClass;
  case MVT::f64:
    return &PPC::F8RCRegClass;
  }
}

static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
                                        SelectionDAG &DAG, SDValue ArgValue,
                                        MVT LocVT, const SDLoc &dl) {
  assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
  assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());

  if (Flags.isSExt())
    ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
                           DAG.getValueType(ValVT));
  else if (Flags.isZExt())
    ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
                           DAG.getValueType(ValVT));

  return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
}

static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
  const unsigned LASize = FL->getLinkageSize();

  if (PPC::GPRCRegClass.contains(Reg)) {
    assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
           "Reg must be a valid argument register!");
    return LASize + 4 * (Reg - PPC::R3);
  }

  if (PPC::G8RCRegClass.contains(Reg)) {
    assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
           "Reg must be a valid argument register!");
    return LASize + 8 * (Reg - PPC::X3);
  }

  llvm_unreachable("Only general purpose registers expected.");
}

//   AIX ABI Stack Frame Layout:
//
//   Low Memory +--------------------------------------------+
//   SP   +---> | Back chain                                 | ---+
//        |     +--------------------------------------------+    |   
//        |     | Saved Condition Register                   |    |
//        |     +--------------------------------------------+    |
//        |     | Saved Linkage Register                     |    |
//        |     +--------------------------------------------+    | Linkage Area
//        |     | Reserved for compilers                     |    |
//        |     +--------------------------------------------+    |
//        |     | Reserved for binders                       |    |
//        |     +--------------------------------------------+    |
//        |     | Saved TOC pointer                          | ---+
//        |     +--------------------------------------------+
//        |     | Parameter save area                        |
//        |     +--------------------------------------------+
//        |     | Alloca space                               |
//        |     +--------------------------------------------+
//        |     | Local variable space                       |
//        |     +--------------------------------------------+
//        |     | Float/int conversion temporary             |
//        |     +--------------------------------------------+
//        |     | Save area for AltiVec registers            |
//        |     +--------------------------------------------+
//        |     | AltiVec alignment padding                  |
//        |     +--------------------------------------------+
//        |     | Save area for VRSAVE register              |
//        |     +--------------------------------------------+
//        |     | Save area for General Purpose registers    |
//        |     +--------------------------------------------+
//        |     | Save area for Floating Point registers     |
//        |     +--------------------------------------------+
//        +---- | Back chain                                 |
// High Memory  +--------------------------------------------+
//
//  Specifications:
//  AIX 7.2 Assembler Language Reference
//  Subroutine linkage convention

SDValue PPCTargetLowering::LowerFormalArguments_AIX(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {

  assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
          CallConv == CallingConv::Fast) &&
         "Unexpected calling convention!");

  if (getTargetMachine().Options.GuaranteedTailCallOpt)
    report_fatal_error("Tail call support is unimplemented on AIX.");

  if (useSoftFloat())
    report_fatal_error("Soft float support is unimplemented on AIX.");

  const PPCSubtarget &Subtarget =
      static_cast<const PPCSubtarget &>(DAG.getSubtarget());
  if (Subtarget.hasQPX())
    report_fatal_error("QPX support is not supported on AIX.");

  const bool IsPPC64 = Subtarget.isPPC64();
  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());

  const EVT PtrVT = getPointerTy(MF.getDataLayout());
  // Reserve space for the linkage area on the stack.
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
  CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
  CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);

  SmallVector<SDValue, 8> MemOps;

  for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
    CCValAssign &VA = ArgLocs[I++];
    MVT LocVT = VA.getLocVT();
    ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;

    // For compatibility with the AIX XL compiler, the float args in the
    // parameter save area are initialized even if the argument is available
    // in register.  The caller is required to initialize both the register
    // and memory, however, the callee can choose to expect it in either.
    // The memloc is dismissed here because the argument is retrieved from
    // the register.
    if (VA.isMemLoc() && VA.needsCustom())
      continue;

    if (Flags.isByVal() && VA.isMemLoc()) {
      const unsigned Size =
          alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
                  PtrByteSize);
      const int FI = MF.getFrameInfo().CreateFixedObject(
          Size, VA.getLocMemOffset(), /* IsImmutable */ false,
          /* IsAliased */ true);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      InVals.push_back(FIN);

      continue;
    }

    if (Flags.isByVal()) {
      assert(VA.isRegLoc() && "MemLocs should already be handled.");

      const MCPhysReg ArgReg = VA.getLocReg();
      const PPCFrameLowering *FL = Subtarget.getFrameLowering();

      if (Flags.getNonZeroByValAlign() > PtrByteSize)
        report_fatal_error("Over aligned byvals not supported yet.");

      const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
      const int FI = MF.getFrameInfo().CreateFixedObject(
          StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
          /* IsAliased */ true);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      InVals.push_back(FIN);

      // Add live ins for all the RegLocs for the same ByVal.
      const TargetRegisterClass *RegClass =
          IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;

      auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
                                               unsigned Offset) {
        const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
        // Since the callers side has left justified the aggregate in the
        // register, we can simply store the entire register into the stack
        // slot.
        SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
        // The store to the fixedstack object is needed becuase accessing a
        // field of the ByVal will use a gep and load. Ideally we will optimize
        // to extracting the value from the register directly, and elide the
        // stores when the arguments address is not taken, but that will need to
        // be future work.
        SDValue Store =
            DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
                         DAG.getObjectPtrOffset(dl, FIN, Offset),
                         MachinePointerInfo::getFixedStack(MF, FI, Offset));

        MemOps.push_back(Store);
      };

      unsigned Offset = 0;
      HandleRegLoc(VA.getLocReg(), Offset);
      Offset += PtrByteSize;
      for (; Offset != StackSize && ArgLocs[I].isRegLoc();
           Offset += PtrByteSize) {
        assert(ArgLocs[I].getValNo() == VA.getValNo() &&
               "RegLocs should be for ByVal argument.");

        const CCValAssign RL = ArgLocs[I++];
        HandleRegLoc(RL.getLocReg(), Offset);
      }

      if (Offset != StackSize) {
        assert(ArgLocs[I].getValNo() == VA.getValNo() &&
               "Expected MemLoc for remaining bytes.");
        assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
        // Consume the MemLoc.The InVal has already been emitted, so nothing
        // more needs to be done.
        ++I;
      }

      continue;
    }

    EVT ValVT = VA.getValVT();
    if (VA.isRegLoc() && !VA.needsCustom()) {
      MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
      unsigned VReg =
          MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
      if (ValVT.isScalarInteger() &&
          (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
        ArgValue =
            truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
      }
      InVals.push_back(ArgValue);
      continue;
    }
    if (VA.isMemLoc()) {
      const unsigned LocSize = LocVT.getStoreSize();
      const unsigned ValSize = ValVT.getStoreSize();
      assert((ValSize <= LocSize) &&
             "Object size is larger than size of MemLoc");
      int CurArgOffset = VA.getLocMemOffset();
      // Objects are right-justified because AIX is big-endian.
      if (LocSize > ValSize)
        CurArgOffset += LocSize - ValSize;
      // Potential tail calls could cause overwriting of argument stack slots.
      const bool IsImmutable =
          !(getTargetMachine().Options.GuaranteedTailCallOpt &&
            (CallConv == CallingConv::Fast));
      int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
      SDValue ArgValue =
          DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
      InVals.push_back(ArgValue);
      continue;
    }
  }

  // On AIX a minimum of 8 words is saved to the parameter save area.
  const unsigned MinParameterSaveArea = 8 * PtrByteSize;
  // Area that is at least reserved in the caller of this function.
  unsigned CallerReservedArea =
      std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);

  // Set the size that is at least reserved in caller of this function. Tail
  // call optimized function's reserved stack space needs to be aligned so
  // that taking the difference between two stack areas will result in an
  // aligned stack.
  CallerReservedArea =
      EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setMinReservedArea(CallerReservedArea);

  if (isVarArg) {
    FuncInfo->setVarArgsFrameIndex(
        MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);

    static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
                                       PPC::R7, PPC::R8, PPC::R9, PPC::R10};

    static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
                                       PPC::X7, PPC::X8, PPC::X9, PPC::X10};
    const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);

    // The fixed integer arguments of a variadic function are stored to the
    // VarArgsFrameIndex on the stack so that they may be loaded by
    // dereferencing the result of va_next.
    for (unsigned GPRIndex =
             (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
         GPRIndex < NumGPArgRegs; ++GPRIndex) {

      const unsigned VReg =
          IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
                  : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);

      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
      SDValue Store =
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
      MemOps.push_back(Store);
      // Increment the address for the next argument to store.
      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
    }
  }

  if (!MemOps.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);

  return Chain;
}

SDValue PPCTargetLowering::LowerCall_AIX(
    SDValue Chain, SDValue Callee, CallFlags CFlags,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const CallBase *CB) const {
  // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
  // AIX ABI stack frame layout.

  assert((CFlags.CallConv == CallingConv::C ||
          CFlags.CallConv == CallingConv::Cold ||
          CFlags.CallConv == CallingConv::Fast) &&
         "Unexpected calling convention!");

  if (CFlags.IsPatchPoint)
    report_fatal_error("This call type is unimplemented on AIX.");

  const PPCSubtarget& Subtarget =
      static_cast<const PPCSubtarget&>(DAG.getSubtarget());
  if (Subtarget.hasQPX())
    report_fatal_error("QPX is not supported on AIX.");
  if (Subtarget.hasAltivec())
    report_fatal_error("Altivec support is unimplemented on AIX.");

  MachineFunction &MF = DAG.getMachineFunction();
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
                 *DAG.getContext());

  // Reserve space for the linkage save area (LSA) on the stack.
  // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
  //   [SP][CR][LR][2 x reserved][TOC].
  // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
  const bool IsPPC64 = Subtarget.isPPC64();
  const EVT PtrVT = getPointerTy(DAG.getDataLayout());
  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
  CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
  CCInfo.AnalyzeCallOperands(Outs, CC_AIX);

  // The prolog code of the callee may store up to 8 GPR argument registers to
  // the stack, allowing va_start to index over them in memory if the callee
  // is variadic.
  // Because we cannot tell if this is needed on the caller side, we have to
  // conservatively assume that it is needed.  As such, make sure we have at
  // least enough stack space for the caller to store the 8 GPRs.
  const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
  const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
                                     CCInfo.getNextStackOffset());

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass.
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
  SDValue CallSeqStart = Chain;

  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  // Set up a copy of the stack pointer for loading and storing any
  // arguments that may not fit in the registers available for argument
  // passing.
  const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
                                   : DAG.getRegister(PPC::R1, MVT::i32);

  for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
    const unsigned ValNo = ArgLocs[I].getValNo();
    SDValue Arg = OutVals[ValNo];
    ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;

    if (Flags.isByVal()) {
      const unsigned ByValSize = Flags.getByValSize();

      // Nothing to do for zero-sized ByVals on the caller side.
      if (!ByValSize) {
        ++I;
        continue;
      }

      auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
        return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
                              (LoadOffset != 0)
                                  ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
                                  : Arg,
                              MachinePointerInfo(), VT);
      };

      unsigned LoadOffset = 0;

      // Initialize registers, which are fully occupied by the by-val argument.
      while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
        SDValue Load = GetLoad(PtrVT, LoadOffset);
        MemOpChains.push_back(Load.getValue(1));
        LoadOffset += PtrByteSize;
        const CCValAssign &ByValVA = ArgLocs[I++];
        assert(ByValVA.getValNo() == ValNo &&
               "Unexpected location for pass-by-value argument.");
        RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
      }

      if (LoadOffset == ByValSize)
        continue;

      // There must be one more loc to handle the remainder.
      assert(ArgLocs[I].getValNo() == ValNo &&
             "Expected additional location for by-value argument.");

      if (ArgLocs[I].isMemLoc()) {
        assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
        const CCValAssign &ByValVA = ArgLocs[I++];
        ISD::ArgFlagsTy MemcpyFlags = Flags;
        // Only memcpy the bytes that don't pass in register.
        MemcpyFlags.setByValSize(ByValSize - LoadOffset);
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(
            (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
                              : Arg,
            DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
            CallSeqStart, MemcpyFlags, DAG, dl);
        continue;
      }

      // Initialize the final register residue.
      // Any residue that occupies the final by-val arg register must be
      // left-justified on AIX. Loads must be a power-of-2 size and cannot be
      // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
      // 2 and 1 byte loads.
      const unsigned ResidueBytes = ByValSize % PtrByteSize;
      assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
             "Unexpected register residue for by-value argument.");
      SDValue ResidueVal;
      for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
        const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
        const MVT VT =
            N == 1 ? MVT::i8
                   : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
        SDValue Load = GetLoad(VT, LoadOffset);
        MemOpChains.push_back(Load.getValue(1));
        LoadOffset += N;
        Bytes += N;

        // By-val arguments are passed left-justfied in register.
        // Every load here needs to be shifted, otherwise a full register load
        // should have been used.
        assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
               "Unexpected load emitted during handling of pass-by-value "
               "argument.");
        unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
        EVT ShiftAmountTy =
            getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
        SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
        SDValue ShiftedLoad =
            DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
        ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
                                              ShiftedLoad)
                                : ShiftedLoad;
      }

      const CCValAssign &ByValVA = ArgLocs[I++];
      RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
      continue;
    }

    CCValAssign &VA = ArgLocs[I++];
    const MVT LocVT = VA.getLocVT();
    const MVT ValVT = VA.getValVT();

    switch (VA.getLocInfo()) {
    default:
      report_fatal_error("Unexpected argument extension type.");
    case CCValAssign::Full:
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    }

    if (VA.isRegLoc() && !VA.needsCustom()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      continue;
    }

    if (VA.isMemLoc()) {
      SDValue PtrOff =
          DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
      MemOpChains.push_back(
          DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));

      continue;
    }

    // Custom handling is used for GPR initializations for vararg float
    // arguments.
    assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
           ValVT.isFloatingPoint() && LocVT.isInteger() &&
           "Unexpected register handling for calling convention.");

    SDValue ArgAsInt =
        DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);

    if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
      // f32 in 32-bit GPR
      // f64 in 64-bit GPR
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
    else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
      // f32 in 64-bit GPR.
      RegsToPass.push_back(std::make_pair(
          VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
    else {
      // f64 in two 32-bit GPRs
      // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
      assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
             "Unexpected custom register for argument!");
      CCValAssign &GPR1 = VA;
      SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
                                     DAG.getConstant(32, dl, MVT::i8));
      RegsToPass.push_back(std::make_pair(
          GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));

      if (I != E) {
        // If only 1 GPR was available, there will only be one custom GPR and
        // the argument will also pass in memory.
        CCValAssign &PeekArg = ArgLocs[I];
        if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
          assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
          CCValAssign &GPR2 = ArgLocs[I++];
          RegsToPass.push_back(std::make_pair(
              GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
        }
      }
    }
  }

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  // For indirect calls, we need to save the TOC base to the stack for
  // restoration after the call.
  if (CFlags.IsIndirect) {
    assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
    const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
    const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
    const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
    const unsigned TOCSaveOffset =
        Subtarget.getFrameLowering()->getTOCSaveOffset();

    setUsesTOCBasePtr(DAG);
    SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
    SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
    Chain = DAG.getStore(
        Val.getValue(1), dl, Val, AddPtr,
        MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
  }

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (auto Reg : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
    InFlag = Chain.getValue(1);
  }

  const int SPDiff = 0;
  return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
                    Callee, SPDiff, NumBytes, Ins, InVals, CB);
}

bool
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
                                  MachineFunction &MF, bool isVarArg,
                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
                                  LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(
      Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
                ? RetCC_PPC_Cold
                : RetCC_PPC);
}

SDValue
PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
                               const SmallVectorImpl<SDValue> &OutVals,
                               const SDLoc &dl, SelectionDAG &DAG) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeReturn(Outs,
                       (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
                           ? RetCC_PPC_Cold
                           : RetCC_PPC);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    SDValue Arg = OutVals[RealResIdx];

    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    }
    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
      bool isLittleEndian = Subtarget.isLittleEndian();
      // Legalize ret f64 -> ret 2 x i32.
      SDValue SVal =
          DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
                      DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
      SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
                         DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
      Flag = Chain.getValue(1);
      VA = RVLocs[++i]; // skip ahead to next loc
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
    } else
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
}

SDValue
PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc dl(Op);

  // Get the correct type for integers.
  EVT IntVT = Op.getValueType();

  // Get the inputs.
  SDValue Chain = Op.getOperand(0);
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
  // Build a DYNAREAOFFSET node.
  SDValue Ops[2] = {Chain, FPSIdx};
  SDVTList VTs = DAG.getVTList(IntVT);
  return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
}

SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
                                             SelectionDAG &DAG) const {
  // When we pop the dynamic allocation we need to restore the SP link.
  SDLoc dl(Op);

  // Get the correct type for pointers.
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  // Construct the stack pointer operand.
  bool isPPC64 = Subtarget.isPPC64();
  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
  SDValue StackPtr = DAG.getRegister(SP, PtrVT);

  // Get the operands for the STACKRESTORE.
  SDValue Chain = Op.getOperand(0);
  SDValue SaveSP = Op.getOperand(1);

  // Load the old link SP.
  SDValue LoadLinkSP =
      DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());

  // Restore the stack pointer.
  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);

  // Store the old link SP.
  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
}

SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  bool isPPC64 = Subtarget.isPPC64();
  EVT PtrVT = getPointerTy(MF.getDataLayout());

  // Get current frame pointer save index.  The users of this index will be
  // primarily DYNALLOC instructions.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  int RASI = FI->getReturnAddrSaveIndex();

  // If the frame pointer save index hasn't been defined yet.
  if (!RASI) {
    // Find out what the fix offset of the frame pointer save area.
    int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
    // Allocate the frame index for frame pointer save area.
    RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
    // Save the result.
    FI->setReturnAddrSaveIndex(RASI);
  }
  return DAG.getFrameIndex(RASI, PtrVT);
}

SDValue
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  bool isPPC64 = Subtarget.isPPC64();
  EVT PtrVT = getPointerTy(MF.getDataLayout());

  // Get current frame pointer save index.  The users of this index will be
  // primarily DYNALLOC instructions.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  int FPSI = FI->getFramePointerSaveIndex();

  // If the frame pointer save index hasn't been defined yet.
  if (!FPSI) {
    // Find out what the fix offset of the frame pointer save area.
    int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
    // Allocate the frame index for frame pointer save area.
    FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
    // Save the result.
    FI->setFramePointerSaveIndex(FPSI);
  }
  return DAG.getFrameIndex(FPSI, PtrVT);
}

SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                                   SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  // Get the inputs.
  SDValue Chain = Op.getOperand(0);
  SDValue Size  = Op.getOperand(1);
  SDLoc dl(Op);

  // Get the correct type for pointers.
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  // Negate the size.
  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
                                DAG.getConstant(0, dl, PtrVT), Size);
  // Construct a node for the frame pointer save index.
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
  if (hasInlineStackProbe(MF))
    return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
}

SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
                                                     SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();

  bool isPPC64 = Subtarget.isPPC64();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
  return DAG.getFrameIndex(FI, PtrVT);
}

SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDLoc DL(Op);
  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
                     DAG.getVTList(MVT::i32, MVT::Other),
                     Op.getOperand(0), Op.getOperand(1));
}

SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);
  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
                     Op.getOperand(0), Op.getOperand(1));
}

SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  if (Op.getValueType().isVector())
    return LowerVectorLoad(Op, DAG);

  assert(Op.getValueType() == MVT::i1 &&
         "Custom lowering only for i1 loads");

  // First, load 8 bits into 32 bits, then truncate to 1 bit.

  SDLoc dl(Op);
  LoadSDNode *LD = cast<LoadSDNode>(Op);

  SDValue Chain = LD->getChain();
  SDValue BasePtr = LD->getBasePtr();
  MachineMemOperand *MMO = LD->getMemOperand();

  SDValue NewLD =
      DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
                     BasePtr, MVT::i8, MMO);
  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);

  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
  return DAG.getMergeValues(Ops, dl);
}

SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  if (Op.getOperand(1).getValueType().isVector())
    return LowerVectorStore(Op, DAG);

  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
         "Custom lowering only for i1 stores");

  // First, zero extend to 32 bits, then use a truncating store to 8 bits.

  SDLoc dl(Op);
  StoreSDNode *ST = cast<StoreSDNode>(Op);

  SDValue Chain = ST->getChain();
  SDValue BasePtr = ST->getBasePtr();
  SDValue Value = ST->getValue();
  MachineMemOperand *MMO = ST->getMemOperand();

  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
                      Value);
  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
}

// FIXME: Remove this once the ANDI glue bug is fixed:
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
  assert(Op.getValueType() == MVT::i1 &&
         "Custom lowering only for i1 results");

  SDLoc DL(Op);
  return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
}

SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
                                               SelectionDAG &DAG) const {

  // Implements a vector truncate that fits in a vector register as a shuffle.
  // We want to legalize vector truncates down to where the source fits in
  // a vector register (and target is therefore smaller than vector register
  // size).  At that point legalization will try to custom lower the sub-legal
  // result and get here - where we can contain the truncate as a single target
  // operation.

  // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
  //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
  //
  // We will implement it for big-endian ordering as this (where x denotes
  // undefined):
  //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
  //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
  //
  // The same operation in little-endian ordering will be:
  //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
  //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>

  assert(Op.getValueType().isVector() && "Vector type expected.");

  SDLoc DL(Op);
  SDValue N1 = Op.getOperand(0);
  unsigned SrcSize = N1.getValueType().getSizeInBits();
  assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
  SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);

  EVT TrgVT = Op.getValueType();
  unsigned TrgNumElts = TrgVT.getVectorNumElements();
  EVT EltVT = TrgVT.getVectorElementType();
  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);

  // First list the elements we want to keep.
  unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
  SmallVector<int, 16> ShuffV;
  if (Subtarget.isLittleEndian())
    for (unsigned i = 0; i < TrgNumElts; ++i)
      ShuffV.push_back(i * SizeMult);
  else
    for (unsigned i = 1; i <= TrgNumElts; ++i)
      ShuffV.push_back(i * SizeMult - 1);

  // Populate the remaining elements with undefs.
  for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
    // ShuffV.push_back(i + WideNumElts);
    ShuffV.push_back(WideNumElts + 1);

  SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
  return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
}

/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
/// possible.
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  // Not FP? Not a fsel.
  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
      !Op.getOperand(2).getValueType().isFloatingPoint())
    return Op;

  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();

  EVT ResVT = Op.getValueType();
  EVT CmpVT = Op.getOperand(0).getValueType();
  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
  SDLoc dl(Op);
  SDNodeFlags Flags = Op.getNode()->getFlags();

  // We have xsmaxcdp/xsmincdp which are OK to emit even in the
  // presence of infinities.
  if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
    switch (CC) {
    default:
      break;
    case ISD::SETOGT:
    case ISD::SETGT:
      return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
    case ISD::SETOLT:
    case ISD::SETLT:
      return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
    }
  }

  // We might be able to do better than this under some circumstances, but in
  // general, fsel-based lowering of select is a finite-math-only optimization.
  // For more information, see section F.3 of the 2.06 ISA specification.
  // With ISA 3.0
  if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
      (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
    return Op;

  // If the RHS of the comparison is a 0.0, we don't need to do the
  // subtraction at all.
  SDValue Sel1;
  if (isFloatingPointZero(RHS))
    switch (CC) {
    default: break;       // SETUO etc aren't handled by fsel.
    case ISD::SETNE:
      std::swap(TV, FV);
      LLVM_FALLTHROUGH;
    case ISD::SETEQ:
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
    case ISD::SETULT:
    case ISD::SETLT:
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
      LLVM_FALLTHROUGH;
    case ISD::SETOGE:
    case ISD::SETGE:
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
    case ISD::SETUGT:
    case ISD::SETGT:
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
      LLVM_FALLTHROUGH;
    case ISD::SETOLE:
    case ISD::SETLE:
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
    }

  SDValue Cmp;
  switch (CC) {
  default: break;       // SETUO etc aren't handled by fsel.
  case ISD::SETNE:
    std::swap(TV, FV);
    LLVM_FALLTHROUGH;
  case ISD::SETEQ:
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
  case ISD::SETULT:
  case ISD::SETLT:
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
  case ISD::SETOGE:
  case ISD::SETGE:
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
  case ISD::SETUGT:
  case ISD::SETGT:
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
  case ISD::SETOLE:
  case ISD::SETLE:
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
  }
  return Op;
}

void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
                                               SelectionDAG &DAG,
                                               const SDLoc &dl) const {
  assert(Op.getOperand(0).getValueType().isFloatingPoint());
  SDValue Src = Op.getOperand(0);
  if (Src.getValueType() == MVT::f32)
    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);

  SDValue Tmp;
  switch (Op.getSimpleValueType().SimpleTy) {
  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
  case MVT::i32:
    Tmp = DAG.getNode(
        Op.getOpcode() == ISD::FP_TO_SINT
            ? PPCISD::FCTIWZ
            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
        dl, MVT::f64, Src);
    break;
  case MVT::i64:
    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
           "i64 FP_TO_UINT is supported only with FPCVT");
    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
                                                        PPCISD::FCTIDUZ,
                      dl, MVT::f64, Src);
    break;
  }

  // Convert the FP value to an int value through memory.
  bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
    (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
  MachinePointerInfo MPI =
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);

  // Emit a store to the stack slot.
  SDValue Chain;
  Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
  if (i32Stack) {
    MachineFunction &MF = DAG.getMachineFunction();
    Alignment = Align(4);
    MachineMemOperand *MMO =
        MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
  } else
    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);

  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
  // add in a bias on big endian.
  if (Op.getValueType() == MVT::i32 && !i32Stack) {
    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
                        DAG.getConstant(4, dl, FIPtr.getValueType()));
    MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
  }

  RLI.Chain = Chain;
  RLI.Ptr = FIPtr;
  RLI.MPI = MPI;
  RLI.Alignment = Alignment;
}

/// Custom lowers floating point to integer conversions to use
/// the direct move instructions available in ISA 2.07 to avoid the
/// need for load/store combinations.
SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
                                                    SelectionDAG &DAG,
                                                    const SDLoc &dl) const {
  assert(Op.getOperand(0).getValueType().isFloatingPoint());
  SDValue Src = Op.getOperand(0);

  if (Src.getValueType() == MVT::f32)
    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);

  SDValue Tmp;
  switch (Op.getSimpleValueType().SimpleTy) {
  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
  case MVT::i32:
    Tmp = DAG.getNode(
        Op.getOpcode() == ISD::FP_TO_SINT
            ? PPCISD::FCTIWZ
            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
        dl, MVT::f64, Src);
    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
    break;
  case MVT::i64:
    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
           "i64 FP_TO_UINT is supported only with FPCVT");
    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
                                                        PPCISD::FCTIDUZ,
                      dl, MVT::f64, Src);
    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
    break;
  }
  return Tmp;
}

SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
                                          const SDLoc &dl) const {

  // FP to INT conversions are legal for f128.
  if (Op->getOperand(0).getValueType() == MVT::f128)
    return Op;

  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
  // PPC (the libcall is not available).
  if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
    if (Op.getValueType() == MVT::i32) {
      if (Op.getOpcode() == ISD::FP_TO_SINT) {
        SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
                                 MVT::f64, Op.getOperand(0),
                                 DAG.getIntPtrConstant(0, dl));
        SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
                                 MVT::f64, Op.getOperand(0),
                                 DAG.getIntPtrConstant(1, dl));

        // Add the two halves of the long double in round-to-zero mode.
        SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);

        // Now use a smaller FP_TO_SINT.
        return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
      }
      if (Op.getOpcode() == ISD::FP_TO_UINT) {
        const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
        APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
        SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
        //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
        // FIXME: generated code sucks.
        // TODO: Are there fast-math-flags to propagate to this FSUB?
        SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
                                   Op.getOperand(0), Tmp);
        True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
        True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
                           DAG.getConstant(0x80000000, dl, MVT::i32));
        SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
                                    Op.getOperand(0));
        return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
                               ISD::SETGE);
      }
    }

    return SDValue();
  }

  if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
    return LowerFP_TO_INTDirectMove(Op, DAG, dl);

  ReuseLoadInfo RLI;
  LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);

  return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
                     RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
}

// We're trying to insert a regular store, S, and then a load, L. If the
// incoming value, O, is a load, we might just be able to have our load use the
// address used by O. However, we don't know if anything else will store to
// that address before we can load from it. To prevent this situation, we need
// to insert our load, L, into the chain as a peer of O. To do this, we give L
// the same chain operand as O, we create a token factor from the chain results
// of O and L, and we replace all uses of O's chain result with that token
// factor (see spliceIntoChain below for this last part).
bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
                                            ReuseLoadInfo &RLI,
                                            SelectionDAG &DAG,
                                            ISD::LoadExtType ET) const {
  SDLoc dl(Op);
  bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
                       (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
  if (ET == ISD::NON_EXTLOAD &&
      (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
      isOperationLegalOrCustom(Op.getOpcode(),
                               Op.getOperand(0).getValueType())) {

    LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
    return true;
  }

  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
  if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
      LD->isNonTemporal())
    return false;
  if (LD->getMemoryVT() != MemVT)
    return false;

  RLI.Ptr = LD->getBasePtr();
  if (LD->isIndexed() && !LD->getOffset().isUndef()) {
    assert(LD->getAddressingMode() == ISD::PRE_INC &&
           "Non-pre-inc AM on PPC?");
    RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
                          LD->getOffset());
  }

  RLI.Chain = LD->getChain();
  RLI.MPI = LD->getPointerInfo();
  RLI.IsDereferenceable = LD->isDereferenceable();
  RLI.IsInvariant = LD->isInvariant();
  RLI.Alignment = LD->getAlign();
  RLI.AAInfo = LD->getAAInfo();
  RLI.Ranges = LD->getRanges();

  RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
  return true;
}

// Given the head of the old chain, ResChain, insert a token factor containing
// it and NewResChain, and make users of ResChain now be users of that token
// factor.
// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
                                        SDValue NewResChain,
                                        SelectionDAG &DAG) const {
  if (!ResChain)
    return;

  SDLoc dl(NewResChain);

  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                           NewResChain, DAG.getUNDEF(MVT::Other));
  assert(TF.getNode() != NewResChain.getNode() &&
         "A new TF really is required here");

  DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
  DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
}

/// Analyze profitability of direct move
/// prefer float load to int load plus direct move
/// when there is no integer use of int load
bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
  SDNode *Origin = Op.getOperand(0).getNode();
  if (Origin->getOpcode() != ISD::LOAD)
    return true;

  // If there is no LXSIBZX/LXSIHZX, like Power8,
  // prefer direct move if the memory size is 1 or 2 bytes.
  MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
  if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
    return true;

  for (SDNode::use_iterator UI = Origin->use_begin(),
                            UE = Origin->use_end();
       UI != UE; ++UI) {

    // Only look at the users of the loaded value.
    if (UI.getUse().get().getResNo() != 0)
      continue;

    if (UI->getOpcode() != ISD::SINT_TO_FP &&
        UI->getOpcode() != ISD::UINT_TO_FP)
      return true;
  }

  return false;
}

/// Custom lowers integer to floating point conversions to use
/// the direct move instructions available in ISA 2.07 to avoid the
/// need for load/store combinations.
SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
                                                    SelectionDAG &DAG,
                                                    const SDLoc &dl) const {
  assert((Op.getValueType() == MVT::f32 ||
          Op.getValueType() == MVT::f64) &&
         "Invalid floating point type as target of conversion");
  assert(Subtarget.hasFPCVT() &&
         "Int to FP conversions with direct moves require FPCVT");
  SDValue FP;
  SDValue Src = Op.getOperand(0);
  bool SinglePrec = Op.getValueType() == MVT::f32;
  bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
  bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
  unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
                             (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);

  if (WordInt) {
    FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
                     dl, MVT::f64, Src);
    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
  }
  else {
    FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
  }

  return FP;
}

static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {

  EVT VecVT = Vec.getValueType();
  assert(VecVT.isVector() && "Expected a vector type.");
  assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");

  EVT EltVT = VecVT.getVectorElementType();
  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);

  unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
  SmallVector<SDValue, 16> Ops(NumConcat);
  Ops[0] = Vec;
  SDValue UndefVec = DAG.getUNDEF(VecVT);
  for (unsigned i = 1; i < NumConcat; ++i)
    Ops[i] = UndefVec;

  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
}

SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
                                                const SDLoc &dl) const {

  unsigned Opc = Op.getOpcode();
  assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
         "Unexpected conversion type");
  assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
         "Supports conversions to v2f64/v4f32 only.");

  bool SignedConv = Opc == ISD::SINT_TO_FP;
  bool FourEltRes = Op.getValueType() == MVT::v4f32;

  SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
  EVT WideVT = Wide.getValueType();
  unsigned WideNumElts = WideVT.getVectorNumElements();
  MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;

  SmallVector<int, 16> ShuffV;
  for (unsigned i = 0; i < WideNumElts; ++i)
    ShuffV.push_back(i + WideNumElts);

  int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
  int SaveElts = FourEltRes ? 4 : 2;
  if (Subtarget.isLittleEndian())
    for (int i = 0; i < SaveElts; i++)
      ShuffV[i * Stride] = i;
  else
    for (int i = 1; i <= SaveElts; i++)
      ShuffV[i * Stride - 1] = i - 1;

  SDValue ShuffleSrc2 =
      SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
  SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);

  SDValue Extend;
  if (SignedConv) {
    Arrange = DAG.getBitcast(IntermediateVT, Arrange);
    EVT ExtVT = Op.getOperand(0).getValueType();
    if (Subtarget.hasP9Altivec())
      ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
                               IntermediateVT.getVectorNumElements());

    Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
                         DAG.getValueType(ExtVT));
  } else
    Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);

  return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
}

SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
                                          SelectionDAG &DAG) const {
  SDLoc dl(Op);

  EVT InVT = Op.getOperand(0).getValueType();
  EVT OutVT = Op.getValueType();
  if (OutVT.isVector() && OutVT.isFloatingPoint() &&
      isOperationCustom(Op.getOpcode(), InVT))
    return LowerINT_TO_FPVector(Op, DAG, dl);

  // Conversions to f128 are legal.
  if (Op.getValueType() == MVT::f128)
    return Op;

  if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
    if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
      return SDValue();

    SDValue Value = Op.getOperand(0);
    // The values are now known to be -1 (false) or 1 (true). To convert this
    // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
    // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
    Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);

    SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);

    Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);

    if (Op.getValueType() != MVT::v4f64)
      Value = DAG.getNode(ISD::FP_ROUND, dl,
                          Op.getValueType(), Value,
                          DAG.getIntPtrConstant(1, dl));
    return Value;
  }

  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
    return SDValue();

  if (Op.getOperand(0).getValueType() == MVT::i1)
    return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
                       DAG.getConstantFP(1.0, dl, Op.getValueType()),
                       DAG.getConstantFP(0.0, dl, Op.getValueType()));

  // If we have direct moves, we can do all the conversion, skip the store/load
  // however, without FPCVT we can't do most conversions.
  if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
      Subtarget.isPPC64() && Subtarget.hasFPCVT())
    return LowerINT_TO_FPDirectMove(Op, DAG, dl);

  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
         "UINT_TO_FP is supported only with FPCVT");

  // If we have FCFIDS, then use it when converting to single-precision.
  // Otherwise, convert to double-precision and then round.
  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
                                                            : PPCISD::FCFIDS)
                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
                                                            : PPCISD::FCFID);
  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
                  ? MVT::f32
                  : MVT::f64;

  if (Op.getOperand(0).getValueType() == MVT::i64) {
    SDValue SINT = Op.getOperand(0);
    // When converting to single-precision, we actually need to convert
    // to double-precision first and then round to single-precision.
    // To avoid double-rounding effects during that operation, we have
    // to prepare the input operand.  Bits that might be truncated when
    // converting to double-precision are replaced by a bit that won't
    // be lost at this stage, but is below the single-precision rounding
    // position.
    //
    // However, if -enable-unsafe-fp-math is in effect, accept double
    // rounding to avoid the extra overhead.
    if (Op.getValueType() == MVT::f32 &&
        !Subtarget.hasFPCVT() &&
        !DAG.getTarget().Options.UnsafeFPMath) {

      // Twiddle input to make sure the low 11 bits are zero.  (If this
      // is the case, we are guaranteed the value will fit into the 53 bit
      // mantissa of an IEEE double-precision value without rounding.)
      // If any of those low 11 bits were not zero originally, make sure
      // bit 12 (value 2048) is set instead, so that the final rounding
      // to single-precision gets the correct result.
      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
                                  SINT, DAG.getConstant(2047, dl, MVT::i64));
      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
                          Round, DAG.getConstant(2047, dl, MVT::i64));
      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
                          Round, DAG.getConstant(-2048, dl, MVT::i64));

      // However, we cannot use that value unconditionally: if the magnitude
      // of the input value is small, the bit-twiddling we did above might
      // end up visibly changing the output.  Fortunately, in that case, we
      // don't need to twiddle bits since the original input will convert
      // exactly to double-precision floating-point already.  Therefore,
      // construct a conditional to use the original value if the top 11
      // bits are all sign-bit copies, and use the rounded value computed
      // above otherwise.
      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
                                 SINT, DAG.getConstant(53, dl, MVT::i32));
      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
                         Cond, DAG.getConstant(1, dl, MVT::i64));
      Cond = DAG.getSetCC(
          dl,
          getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
          Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);

      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
    }

    ReuseLoadInfo RLI;
    SDValue Bits;

    MachineFunction &MF = DAG.getMachineFunction();
    if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
      Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
                         RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
    } else if (Subtarget.hasLFIWAX() &&
               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
      MachineMemOperand *MMO =
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
                                     DAG.getVTList(MVT::f64, MVT::Other),
                                     Ops, MVT::i32, MMO);
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
    } else if (Subtarget.hasFPCVT() &&
               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
      MachineMemOperand *MMO =
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
                                     DAG.getVTList(MVT::f64, MVT::Other),
                                     Ops, MVT::i32, MMO);
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
    } else if (((Subtarget.hasLFIWAX() &&
                 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
                (Subtarget.hasFPCVT() &&
                 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
               SINT.getOperand(0).getValueType() == MVT::i32) {
      MachineFrameInfo &MFI = MF.getFrameInfo();
      EVT PtrVT = getPointerTy(DAG.getDataLayout());

      int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

      SDValue Store =
          DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
                       MachinePointerInfo::getFixedStack(
                           DAG.getMachineFunction(), FrameIdx));

      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
             "Expected an i32 store");

      RLI.Ptr = FIdx;
      RLI.Chain = Store;
      RLI.MPI =
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
      RLI.Alignment = Align(4);

      MachineMemOperand *MMO =
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
      Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
                                     PPCISD::LFIWZX : PPCISD::LFIWAX,
                                     dl, DAG.getVTList(MVT::f64, MVT::Other),
                                     Ops, MVT::i32, MMO);
    } else
      Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);

    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);

    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
      FP = DAG.getNode(ISD::FP_ROUND, dl,
                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
    return FP;
  }

  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
         "Unhandled INT_TO_FP type in custom expander!");
  // Since we only generate this in 64-bit mode, we can take advantage of
  // 64-bit registers.  In particular, sign extend the input value into the
  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
  // then lfd it and fcfid it.
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  EVT PtrVT = getPointerTy(MF.getDataLayout());

  SDValue Ld;
  if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
    ReuseLoadInfo RLI;
    bool ReusingLoad;
    if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
                                            DAG))) {
      int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

      SDValue Store =
          DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
                       MachinePointerInfo::getFixedStack(
                           DAG.getMachineFunction(), FrameIdx));

      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
             "Expected an i32 store");

      RLI.Ptr = FIdx;
      RLI.Chain = Store;
      RLI.MPI =
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
      RLI.Alignment = Align(4);
    }

    MachineMemOperand *MMO =
      MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
                              RLI.Alignment, RLI.AAInfo, RLI.Ranges);
    SDValue Ops[] = { RLI.Chain, RLI.Ptr };
    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
                                 Ops, MVT::i32, MMO);
    if (ReusingLoad)
      spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
  } else {
    assert(Subtarget.isPPC64() &&
           "i32->FP without LFIWAX supported only on PPC64");

    int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
                                Op.getOperand(0));

    // STD the extended value into the stack slot.
    SDValue Store = DAG.getStore(
        DAG.getEntryNode(), dl, Ext64, FIdx,
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));

    // Load the value as a double.
    Ld = DAG.getLoad(
        MVT::f64, dl, Store, FIdx,
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
  }

  // FCFID it and return it.
  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
  if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
                     DAG.getIntPtrConstant(0, dl));
  return FP;
}

SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
                                            SelectionDAG &DAG) const {
  SDLoc dl(Op);
  /*
   The rounding mode is in bits 30:31 of FPSR, and has the following
   settings:
     00 Round to nearest
     01 Round to 0
     10 Round to +inf
     11 Round to -inf

  FLT_ROUNDS, on the other hand, expects the following:
    -1 Undefined
     0 Round to 0
     1 Round to nearest
     2 Round to +inf
     3 Round to -inf

  To perform the conversion, we do:
    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
  */

  MachineFunction &MF = DAG.getMachineFunction();
  EVT VT = Op.getValueType();
  EVT PtrVT = getPointerTy(MF.getDataLayout());

  // Save FP Control Word to register
  SDValue Chain = Op.getOperand(0);
  SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
  Chain = MFFS.getValue(1);

  // Save FP register to stack slot
  int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
  Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());

  // Load FP Control Word from low 32 bits of stack slot.
  SDValue Four = DAG.getConstant(4, dl, PtrVT);
  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
  SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
  Chain = CWD.getValue(1);

  // Transform as necessary
  SDValue CWD1 =
    DAG.getNode(ISD::AND, dl, MVT::i32,
                CWD, DAG.getConstant(3, dl, MVT::i32));
  SDValue CWD2 =
    DAG.getNode(ISD::SRL, dl, MVT::i32,
                DAG.getNode(ISD::AND, dl, MVT::i32,
                            DAG.getNode(ISD::XOR, dl, MVT::i32,
                                        CWD, DAG.getConstant(3, dl, MVT::i32)),
                            DAG.getConstant(3, dl, MVT::i32)),
                DAG.getConstant(1, dl, MVT::i32));

  SDValue RetVal =
    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);

  RetVal =
      DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
                  dl, VT, RetVal);

  return DAG.getMergeValues({RetVal, Chain}, dl);
}

SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  unsigned BitWidth = VT.getSizeInBits();
  SDLoc dl(Op);
  assert(Op.getNumOperands() == 3 &&
         VT == Op.getOperand(1).getValueType() &&
         "Unexpected SHL!");

  // Expand into a bunch of logical ops.  Note that these ops
  // depend on the PPC behavior for oversized shift amounts.
  SDValue Lo = Op.getOperand(0);
  SDValue Hi = Op.getOperand(1);
  SDValue Amt = Op.getOperand(2);
  EVT AmtVT = Amt.getValueType();

  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
                             DAG.getConstant(-BitWidth, dl, AmtVT));
  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
  SDValue OutOps[] = { OutLo, OutHi };
  return DAG.getMergeValues(OutOps, dl);
}

SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned BitWidth = VT.getSizeInBits();
  assert(Op.getNumOperands() == 3 &&
         VT == Op.getOperand(1).getValueType() &&
         "Unexpected SRL!");

  // Expand into a bunch of logical ops.  Note that these ops
  // depend on the PPC behavior for oversized shift amounts.
  SDValue Lo = Op.getOperand(0);
  SDValue Hi = Op.getOperand(1);
  SDValue Amt = Op.getOperand(2);
  EVT AmtVT = Amt.getValueType();

  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
                             DAG.getConstant(-BitWidth, dl, AmtVT));
  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
  SDValue OutOps[] = { OutLo, OutHi };
  return DAG.getMergeValues(OutOps, dl);
}

SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  EVT VT = Op.getValueType();
  unsigned BitWidth = VT.getSizeInBits();
  assert(Op.getNumOperands() == 3 &&
         VT == Op.getOperand(1).getValueType() &&
         "Unexpected SRA!");

  // Expand into a bunch of logical ops, followed by a select_cc.
  SDValue Lo = Op.getOperand(0);
  SDValue Hi = Op.getOperand(1);
  SDValue Amt = Op.getOperand(2);
  EVT AmtVT = Amt.getValueType();

  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
                             DAG.getConstant(-BitWidth, dl, AmtVT));
  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
                                  Tmp4, Tmp6, ISD::SETLE);
  SDValue OutOps[] = { OutLo, OutHi };
  return DAG.getMergeValues(OutOps, dl);
}

//===----------------------------------------------------------------------===//
// Vector related lowering.
//

/// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
/// element size of SplatSize. Cast the result to VT.
static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
                                      SelectionDAG &DAG, const SDLoc &dl) {
  static const MVT VTys[] = { // canonical VT to use for each size.
    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
  };

  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];

  // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
  if (Val == ((1LU << (SplatSize * 8)) - 1)) {
    SplatSize = 1;
    Val = 0xFF;
  }

  EVT CanonicalVT = VTys[SplatSize-1];

  // Build a canonical splat for this value.
  return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
}

/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
                                const SDLoc &dl, EVT DestVT = MVT::Other) {
  if (DestVT == MVT::Other) DestVT = Op.getValueType();
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
                     DAG.getConstant(IID, dl, MVT::i32), Op);
}

/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
                                SelectionDAG &DAG, const SDLoc &dl,
                                EVT DestVT = MVT::Other) {
  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
                     DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
}

/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
                                SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
                                EVT DestVT = MVT::Other) {
  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
                     DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
}

/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
/// amount.  The result has the specified value type.
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
                           SelectionDAG &DAG, const SDLoc &dl) {
  // Force LHS/RHS to be the right type.
  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);

  int Ops[16];
  for (unsigned i = 0; i != 16; ++i)
    Ops[i] = i + Amt;
  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
  return DAG.getNode(ISD::BITCAST, dl, VT, T);
}

/// Do we have an efficient pattern in a .td file for this node?
///
/// \param V - pointer to the BuildVectorSDNode being matched
/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
///
/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
/// the opposite is true (expansion is beneficial) are:
/// - The node builds a vector out of integers that are not 32 or 64-bits
/// - The node builds a vector out of constants
/// - The node is a "load-and-splat"
/// In all other cases, we will choose to keep the BUILD_VECTOR.
static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
                                            bool HasDirectMove,
                                            bool HasP8Vector) {
  EVT VecVT = V->getValueType(0);
  bool RightType = VecVT == MVT::v2f64 ||
    (HasP8Vector && VecVT == MVT::v4f32) ||
    (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
  if (!RightType)
    return false;

  bool IsSplat = true;
  bool IsLoad = false;
  SDValue Op0 = V->getOperand(0);

  // This function is called in a block that confirms the node is not a constant
  // splat. So a constant BUILD_VECTOR here means the vector is built out of
  // different constants.
  if (V->isConstant())
    return false;
  for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
    if (V->getOperand(i).isUndef())
      return false;
    // We want to expand nodes that represent load-and-splat even if the
    // loaded value is a floating point truncation or conversion to int.
    if (V->getOperand(i).getOpcode() == ISD::LOAD ||
        (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
        (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
        (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
      IsLoad = true;
    // If the operands are different or the input is not a load and has more
    // uses than just this BV node, then it isn't a splat.
    if (V->getOperand(i) != Op0 ||
        (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
      IsSplat = false;
  }
  return !(IsSplat && IsLoad);
}

// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {

  SDLoc dl(Op);
  SDValue Op0 = Op->getOperand(0);

  if ((Op.getValueType() != MVT::f128) ||
      (Op0.getOpcode() != ISD::BUILD_PAIR) ||
      (Op0.getOperand(0).getValueType() != MVT::i64) ||
      (Op0.getOperand(1).getValueType() != MVT::i64))
    return SDValue();

  return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
                     Op0.getOperand(1));
}

static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
  const SDValue *InputLoad = &Op;
  if (InputLoad->getOpcode() == ISD::BITCAST)
    InputLoad = &InputLoad->getOperand(0);
  if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
      InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
    IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
    InputLoad = &InputLoad->getOperand(0);
  }
  if (InputLoad->getOpcode() != ISD::LOAD)
    return nullptr;
  LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
  return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
}

// Convert the argument APFloat to a single precision APFloat if there is no
// loss in information during the conversion to single precision APFloat and the
// resulting number is not a denormal number. Return true if successful.
bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
  APFloat APFloatToConvert = ArgAPFloat;
  bool LosesInfo = true;
  APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
                           &LosesInfo);
  bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
  if (Success)
    ArgAPFloat = APFloatToConvert;
  return Success;
}

// Bitcast the argument APInt to a double and convert it to a single precision
// APFloat, bitcast the APFloat to an APInt and assign it to the original
// argument if there is no loss in information during the conversion from
// double to single precision APFloat and the resulting number is not a denormal
// number. Return true if successful.
bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
  double DpValue = ArgAPInt.bitsToDouble();
  APFloat APFloatDp(DpValue);
  bool Success = convertToNonDenormSingle(APFloatDp);
  if (Success)
    ArgAPInt = APFloatDp.bitcastToAPInt();
  return Success;
}

// If this is a case we can't handle, return null and let the default
// expansion code take care of it.  If we CAN select this case, and if it
// selects to a single instruction, return Op.  Otherwise, if we can codegen
// this case more efficiently than a constant pool load, lower it to the
// sequence of ops that should be used.
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDLoc dl(Op);
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");

  if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
    // We first build an i32 vector, load it into a QPX register,
    // then convert it to a floating-point vector and compare it
    // to a zero vector to get the boolean result.
    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
    int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
    MachinePointerInfo PtrInfo =
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

    assert(BVN->getNumOperands() == 4 &&
      "BUILD_VECTOR for v4i1 does not have 4 operands");

    bool IsConst = true;
    for (unsigned i = 0; i < 4; ++i) {
      if (BVN->getOperand(i).isUndef()) continue;
      if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
        IsConst = false;
        break;
      }
    }

    if (IsConst) {
      Constant *One =
        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
      Constant *NegOne =
        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);

      Constant *CV[4];
      for (unsigned i = 0; i < 4; ++i) {
        if (BVN->getOperand(i).isUndef())
          CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
        else if (isNullConstant(BVN->getOperand(i)))
          CV[i] = NegOne;
        else
          CV[i] = One;
      }

      Constant *CP = ConstantVector::get(CV);
      SDValue CPIdx =
          DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16));

      SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
      SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
      return DAG.getMemIntrinsicNode(
          PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
    }

    SmallVector<SDValue, 4> Stores;
    for (unsigned i = 0; i < 4; ++i) {
      if (BVN->getOperand(i).isUndef()) continue;

      unsigned Offset = 4*i;
      SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
      Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);

      unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
      if (StoreSize > 4) {
        Stores.push_back(
            DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
                              PtrInfo.getWithOffset(Offset), MVT::i32));
      } else {
        SDValue StoreValue = BVN->getOperand(i);
        if (StoreSize < 4)
          StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);

        Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
                                      PtrInfo.getWithOffset(Offset)));
      }
    }

    SDValue StoreChain;
    if (!Stores.empty())
      StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
    else
      StoreChain = DAG.getEntryNode();

    // Now load from v4i32 into the QPX register; this will extend it to
    // v4i64 but not yet convert it to a floating point. Nevertheless, this
    // is typed as v4f64 because the QPX register integer states are not
    // explicitly represented.

    SDValue Ops[] = {StoreChain,
                     DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
                     FIdx};
    SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});

    SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
      dl, VTs, Ops, MVT::v4i32, PtrInfo);
    LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
      DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
      LoadedVect);

    SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);

    return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
  }

  // All other QPX vectors are handled by generic code.
  if (Subtarget.hasQPX())
    return SDValue();

  // Check if this is a splat of a constant value.
  APInt APSplatBits, APSplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  bool BVNIsConstantSplat =
      BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
                           HasAnyUndefs, 0, !Subtarget.isLittleEndian());

  // If it is a splat of a double, check if we can shrink it to a 32 bit
  // non-denormal float which when converted back to double gives us the same
  // double. This is to exploit the XXSPLTIDP instruction.
  if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
      (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
      convertToNonDenormSingle(APSplatBits)) {
    SDValue SplatNode = DAG.getNode(
        PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
        DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
    return DAG.getBitcast(Op.getValueType(), SplatNode);
  }

  if (!BVNIsConstantSplat || SplatBitSize > 32) {

    bool IsPermutedLoad = false;
    const SDValue *InputLoad =
        getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
    // Handle load-and-splat patterns as we have instructions that will do this
    // in one go.
    if (InputLoad && DAG.isSplatValue(Op, true)) {
      LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);

      // We have handling for 4 and 8 byte elements.
      unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();

      // Checking for a single use of this load, we have to check for vector
      // width (128 bits) / ElementSize uses (since each operand of the
      // BUILD_VECTOR is a separate use of the value.
      if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
          ((Subtarget.hasVSX() && ElementSize == 64) ||
           (Subtarget.hasP9Vector() && ElementSize == 32))) {
        SDValue Ops[] = {
          LD->getChain(),    // Chain
          LD->getBasePtr(),  // Ptr
          DAG.getValueType(Op.getValueType()) // VT
        };
        return
          DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
                                  DAG.getVTList(Op.getValueType(), MVT::Other),
                                  Ops, LD->getMemoryVT(), LD->getMemOperand());
      }
    }

    // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
    // lowered to VSX instructions under certain conditions.
    // Without VSX, there is no pattern more efficient than expanding the node.
    if (Subtarget.hasVSX() &&
        haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
                                        Subtarget.hasP8Vector()))
      return Op;
    return SDValue();
  }

  uint64_t SplatBits = APSplatBits.getZExtValue();
  uint64_t SplatUndef = APSplatUndef.getZExtValue();
  unsigned SplatSize = SplatBitSize / 8;

  // First, handle single instruction cases.

  // All zeros?
  if (SplatBits == 0) {
    // Canonicalize all zero vectors to be v4i32.
    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
      SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
    }
    return Op;
  }

  // We have XXSPLTIW for constant splats four bytes wide.
  // Given vector length is a multiple of 4, 2-byte splats can be replaced
  // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
  // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
  // turned into a 4-byte splat of 0xABABABAB.
  if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
    return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
                                  Op.getValueType(), DAG, dl);

  if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
    return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
                                  dl);

  // We have XXSPLTIB for constant splats one byte wide.
  if (Subtarget.hasP9Vector() && SplatSize == 1)
    return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
                                  dl);

  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
                    (32-SplatBitSize));
  if (SextVal >= -16 && SextVal <= 15)
    return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
                                  dl);

  // Two instruction sequences.

  // If this value is in the range [-32,30] and is even, use:
  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
  // If this value is in the range [17,31] and is odd, use:
  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
  // If this value is in the range [-31,-17] and is odd, use:
  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
  // Note the last two are three-instruction sequences.
  if (SextVal >= -32 && SextVal <= 31) {
    // To avoid having these optimizations undone by constant folding,
    // we convert to a pseudo that will be expanded later into one of
    // the above forms.
    SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
    SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
    if (VT == Op.getValueType())
      return RetVal;
    else
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
  }

  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
  // for fneg/fabs.
  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
    // Make -1 and vspltisw -1:
    SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);

    // Make the VSLW intrinsic, computing 0x8000_0000.
    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
                                   OnesV, DAG, dl);

    // xor by OnesV to invert it.
    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
  }

  // Check to see if this is a wide variety of vsplti*, binop self cases.
  static const signed char SplatCsts[] = {
    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
  };

  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
    int i = SplatCsts[idx];

    // Figure out what shift amount will be used by altivec if shifted by i in
    // this splat size.
    unsigned TypeShiftAmt = i & (SplatBitSize-1);

    // vsplti + shl self.
    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
        Intrinsic::ppc_altivec_vslw
      };
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
    }

    // vsplti + srl self.
    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
        Intrinsic::ppc_altivec_vsrw
      };
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
    }

    // vsplti + sra self.
    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
        Intrinsic::ppc_altivec_vsraw
      };
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
    }

    // vsplti + rol self.
    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
      SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
        Intrinsic::ppc_altivec_vrlw
      };
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
    }

    // t = vsplti c, result = vsldoi t, t, 1
    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
      unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
    }
    // t = vsplti c, result = vsldoi t, t, 2
    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
      unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
    }
    // t = vsplti c, result = vsldoi t, t, 3
    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
      SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
      unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
    }
  }

  return SDValue();
}

/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
                                      SDValue RHS, SelectionDAG &DAG,
                                      const SDLoc &dl) {
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);

  enum {
    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
    OP_VMRGHW,
    OP_VMRGLW,
    OP_VSPLTISW0,
    OP_VSPLTISW1,
    OP_VSPLTISW2,
    OP_VSPLTISW3,
    OP_VSLDOI4,
    OP_VSLDOI8,
    OP_VSLDOI12
  };

  if (OpNum == OP_COPY) {
    if (LHSID == (1*9+2)*9+3) return LHS;
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
    return RHS;
  }

  SDValue OpLHS, OpRHS;
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);

  int ShufIdxs[16];
  switch (OpNum) {
  default: llvm_unreachable("Unknown i32 permute!");
  case OP_VMRGHW:
    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
    break;
  case OP_VMRGLW:
    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
    break;
  case OP_VSPLTISW0:
    for (unsigned i = 0; i != 16; ++i)
      ShufIdxs[i] = (i&3)+0;
    break;
  case OP_VSPLTISW1:
    for (unsigned i = 0; i != 16; ++i)
      ShufIdxs[i] = (i&3)+4;
    break;
  case OP_VSPLTISW2:
    for (unsigned i = 0; i != 16; ++i)
      ShufIdxs[i] = (i&3)+8;
    break;
  case OP_VSPLTISW3:
    for (unsigned i = 0; i != 16; ++i)
      ShufIdxs[i] = (i&3)+12;
    break;
  case OP_VSLDOI4:
    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
  case OP_VSLDOI8:
    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
  case OP_VSLDOI12:
    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
  }
  EVT VT = OpLHS.getValueType();
  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
  return DAG.getNode(ISD::BITCAST, dl, VT, T);
}

/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
/// SDValue.
SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
                                           SelectionDAG &DAG) const {
  const unsigned BytesInVector = 16;
  bool IsLE = Subtarget.isLittleEndian();
  SDLoc dl(N);
  SDValue V1 = N->getOperand(0);
  SDValue V2 = N->getOperand(1);
  unsigned ShiftElts = 0, InsertAtByte = 0;
  bool Swap = false;

  // Shifts required to get the byte we want at element 7.
  unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
                                   0, 15, 14, 13, 12, 11, 10, 9};
  unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
                                1, 2,  3,  4,  5,  6,  7,  8};

  ArrayRef<int> Mask = N->getMask();
  int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};

  // For each mask element, find out if we're just inserting something
  // from V2 into V1 or vice versa.
  // Possible permutations inserting an element from V2 into V1:
  //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  //   ...
  //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
  // Inserting from V1 into V2 will be similar, except mask range will be
  // [16,31].

  bool FoundCandidate = false;
  // If both vector operands for the shuffle are the same vector, the mask
  // will contain only elements from the first one and the second one will be
  // undef.
  unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
  // Go through the mask of half-words to find an element that's being moved
  // from one vector to the other.
  for (unsigned i = 0; i < BytesInVector; ++i) {
    unsigned CurrentElement = Mask[i];
    // If 2nd operand is undefined, we should only look for element 7 in the
    // Mask.
    if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
      continue;

    bool OtherElementsInOrder = true;
    // Examine the other elements in the Mask to see if they're in original
    // order.
    for (unsigned j = 0; j < BytesInVector; ++j) {
      if (j == i)
        continue;
      // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
      // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
      // in which we always assume we're always picking from the 1st operand.
      int MaskOffset =
          (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
      if (Mask[j] != OriginalOrder[j] + MaskOffset) {
        OtherElementsInOrder = false;
        break;
      }
    }
    // If other elements are in original order, we record the number of shifts
    // we need to get the element we want into element 7. Also record which byte
    // in the vector we should insert into.
    if (OtherElementsInOrder) {
      // If 2nd operand is undefined, we assume no shifts and no swapping.
      if (V2.isUndef()) {
        ShiftElts = 0;
        Swap = false;
      } else {
        // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
        ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
                         : BigEndianShifts[CurrentElement & 0xF];
        Swap = CurrentElement < BytesInVector;
      }
      InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
      FoundCandidate = true;
      break;
    }
  }

  if (!FoundCandidate)
    return SDValue();

  // Candidate found, construct the proper SDAG sequence with VINSERTB,
  // optionally with VECSHL if shift is required.
  if (Swap)
    std::swap(V1, V2);
  if (V2.isUndef())
    V2 = V1;
  if (ShiftElts) {
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
    return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
  }
  return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
                     DAG.getConstant(InsertAtByte, dl, MVT::i32));
}

/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
/// SDValue.
SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
                                           SelectionDAG &DAG) const {
  const unsigned NumHalfWords = 8;
  const unsigned BytesInVector = NumHalfWords * 2;
  // Check that the shuffle is on half-words.
  if (!isNByteElemShuffleMask(N, 2, 1))
    return SDValue();

  bool IsLE = Subtarget.isLittleEndian();
  SDLoc dl(N);
  SDValue V1 = N->getOperand(0);
  SDValue V2 = N->getOperand(1);
  unsigned ShiftElts = 0, InsertAtByte = 0;
  bool Swap = false;

  // Shifts required to get the half-word we want at element 3.
  unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
  unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};

  uint32_t Mask = 0;
  uint32_t OriginalOrderLow = 0x1234567;
  uint32_t OriginalOrderHigh = 0x89ABCDEF;
  // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
  // 32-bit space, only need 4-bit nibbles per element.
  for (unsigned i = 0; i < NumHalfWords; ++i) {
    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
    Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
  }

  // For each mask element, find out if we're just inserting something
  // from V2 into V1 or vice versa.  Possible permutations inserting an element
  // from V2 into V1:
  //   X, 1, 2, 3, 4, 5, 6, 7
  //   0, X, 2, 3, 4, 5, 6, 7
  //   0, 1, X, 3, 4, 5, 6, 7
  //   0, 1, 2, X, 4, 5, 6, 7
  //   0, 1, 2, 3, X, 5, 6, 7
  //   0, 1, 2, 3, 4, X, 6, 7
  //   0, 1, 2, 3, 4, 5, X, 7
  //   0, 1, 2, 3, 4, 5, 6, X
  // Inserting from V1 into V2 will be similar, except mask range will be [8,15].

  bool FoundCandidate = false;
  // Go through the mask of half-words to find an element that's being moved
  // from one vector to the other.
  for (unsigned i = 0; i < NumHalfWords; ++i) {
    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
    uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
    uint32_t MaskOtherElts = ~(0xF << MaskShift);
    uint32_t TargetOrder = 0x0;

    // If both vector operands for the shuffle are the same vector, the mask
    // will contain only elements from the first one and the second one will be
    // undef.
    if (V2.isUndef()) {
      ShiftElts = 0;
      unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
      TargetOrder = OriginalOrderLow;
      Swap = false;
      // Skip if not the correct element or mask of other elements don't equal
      // to our expected order.
      if (MaskOneElt == VINSERTHSrcElem &&
          (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
        FoundCandidate = true;
        break;
      }
    } else { // If both operands are defined.
      // Target order is [8,15] if the current mask is between [0,7].
      TargetOrder =
          (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
      // Skip if mask of other elements don't equal our expected order.
      if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
        // We only need the last 3 bits for the number of shifts.
        ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
                         : BigEndianShifts[MaskOneElt & 0x7];
        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
        Swap = MaskOneElt < NumHalfWords;
        FoundCandidate = true;
        break;
      }
    }
  }

  if (!FoundCandidate)
    return SDValue();

  // Candidate found, construct the proper SDAG sequence with VINSERTH,
  // optionally with VECSHL if shift is required.
  if (Swap)
    std::swap(V1, V2);
  if (V2.isUndef())
    V2 = V1;
  SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
  if (ShiftElts) {
    // Double ShiftElts because we're left shifting on v16i8 type.
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
                              DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
  }
  SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
  SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
                            DAG.getConstant(InsertAtByte, dl, MVT::i32));
  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
}

/// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
/// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
/// return the default SDValue.
SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
                                              SelectionDAG &DAG) const {
  // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
  // to v16i8. Peek through the bitcasts to get the actual operands.
  SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
  SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));

  auto ShuffleMask = SVN->getMask();
  SDValue VecShuffle(SVN, 0);
  SDLoc DL(SVN);

  // Check that we have a four byte shuffle.
  if (!isNByteElemShuffleMask(SVN, 4, 1))
    return SDValue();

  // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
  if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
    std::swap(LHS, RHS);
    VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
    ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
  }

  // Ensure that the RHS is a vector of constants.
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
  if (!BVN)
    return SDValue();

  // Check if RHS is a splat of 4-bytes (or smaller).
  APInt APSplatValue, APSplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;
  if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
                            HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
      SplatBitSize > 32)
    return SDValue();

  // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
  // The instruction splats a constant C into two words of the source vector
  // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
  // Thus we check that the shuffle mask is the equivalent  of
  // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
  // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
  // within each word are consecutive, so we only need to check the first byte.
  SDValue Index;
  bool IsLE = Subtarget.isLittleEndian();
  if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
      (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
       ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
    Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
  else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
           (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
            ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
    Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
  else
    return SDValue();

  // If the splat is narrower than 32-bits, we need to get the 32-bit value
  // for XXSPLTI32DX.
  unsigned SplatVal = APSplatValue.getZExtValue();
  for (; SplatBitSize < 32; SplatBitSize <<= 1)
    SplatVal |= (SplatVal << SplatBitSize);

  SDValue SplatNode = DAG.getNode(
      PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
      Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
  return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
}

/// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
/// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
/// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
/// i.e (or (shl x, C1), (srl x, 128-C1)).
SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
  assert(Op.getValueType() == MVT::v1i128 &&
         "Only set v1i128 as custom, other type shouldn't reach here!");
  SDLoc dl(Op);
  SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
  SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
  unsigned SHLAmt = N1.getConstantOperandVal(0);
  if (SHLAmt % 8 == 0) {
    SmallVector<int, 16> Mask(16, 0);
    std::iota(Mask.begin(), Mask.end(), 0);
    std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
    if (SDValue Shuffle =
            DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
                                 DAG.getUNDEF(MVT::v16i8), Mask))
      return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
  }
  SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
  SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
                              DAG.getConstant(SHLAmt, dl, MVT::i32));
  SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
                              DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
  SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
  return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
}

/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
/// return the code it can be lowered into.  Worst case, it can always be
/// lowered into a vperm.
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);

  // Any nodes that were combined in the target-independent combiner prior
  // to vector legalization will not be sent to the target combine. Try to
  // combine it here.
  if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
    if (!isa<ShuffleVectorSDNode>(NewShuffle))
      return NewShuffle;
    Op = NewShuffle;
    SVOp = cast<ShuffleVectorSDNode>(Op);
    V1 = Op.getOperand(0);
    V2 = Op.getOperand(1);
  }
  EVT VT = Op.getValueType();
  bool isLittleEndian = Subtarget.isLittleEndian();

  unsigned ShiftElts, InsertAtByte;
  bool Swap = false;

  // If this is a load-and-splat, we can do that with a single instruction
  // in some cases. However if the load has multiple uses, we don't want to
  // combine it because that will just produce multiple loads.
  bool IsPermutedLoad = false;
  const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
  if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
      (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
      InputLoad->hasOneUse()) {
    bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
    int SplatIdx =
      PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);

    // The splat index for permuted loads will be in the left half of the vector
    // which is strictly wider than the loaded value by 8 bytes. So we need to
    // adjust the splat index to point to the correct address in memory.
    if (IsPermutedLoad) {
      assert(isLittleEndian && "Unexpected permuted load on big endian target");
      SplatIdx += IsFourByte ? 2 : 1;
      assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
             "Splat of a value outside of the loaded memory");
    }

    LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
    // For 4-byte load-and-splat, we need Power9.
    if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
      uint64_t Offset = 0;
      if (IsFourByte)
        Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
      else
        Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;

      SDValue BasePtr = LD->getBasePtr();
      if (Offset != 0)
        BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
                              BasePtr, DAG.getIntPtrConstant(Offset, dl));
      SDValue Ops[] = {
        LD->getChain(),    // Chain
        BasePtr,           // BasePtr
        DAG.getValueType(Op.getValueType()) // VT
      };
      SDVTList VTL =
        DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
      SDValue LdSplt =
        DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
                                Ops, LD->getMemoryVT(), LD->getMemOperand());
      if (LdSplt.getValueType() != SVOp->getValueType(0))
        LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
      return LdSplt;
    }
  }
  if (Subtarget.hasP9Vector() &&
      PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
                           isLittleEndian)) {
    if (Swap)
      std::swap(V1, V2);
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
    if (ShiftElts) {
      SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
                                DAG.getConstant(ShiftElts, dl, MVT::i32));
      SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
                                DAG.getConstant(InsertAtByte, dl, MVT::i32));
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
    }
    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
  }

  if (Subtarget.hasPrefixInstrs()) {
    SDValue SplatInsertNode;
    if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
      return SplatInsertNode;
  }

  if (Subtarget.hasP9Altivec()) {
    SDValue NewISDNode;
    if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
      return NewISDNode;

    if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
      return NewISDNode;
  }

  if (Subtarget.hasVSX() &&
      PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
    if (Swap)
      std::swap(V1, V2);
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
    SDValue Conv2 =
        DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);

    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
  }

  if (Subtarget.hasVSX() &&
    PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
    if (Swap)
      std::swap(V1, V2);
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
    SDValue Conv2 =
        DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);

    SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
  }

  if (Subtarget.hasP9Vector()) {
     if (PPC::isXXBRHShuffleMask(SVOp)) {
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
      SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
    } else if (PPC::isXXBRWShuffleMask(SVOp)) {
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
      SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
    } else if (PPC::isXXBRDShuffleMask(SVOp)) {
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
      SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
    } else if (PPC::isXXBRQShuffleMask(SVOp)) {
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
      SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
    }
  }

  if (Subtarget.hasVSX()) {
    if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
      int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);

      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
      SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
                                  DAG.getConstant(SplatIdx, dl, MVT::i32));
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
    }

    // Left shifts of 8 bytes are actually swaps. Convert accordingly.
    if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
      SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
    }
  }

  if (Subtarget.hasQPX()) {
    if (VT.getVectorNumElements() != 4)
      return SDValue();

    if (V2.isUndef()) V2 = V1;

    int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
    if (AlignIdx != -1) {
      return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
                         DAG.getConstant(AlignIdx, dl, MVT::i32));
    } else if (SVOp->isSplat()) {
      int SplatIdx = SVOp->getSplatIndex();
      if (SplatIdx >= 4) {
        std::swap(V1, V2);
        SplatIdx -= 4;
      }

      return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
                         DAG.getConstant(SplatIdx, dl, MVT::i32));
    }

    // Lower this into a qvgpci/qvfperm pair.

    // Compute the qvgpci literal
    unsigned idx = 0;
    for (unsigned i = 0; i < 4; ++i) {
      int m = SVOp->getMaskElt(i);
      unsigned mm = m >= 0 ? (unsigned) m : i;
      idx |= mm << (3-i)*3;
    }

    SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
                             DAG.getConstant(idx, dl, MVT::i32));
    return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
  }

  // Cases that are handled by instructions that take permute immediates
  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
  // selected by the instruction selector.
  if (V2.isUndef()) {
    if (PPC::isSplatShuffleMask(SVOp, 1) ||
        PPC::isSplatShuffleMask(SVOp, 2) ||
        PPC::isSplatShuffleMask(SVOp, 4) ||
        PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
        PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
        PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
        PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
        PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
        PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
        PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
        PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
        (Subtarget.hasP8Altivec() && (
         PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
         PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
         PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
      return Op;
    }
  }

  // Altivec has a variety of "shuffle immediates" that take two vector inputs
  // and produce a fixed permutation.  If any of these match, do not lower to
  // VPERM.
  unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
  if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
      PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
      PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
      PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
      PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
      PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
      PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
      PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
      (Subtarget.hasP8Altivec() && (
       PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
       PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
       PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
    return Op;

  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
  // perfect shuffle table to emit an optimal matching sequence.
  ArrayRef<int> PermMask = SVOp->getMask();

  unsigned PFIndexes[4];
  bool isFourElementShuffle = true;
  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
    unsigned EltNo = 8;   // Start out undef.
    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
      if (PermMask[i*4+j] < 0)
        continue;   // Undef, ignore it.

      unsigned ByteSource = PermMask[i*4+j];
      if ((ByteSource & 3) != j) {
        isFourElementShuffle = false;
        break;
      }

      if (EltNo == 8) {
        EltNo = ByteSource/4;
      } else if (EltNo != ByteSource/4) {
        isFourElementShuffle = false;
        break;
      }
    }
    PFIndexes[i] = EltNo;
  }

  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
  // perfect shuffle vector to determine if it is cost effective to do this as
  // discrete instructions, or whether we should use a vperm.
  // For now, we skip this for little endian until such time as we have a
  // little-endian perfect shuffle table.
  if (isFourElementShuffle && !isLittleEndian) {
    // Compute the index in the perfect shuffle table.
    unsigned PFTableIndex =
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];

    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
    unsigned Cost  = (PFEntry >> 30);

    // Determining when to avoid vperm is tricky.  Many things affect the cost
    // of vperm, particularly how many times the perm mask needs to be computed.
    // For example, if the perm mask can be hoisted out of a loop or is already
    // used (perhaps because there are multiple permutes with the same shuffle
    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
    // the loop requires an extra register.
    //
    // As a compromise, we only emit discrete instructions if the shuffle can be
    // generated in 3 or fewer operations.  When we have loop information
    // available, if this block is within a loop, we should avoid using vperm
    // for 3-operation perms and use a constant pool load instead.
    if (Cost < 3)
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
  }

  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
  // vector that will get spilled to the constant pool.
  if (V2.isUndef()) V2 = V1;

  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
  // that it is in input element units, not in bytes.  Convert now.

  // For little endian, the order of the input vectors is reversed, and
  // the permutation mask is complemented with respect to 31.  This is
  // necessary to produce proper semantics with the big-endian-biased vperm
  // instruction.
  EVT EltVT = V1.getValueType().getVectorElementType();
  unsigned BytesPerElement = EltVT.getSizeInBits()/8;

  SmallVector<SDValue, 16> ResultMask;
  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];

    for (unsigned j = 0; j != BytesPerElement; ++j)
      if (isLittleEndian)
        ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
                                             dl, MVT::i32));
      else
        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
                                             MVT::i32));
  }

  ShufflesHandledWithVPERM++;
  SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
  LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
  LLVM_DEBUG(SVOp->dump());
  LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
  LLVM_DEBUG(VPermMask.dump());

  if (isLittleEndian)
    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
                       V2, V1, VPermMask);
  else
    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
                       V1, V2, VPermMask);
}

/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
/// vector comparison.  If it is, return true and fill in Opc/isDot with
/// information about the intrinsic.
static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
                                 bool &isDot, const PPCSubtarget &Subtarget) {
  unsigned IntrinsicID =
      cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
  CompareOpc = -1;
  isDot = false;
  switch (IntrinsicID) {
  default:
    return false;
  // Comparison predicates.
  case Intrinsic::ppc_altivec_vcmpbfp_p:
    CompareOpc = 966;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpeqfp_p:
    CompareOpc = 198;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpequb_p:
    CompareOpc = 6;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpequh_p:
    CompareOpc = 70;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpequw_p:
    CompareOpc = 134;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpequd_p:
    if (Subtarget.hasP8Altivec()) {
      CompareOpc = 199;
      isDot = true;
    } else
      return false;
    break;
  case Intrinsic::ppc_altivec_vcmpneb_p:
  case Intrinsic::ppc_altivec_vcmpneh_p:
  case Intrinsic::ppc_altivec_vcmpnew_p:
  case Intrinsic::ppc_altivec_vcmpnezb_p:
  case Intrinsic::ppc_altivec_vcmpnezh_p:
  case Intrinsic::ppc_altivec_vcmpnezw_p:
    if (Subtarget.hasP9Altivec()) {
      switch (IntrinsicID) {
      default:
        llvm_unreachable("Unknown comparison intrinsic.");
      case Intrinsic::ppc_altivec_vcmpneb_p:
        CompareOpc = 7;
        break;
      case Intrinsic::ppc_altivec_vcmpneh_p:
        CompareOpc = 71;
        break;
      case Intrinsic::ppc_altivec_vcmpnew_p:
        CompareOpc = 135;
        break;
      case Intrinsic::ppc_altivec_vcmpnezb_p:
        CompareOpc = 263;
        break;
      case Intrinsic::ppc_altivec_vcmpnezh_p:
        CompareOpc = 327;
        break;
      case Intrinsic::ppc_altivec_vcmpnezw_p:
        CompareOpc = 391;
        break;
      }
      isDot = true;
    } else
      return false;
    break;
  case Intrinsic::ppc_altivec_vcmpgefp_p:
    CompareOpc = 454;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtfp_p:
    CompareOpc = 710;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsb_p:
    CompareOpc = 774;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsh_p:
    CompareOpc = 838;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsw_p:
    CompareOpc = 902;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsd_p:
    if (Subtarget.hasP8Altivec()) {
      CompareOpc = 967;
      isDot = true;
    } else
      return false;
    break;
  case Intrinsic::ppc_altivec_vcmpgtub_p:
    CompareOpc = 518;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtuh_p:
    CompareOpc = 582;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtuw_p:
    CompareOpc = 646;
    isDot = true;
    break;
  case Intrinsic::ppc_altivec_vcmpgtud_p:
    if (Subtarget.hasP8Altivec()) {
      CompareOpc = 711;
      isDot = true;
    } else
      return false;
    break;

  // VSX predicate comparisons use the same infrastructure
  case Intrinsic::ppc_vsx_xvcmpeqdp_p:
  case Intrinsic::ppc_vsx_xvcmpgedp_p:
  case Intrinsic::ppc_vsx_xvcmpgtdp_p:
  case Intrinsic::ppc_vsx_xvcmpeqsp_p:
  case Intrinsic::ppc_vsx_xvcmpgesp_p:
  case Intrinsic::ppc_vsx_xvcmpgtsp_p:
    if (Subtarget.hasVSX()) {
      switch (IntrinsicID) {
      case Intrinsic::ppc_vsx_xvcmpeqdp_p:
        CompareOpc = 99;
        break;
      case Intrinsic::ppc_vsx_xvcmpgedp_p:
        CompareOpc = 115;
        break;
      case Intrinsic::ppc_vsx_xvcmpgtdp_p:
        CompareOpc = 107;
        break;
      case Intrinsic::ppc_vsx_xvcmpeqsp_p:
        CompareOpc = 67;
        break;
      case Intrinsic::ppc_vsx_xvcmpgesp_p:
        CompareOpc = 83;
        break;
      case Intrinsic::ppc_vsx_xvcmpgtsp_p:
        CompareOpc = 75;
        break;
      }
      isDot = true;
    } else
      return false;
    break;

  // Normal Comparisons.
  case Intrinsic::ppc_altivec_vcmpbfp:
    CompareOpc = 966;
    break;
  case Intrinsic::ppc_altivec_vcmpeqfp:
    CompareOpc = 198;
    break;
  case Intrinsic::ppc_altivec_vcmpequb:
    CompareOpc = 6;
    break;
  case Intrinsic::ppc_altivec_vcmpequh:
    CompareOpc = 70;
    break;
  case Intrinsic::ppc_altivec_vcmpequw:
    CompareOpc = 134;
    break;
  case Intrinsic::ppc_altivec_vcmpequd:
    if (Subtarget.hasP8Altivec())
      CompareOpc = 199;
    else
      return false;
    break;
  case Intrinsic::ppc_altivec_vcmpneb:
  case Intrinsic::ppc_altivec_vcmpneh:
  case Intrinsic::ppc_altivec_vcmpnew:
  case Intrinsic::ppc_altivec_vcmpnezb:
  case Intrinsic::ppc_altivec_vcmpnezh:
  case Intrinsic::ppc_altivec_vcmpnezw:
    if (Subtarget.hasP9Altivec())
      switch (IntrinsicID) {
      default:
        llvm_unreachable("Unknown comparison intrinsic.");
      case Intrinsic::ppc_altivec_vcmpneb:
        CompareOpc = 7;
        break;
      case Intrinsic::ppc_altivec_vcmpneh:
        CompareOpc = 71;
        break;
      case Intrinsic::ppc_altivec_vcmpnew:
        CompareOpc = 135;
        break;
      case Intrinsic::ppc_altivec_vcmpnezb:
        CompareOpc = 263;
        break;
      case Intrinsic::ppc_altivec_vcmpnezh:
        CompareOpc = 327;
        break;
      case Intrinsic::ppc_altivec_vcmpnezw:
        CompareOpc = 391;
        break;
      }
    else
      return false;
    break;
  case Intrinsic::ppc_altivec_vcmpgefp:
    CompareOpc = 454;
    break;
  case Intrinsic::ppc_altivec_vcmpgtfp:
    CompareOpc = 710;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsb:
    CompareOpc = 774;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsh:
    CompareOpc = 838;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsw:
    CompareOpc = 902;
    break;
  case Intrinsic::ppc_altivec_vcmpgtsd:
    if (Subtarget.hasP8Altivec())
      CompareOpc = 967;
    else
      return false;
    break;
  case Intrinsic::ppc_altivec_vcmpgtub:
    CompareOpc = 518;
    break;
  case Intrinsic::ppc_altivec_vcmpgtuh:
    CompareOpc = 582;
    break;
  case Intrinsic::ppc_altivec_vcmpgtuw:
    CompareOpc = 646;
    break;
  case Intrinsic::ppc_altivec_vcmpgtud:
    if (Subtarget.hasP8Altivec())
      CompareOpc = 711;
    else
      return false;
    break;
  }
  return true;
}

/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
/// lower, do it, otherwise return null.
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
                                                   SelectionDAG &DAG) const {
  unsigned IntrinsicID =
    cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();

  SDLoc dl(Op);

  if (IntrinsicID == Intrinsic::thread_pointer) {
    // Reads the thread pointer register, used for __builtin_thread_pointer.
    if (Subtarget.isPPC64())
      return DAG.getRegister(PPC::X13, MVT::i64);
    return DAG.getRegister(PPC::R2, MVT::i32);
  }

  // If this is a lowered altivec predicate compare, CompareOpc is set to the
  // opcode number of the comparison.
  int CompareOpc;
  bool isDot;
  if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
    return SDValue();    // Don't custom lower most intrinsics.

  // If this is a non-dot comparison, make the VCMP node and we are done.
  if (!isDot) {
    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
                              Op.getOperand(1), Op.getOperand(2),
                              DAG.getConstant(CompareOpc, dl, MVT::i32));
    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
  }

  // Create the PPCISD altivec 'dot' comparison node.
  SDValue Ops[] = {
    Op.getOperand(2),  // LHS
    Op.getOperand(3),  // RHS
    DAG.getConstant(CompareOpc, dl, MVT::i32)
  };
  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);

  // Now that we have the comparison, emit a copy from the CR to a GPR.
  // This is flagged to the above dot comparison.
  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
                                DAG.getRegister(PPC::CR6, MVT::i32),
                                CompNode.getValue(1));

  // Unpack the result based on how the target uses it.
  unsigned BitNo;   // Bit # of CR6.
  bool InvertBit;   // Invert result?
  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
  default:  // Can't happen, don't crash on invalid number though.
  case 0:   // Return the value of the EQ bit of CR6.
    BitNo = 0; InvertBit = false;
    break;
  case 1:   // Return the inverted value of the EQ bit of CR6.
    BitNo = 0; InvertBit = true;
    break;
  case 2:   // Return the value of the LT bit of CR6.
    BitNo = 2; InvertBit = false;
    break;
  case 3:   // Return the inverted value of the LT bit of CR6.
    BitNo = 2; InvertBit = true;
    break;
  }

  // Shift the bit into the low position.
  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
                      DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
  // Isolate the bit.
  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
                      DAG.getConstant(1, dl, MVT::i32));

  // If we are supposed to, toggle the bit.
  if (InvertBit)
    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
                        DAG.getConstant(1, dl, MVT::i32));
  return Flags;
}

SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
                                               SelectionDAG &DAG) const {
  // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
  // the beginning of the argument list.
  int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
  SDLoc DL(Op);
  switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
  case Intrinsic::ppc_cfence: {
    assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
    assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
    return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
                                      DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
                                                  Op.getOperand(ArgStart + 1)),
                                      Op.getOperand(0)),
                   0);
  }
  default:
    break;
  }
  return SDValue();
}

// Lower scalar BSWAP64 to xxbrd.
SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  // MTVSRDD
  Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
                   Op.getOperand(0));
  // XXBRD
  Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
  // MFVSRD
  int VectorIndex = 0;
  if (Subtarget.isLittleEndian())
    VectorIndex = 1;
  Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
                   DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
  return Op;
}

// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
// compared to a value that is atomically loaded (atomic loads zero-extend).
SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
                                                SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
         "Expecting an atomic compare-and-swap here.");
  SDLoc dl(Op);
  auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
  EVT MemVT = AtomicNode->getMemoryVT();
  if (MemVT.getSizeInBits() >= 32)
    return Op;

  SDValue CmpOp = Op.getOperand(2);
  // If this is already correctly zero-extended, leave it alone.
  auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
  if (DAG.MaskedValueIsZero(CmpOp, HighBits))
    return Op;

  // Clear the high bits of the compare operand.
  unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
  SDValue NewCmpOp =
    DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
                DAG.getConstant(MaskVal, dl, MVT::i32));

  // Replace the existing compare operand with the properly zero-extended one.
  SmallVector<SDValue, 4> Ops;
  for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
    Ops.push_back(AtomicNode->getOperand(i));
  Ops[2] = NewCmpOp;
  MachineMemOperand *MMO = AtomicNode->getMemOperand();
  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
  auto NodeTy =
    (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
  return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
}

SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
                                                 SelectionDAG &DAG) const {
  SDLoc dl(Op);
  // Create a stack slot that is 16-byte aligned.
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

  // Store the input value into Value#0 of the stack slot.
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
                               MachinePointerInfo());
  // Load it out.
  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
}

SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                                  SelectionDAG &DAG) const {
  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
         "Should only be called for ISD::INSERT_VECTOR_ELT");

  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
  // We have legal lowering for constant indices but not for variable ones.
  if (!C)
    return SDValue();

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  SDValue V1 = Op.getOperand(0);
  SDValue V2 = Op.getOperand(1);
  // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
    SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
    unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
    unsigned InsertAtElement = C->getZExtValue();
    unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
    if (Subtarget.isLittleEndian()) {
      InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
    }
    return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
  }
  return Op;
}

SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                                   SelectionDAG &DAG) const {
  SDLoc dl(Op);
  SDNode *N = Op.getNode();

  assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
         "Unknown extract_vector_elt type");

  SDValue Value = N->getOperand(0);

  // The first part of this is like the store lowering except that we don't
  // need to track the chain.

  // The values are now known to be -1 (false) or 1 (true). To convert this
  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);

  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
  // understand how to form the extending load.
  SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);

  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);

  // Now convert to an integer and store.
  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
    Value);

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
  MachinePointerInfo PtrInfo =
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

  SDValue StoreChain = DAG.getEntryNode();
  SDValue Ops[] = {StoreChain,
                   DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
                   Value, FIdx};
  SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);

  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
    dl, VTs, Ops, MVT::v4i32, PtrInfo);

  // Extract the value requested.
  unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
  SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
  Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);

  SDValue IntVal =
      DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));

  if (!Subtarget.useCRBits())
    return IntVal;

  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
}

/// Lowering for QPX v4i1 loads
SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
                                           SelectionDAG &DAG) const {
  SDLoc dl(Op);
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
  SDValue LoadChain = LN->getChain();
  SDValue BasePtr = LN->getBasePtr();

  if (Op.getValueType() == MVT::v4f64 ||
      Op.getValueType() == MVT::v4f32) {
    EVT MemVT = LN->getMemoryVT();
    unsigned Alignment = LN->getAlignment();

    // If this load is properly aligned, then it is legal.
    if (Alignment >= MemVT.getStoreSize())
      return Op;

    EVT ScalarVT = Op.getValueType().getScalarType(),
        ScalarMemVT = MemVT.getScalarType();
    unsigned Stride = ScalarMemVT.getStoreSize();

    SDValue Vals[4], LoadChains[4];
    for (unsigned Idx = 0; Idx < 4; ++Idx) {
      SDValue Load;
      if (ScalarVT != ScalarMemVT)
        Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
                              BasePtr,
                              LN->getPointerInfo().getWithOffset(Idx * Stride),
                              ScalarMemVT, MinAlign(Alignment, Idx * Stride),
                              LN->getMemOperand()->getFlags(), LN->getAAInfo());
      else
        Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
                           LN->getPointerInfo().getWithOffset(Idx * Stride),
                           MinAlign(Alignment, Idx * Stride),
                           LN->getMemOperand()->getFlags(), LN->getAAInfo());

      if (Idx == 0 && LN->isIndexed()) {
        assert(LN->getAddressingMode() == ISD::PRE_INC &&
               "Unknown addressing mode on vector load");
        Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
                                  LN->getAddressingMode());
      }

      Vals[Idx] = Load;
      LoadChains[Idx] = Load.getValue(1);

      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
                            DAG.getConstant(Stride, dl,
                                            BasePtr.getValueType()));
    }

    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
    SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);

    if (LN->isIndexed()) {
      SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
      return DAG.getMergeValues(RetOps, dl);
    }

    SDValue RetOps[] = { Value, TF };
    return DAG.getMergeValues(RetOps, dl);
  }

  assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
  assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");

  // To lower v4i1 from a byte array, we load the byte elements of the
  // vector and then reuse the BUILD_VECTOR logic.

  SDValue VectElmts[4], VectElmtChains[4];
  for (unsigned i = 0; i < 4; ++i) {
    SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);

    VectElmts[i] = DAG.getExtLoad(
        ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
        LN->getPointerInfo().getWithOffset(i), MVT::i8,
        /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
    VectElmtChains[i] = VectElmts[i].getValue(1);
  }

  LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
  SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);

  SDValue RVals[] = { Value, LoadChain };
  return DAG.getMergeValues(RVals, dl);
}

/// Lowering for QPX v4i1 stores
SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
                                            SelectionDAG &DAG) const {
  SDLoc dl(Op);
  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
  SDValue StoreChain = SN->getChain();
  SDValue BasePtr = SN->getBasePtr();
  SDValue Value = SN->getValue();

  if (Value.getValueType() == MVT::v4f64 ||
      Value.getValueType() == MVT::v4f32) {
    EVT MemVT = SN->getMemoryVT();
    unsigned Alignment = SN->getAlignment();

    // If this store is properly aligned, then it is legal.
    if (Alignment >= MemVT.getStoreSize())
      return Op;

    EVT ScalarVT = Value.getValueType().getScalarType(),
        ScalarMemVT = MemVT.getScalarType();
    unsigned Stride = ScalarMemVT.getStoreSize();

    SDValue Stores[4];
    for (unsigned Idx = 0; Idx < 4; ++Idx) {
      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
                               DAG.getVectorIdxConstant(Idx, dl));
      SDValue Store;
      if (ScalarVT != ScalarMemVT)
        Store =
            DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
                              SN->getPointerInfo().getWithOffset(Idx * Stride),
                              ScalarMemVT, MinAlign(Alignment, Idx * Stride),
                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
      else
        Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
                             SN->getPointerInfo().getWithOffset(Idx * Stride),
                             MinAlign(Alignment, Idx * Stride),
                             SN->getMemOperand()->getFlags(), SN->getAAInfo());

      if (Idx == 0 && SN->isIndexed()) {
        assert(SN->getAddressingMode() == ISD::PRE_INC &&
               "Unknown addressing mode on vector store");
        Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
                                    SN->getAddressingMode());
      }

      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
                            DAG.getConstant(Stride, dl,
                                            BasePtr.getValueType()));
      Stores[Idx] = Store;
    }

    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);

    if (SN->isIndexed()) {
      SDValue RetOps[] = { TF, Stores[0].getValue(1) };
      return DAG.getMergeValues(RetOps, dl);
    }

    return TF;
  }

  assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
  assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");

  // The values are now known to be -1 (false) or 1 (true). To convert this
  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);

  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
  // understand how to form the extending load.
  SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);

  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);

  // Now convert to an integer and store.
  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
    Value);

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
  MachinePointerInfo PtrInfo =
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);

  SDValue Ops[] = {StoreChain,
                   DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
                   Value, FIdx};
  SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);

  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
    dl, VTs, Ops, MVT::v4i32, PtrInfo);

  // Move data into the byte array.
  SDValue Loads[4], LoadChains[4];
  for (unsigned i = 0; i < 4; ++i) {
    unsigned Offset = 4*i;
    SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
    Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);

    Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
                           PtrInfo.getWithOffset(Offset));
    LoadChains[i] = Loads[i].getValue(1);
  }

  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);

  SDValue Stores[4];
  for (unsigned i = 0; i < 4; ++i) {
    SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);

    Stores[i] = DAG.getTruncStore(
        StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
        MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
        SN->getAAInfo());
  }

  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);

  return StoreChain;
}

SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  if (Op.getValueType() == MVT::v4i32) {
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);

    SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
    // +16 as shift amt.
    SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
    SDValue RHSSwap =   // = vrlw RHS, 16
      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);

    // Shrinkify inputs to v8i16.
    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);

    // Low parts multiplied together, generating 32-bit results (we ignore the
    // top parts).
    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
                                        LHS, RHS, DAG, dl, MVT::v4i32);

    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
    // Shift the high parts up 16 bits.
    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
                              Neg16, DAG, dl);
    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
  } else if (Op.getValueType() == MVT::v16i8) {
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
    bool isLittleEndian = Subtarget.isLittleEndian();

    // Multiply the even 8-bit parts, producing 16-bit sums.
    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
                                           LHS, RHS, DAG, dl, MVT::v8i16);
    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);

    // Multiply the odd 8-bit parts, producing 16-bit sums.
    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
                                          LHS, RHS, DAG, dl, MVT::v8i16);
    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);

    // Merge the results together.  Because vmuleub and vmuloub are
    // instructions with a big-endian bias, we must reverse the
    // element numbering and reverse the meaning of "odd" and "even"
    // when generating little endian code.
    int Ops[16];
    for (unsigned i = 0; i != 8; ++i) {
      if (isLittleEndian) {
        Ops[i*2  ] = 2*i;
        Ops[i*2+1] = 2*i+16;
      } else {
        Ops[i*2  ] = 2*i+1;
        Ops[i*2+1] = 2*i+1+16;
      }
    }
    if (isLittleEndian)
      return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
    else
      return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
  } else {
    llvm_unreachable("Unknown mul to lower!");
  }
}

SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {

  assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");

  EVT VT = Op.getValueType();
  assert(VT.isVector() &&
         "Only set vector abs as custom, scalar abs shouldn't reach here!");
  assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
          VT == MVT::v16i8) &&
         "Unexpected vector element type!");
  assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
         "Current subtarget doesn't support smax v2i64!");

  // For vector abs, it can be lowered to:
  // abs x
  // ==>
  // y = -x
  // smax(x, y)

  SDLoc dl(Op);
  SDValue X = Op.getOperand(0);
  SDValue Zero = DAG.getConstant(0, dl, VT);
  SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);

  // SMAX patch https://reviews.llvm.org/D47332
  // hasn't landed yet, so use intrinsic first here.
  // TODO: Should use SMAX directly once SMAX patch landed
  Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
  if (VT == MVT::v2i64)
    BifID = Intrinsic::ppc_altivec_vmaxsd;
  else if (VT == MVT::v8i16)
    BifID = Intrinsic::ppc_altivec_vmaxsh;
  else if (VT == MVT::v16i8)
    BifID = Intrinsic::ppc_altivec_vmaxsb;

  return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
}

// Custom lowering for fpext vf32 to v2f64
SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {

  assert(Op.getOpcode() == ISD::FP_EXTEND &&
         "Should only be called for ISD::FP_EXTEND");

  // FIXME: handle extends from half precision float vectors on P9.
  // We only want to custom lower an extend from v2f32 to v2f64.
  if (Op.getValueType() != MVT::v2f64 ||
      Op.getOperand(0).getValueType() != MVT::v2f32)
    return SDValue();

  SDLoc dl(Op);
  SDValue Op0 = Op.getOperand(0);

  switch (Op0.getOpcode()) {
  default:
    return SDValue();
  case ISD::EXTRACT_SUBVECTOR: {
    assert(Op0.getNumOperands() == 2 &&
           isa<ConstantSDNode>(Op0->getOperand(1)) &&
           "Node should have 2 operands with second one being a constant!");

    if (Op0.getOperand(0).getValueType() != MVT::v4f32)
      return SDValue();

    // Custom lower is only done for high or low doubleword.
    int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
    if (Idx % 2 != 0)
      return SDValue();

    // Since input is v4f32, at this point Idx is either 0 or 2.
    // Shift to get the doubleword position we want.
    int DWord = Idx >> 1;

    // High and low word positions are different on little endian.
    if (Subtarget.isLittleEndian())
      DWord ^= 0x1;

    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
                       Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
  }
  case ISD::FADD:
  case ISD::FMUL:
  case ISD::FSUB: {
    SDValue NewLoad[2];
    for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
      // Ensure both input are loads.
      SDValue LdOp = Op0.getOperand(i);
      if (LdOp.getOpcode() != ISD::LOAD)
        return SDValue();
      // Generate new load node.
      LoadSDNode *LD = cast<LoadSDNode>(LdOp);
      SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
      NewLoad[i] = DAG.getMemIntrinsicNode(
          PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
          LD->getMemoryVT(), LD->getMemOperand());
    }
    SDValue NewOp =
        DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
                    NewLoad[1], Op0.getNode()->getFlags());
    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
                       DAG.getConstant(0, dl, MVT::i32));
  }
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Op0);
    SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
    SDValue NewLd = DAG.getMemIntrinsicNode(
        PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
        LD->getMemoryVT(), LD->getMemOperand());
    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
                       DAG.getConstant(0, dl, MVT::i32));
  }
  }
  llvm_unreachable("ERROR:Should return for all cases within swtich.");
}

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);

  // Variable argument lowering.
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
  case ISD::VAARG:              return LowerVAARG(Op, DAG);
  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);

  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
  case ISD::GET_DYNAMIC_AREA_OFFSET:
    return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);

  // Exception handling lowering.
  case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);

  case ISD::LOAD:               return LowerLOAD(Op, DAG);
  case ISD::STORE:              return LowerSTORE(Op, DAG);
  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
  case ISD::FP_TO_UINT:
  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
  case ISD::UINT_TO_FP:
  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);

  // Lower 64-bit shifts.
  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);

  // Vector-related lowering.
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::MUL:                return LowerMUL(Op, DAG);
  case ISD::ABS:                return LowerABS(Op, DAG);
  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
  case ISD::ROTL:               return LowerROTL(Op, DAG);

  // For counter-based loop handling.
  case ISD::INTRINSIC_W_CHAIN:  return SDValue();

  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);

  // Frame & Return address.
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);

  case ISD::INTRINSIC_VOID:
    return LowerINTRINSIC_VOID(Op, DAG);
  case ISD::BSWAP:
    return LowerBSWAP(Op, DAG);
  case ISD::ATOMIC_CMP_SWAP:
    return LowerATOMIC_CMP_SWAP(Op, DAG);
  }
}

void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
                                           SmallVectorImpl<SDValue>&Results,
                                           SelectionDAG &DAG) const {
  SDLoc dl(N);
  switch (N->getOpcode()) {
  default:
    llvm_unreachable("Do not know how to custom type legalize this operation!");
  case ISD::READCYCLECOUNTER: {
    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
    SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));

    Results.push_back(
        DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
    Results.push_back(RTB.getValue(2));
    break;
  }
  case ISD::INTRINSIC_W_CHAIN: {
    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
        Intrinsic::loop_decrement)
      break;

    assert(N->getValueType(0) == MVT::i1 &&
           "Unexpected result type for CTR decrement intrinsic");
    EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
                                 N->getValueType(0));
    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
                                 N->getOperand(1));

    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
    Results.push_back(NewInt.getValue(1));
    break;
  }
  case ISD::VAARG: {
    if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
      return;

    EVT VT = N->getValueType(0);

    if (VT == MVT::i64) {
      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);

      Results.push_back(NewNode);
      Results.push_back(NewNode.getValue(1));
    }
    return;
  }
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    // LowerFP_TO_INT() can only handle f32 and f64.
    if (N->getOperand(0).getValueType() == MVT::ppcf128)
      return;
    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
    return;
  case ISD::TRUNCATE: {
    EVT TrgVT = N->getValueType(0);
    EVT OpVT = N->getOperand(0).getValueType();
    if (TrgVT.isVector() &&
        isOperationCustom(N->getOpcode(), TrgVT) &&
        OpVT.getSizeInBits() <= 128 &&
        isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
      Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
    return;
  }
  case ISD::BITCAST:
    // Don't handle bitcast here.
    return;
  case ISD::FP_EXTEND:
    SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
    if (Lowered)
      Results.push_back(Lowered);
    return;
  }
}

//===----------------------------------------------------------------------===//
//  Other Lowering Code
//===----------------------------------------------------------------------===//

static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
  Function *Func = Intrinsic::getDeclaration(M, Id);
  return Builder.CreateCall(Func, {});
}

// The mappings for emitLeading/TrailingFence is taken from
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
                                                 Instruction *Inst,
                                                 AtomicOrdering Ord) const {
  if (Ord == AtomicOrdering::SequentiallyConsistent)
    return callIntrinsic(Builder, Intrinsic::ppc_sync);
  if (isReleaseOrStronger(Ord))
    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
  return nullptr;
}

Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
                                                  Instruction *Inst,
                                                  AtomicOrdering Ord) const {
  if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
    // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
    // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
    // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
    if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
      return Builder.CreateCall(
          Intrinsic::getDeclaration(
              Builder.GetInsertBlock()->getParent()->getParent(),
              Intrinsic::ppc_cfence, {Inst->getType()}),
          {Inst});
    // FIXME: Can use isync for rmw operation.
    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
  }
  return nullptr;
}

MachineBasicBlock *
PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
                                    unsigned AtomicSize,
                                    unsigned BinOpcode,
                                    unsigned CmpOpcode,
                                    unsigned CmpPred) const {
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();

  auto LoadMnemonic = PPC::LDARX;
  auto StoreMnemonic = PPC::STDCX;
  switch (AtomicSize) {
  default:
    llvm_unreachable("Unexpected size of atomic entity");
  case 1:
    LoadMnemonic = PPC::LBARX;
    StoreMnemonic = PPC::STBCX;
    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
    break;
  case 2:
    LoadMnemonic = PPC::LHARX;
    StoreMnemonic = PPC::STHCX;
    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
    break;
  case 4:
    LoadMnemonic = PPC::LWARX;
    StoreMnemonic = PPC::STWCX;
    break;
  case 8:
    LoadMnemonic = PPC::LDARX;
    StoreMnemonic = PPC::STDCX;
    break;
  }

  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction *F = BB->getParent();
  MachineFunction::iterator It = ++BB->getIterator();

  Register dest = MI.getOperand(0).getReg();
  Register ptrA = MI.getOperand(1).getReg();
  Register ptrB = MI.getOperand(2).getReg();
  Register incr = MI.getOperand(3).getReg();
  DebugLoc dl = MI.getDebugLoc();

  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *loop2MBB =
    CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, loopMBB);
  if (CmpOpcode)
    F->insert(It, loop2MBB);
  F->insert(It, exitMBB);
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  MachineRegisterInfo &RegInfo = F->getRegInfo();
  Register TmpReg = (!BinOpcode) ? incr :
    RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
                                           : &PPC::GPRCRegClass);

  //  thisMBB:
  //   ...
  //   fallthrough --> loopMBB
  BB->addSuccessor(loopMBB);

  //  loopMBB:
  //   l[wd]arx dest, ptr
  //   add r0, dest, incr
  //   st[wd]cx. r0, ptr
  //   bne- loopMBB
  //   fallthrough --> exitMBB

  // For max/min...
  //  loopMBB:
  //   l[wd]arx dest, ptr
  //   cmpl?[wd] incr, dest
  //   bgt exitMBB
  //  loop2MBB:
  //   st[wd]cx. dest, ptr
  //   bne- loopMBB
  //   fallthrough --> exitMBB

  BB = loopMBB;
  BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
    .addReg(ptrA).addReg(ptrB);
  if (BinOpcode)
    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
  if (CmpOpcode) {
    // Signed comparisons of byte or halfword values must be sign-extended.
    if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
      Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
      BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
              ExtReg).addReg(dest);
      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
        .addReg(incr).addReg(ExtReg);
    } else
      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
        .addReg(incr).addReg(dest);

    BuildMI(BB, dl, TII->get(PPC::BCC))
      .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
    BB->addSuccessor(loop2MBB);
    BB->addSuccessor(exitMBB);
    BB = loop2MBB;
  }
  BuildMI(BB, dl, TII->get(StoreMnemonic))
    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
  BuildMI(BB, dl, TII->get(PPC::BCC))
    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
  BB->addSuccessor(loopMBB);
  BB->addSuccessor(exitMBB);

  //  exitMBB:
  //   ...
  BB = exitMBB;
  return BB;
}

MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
    MachineInstr &MI, MachineBasicBlock *BB,
    bool is8bit, // operation
    unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
  // If we support part-word atomic mnemonics, just use them
  if (Subtarget.hasPartwordAtomics())
    return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
                            CmpPred);

  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  // In 64 bit mode we have to use 64 bits for addresses, even though the
  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
  // registers without caring whether they're 32 or 64, but here we're
  // doing actual arithmetic on the addresses.
  bool is64bit = Subtarget.isPPC64();
  bool isLittleEndian = Subtarget.isLittleEndian();
  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;

  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction *F = BB->getParent();
  MachineFunction::iterator It = ++BB->getIterator();

  Register dest = MI.getOperand(0).getReg();
  Register ptrA = MI.getOperand(1).getReg();
  Register ptrB = MI.getOperand(2).getReg();
  Register incr = MI.getOperand(3).getReg();
  DebugLoc dl = MI.getDebugLoc();

  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *loop2MBB =
      CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, loopMBB);
  if (CmpOpcode)
    F->insert(It, loop2MBB);
  F->insert(It, exitMBB);
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  MachineRegisterInfo &RegInfo = F->getRegInfo();
  const TargetRegisterClass *RC =
      is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  Register PtrReg = RegInfo.createVirtualRegister(RC);
  Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
  Register ShiftReg =
      isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
  Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
  Register MaskReg = RegInfo.createVirtualRegister(GPRC);
  Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
  Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
  Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
  Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
  Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
  Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
  Register Ptr1Reg;
  Register TmpReg =
      (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);

  //  thisMBB:
  //   ...
  //   fallthrough --> loopMBB
  BB->addSuccessor(loopMBB);

  // The 4-byte load must be aligned, while a char or short may be
  // anywhere in the word.  Hence all this nasty bookkeeping code.
  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
  //   xori shift, shift1, 24 [16]
  //   rlwinm ptr, ptr1, 0, 0, 29
  //   slw incr2, incr, shift
  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
  //   slw mask, mask2, shift
  //  loopMBB:
  //   lwarx tmpDest, ptr
  //   add tmp, tmpDest, incr2
  //   andc tmp2, tmpDest, mask
  //   and tmp3, tmp, mask
  //   or tmp4, tmp3, tmp2
  //   stwcx. tmp4, ptr
  //   bne- loopMBB
  //   fallthrough --> exitMBB
  //   srw dest, tmpDest, shift
  if (ptrA != ZeroReg) {
    Ptr1Reg = RegInfo.createVirtualRegister(RC);
    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
        .addReg(ptrA)
        .addReg(ptrB);
  } else {
    Ptr1Reg = ptrB;
  }
  // We need use 32-bit subregister to avoid mismatch register class in 64-bit
  // mode.
  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
      .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
      .addImm(3)
      .addImm(27)
      .addImm(is8bit ? 28 : 27);
  if (!isLittleEndian)
    BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
        .addReg(Shift1Reg)
        .addImm(is8bit ? 24 : 16);
  if (is64bit)
    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
        .addReg(Ptr1Reg)
        .addImm(0)
        .addImm(61);
  else
    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
        .addReg(Ptr1Reg)
        .addImm(0)
        .addImm(0)
        .addImm(29);
  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
  if (is8bit)
    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
  else {
    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
    BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
        .addReg(Mask3Reg)
        .addImm(65535);
  }
  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
      .addReg(Mask2Reg)
      .addReg(ShiftReg);

  BB = loopMBB;
  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
      .addReg(ZeroReg)
      .addReg(PtrReg);
  if (BinOpcode)
    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
        .addReg(Incr2Reg)
        .addReg(TmpDestReg);
  BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
      .addReg(TmpDestReg)
      .addReg(MaskReg);
  BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
  if (CmpOpcode) {
    // For unsigned comparisons, we can directly compare the shifted values.
    // For signed comparisons we shift and sign extend.
    Register SReg = RegInfo.createVirtualRegister(GPRC);
    BuildMI(BB, dl, TII->get(PPC::AND), SReg)
        .addReg(TmpDestReg)
        .addReg(MaskReg);
    unsigned ValueReg = SReg;
    unsigned CmpReg = Incr2Reg;
    if (CmpOpcode == PPC::CMPW) {
      ValueReg = RegInfo.createVirtualRegister(GPRC);
      BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
          .addReg(SReg)
          .addReg(ShiftReg);
      Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
      BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
          .addReg(ValueReg);
      ValueReg = ValueSReg;
      CmpReg = incr;
    }
    BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
        .addReg(CmpReg)
        .addReg(ValueReg);
    BuildMI(BB, dl, TII->get(PPC::BCC))
        .addImm(CmpPred)
        .addReg(PPC::CR0)
        .addMBB(exitMBB);
    BB->addSuccessor(loop2MBB);
    BB->addSuccessor(exitMBB);
    BB = loop2MBB;
  }
  BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
  BuildMI(BB, dl, TII->get(PPC::STWCX))
      .addReg(Tmp4Reg)
      .addReg(ZeroReg)
      .addReg(PtrReg);
  BuildMI(BB, dl, TII->get(PPC::BCC))
      .addImm(PPC::PRED_NE)
      .addReg(PPC::CR0)
      .addMBB(loopMBB);
  BB->addSuccessor(loopMBB);
  BB->addSuccessor(exitMBB);

  //  exitMBB:
  //   ...
  BB = exitMBB;
  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
      .addReg(TmpDestReg)
      .addReg(ShiftReg);
  return BB;
}

llvm::MachineBasicBlock *
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
                                    MachineBasicBlock *MBB) const {
  DebugLoc DL = MI.getDebugLoc();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();

  MachineFunction *MF = MBB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  const BasicBlock *BB = MBB->getBasicBlock();
  MachineFunction::iterator I = ++MBB->getIterator();

  Register DstReg = MI.getOperand(0).getReg();
  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
  assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
  Register mainDstReg = MRI.createVirtualRegister(RC);
  Register restoreDstReg = MRI.createVirtualRegister(RC);

  MVT PVT = getPointerTy(MF->getDataLayout());
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
         "Invalid Pointer Size!");
  // For v = setjmp(buf), we generate
  //
  // thisMBB:
  //  SjLjSetup mainMBB
  //  bl mainMBB
  //  v_restore = 1
  //  b sinkMBB
  //
  // mainMBB:
  //  buf[LabelOffset] = LR
  //  v_main = 0
  //
  // sinkMBB:
  //  v = phi(main, restore)
  //

  MachineBasicBlock *thisMBB = MBB;
  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
  MF->insert(I, mainMBB);
  MF->insert(I, sinkMBB);

  MachineInstrBuilder MIB;

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), MBB,
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);

  // Note that the structure of the jmp_buf used here is not compatible
  // with that used by libc, and is not designed to be. Specifically, it
  // stores only those 'reserved' registers that LLVM does not otherwise
  // understand how to spill. Also, by convention, by the time this
  // intrinsic is called, Clang has already stored the frame address in the
  // first slot of the buffer and stack address in the third. Following the
  // X86 target code, we'll store the jump address in the second slot. We also
  // need to save the TOC pointer (R2) to handle jumps between shared
  // libraries, and that will be stored in the fourth slot. The thread
  // identifier (R13) is not affected.

  // thisMBB:
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
  const int64_t BPOffset    = 4 * PVT.getStoreSize();

  // Prepare IP either in reg.
  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
  Register LabelReg = MRI.createVirtualRegister(PtrRC);
  Register BufReg = MI.getOperand(1).getReg();

  if (Subtarget.is64BitELFABI()) {
    setUsesTOCBasePtr(*MBB->getParent());
    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
              .addReg(PPC::X2)
              .addImm(TOCOffset)
              .addReg(BufReg)
              .cloneMemRefs(MI);
  }

  // Naked functions never have a base pointer, and so we use r1. For all
  // other functions, this decision must be delayed until during PEI.
  unsigned BaseReg;
  if (MF->getFunction().hasFnAttribute(Attribute::Naked))
    BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
  else
    BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;

  MIB = BuildMI(*thisMBB, MI, DL,
                TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
            .addReg(BaseReg)
            .addImm(BPOffset)
            .addReg(BufReg)
            .cloneMemRefs(MI);

  // Setup
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
  MIB.addRegMask(TRI->getNoPreservedMask());

  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);

  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
          .addMBB(mainMBB);
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);

  thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
  thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());

  // mainMBB:
  //  mainDstReg = 0
  MIB =
      BuildMI(mainMBB, DL,
              TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);

  // Store IP
  if (Subtarget.isPPC64()) {
    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
            .addReg(LabelReg)
            .addImm(LabelOffset)
            .addReg(BufReg);
  } else {
    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
            .addReg(LabelReg)
            .addImm(LabelOffset)
            .addReg(BufReg);
  }
  MIB.cloneMemRefs(MI);

  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
  mainMBB->addSuccessor(sinkMBB);

  // sinkMBB:
  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
          TII->get(PPC::PHI), DstReg)
    .addReg(mainDstReg).addMBB(mainMBB)
    .addReg(restoreDstReg).addMBB(thisMBB);

  MI.eraseFromParent();
  return sinkMBB;
}

MachineBasicBlock *
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
                                     MachineBasicBlock *MBB) const {
  DebugLoc DL = MI.getDebugLoc();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();

  MachineFunction *MF = MBB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  MVT PVT = getPointerTy(MF->getDataLayout());
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
         "Invalid Pointer Size!");

  const TargetRegisterClass *RC =
    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
  Register Tmp = MRI.createVirtualRegister(RC);
  // Since FP is only updated here but NOT referenced, it's treated as GPR.
  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
  unsigned BP =
      (PVT == MVT::i64)
          ? PPC::X30
          : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
                                                              : PPC::R30);

  MachineInstrBuilder MIB;

  const int64_t LabelOffset = 1 * PVT.getStoreSize();
  const int64_t SPOffset    = 2 * PVT.getStoreSize();
  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
  const int64_t BPOffset    = 4 * PVT.getStoreSize();

  Register BufReg = MI.getOperand(0).getReg();

  // Reload FP (the jumped-to function may not have had a
  // frame pointer, and if so, then its r31 will be restored
  // as necessary).
  if (PVT == MVT::i64) {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
            .addImm(0)
            .addReg(BufReg);
  } else {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
            .addImm(0)
            .addReg(BufReg);
  }
  MIB.cloneMemRefs(MI);

  // Reload IP
  if (PVT == MVT::i64) {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
            .addImm(LabelOffset)
            .addReg(BufReg);
  } else {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
            .addImm(LabelOffset)
            .addReg(BufReg);
  }
  MIB.cloneMemRefs(MI);

  // Reload SP
  if (PVT == MVT::i64) {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
            .addImm(SPOffset)
            .addReg(BufReg);
  } else {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
            .addImm(SPOffset)
            .addReg(BufReg);
  }
  MIB.cloneMemRefs(MI);

  // Reload BP
  if (PVT == MVT::i64) {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
            .addImm(BPOffset)
            .addReg(BufReg);
  } else {
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
            .addImm(BPOffset)
            .addReg(BufReg);
  }
  MIB.cloneMemRefs(MI);

  // Reload TOC
  if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
    setUsesTOCBasePtr(*MBB->getParent());
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
              .addImm(TOCOffset)
              .addReg(BufReg)
              .cloneMemRefs(MI);
  }

  // Jump
  BuildMI(*MBB, MI, DL,
          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));

  MI.eraseFromParent();
  return MBB;
}

bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
  // If the function specifically requests inline stack probes, emit them.
  if (MF.getFunction().hasFnAttribute("probe-stack"))
    return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
           "inline-asm";
  return false;
}

unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
  const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
  unsigned StackAlign = TFI->getStackAlignment();
  assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
         "Unexpected stack alignment");
  // The default stack probe size is 4096 if the function has no
  // stack-probe-size attribute.
  unsigned StackProbeSize = 4096;
  const Function &Fn = MF.getFunction();
  if (Fn.hasFnAttribute("stack-probe-size"))
    Fn.getFnAttribute("stack-probe-size")
        .getValueAsString()
        .getAsInteger(0, StackProbeSize);
  // Round down to the stack alignment.
  StackProbeSize &= ~(StackAlign - 1);
  return StackProbeSize ? StackProbeSize : StackAlign;
}

// Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
// into three phases. In the first phase, it uses pseudo instruction
// PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
// FinalStackPtr. In the second phase, it generates a loop for probing blocks.
// At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
// MaxCallFrameSize so that it can calculate correct data area pointer.
MachineBasicBlock *
PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
                                    MachineBasicBlock *MBB) const {
  const bool isPPC64 = Subtarget.isPPC64();
  MachineFunction *MF = MBB->getParent();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  const unsigned ProbeSize = getStackProbeSize(*MF);
  const BasicBlock *ProbedBB = MBB->getBasicBlock();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  // The CFG of probing stack looks as
  //         +-----+
  //         | MBB |
  //         +--+--+
  //            |
  //       +----v----+
  //  +--->+ TestMBB +---+
  //  |    +----+----+   |
  //  |         |        |
  //  |   +-----v----+   |
  //  +---+ BlockMBB |   |
  //      +----------+   |
  //                     |
  //       +---------+   |
  //       | TailMBB +<--+
  //       +---------+
  // In MBB, calculate previous frame pointer and final stack pointer.
  // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
  // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
  // TailMBB is spliced via \p MI.
  MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
  MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
  MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);

  MachineFunction::iterator MBBIter = ++MBB->getIterator();
  MF->insert(MBBIter, TestMBB);
  MF->insert(MBBIter, BlockMBB);
  MF->insert(MBBIter, TailMBB);

  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

  Register DstReg = MI.getOperand(0).getReg();
  Register NegSizeReg = MI.getOperand(1).getReg();
  Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
  Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
  Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
  Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);

  // Since value of NegSizeReg might be realigned in prologepilog, insert a
  // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
  // NegSize.
  unsigned ProbeOpc;
  if (!MRI.hasOneNonDBGUse(NegSizeReg))
    ProbeOpc =
        isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
  else
    // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
    // and NegSizeReg will be allocated in the same phyreg to avoid
    // redundant copy when NegSizeReg has only one use which is current MI and
    // will be replaced by PREPARE_PROBED_ALLOCA then.
    ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
                       : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
  BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
      .addDef(ActualNegSizeReg)
      .addReg(NegSizeReg)
      .add(MI.getOperand(2))
      .add(MI.getOperand(3));

  // Calculate final stack pointer, which equals to SP + ActualNegSize.
  BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
          FinalStackPtr)
      .addReg(SPReg)
      .addReg(ActualNegSizeReg);

  // Materialize a scratch register for update.
  int64_t NegProbeSize = -(int64_t)ProbeSize;
  assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
  Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
  if (!isInt<16>(NegProbeSize)) {
    Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
        .addImm(NegProbeSize >> 16);
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
            ScratchReg)
        .addReg(TempReg)
        .addImm(NegProbeSize & 0xFFFF);
  } else
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
        .addImm(NegProbeSize);

  {
    // Probing leading residual part.
    Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
        .addReg(ActualNegSizeReg)
        .addReg(ScratchReg);
    Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
        .addReg(Div)
        .addReg(ScratchReg);
    Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
        .addReg(Mul)
        .addReg(ActualNegSizeReg);
    BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
        .addReg(FramePointer)
        .addReg(SPReg)
        .addReg(NegMod);
  }

  {
    // Remaining part should be multiple of ProbeSize.
    Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
    BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
        .addReg(SPReg)
        .addReg(FinalStackPtr);
    BuildMI(TestMBB, DL, TII->get(PPC::BCC))
        .addImm(PPC::PRED_EQ)
        .addReg(CmpResult)
        .addMBB(TailMBB);
    TestMBB->addSuccessor(BlockMBB);
    TestMBB->addSuccessor(TailMBB);
  }

  {
    // Touch the block.
    // |P...|P...|P...
    BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
        .addReg(FramePointer)
        .addReg(SPReg)
        .addReg(ScratchReg);
    BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
    BlockMBB->addSuccessor(TestMBB);
  }

  // Calculation of MaxCallFrameSize is deferred to prologepilog, use
  // DYNAREAOFFSET pseudo instruction to get the future result.
  Register MaxCallFrameSizeReg =
      MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
  BuildMI(TailMBB, DL,
          TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
          MaxCallFrameSizeReg)
      .add(MI.getOperand(2))
      .add(MI.getOperand(3));
  BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
      .addReg(SPReg)
      .addReg(MaxCallFrameSizeReg);

  // Splice instructions after MI to TailMBB.
  TailMBB->splice(TailMBB->end(), MBB,
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
  TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
  MBB->addSuccessor(TestMBB);

  // Delete the pseudo instruction.
  MI.eraseFromParent();

  ++NumDynamicAllocaProbed;
  return TailMBB;
}

MachineBasicBlock *
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                               MachineBasicBlock *BB) const {
  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
    if (Subtarget.is64BitELFABI() &&
        MI.getOpcode() == TargetOpcode::PATCHPOINT &&
        !Subtarget.isUsingPCRelativeCalls()) {
      // Call lowering should have added an r2 operand to indicate a dependence
      // on the TOC base pointer value. It can't however, because there is no
      // way to mark the dependence as implicit there, and so the stackmap code
      // will confuse it with a regular operand. Instead, add the dependence
      // here.
      MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
    }

    return emitPatchPoint(MI, BB);
  }

  if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
      MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
    return emitEHSjLjSetJmp(MI, BB);
  } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
             MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
    return emitEHSjLjLongJmp(MI, BB);
  }

  const TargetInstrInfo *TII = Subtarget.getInstrInfo();

  // To "insert" these instructions we actually have to insert their
  // control-flow patterns.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = ++BB->getIterator();

  MachineFunction *F = BB->getParent();

  if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
      MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
      MI.getOpcode() == PPC::SELECT_I8) {
    SmallVector<MachineOperand, 2> Cond;
    if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
        MI.getOpcode() == PPC::SELECT_CC_I8)
      Cond.push_back(MI.getOperand(4));
    else
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    Cond.push_back(MI.getOperand(1));

    DebugLoc dl = MI.getDebugLoc();
    TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
                      MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
  } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
             MI.getOpcode() == PPC::SELECT_CC_F8 ||
             MI.getOpcode() == PPC::SELECT_CC_F16 ||
             MI.getOpcode() == PPC::SELECT_CC_QFRC ||
             MI.getOpcode() == PPC::SELECT_CC_QSRC ||
             MI.getOpcode() == PPC::SELECT_CC_QBRC ||
             MI.getOpcode() == PPC::SELECT_CC_VRRC ||
             MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
             MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
             MI.getOpcode() == PPC::SELECT_CC_VSRC ||
             MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
             MI.getOpcode() == PPC::SELECT_CC_SPE ||
             MI.getOpcode() == PPC::SELECT_F4 ||
             MI.getOpcode() == PPC::SELECT_F8 ||
             MI.getOpcode() == PPC::SELECT_F16 ||
             MI.getOpcode() == PPC::SELECT_QFRC ||
             MI.getOpcode() == PPC::SELECT_QSRC ||
             MI.getOpcode() == PPC::SELECT_QBRC ||
             MI.getOpcode() == PPC::SELECT_SPE ||
             MI.getOpcode() == PPC::SELECT_SPE4 ||
             MI.getOpcode() == PPC::SELECT_VRRC ||
             MI.getOpcode() == PPC::SELECT_VSFRC ||
             MI.getOpcode() == PPC::SELECT_VSSRC ||
             MI.getOpcode() == PPC::SELECT_VSRC) {
    // The incoming instruction knows the destination vreg to set, the
    // condition code register to branch on, the true/false values to
    // select between, and a branch opcode to use.

    //  thisMBB:
    //  ...
    //   TrueVal = ...
    //   cmpTY ccX, r1, r2
    //   bCC copy1MBB
    //   fallthrough --> copy0MBB
    MachineBasicBlock *thisMBB = BB;
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
    DebugLoc dl = MI.getDebugLoc();
    F->insert(It, copy0MBB);
    F->insert(It, sinkMBB);

    // Transfer the remainder of BB and its successor edges to sinkMBB.
    sinkMBB->splice(sinkMBB->begin(), BB,
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

    // Next, add the true and fallthrough blocks as its successors.
    BB->addSuccessor(copy0MBB);
    BB->addSuccessor(sinkMBB);

    if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
        MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
        MI.getOpcode() == PPC::SELECT_F16 ||
        MI.getOpcode() == PPC::SELECT_SPE4 ||
        MI.getOpcode() == PPC::SELECT_SPE ||
        MI.getOpcode() == PPC::SELECT_QFRC ||
        MI.getOpcode() == PPC::SELECT_QSRC ||
        MI.getOpcode() == PPC::SELECT_QBRC ||
        MI.getOpcode() == PPC::SELECT_VRRC ||
        MI.getOpcode() == PPC::SELECT_VSFRC ||
        MI.getOpcode() == PPC::SELECT_VSSRC ||
        MI.getOpcode() == PPC::SELECT_VSRC) {
      BuildMI(BB, dl, TII->get(PPC::BC))
          .addReg(MI.getOperand(1).getReg())
          .addMBB(sinkMBB);
    } else {
      unsigned SelectPred = MI.getOperand(4).getImm();
      BuildMI(BB, dl, TII->get(PPC::BCC))
          .addImm(SelectPred)
          .addReg(MI.getOperand(1).getReg())
          .addMBB(sinkMBB);
    }

    //  copy0MBB:
    //   %FalseValue = ...
    //   # fallthrough to sinkMBB
    BB = copy0MBB;

    // Update machine-CFG edges
    BB->addSuccessor(sinkMBB);

    //  sinkMBB:
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
    //  ...
    BB = sinkMBB;
    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
        .addReg(MI.getOperand(3).getReg())
        .addMBB(copy0MBB)
        .addReg(MI.getOperand(2).getReg())
        .addMBB(thisMBB);
  } else if (MI.getOpcode() == PPC::ReadTB) {
    // To read the 64-bit time-base register on a 32-bit target, we read the
    // two halves. Should the counter have wrapped while it was being read, we
    // need to try again.
    // ...
    // readLoop:
    // mfspr Rx,TBU # load from TBU
    // mfspr Ry,TB  # load from TB
    // mfspr Rz,TBU # load from TBU
    // cmpw crX,Rx,Rz # check if 'old'='new'
    // bne readLoop   # branch if they're not equal
    // ...

    MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
    DebugLoc dl = MI.getDebugLoc();
    F->insert(It, readMBB);
    F->insert(It, sinkMBB);

    // Transfer the remainder of BB and its successor edges to sinkMBB.
    sinkMBB->splice(sinkMBB->begin(), BB,
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

    BB->addSuccessor(readMBB);
    BB = readMBB;

    MachineRegisterInfo &RegInfo = F->getRegInfo();
    Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
    Register LoReg = MI.getOperand(0).getReg();
    Register HiReg = MI.getOperand(1).getReg();

    BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
    BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
    BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);

    Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);

    BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
        .addReg(HiReg)
        .addReg(ReadAgainReg);
    BuildMI(BB, dl, TII->get(PPC::BCC))
        .addImm(PPC::PRED_NE)
        .addReg(CmpReg)
        .addMBB(readMBB);

    BB->addSuccessor(readMBB);
    BB->addSuccessor(sinkMBB);
  } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
    BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
    BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
    BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
    BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
    BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
    BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
    BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
    BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
    BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
    BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
    BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
    BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);

  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);

  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
    BB = EmitAtomicBinary(MI, BB, 4, 0);
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
    BB = EmitAtomicBinary(MI, BB, 8, 0);
  else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
           MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
           (Subtarget.hasPartwordAtomics() &&
            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
           (Subtarget.hasPartwordAtomics() &&
            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
    bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;

    auto LoadMnemonic = PPC::LDARX;
    auto StoreMnemonic = PPC::STDCX;
    switch (MI.getOpcode()) {
    default:
      llvm_unreachable("Compare and swap of unknown size");
    case PPC::ATOMIC_CMP_SWAP_I8:
      LoadMnemonic = PPC::LBARX;
      StoreMnemonic = PPC::STBCX;
      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
      break;
    case PPC::ATOMIC_CMP_SWAP_I16:
      LoadMnemonic = PPC::LHARX;
      StoreMnemonic = PPC::STHCX;
      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
      break;
    case PPC::ATOMIC_CMP_SWAP_I32:
      LoadMnemonic = PPC::LWARX;
      StoreMnemonic = PPC::STWCX;
      break;
    case PPC::ATOMIC_CMP_SWAP_I64:
      LoadMnemonic = PPC::LDARX;
      StoreMnemonic = PPC::STDCX;
      break;
    }
    Register dest = MI.getOperand(0).getReg();
    Register ptrA = MI.getOperand(1).getReg();
    Register ptrB = MI.getOperand(2).getReg();
    Register oldval = MI.getOperand(3).getReg();
    Register newval = MI.getOperand(4).getReg();
    DebugLoc dl = MI.getDebugLoc();

    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
    F->insert(It, loop1MBB);
    F->insert(It, loop2MBB);
    F->insert(It, midMBB);
    F->insert(It, exitMBB);
    exitMBB->splice(exitMBB->begin(), BB,
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
    exitMBB->transferSuccessorsAndUpdatePHIs(BB);

    //  thisMBB:
    //   ...
    //   fallthrough --> loopMBB
    BB->addSuccessor(loop1MBB);

    // loop1MBB:
    //   l[bhwd]arx dest, ptr
    //   cmp[wd] dest, oldval
    //   bne- midMBB
    // loop2MBB:
    //   st[bhwd]cx. newval, ptr
    //   bne- loopMBB
    //   b exitBB
    // midMBB:
    //   st[bhwd]cx. dest, ptr
    // exitBB:
    BB = loop1MBB;
    BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
        .addReg(oldval)
        .addReg(dest);
    BuildMI(BB, dl, TII->get(PPC::BCC))
        .addImm(PPC::PRED_NE)
        .addReg(PPC::CR0)
        .addMBB(midMBB);
    BB->addSuccessor(loop2MBB);
    BB->addSuccessor(midMBB);

    BB = loop2MBB;
    BuildMI(BB, dl, TII->get(StoreMnemonic))
        .addReg(newval)
        .addReg(ptrA)
        .addReg(ptrB);
    BuildMI(BB, dl, TII->get(PPC::BCC))
        .addImm(PPC::PRED_NE)
        .addReg(PPC::CR0)
        .addMBB(loop1MBB);
    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
    BB->addSuccessor(loop1MBB);
    BB->addSuccessor(exitMBB);

    BB = midMBB;
    BuildMI(BB, dl, TII->get(StoreMnemonic))
        .addReg(dest)
        .addReg(ptrA)
        .addReg(ptrB);
    BB->addSuccessor(exitMBB);

    //  exitMBB:
    //   ...
    BB = exitMBB;
  } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
    // We must use 64-bit registers for addresses when targeting 64-bit,
    // since we're actually doing arithmetic on them.  Other registers
    // can be 32-bit.
    bool is64bit = Subtarget.isPPC64();
    bool isLittleEndian = Subtarget.isLittleEndian();
    bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;

    Register dest = MI.getOperand(0).getReg();
    Register ptrA = MI.getOperand(1).getReg();
    Register ptrB = MI.getOperand(2).getReg();
    Register oldval = MI.getOperand(3).getReg();
    Register newval = MI.getOperand(4).getReg();
    DebugLoc dl = MI.getDebugLoc();

    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
    F->insert(It, loop1MBB);
    F->insert(It, loop2MBB);
    F->insert(It, midMBB);
    F->insert(It, exitMBB);
    exitMBB->splice(exitMBB->begin(), BB,
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
    exitMBB->transferSuccessorsAndUpdatePHIs(BB);

    MachineRegisterInfo &RegInfo = F->getRegInfo();
    const TargetRegisterClass *RC =
        is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
    const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;

    Register PtrReg = RegInfo.createVirtualRegister(RC);
    Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
    Register ShiftReg =
        isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
    Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
    Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
    Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
    Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
    Register MaskReg = RegInfo.createVirtualRegister(GPRC);
    Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
    Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
    Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
    Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
    Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
    Register Ptr1Reg;
    Register TmpReg = RegInfo.createVirtualRegister(GPRC);
    Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
    //  thisMBB:
    //   ...
    //   fallthrough --> loopMBB
    BB->addSuccessor(loop1MBB);

    // The 4-byte load must be aligned, while a char or short may be
    // anywhere in the word.  Hence all this nasty bookkeeping code.
    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
    //   xori shift, shift1, 24 [16]
    //   rlwinm ptr, ptr1, 0, 0, 29
    //   slw newval2, newval, shift
    //   slw oldval2, oldval,shift
    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
    //   slw mask, mask2, shift
    //   and newval3, newval2, mask
    //   and oldval3, oldval2, mask
    // loop1MBB:
    //   lwarx tmpDest, ptr
    //   and tmp, tmpDest, mask
    //   cmpw tmp, oldval3
    //   bne- midMBB
    // loop2MBB:
    //   andc tmp2, tmpDest, mask
    //   or tmp4, tmp2, newval3
    //   stwcx. tmp4, ptr
    //   bne- loop1MBB
    //   b exitBB
    // midMBB:
    //   stwcx. tmpDest, ptr
    // exitBB:
    //   srw dest, tmpDest, shift
    if (ptrA != ZeroReg) {
      Ptr1Reg = RegInfo.createVirtualRegister(RC);
      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
          .addReg(ptrA)
          .addReg(ptrB);
    } else {
      Ptr1Reg = ptrB;
    }

    // We need use 32-bit subregister to avoid mismatch register class in 64-bit
    // mode.
    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
        .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
        .addImm(3)
        .addImm(27)
        .addImm(is8bit ? 28 : 27);
    if (!isLittleEndian)
      BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
          .addReg(Shift1Reg)
          .addImm(is8bit ? 24 : 16);
    if (is64bit)
      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
          .addReg(Ptr1Reg)
          .addImm(0)
          .addImm(61);
    else
      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
          .addReg(Ptr1Reg)
          .addImm(0)
          .addImm(0)
          .addImm(29);
    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
        .addReg(newval)
        .addReg(ShiftReg);
    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
        .addReg(oldval)
        .addReg(ShiftReg);
    if (is8bit)
      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
    else {
      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
          .addReg(Mask3Reg)
          .addImm(65535);
    }
    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
        .addReg(Mask2Reg)
        .addReg(ShiftReg);
    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
        .addReg(NewVal2Reg)
        .addReg(MaskReg);
    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
        .addReg(OldVal2Reg)
        .addReg(MaskReg);

    BB = loop1MBB;
    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
        .addReg(ZeroReg)
        .addReg(PtrReg);
    BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
        .addReg(TmpDestReg)
        .addReg(MaskReg);
    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
        .addReg(TmpReg)
        .addReg(OldVal3Reg);
    BuildMI(BB, dl, TII->get(PPC::BCC))
        .addImm(PPC::PRED_NE)
        .addReg(PPC::CR0)
        .addMBB(midMBB);
    BB->addSuccessor(loop2MBB);
    BB->addSuccessor(midMBB);

    BB = loop2MBB;
    BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
        .addReg(TmpDestReg)
        .addReg(MaskReg);
    BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
        .addReg(Tmp2Reg)
        .addReg(NewVal3Reg);
    BuildMI(BB, dl, TII->get(PPC::STWCX))
        .addReg(Tmp4Reg)
        .addReg(ZeroReg)
        .addReg(PtrReg);
    BuildMI(BB, dl, TII->get(PPC::BCC))
        .addImm(PPC::PRED_NE)
        .addReg(PPC::CR0)
        .addMBB(loop1MBB);
    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
    BB->addSuccessor(loop1MBB);
    BB->addSuccessor(exitMBB);

    BB = midMBB;
    BuildMI(BB, dl, TII->get(PPC::STWCX))
        .addReg(TmpDestReg)
        .addReg(ZeroReg)
        .addReg(PtrReg);
    BB->addSuccessor(exitMBB);

    //  exitMBB:
    //   ...
    BB = exitMBB;
    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
        .addReg(TmpReg)
        .addReg(ShiftReg);
  } else if (MI.getOpcode() == PPC::FADDrtz) {
    // This pseudo performs an FADD with rounding mode temporarily forced
    // to round-to-zero.  We emit this via custom inserter since the FPSCR
    // is not modeled at the SelectionDAG level.
    Register Dest = MI.getOperand(0).getReg();
    Register Src1 = MI.getOperand(1).getReg();
    Register Src2 = MI.getOperand(2).getReg();
    DebugLoc dl = MI.getDebugLoc();

    MachineRegisterInfo &RegInfo = F->getRegInfo();
    Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);

    // Save FPSCR value.
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);

    // Set rounding mode to round-to-zero.
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);

    // Perform addition.
    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);

    // Restore FPSCR value.
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
  } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
             MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
    unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
                       MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
                          ? PPC::ANDI8_rec
                          : PPC::ANDI_rec;
    bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
                 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);

    MachineRegisterInfo &RegInfo = F->getRegInfo();
    Register Dest = RegInfo.createVirtualRegister(
        Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);

    DebugLoc Dl = MI.getDebugLoc();
    BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
        .addReg(MI.getOperand(1).getReg())
        .addImm(1);
    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
            MI.getOperand(0).getReg())
        .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
  } else if (MI.getOpcode() == PPC::TCHECK_RET) {
    DebugLoc Dl = MI.getDebugLoc();
    MachineRegisterInfo &RegInfo = F->getRegInfo();
    Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
    BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
            MI.getOperand(0).getReg())
        .addReg(CRReg);
  } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
    DebugLoc Dl = MI.getDebugLoc();
    unsigned Imm = MI.getOperand(1).getImm();
    BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
            MI.getOperand(0).getReg())
        .addReg(PPC::CR0EQ);
  } else if (MI.getOpcode() == PPC::SETRNDi) {
    DebugLoc dl = MI.getDebugLoc();
    Register OldFPSCRReg = MI.getOperand(0).getReg();

    // Save FPSCR value.
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);

    // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
    // the following settings:
    //   00 Round to nearest
    //   01 Round to 0
    //   10 Round to +inf
    //   11 Round to -inf

    // When the operand is immediate, using the two least significant bits of
    // the immediate to set the bits 62:63 of FPSCR.
    unsigned Mode = MI.getOperand(1).getImm();
    BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
      .addImm(31);

    BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
      .addImm(30);
  } else if (MI.getOpcode() == PPC::SETRND) {
    DebugLoc dl = MI.getDebugLoc();

    // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
    // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
    // If the target doesn't have DirectMove, we should use stack to do the
    // conversion, because the target doesn't have the instructions like mtvsrd
    // or mfvsrd to do this conversion directly.
    auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
      if (Subtarget.hasDirectMove()) {
        BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
          .addReg(SrcReg);
      } else {
        // Use stack to do the register copy.
        unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
        MachineRegisterInfo &RegInfo = F->getRegInfo();
        const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
        if (RC == &PPC::F8RCRegClass) {
          // Copy register from F8RCRegClass to G8RCRegclass.
          assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
                 "Unsupported RegClass.");

          StoreOp = PPC::STFD;
          LoadOp = PPC::LD;
        } else {
          // Copy register from G8RCRegClass to F8RCRegclass.
          assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
                 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
                 "Unsupported RegClass.");
        }

        MachineFrameInfo &MFI = F->getFrameInfo();
        int FrameIdx = MFI.CreateStackObject(8, Align(8), false);

        MachineMemOperand *MMOStore = F->getMachineMemOperand(
            MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
            MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
            MFI.getObjectAlign(FrameIdx));

        // Store the SrcReg into the stack.
        BuildMI(*BB, MI, dl, TII->get(StoreOp))
          .addReg(SrcReg)
          .addImm(0)
          .addFrameIndex(FrameIdx)
          .addMemOperand(MMOStore);

        MachineMemOperand *MMOLoad = F->getMachineMemOperand(
            MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
            MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
            MFI.getObjectAlign(FrameIdx));

        // Load from the stack where SrcReg is stored, and save to DestReg,
        // so we have done the RegClass conversion from RegClass::SrcReg to
        // RegClass::DestReg.
        BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
          .addImm(0)
          .addFrameIndex(FrameIdx)
          .addMemOperand(MMOLoad);
      }
    };

    Register OldFPSCRReg = MI.getOperand(0).getReg();

    // Save FPSCR value.
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);

    // When the operand is gprc register, use two least significant bits of the
    // register and mtfsf instruction to set the bits 62:63 of FPSCR.
    //
    // copy OldFPSCRTmpReg, OldFPSCRReg
    // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
    // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
    // copy NewFPSCRReg, NewFPSCRTmpReg
    // mtfsf 255, NewFPSCRReg
    MachineOperand SrcOp = MI.getOperand(1);
    MachineRegisterInfo &RegInfo = F->getRegInfo();
    Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);

    copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);

    Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
    Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);

    // The first operand of INSERT_SUBREG should be a register which has
    // subregisters, we only care about its RegClass, so we should use an
    // IMPLICIT_DEF register.
    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
    BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
      .addReg(ImDefReg)
      .add(SrcOp)
      .addImm(1);

    Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
    BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
      .addReg(OldFPSCRTmpReg)
      .addReg(ExtSrcReg)
      .addImm(0)
      .addImm(62);

    Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
    copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);

    // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
    // bits of FPSCR.
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
      .addImm(255)
      .addReg(NewFPSCRReg)
      .addImm(0)
      .addImm(0);
  } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
             MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
    return emitProbedAlloca(MI, BB);
  } else {
    llvm_unreachable("Unexpected instr type to insert");
  }

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return BB;
}

//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//

static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
  // For the estimates, convergence is quadratic, so we essentially double the
  // number of digits correct after every iteration. For both FRE and FRSQRTE,
  // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
  // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
  int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
  if (VT.getScalarType() == MVT::f64)
    RefinementSteps++;
  return RefinementSteps;
}

SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
                                           int Enabled, int &RefinementSteps,
                                           bool &UseOneConstNR,
                                           bool Reciprocal) const {
  EVT VT = Operand.getValueType();
  if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
      (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);

    // The Newton-Raphson computation with a single constant does not provide
    // enough accuracy on some CPUs.
    UseOneConstNR = !Subtarget.needsTwoConstNR();
    return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
  }
  return SDValue();
}

SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
                                            int Enabled,
                                            int &RefinementSteps) const {
  EVT VT = Operand.getValueType();
  if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
      (VT == MVT::f64 && Subtarget.hasFRE()) ||
      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
    return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
  }
  return SDValue();
}

unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
  // Note: This functionality is used only when unsafe-fp-math is enabled, and
  // on cores with reciprocal estimates (which are used when unsafe-fp-math is
  // enabled for division), this functionality is redundant with the default
  // combiner logic (once the division -> reciprocal/multiply transformation
  // has taken place). As a result, this matters more for older cores than for
  // newer ones.

  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
  // reciprocal if there are two or more FDIVs (for embedded cores with only
  // one FP pipeline) for three or more FDIVs (for generic OOO cores).
  switch (Subtarget.getCPUDirective()) {
  default:
    return 3;
  case PPC::DIR_440:
  case PPC::DIR_A2:
  case PPC::DIR_E500:
  case PPC::DIR_E500mc:
  case PPC::DIR_E5500:
    return 2;
  }
}

// isConsecutiveLSLoc needs to work even if all adds have not yet been
// collapsed, and so we need to look through chains of them.
static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
                                     int64_t& Offset, SelectionDAG &DAG) {
  if (DAG.isBaseWithConstantOffset(Loc)) {
    Base = Loc.getOperand(0);
    Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();

    // The base might itself be a base plus an offset, and if so, accumulate
    // that as well.
    getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
  }
}

static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
                            unsigned Bytes, int Dist,
                            SelectionDAG &DAG) {
  if (VT.getSizeInBits() / 8 != Bytes)
    return false;

  SDValue BaseLoc = Base->getBasePtr();
  if (Loc.getOpcode() == ISD::FrameIndex) {
    if (BaseLoc.getOpcode() != ISD::FrameIndex)
      return false;
    const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
    int FS  = MFI.getObjectSize(FI);
    int BFS = MFI.getObjectSize(BFI);
    if (FS != BFS || FS != (int)Bytes) return false;
    return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
  }

  SDValue Base1 = Loc, Base2 = BaseLoc;
  int64_t Offset1 = 0, Offset2 = 0;
  getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
  getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
  if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
    return true;

  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  const GlobalValue *GV1 = nullptr;
  const GlobalValue *GV2 = nullptr;
  Offset1 = 0;
  Offset2 = 0;
  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
  if (isGA1 && isGA2 && GV1 == GV2)
    return Offset1 == (Offset2 + Dist*Bytes);
  return false;
}

// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
// not enforce equality of the chain operands.
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
                            unsigned Bytes, int Dist,
                            SelectionDAG &DAG) {
  if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
    EVT VT = LS->getMemoryVT();
    SDValue Loc = LS->getBasePtr();
    return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
  }

  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
    EVT VT;
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
    default: return false;
    case Intrinsic::ppc_qpx_qvlfd:
    case Intrinsic::ppc_qpx_qvlfda:
      VT = MVT::v4f64;
      break;
    case Intrinsic::ppc_qpx_qvlfs:
    case Intrinsic::ppc_qpx_qvlfsa:
      VT = MVT::v4f32;
      break;
    case Intrinsic::ppc_qpx_qvlfcd:
    case Intrinsic::ppc_qpx_qvlfcda:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvlfcs:
    case Intrinsic::ppc_qpx_qvlfcsa:
      VT = MVT::v2f32;
      break;
    case Intrinsic::ppc_qpx_qvlfiwa:
    case Intrinsic::ppc_qpx_qvlfiwz:
    case Intrinsic::ppc_altivec_lvx:
    case Intrinsic::ppc_altivec_lvxl:
    case Intrinsic::ppc_vsx_lxvw4x:
    case Intrinsic::ppc_vsx_lxvw4x_be:
      VT = MVT::v4i32;
      break;
    case Intrinsic::ppc_vsx_lxvd2x:
    case Intrinsic::ppc_vsx_lxvd2x_be:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_altivec_lvebx:
      VT = MVT::i8;
      break;
    case Intrinsic::ppc_altivec_lvehx:
      VT = MVT::i16;
      break;
    case Intrinsic::ppc_altivec_lvewx:
      VT = MVT::i32;
      break;
    }

    return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
  }

  if (N->getOpcode() == ISD::INTRINSIC_VOID) {
    EVT VT;
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
    default: return false;
    case Intrinsic::ppc_qpx_qvstfd:
    case Intrinsic::ppc_qpx_qvstfda:
      VT = MVT::v4f64;
      break;
    case Intrinsic::ppc_qpx_qvstfs:
    case Intrinsic::ppc_qpx_qvstfsa:
      VT = MVT::v4f32;
      break;
    case Intrinsic::ppc_qpx_qvstfcd:
    case Intrinsic::ppc_qpx_qvstfcda:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvstfcs:
    case Intrinsic::ppc_qpx_qvstfcsa:
      VT = MVT::v2f32;
      break;
    case Intrinsic::ppc_qpx_qvstfiw:
    case Intrinsic::ppc_qpx_qvstfiwa:
    case Intrinsic::ppc_altivec_stvx:
    case Intrinsic::ppc_altivec_stvxl:
    case Intrinsic::ppc_vsx_stxvw4x:
      VT = MVT::v4i32;
      break;
    case Intrinsic::ppc_vsx_stxvd2x:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_vsx_stxvw4x_be:
      VT = MVT::v4i32;
      break;
    case Intrinsic::ppc_vsx_stxvd2x_be:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_altivec_stvebx:
      VT = MVT::i8;
      break;
    case Intrinsic::ppc_altivec_stvehx:
      VT = MVT::i16;
      break;
    case Intrinsic::ppc_altivec_stvewx:
      VT = MVT::i32;
      break;
    }

    return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
  }

  return false;
}

// Return true is there is a nearyby consecutive load to the one provided
// (regardless of alignment). We search up and down the chain, looking though
// token factors and other loads (but nothing else). As a result, a true result
// indicates that it is safe to create a new consecutive load adjacent to the
// load provided.
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
  SDValue Chain = LD->getChain();
  EVT VT = LD->getMemoryVT();

  SmallSet<SDNode *, 16> LoadRoots;
  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
  SmallSet<SDNode *, 16> Visited;

  // First, search up the chain, branching to follow all token-factor operands.
  // If we find a consecutive load, then we're done, otherwise, record all
  // nodes just above the top-level loads and token factors.
  while (!Queue.empty()) {
    SDNode *ChainNext = Queue.pop_back_val();
    if (!Visited.insert(ChainNext).second)
      continue;

    if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
        return true;

      if (!Visited.count(ChainLD->getChain().getNode()))
        Queue.push_back(ChainLD->getChain().getNode());
    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
      for (const SDUse &O : ChainNext->ops())
        if (!Visited.count(O.getNode()))
          Queue.push_back(O.getNode());
    } else
      LoadRoots.insert(ChainNext);
  }

  // Second, search down the chain, starting from the top-level nodes recorded
  // in the first phase. These top-level nodes are the nodes just above all
  // loads and token factors. Starting with their uses, recursively look though
  // all loads (just the chain uses) and token factors to find a consecutive
  // load.
  Visited.clear();
  Queue.clear();

  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
       IE = LoadRoots.end(); I != IE; ++I) {
    Queue.push_back(*I);

    while (!Queue.empty()) {
      SDNode *LoadRoot = Queue.pop_back_val();
      if (!Visited.insert(LoadRoot).second)
        continue;

      if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
          return true;

      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
           UE = LoadRoot->use_end(); UI != UE; ++UI)
        if (((isa<MemSDNode>(*UI) &&
            cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
          Queue.push_back(*UI);
    }
  }

  return false;
}

/// This function is called when we have proved that a SETCC node can be replaced
/// by subtraction (and other supporting instructions) so that the result of
/// comparison is kept in a GPR instead of CR. This function is purely for
/// codegen purposes and has some flags to guide the codegen process.
static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
                                     bool Swap, SDLoc &DL, SelectionDAG &DAG) {
  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");

  // Zero extend the operands to the largest legal integer. Originally, they
  // must be of a strictly smaller size.
  auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
                         DAG.getConstant(Size, DL, MVT::i32));
  auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
                         DAG.getConstant(Size, DL, MVT::i32));

  // Swap if needed. Depends on the condition code.
  if (Swap)
    std::swap(Op0, Op1);

  // Subtract extended integers.
  auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);

  // Move the sign bit to the least significant position and zero out the rest.
  // Now the least significant bit carries the result of original comparison.
  auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
                             DAG.getConstant(Size - 1, DL, MVT::i32));
  auto Final = Shifted;

  // Complement the result if needed. Based on the condition code.
  if (Complement)
    Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
                        DAG.getConstant(1, DL, MVT::i64));

  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
}

SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
                                                  DAGCombinerInfo &DCI) const {
  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  // Size of integers being compared has a critical role in the following
  // analysis, so we prefer to do this when all types are legal.
  if (!DCI.isAfterLegalizeDAG())
    return SDValue();

  // If all users of SETCC extend its value to a legal integer type
  // then we replace SETCC with a subtraction
  for (SDNode::use_iterator UI = N->use_begin(),
       UE = N->use_end(); UI != UE; ++UI) {
    if (UI->getOpcode() != ISD::ZERO_EXTEND)
      return SDValue();
  }

  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  auto OpSize = N->getOperand(0).getValueSizeInBits();

  unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();

  if (OpSize < Size) {
    switch (CC) {
    default: break;
    case ISD::SETULT:
      return generateEquivalentSub(N, Size, false, false, DL, DAG);
    case ISD::SETULE:
      return generateEquivalentSub(N, Size, true, true, DL, DAG);
    case ISD::SETUGT:
      return generateEquivalentSub(N, Size, false, true, DL, DAG);
    case ISD::SETUGE:
      return generateEquivalentSub(N, Size, true, false, DL, DAG);
    }
  }

  return SDValue();
}

SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
                                                  DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);

  assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
  // If we're tracking CR bits, we need to be careful that we don't have:
  //   trunc(binary-ops(zext(x), zext(y)))
  // or
  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
  // such that we're unnecessarily moving things into GPRs when it would be
  // better to keep them in CR bits.

  // Note that trunc here can be an actual i1 trunc, or can be the effective
  // truncation that comes from a setcc or select_cc.
  if (N->getOpcode() == ISD::TRUNCATE &&
      N->getValueType(0) != MVT::i1)
    return SDValue();

  if (N->getOperand(0).getValueType() != MVT::i32 &&
      N->getOperand(0).getValueType() != MVT::i64)
    return SDValue();

  if (N->getOpcode() == ISD::SETCC ||
      N->getOpcode() == ISD::SELECT_CC) {
    // If we're looking at a comparison, then we need to make sure that the
    // high bits (all except for the first) don't matter the result.
    ISD::CondCode CC =
      cast<CondCodeSDNode>(N->getOperand(
        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
    unsigned OpBits = N->getOperand(0).getValueSizeInBits();

    if (ISD::isSignedIntSetCC(CC)) {
      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
        return SDValue();
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (!DAG.MaskedValueIsZero(N->getOperand(0),
                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
          !DAG.MaskedValueIsZero(N->getOperand(1),
                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
        return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
                                             : SDValue());
    } else {
      // This is neither a signed nor an unsigned comparison, just make sure
      // that the high bits are equal.
      KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
      KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));

      // We don't really care about what is known about the first bit (if
      // anything), so clear it in all masks prior to comparing them.
      Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
      Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);

      if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
        return SDValue();
    }
  }

  // We now know that the higher-order bits are irrelevant, we just need to
  // make sure that all of the intermediate operations are bit operations, and
  // all inputs are extensions.
  if (N->getOperand(0).getOpcode() != ISD::AND &&
      N->getOperand(0).getOpcode() != ISD::OR  &&
      N->getOperand(0).getOpcode() != ISD::XOR &&
      N->getOperand(0).getOpcode() != ISD::SELECT &&
      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
    return SDValue();

  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
      N->getOperand(1).getOpcode() != ISD::AND &&
      N->getOperand(1).getOpcode() != ISD::OR  &&
      N->getOperand(1).getOpcode() != ISD::XOR &&
      N->getOperand(1).getOpcode() != ISD::SELECT &&
      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
    return SDValue();

  SmallVector<SDValue, 4> Inputs;
  SmallVector<SDValue, 8> BinOps, PromOps;
  SmallPtrSet<SDNode *, 16> Visited;

  for (unsigned i = 0; i < 2; ++i) {
    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
        isa<ConstantSDNode>(N->getOperand(i)))
      Inputs.push_back(N->getOperand(i));
    else
      BinOps.push_back(N->getOperand(i));

    if (N->getOpcode() == ISD::TRUNCATE)
      break;
  }

  // Visit all inputs, collect all binary operations (and, or, xor and
  // select) that are all fed by extensions.
  while (!BinOps.empty()) {
    SDValue BinOp = BinOps.back();
    BinOps.pop_back();

    if (!Visited.insert(BinOp.getNode()).second)
      continue;

    PromOps.push_back(BinOp);

    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
      // The condition of the select is not promoted.
      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
        continue;
      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
        continue;

      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
          isa<ConstantSDNode>(BinOp.getOperand(i))) {
        Inputs.push_back(BinOp.getOperand(i));
      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
        BinOps.push_back(BinOp.getOperand(i));
      } else {
        // We have an input that is not an extension or another binary
        // operation; we'll abort this transformation.
        return SDValue();
      }
    }
  }

  // Make sure that this is a self-contained cluster of operations (which
  // is not quite the same thing as saying that everything has only one
  // use).
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
    if (isa<ConstantSDNode>(Inputs[i]))
      continue;

    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
                              UE = Inputs[i].getNode()->use_end();
         UI != UE; ++UI) {
      SDNode *User = *UI;
      if (User != N && !Visited.count(User))
        return SDValue();

      // Make sure that we're not going to promote the non-output-value
      // operand(s) or SELECT or SELECT_CC.
      // FIXME: Although we could sometimes handle this, and it does occur in
      // practice that one of the condition inputs to the select is also one of
      // the outputs, we currently can't deal with this.
      if (User->getOpcode() == ISD::SELECT) {
        if (User->getOperand(0) == Inputs[i])
          return SDValue();
      } else if (User->getOpcode() == ISD::SELECT_CC) {
        if (User->getOperand(0) == Inputs[i] ||
            User->getOperand(1) == Inputs[i])
          return SDValue();
      }
    }
  }

  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
                              UE = PromOps[i].getNode()->use_end();
         UI != UE; ++UI) {
      SDNode *User = *UI;
      if (User != N && !Visited.count(User))
        return SDValue();

      // Make sure that we're not going to promote the non-output-value
      // operand(s) or SELECT or SELECT_CC.
      // FIXME: Although we could sometimes handle this, and it does occur in
      // practice that one of the condition inputs to the select is also one of
      // the outputs, we currently can't deal with this.
      if (User->getOpcode() == ISD::SELECT) {
        if (User->getOperand(0) == PromOps[i])
          return SDValue();
      } else if (User->getOpcode() == ISD::SELECT_CC) {
        if (User->getOperand(0) == PromOps[i] ||
            User->getOperand(1) == PromOps[i])
          return SDValue();
      }
    }
  }

  // Replace all inputs with the extension operand.
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
    // Constants may have users outside the cluster of to-be-promoted nodes,
    // and so we need to replace those as we do the promotions.
    if (isa<ConstantSDNode>(Inputs[i]))
      continue;
    else
      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
  }

  std::list<HandleSDNode> PromOpHandles;
  for (auto &PromOp : PromOps)
    PromOpHandles.emplace_back(PromOp);

  // Replace all operations (these are all the same, but have a different
  // (i1) return type). DAG.getNode will validate that the types of
  // a binary operator match, so go through the list in reverse so that
  // we've likely promoted both operands first. Any intermediate truncations or
  // extensions disappear.
  while (!PromOpHandles.empty()) {
    SDValue PromOp = PromOpHandles.back().getValue();
    PromOpHandles.pop_back();

    if (PromOp.getOpcode() == ISD::TRUNCATE ||
        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
        PromOp.getOpcode() == ISD::ANY_EXTEND) {
      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
          PromOp.getOperand(0).getValueType() != MVT::i1) {
        // The operand is not yet ready (see comment below).
        PromOpHandles.emplace_front(PromOp);
        continue;
      }

      SDValue RepValue = PromOp.getOperand(0);
      if (isa<ConstantSDNode>(RepValue))
        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);

      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
      continue;
    }

    unsigned C;
    switch (PromOp.getOpcode()) {
    default:             C = 0; break;
    case ISD::SELECT:    C = 1; break;
    case ISD::SELECT_CC: C = 2; break;
    }

    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
         PromOp.getOperand(C).getValueType() != MVT::i1) ||
        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
      // The to-be-promoted operands of this node have not yet been
      // promoted (this should be rare because we're going through the
      // list backward, but if one of the operands has several users in
      // this cluster of to-be-promoted nodes, it is possible).
      PromOpHandles.emplace_front(PromOp);
      continue;
    }

    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
                                PromOp.getNode()->op_end());

    // If there are any constant inputs, make sure they're replaced now.
    for (unsigned i = 0; i < 2; ++i)
      if (isa<ConstantSDNode>(Ops[C+i]))
        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);

    DAG.ReplaceAllUsesOfValueWith(PromOp,
      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
  }

  // Now we're left with the initial truncation itself.
  if (N->getOpcode() == ISD::TRUNCATE)
    return N->getOperand(0);

  // Otherwise, this is a comparison. The operands to be compared have just
  // changed type (to i1), but everything else is the same.
  return SDValue(N, 0);
}

SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
                                                  DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);

  // If we're tracking CR bits, we need to be careful that we don't have:
  //   zext(binary-ops(trunc(x), trunc(y)))
  // or
  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
  // such that we're unnecessarily moving things into CR bits that can more
  // efficiently stay in GPRs. Note that if we're not certain that the high
  // bits are set as required by the final extension, we still may need to do
  // some masking to get the proper behavior.

  // This same functionality is important on PPC64 when dealing with
  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
  // the return values of functions. Because it is so similar, it is handled
  // here as well.

  if (N->getValueType(0) != MVT::i32 &&
      N->getValueType(0) != MVT::i64)
    return SDValue();

  if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
        (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
    return SDValue();

  if (N->getOperand(0).getOpcode() != ISD::AND &&
      N->getOperand(0).getOpcode() != ISD::OR  &&
      N->getOperand(0).getOpcode() != ISD::XOR &&
      N->getOperand(0).getOpcode() != ISD::SELECT &&
      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
    return SDValue();

  SmallVector<SDValue, 4> Inputs;
  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
  SmallPtrSet<SDNode *, 16> Visited;

  // Visit all inputs, collect all binary operations (and, or, xor and
  // select) that are all fed by truncations.
  while (!BinOps.empty()) {
    SDValue BinOp = BinOps.back();
    BinOps.pop_back();

    if (!Visited.insert(BinOp.getNode()).second)
      continue;

    PromOps.push_back(BinOp);

    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
      // The condition of the select is not promoted.
      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
        continue;
      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
        continue;

      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
          isa<ConstantSDNode>(BinOp.getOperand(i))) {
        Inputs.push_back(BinOp.getOperand(i));
      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
        BinOps.push_back(BinOp.getOperand(i));
      } else {
        // We have an input that is not a truncation or another binary
        // operation; we'll abort this transformation.
        return SDValue();
      }
    }
  }

  // The operands of a select that must be truncated when the select is
  // promoted because the operand is actually part of the to-be-promoted set.
  DenseMap<SDNode *, EVT> SelectTruncOp[2];

  // Make sure that this is a self-contained cluster of operations (which
  // is not quite the same thing as saying that everything has only one
  // use).
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
    if (isa<ConstantSDNode>(Inputs[i]))
      continue;

    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
                              UE = Inputs[i].getNode()->use_end();
         UI != UE; ++UI) {
      SDNode *User = *UI;
      if (User != N && !Visited.count(User))
        return SDValue();

      // If we're going to promote the non-output-value operand(s) or SELECT or
      // SELECT_CC, record them for truncation.
      if (User->getOpcode() == ISD::SELECT) {
        if (User->getOperand(0) == Inputs[i])
          SelectTruncOp[0].insert(std::make_pair(User,
                                    User->getOperand(0).getValueType()));
      } else if (User->getOpcode() == ISD::SELECT_CC) {
        if (User->getOperand(0) == Inputs[i])
          SelectTruncOp[0].insert(std::make_pair(User,
                                    User->getOperand(0).getValueType()));
        if (User->getOperand(1) == Inputs[i])
          SelectTruncOp[1].insert(std::make_pair(User,
                                    User->getOperand(1).getValueType()));
      }
    }
  }

  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
                              UE = PromOps[i].getNode()->use_end();
         UI != UE; ++UI) {
      SDNode *User = *UI;
      if (User != N && !Visited.count(User))
        return SDValue();

      // If we're going to promote the non-output-value operand(s) or SELECT or
      // SELECT_CC, record them for truncation.
      if (User->getOpcode() == ISD::SELECT) {
        if (User->getOperand(0) == PromOps[i])
          SelectTruncOp[0].insert(std::make_pair(User,
                                    User->getOperand(0).getValueType()));
      } else if (User->getOpcode() == ISD::SELECT_CC) {
        if (User->getOperand(0) == PromOps[i])
          SelectTruncOp[0].insert(std::make_pair(User,
                                    User->getOperand(0).getValueType()));
        if (User->getOperand(1) == PromOps[i])
          SelectTruncOp[1].insert(std::make_pair(User,
                                    User->getOperand(1).getValueType()));
      }
    }
  }

  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
  bool ReallyNeedsExt = false;
  if (N->getOpcode() != ISD::ANY_EXTEND) {
    // If all of the inputs are not already sign/zero extended, then
    // we'll still need to do that at the end.
    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
      if (isa<ConstantSDNode>(Inputs[i]))
        continue;

      unsigned OpBits =
        Inputs[i].getOperand(0).getValueSizeInBits();
      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");

      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
                                  APInt::getHighBitsSet(OpBits,
                                                        OpBits-PromBits))) ||
          (N->getOpcode() == ISD::SIGN_EXTEND &&
           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
             (OpBits-(PromBits-1)))) {
        ReallyNeedsExt = true;
        break;
      }
    }
  }

  // Replace all inputs, either with the truncation operand, or a
  // truncation or extension to the final output type.
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
    // Constant inputs need to be replaced with the to-be-promoted nodes that
    // use them because they might have users outside of the cluster of
    // promoted nodes.
    if (isa<ConstantSDNode>(Inputs[i]))
      continue;

    SDValue InSrc = Inputs[i].getOperand(0);
    if (Inputs[i].getValueType() == N->getValueType(0))
      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
    else if (N->getOpcode() == ISD::SIGN_EXTEND)
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
    else if (N->getOpcode() == ISD::ZERO_EXTEND)
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
    else
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
  }

  std::list<HandleSDNode> PromOpHandles;
  for (auto &PromOp : PromOps)
    PromOpHandles.emplace_back(PromOp);

  // Replace all operations (these are all the same, but have a different
  // (promoted) return type). DAG.getNode will validate that the types of
  // a binary operator match, so go through the list in reverse so that
  // we've likely promoted both operands first.
  while (!PromOpHandles.empty()) {
    SDValue PromOp = PromOpHandles.back().getValue();
    PromOpHandles.pop_back();

    unsigned C;
    switch (PromOp.getOpcode()) {
    default:             C = 0; break;
    case ISD::SELECT:    C = 1; break;
    case ISD::SELECT_CC: C = 2; break;
    }

    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
      // The to-be-promoted operands of this node have not yet been
      // promoted (this should be rare because we're going through the
      // list backward, but if one of the operands has several users in
      // this cluster of to-be-promoted nodes, it is possible).
      PromOpHandles.emplace_front(PromOp);
      continue;
    }

    // For SELECT and SELECT_CC nodes, we do a similar check for any
    // to-be-promoted comparison inputs.
    if (PromOp.getOpcode() == ISD::SELECT ||
        PromOp.getOpcode() == ISD::SELECT_CC) {
      if ((SelectTruncOp[0].count(PromOp.getNode()) &&
           PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
          (SelectTruncOp[1].count(PromOp.getNode()) &&
           PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
        PromOpHandles.emplace_front(PromOp);
        continue;
      }
    }

    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
                                PromOp.getNode()->op_end());

    // If this node has constant inputs, then they'll need to be promoted here.
    for (unsigned i = 0; i < 2; ++i) {
      if (!isa<ConstantSDNode>(Ops[C+i]))
        continue;
      if (Ops[C+i].getValueType() == N->getValueType(0))
        continue;

      if (N->getOpcode() == ISD::SIGN_EXTEND)
        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
      else if (N->getOpcode() == ISD::ZERO_EXTEND)
        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
      else
        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
    }

    // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
    // truncate them again to the original value type.
    if (PromOp.getOpcode() == ISD::SELECT ||
        PromOp.getOpcode() == ISD::SELECT_CC) {
      auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
      if (SI0 != SelectTruncOp[0].end())
        Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
      auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
      if (SI1 != SelectTruncOp[1].end())
        Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
    }

    DAG.ReplaceAllUsesOfValueWith(PromOp,
      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
  }

  // Now we're left with the initial extension itself.
  if (!ReallyNeedsExt)
    return N->getOperand(0);

  // To zero extend, just mask off everything except for the first bit (in the
  // i1 case).
  if (N->getOpcode() == ISD::ZERO_EXTEND)
    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
                       DAG.getConstant(APInt::getLowBitsSet(
                                         N->getValueSizeInBits(0), PromBits),
                                       dl, N->getValueType(0)));

  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
         "Invalid extension type");
  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
  SDValue ShiftCst =
      DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
  return DAG.getNode(
      ISD::SRA, dl, N->getValueType(0),
      DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
      ShiftCst);
}

SDValue PPCTargetLowering::combineSetCC(SDNode *N,
                                        DAGCombinerInfo &DCI) const {
  assert(N->getOpcode() == ISD::SETCC &&
         "Should be called with a SETCC node");

  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  if (CC == ISD::SETNE || CC == ISD::SETEQ) {
    SDValue LHS = N->getOperand(0);
    SDValue RHS = N->getOperand(1);

    // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
    if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
        LHS.hasOneUse())
      std::swap(LHS, RHS);

    // x == 0-y --> x+y == 0
    // x != 0-y --> x+y != 0
    if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
        RHS.hasOneUse()) {
      SDLoc DL(N);
      SelectionDAG &DAG = DCI.DAG;
      EVT VT = N->getValueType(0);
      EVT OpVT = LHS.getValueType();
      SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
      return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
    }
  }

  return DAGCombineTruncBoolExt(N, DCI);
}

// Is this an extending load from an f32 to an f64?
static bool isFPExtLoad(SDValue Op) {
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
    return LD->getExtensionType() == ISD::EXTLOAD &&
      Op.getValueType() == MVT::f64;
  return false;
}

/// Reduces the number of fp-to-int conversion when building a vector.
///
/// If this vector is built out of floating to integer conversions,
/// transform it to a vector built out of floating point values followed by a
/// single floating to integer conversion of the vector.
/// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
/// becomes (fptosi (build_vector ($A, $B, ...)))
SDValue PPCTargetLowering::
combineElementTruncationToVectorTruncation(SDNode *N,
                                           DAGCombinerInfo &DCI) const {
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
         "Should be called with a BUILD_VECTOR node");

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);

  SDValue FirstInput = N->getOperand(0);
  assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
         "The input operand must be an fp-to-int conversion.");

  // This combine happens after legalization so the fp_to_[su]i nodes are
  // already converted to PPCSISD nodes.
  unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
  if (FirstConversion == PPCISD::FCTIDZ ||
      FirstConversion == PPCISD::FCTIDUZ ||
      FirstConversion == PPCISD::FCTIWZ ||
      FirstConversion == PPCISD::FCTIWUZ) {
    bool IsSplat = true;
    bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
      FirstConversion == PPCISD::FCTIWUZ;
    EVT SrcVT = FirstInput.getOperand(0).getValueType();
    SmallVector<SDValue, 4> Ops;
    EVT TargetVT = N->getValueType(0);
    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
      SDValue NextOp = N->getOperand(i);
      if (NextOp.getOpcode() != PPCISD::MFVSR)
        return SDValue();
      unsigned NextConversion = NextOp.getOperand(0).getOpcode();
      if (NextConversion != FirstConversion)
        return SDValue();
      // If we are converting to 32-bit integers, we need to add an FP_ROUND.
      // This is not valid if the input was originally double precision. It is
      // also not profitable to do unless this is an extending load in which
      // case doing this combine will allow us to combine consecutive loads.
      if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
        return SDValue();
      if (N->getOperand(i) != FirstInput)
        IsSplat = false;
    }

    // If this is a splat, we leave it as-is since there will be only a single
    // fp-to-int conversion followed by a splat of the integer. This is better
    // for 32-bit and smaller ints and neutral for 64-bit ints.
    if (IsSplat)
      return SDValue();

    // Now that we know we have the right type of node, get its operands
    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
      SDValue In = N->getOperand(i).getOperand(0);
      if (Is32Bit) {
        // For 32-bit values, we need to add an FP_ROUND node (if we made it
        // here, we know that all inputs are extending loads so this is safe).
        if (In.isUndef())
          Ops.push_back(DAG.getUNDEF(SrcVT));
        else {
          SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
                                      MVT::f32, In.getOperand(0),
                                      DAG.getIntPtrConstant(1, dl));
          Ops.push_back(Trunc);
        }
      } else
        Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
    }

    unsigned Opcode;
    if (FirstConversion == PPCISD::FCTIDZ ||
        FirstConversion == PPCISD::FCTIWZ)
      Opcode = ISD::FP_TO_SINT;
    else
      Opcode = ISD::FP_TO_UINT;

    EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
    SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
    return DAG.getNode(Opcode, dl, TargetVT, BV);
  }
  return SDValue();
}

/// Reduce the number of loads when building a vector.
///
/// Building a vector out of multiple loads can be converted to a load
/// of the vector type if the loads are consecutive. If the loads are
/// consecutive but in descending order, a shuffle is added at the end
/// to reorder the vector.
static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
         "Should be called with a BUILD_VECTOR node");

  SDLoc dl(N);

  // Return early for non byte-sized type, as they can't be consecutive.
  if (!N->getValueType(0).getVectorElementType().isByteSized())
    return SDValue();

  bool InputsAreConsecutiveLoads = true;
  bool InputsAreReverseConsecutive = true;
  unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
  SDValue FirstInput = N->getOperand(0);
  bool IsRoundOfExtLoad = false;

  if (FirstInput.getOpcode() == ISD::FP_ROUND &&
      FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
    LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
    IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
  }
  // Not a build vector of (possibly fp_rounded) loads.
  if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
      N->getNumOperands() == 1)
    return SDValue();

  for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
    // If any inputs are fp_round(extload), they all must be.
    if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
      return SDValue();

    SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
      N->getOperand(i);
    if (NextInput.getOpcode() != ISD::LOAD)
      return SDValue();

    SDValue PreviousInput =
      IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
    LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
    LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);

    // If any inputs are fp_round(extload), they all must be.
    if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
      return SDValue();

    if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
      InputsAreConsecutiveLoads = false;
    if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
      InputsAreReverseConsecutive = false;

    // Exit early if the loads are neither consecutive nor reverse consecutive.
    if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
      return SDValue();
  }

  assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
         "The loads cannot be both consecutive and reverse consecutive.");

  SDValue FirstLoadOp =
    IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
  SDValue LastLoadOp =
    IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
                       N->getOperand(N->getNumOperands()-1);

  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
  LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
  if (InputsAreConsecutiveLoads) {
    assert(LD1 && "Input needs to be a LoadSDNode.");
    return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
                       LD1->getBasePtr(), LD1->getPointerInfo(),
                       LD1->getAlignment());
  }
  if (InputsAreReverseConsecutive) {
    assert(LDL && "Input needs to be a LoadSDNode.");
    SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
                               LDL->getBasePtr(), LDL->getPointerInfo(),
                               LDL->getAlignment());
    SmallVector<int, 16> Ops;
    for (int i = N->getNumOperands() - 1; i >= 0; i--)
      Ops.push_back(i);

    return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
                                DAG.getUNDEF(N->getValueType(0)), Ops);
  }
  return SDValue();
}

// This function adds the required vector_shuffle needed to get
// the elements of the vector extract in the correct position
// as specified by the CorrectElems encoding.
static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
                                      SDValue Input, uint64_t Elems,
                                      uint64_t CorrectElems) {
  SDLoc dl(N);

  unsigned NumElems = Input.getValueType().getVectorNumElements();
  SmallVector<int, 16> ShuffleMask(NumElems, -1);

  // Knowing the element indices being extracted from the original
  // vector and the order in which they're being inserted, just put
  // them at element indices required for the instruction.
  for (unsigned i = 0; i < N->getNumOperands(); i++) {
    if (DAG.getDataLayout().isLittleEndian())
      ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
    else
      ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
    CorrectElems = CorrectElems >> 8;
    Elems = Elems >> 8;
  }

  SDValue Shuffle =
      DAG.getVectorShuffle(Input.getValueType(), dl, Input,
                           DAG.getUNDEF(Input.getValueType()), ShuffleMask);

  EVT VT = N->getValueType(0);
  SDValue Conv = DAG.getBitcast(VT, Shuffle);

  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
                               Input.getValueType().getVectorElementType(),
                               VT.getVectorNumElements());
  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
                     DAG.getValueType(ExtVT));
}

// Look for build vector patterns where input operands come from sign
// extended vector_extract elements of specific indices. If the correct indices
// aren't used, add a vector shuffle to fix up the indices and create
// SIGN_EXTEND_INREG node which selects the vector sign extend instructions
// during instruction selection.
static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
  // This array encodes the indices that the vector sign extend instructions
  // extract from when extending from one type to another for both BE and LE.
  // The right nibble of each byte corresponds to the LE incides.
  // and the left nibble of each byte corresponds to the BE incides.
  // For example: 0x3074B8FC  byte->word
  // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
  // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
  // For example: 0x000070F8  byte->double word
  // For LE: the allowed indices are: 0x0,0x8
  // For BE: the allowed indices are: 0x7,0xF
  uint64_t TargetElems[] = {
      0x3074B8FC, // b->w
      0x000070F8, // b->d
      0x10325476, // h->w
      0x00003074, // h->d
      0x00001032, // w->d
  };

  uint64_t Elems = 0;
  int Index;
  SDValue Input;

  auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
    if (!Op)
      return false;
    if (Op.getOpcode() != ISD::SIGN_EXTEND &&
        Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
      return false;

    // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
    // of the right width.
    SDValue Extract = Op.getOperand(0);
    if (Extract.getOpcode() == ISD::ANY_EXTEND)
      Extract = Extract.getOperand(0);
    if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
      return false;

    ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
    if (!ExtOp)
      return false;

    Index = ExtOp->getZExtValue();
    if (Input && Input != Extract.getOperand(0))
      return false;

    if (!Input)
      Input = Extract.getOperand(0);

    Elems = Elems << 8;
    Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
    Elems |= Index;

    return true;
  };

  // If the build vector operands aren't sign extended vector extracts,
  // of the same input vector, then return.
  for (unsigned i = 0; i < N->getNumOperands(); i++) {
    if (!isSExtOfVecExtract(N->getOperand(i))) {
      return SDValue();
    }
  }

  // If the vector extract indicies are not correct, add the appropriate
  // vector_shuffle.
  int TgtElemArrayIdx;
  int InputSize = Input.getValueType().getScalarSizeInBits();
  int OutputSize = N->getValueType(0).getScalarSizeInBits();
  if (InputSize + OutputSize == 40)
    TgtElemArrayIdx = 0;
  else if (InputSize + OutputSize == 72)
    TgtElemArrayIdx = 1;
  else if (InputSize + OutputSize == 48)
    TgtElemArrayIdx = 2;
  else if (InputSize + OutputSize == 80)
    TgtElemArrayIdx = 3;
  else if (InputSize + OutputSize == 96)
    TgtElemArrayIdx = 4;
  else
    return SDValue();

  uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
  CorrectElems = DAG.getDataLayout().isLittleEndian()
                     ? CorrectElems & 0x0F0F0F0F0F0F0F0F
                     : CorrectElems & 0xF0F0F0F0F0F0F0F0;
  if (Elems != CorrectElems) {
    return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
  }

  // Regular lowering will catch cases where a shuffle is not needed.
  return SDValue();
}

SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
                                                 DAGCombinerInfo &DCI) const {
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
         "Should be called with a BUILD_VECTOR node");

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);

  if (!Subtarget.hasVSX())
    return SDValue();

  // The target independent DAG combiner will leave a build_vector of
  // float-to-int conversions intact. We can generate MUCH better code for
  // a float-to-int conversion of a vector of floats.
  SDValue FirstInput = N->getOperand(0);
  if (FirstInput.getOpcode() == PPCISD::MFVSR) {
    SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
    if (Reduced)
      return Reduced;
  }

  // If we're building a vector out of consecutive loads, just load that
  // vector type.
  SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
  if (Reduced)
    return Reduced;

  // If we're building a vector out of extended elements from another vector
  // we have P9 vector integer extend instructions. The code assumes legal
  // input types (i.e. it can't handle things like v4i16) so do not run before
  // legalization.
  if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
    Reduced = combineBVOfVecSExt(N, DAG);
    if (Reduced)
      return Reduced;
  }


  if (N->getValueType(0) != MVT::v2f64)
    return SDValue();

  // Looking for:
  // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
  if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
      FirstInput.getOpcode() != ISD::UINT_TO_FP)
    return SDValue();
  if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
      N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
    return SDValue();
  if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
    return SDValue();

  SDValue Ext1 = FirstInput.getOperand(0);
  SDValue Ext2 = N->getOperand(1).getOperand(0);
  if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
     Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
    return SDValue();

  ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
  ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
  if (!Ext1Op || !Ext2Op)
    return SDValue();
  if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
      Ext1.getOperand(0) != Ext2.getOperand(0))
    return SDValue();

  int FirstElem = Ext1Op->getZExtValue();
  int SecondElem = Ext2Op->getZExtValue();
  int SubvecIdx;
  if (FirstElem == 0 && SecondElem == 1)
    SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
  else if (FirstElem == 2 && SecondElem == 3)
    SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
  else
    return SDValue();

  SDValue SrcVec = Ext1.getOperand(0);
  auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
    PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
  return DAG.getNode(NodeType, dl, MVT::v2f64,
                     SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
}

SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  assert((N->getOpcode() == ISD::SINT_TO_FP ||
          N->getOpcode() == ISD::UINT_TO_FP) &&
         "Need an int -> FP conversion node here");

  if (useSoftFloat() || !Subtarget.has64BitSupport())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  SDValue Op(N, 0);

  // Don't handle ppc_fp128 here or conversions that are out-of-range capable
  // from the hardware.
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
    return SDValue();
  if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
      Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
    return SDValue();

  SDValue FirstOperand(Op.getOperand(0));
  bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
    (FirstOperand.getValueType() == MVT::i8 ||
     FirstOperand.getValueType() == MVT::i16);
  if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
    bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
    bool DstDouble = Op.getValueType() == MVT::f64;
    unsigned ConvOp = Signed ?
      (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
      (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
    SDValue WidthConst =
      DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
                            dl, false);
    LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
    SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
    SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
                                         DAG.getVTList(MVT::f64, MVT::Other),
                                         Ops, MVT::i8, LDN->getMemOperand());

    // For signed conversion, we need to sign-extend the value in the VSR
    if (Signed) {
      SDValue ExtOps[] = { Ld, WidthConst };
      SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
    } else
      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
  }


  // For i32 intermediate values, unfortunately, the conversion functions
  // leave the upper 32 bits of the value are undefined. Within the set of
  // scalar instructions, we have no method for zero- or sign-extending the
  // value. Thus, we cannot handle i32 intermediate values here.
  if (Op.getOperand(0).getValueType() == MVT::i32)
    return SDValue();

  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
         "UINT_TO_FP is supported only with FPCVT");

  // If we have FCFIDS, then use it when converting to single-precision.
  // Otherwise, convert to double-precision and then round.
  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
                                                            : PPCISD::FCFIDS)
                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
                                                            : PPCISD::FCFID);
  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
                  ? MVT::f32
                  : MVT::f64;

  // If we're converting from a float, to an int, and back to a float again,
  // then we don't need the store/load pair at all.
  if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
       Subtarget.hasFPCVT()) ||
      (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
    SDValue Src = Op.getOperand(0).getOperand(0);
    if (Src.getValueType() == MVT::f32) {
      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
      DCI.AddToWorklist(Src.getNode());
    } else if (Src.getValueType() != MVT::f64) {
      // Make sure that we don't pick up a ppc_fp128 source value.
      return SDValue();
    }

    unsigned FCTOp =
      Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
                                                        PPCISD::FCTIDUZ;

    SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);

    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
      FP = DAG.getNode(ISD::FP_ROUND, dl,
                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
      DCI.AddToWorklist(FP.getNode());
    }

    return FP;
  }

  return SDValue();
}

// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
// builtins) into loads with swaps.
SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  SDValue Chain;
  SDValue Base;
  MachineMemOperand *MMO;

  switch (N->getOpcode()) {
  default:
    llvm_unreachable("Unexpected opcode for little endian VSX load");
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(N);
    Chain = LD->getChain();
    Base = LD->getBasePtr();
    MMO = LD->getMemOperand();
    // If the MMO suggests this isn't a load of a full vector, leave
    // things alone.  For a built-in, we have to make the change for
    // correctness, so if there is a size problem that will be a bug.
    if (MMO->getSize() < 16)
      return SDValue();
    break;
  }
  case ISD::INTRINSIC_W_CHAIN: {
    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
    Chain = Intrin->getChain();
    // Similarly to the store case below, Intrin->getBasePtr() doesn't get
    // us what we want. Get operand 2 instead.
    Base = Intrin->getOperand(2);
    MMO = Intrin->getMemOperand();
    break;
  }
  }

  MVT VecTy = N->getValueType(0).getSimpleVT();

  // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
  // aligned and the type is a vector with elements up to 4 bytes
  if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
      VecTy.getScalarSizeInBits() <= 32) {
    return SDValue();
  }

  SDValue LoadOps[] = { Chain, Base };
  SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
                                         DAG.getVTList(MVT::v2f64, MVT::Other),
                                         LoadOps, MVT::v2f64, MMO);

  DCI.AddToWorklist(Load.getNode());
  Chain = Load.getValue(1);
  SDValue Swap = DAG.getNode(
      PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
  DCI.AddToWorklist(Swap.getNode());

  // Add a bitcast if the resulting load type doesn't match v2f64.
  if (VecTy != MVT::v2f64) {
    SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
    DCI.AddToWorklist(N.getNode());
    // Package {bitcast value, swap's chain} to match Load's shape.
    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
                       N, Swap.getValue(1));
  }

  return Swap;
}

// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
// builtins) into stores with swaps.
SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
                                               DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  SDValue Chain;
  SDValue Base;
  unsigned SrcOpnd;
  MachineMemOperand *MMO;

  switch (N->getOpcode()) {
  default:
    llvm_unreachable("Unexpected opcode for little endian VSX store");
  case ISD::STORE: {
    StoreSDNode *ST = cast<StoreSDNode>(N);
    Chain = ST->getChain();
    Base = ST->getBasePtr();
    MMO = ST->getMemOperand();
    SrcOpnd = 1;
    // If the MMO suggests this isn't a store of a full vector, leave
    // things alone.  For a built-in, we have to make the change for
    // correctness, so if there is a size problem that will be a bug.
    if (MMO->getSize() < 16)
      return SDValue();
    break;
  }
  case ISD::INTRINSIC_VOID: {
    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
    Chain = Intrin->getChain();
    // Intrin->getBasePtr() oddly does not get what we want.
    Base = Intrin->getOperand(3);
    MMO = Intrin->getMemOperand();
    SrcOpnd = 2;
    break;
  }
  }

  SDValue Src = N->getOperand(SrcOpnd);
  MVT VecTy = Src.getValueType().getSimpleVT();

  // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
  // aligned and the type is a vector with elements up to 4 bytes
  if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
      VecTy.getScalarSizeInBits() <= 32) {
    return SDValue();
  }

  // All stores are done as v2f64 and possible bit cast.
  if (VecTy != MVT::v2f64) {
    Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
    DCI.AddToWorklist(Src.getNode());
  }

  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
                             DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
  DCI.AddToWorklist(Swap.getNode());
  Chain = Swap.getValue(1);
  SDValue StoreOps[] = { Chain, Swap, Base };
  SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
                                          DAG.getVTList(MVT::Other),
                                          StoreOps, VecTy, MMO);
  DCI.AddToWorklist(Store.getNode());
  return Store;
}

// Handle DAG combine for STORE (FP_TO_INT F).
SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
                                               DAGCombinerInfo &DCI) const {

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  unsigned Opcode = N->getOperand(1).getOpcode();

  assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
         && "Not a FP_TO_INT Instruction!");

  SDValue Val = N->getOperand(1).getOperand(0);
  EVT Op1VT = N->getOperand(1).getValueType();
  EVT ResVT = Val.getValueType();

  // Floating point types smaller than 32 bits are not legal on Power.
  if (ResVT.getScalarSizeInBits() < 32)
    return SDValue();

  // Only perform combine for conversion to i64/i32 or power9 i16/i8.
  bool ValidTypeForStoreFltAsInt =
        (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
         (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));

  if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
      cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
    return SDValue();

  // Extend f32 values to f64
  if (ResVT.getScalarSizeInBits() == 32) {
    Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
    DCI.AddToWorklist(Val.getNode());
  }

  // Set signed or unsigned conversion opcode.
  unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
                          PPCISD::FP_TO_SINT_IN_VSR :
                          PPCISD::FP_TO_UINT_IN_VSR;

  Val = DAG.getNode(ConvOpcode,
                    dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
  DCI.AddToWorklist(Val.getNode());

  // Set number of bytes being converted.
  unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
  SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
                    DAG.getIntPtrConstant(ByteSize, dl, false),
                    DAG.getValueType(Op1VT) };

  Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
          DAG.getVTList(MVT::Other), Ops,
          cast<StoreSDNode>(N)->getMemoryVT(),
          cast<StoreSDNode>(N)->getMemOperand());

  DCI.AddToWorklist(Val.getNode());
  return Val;
}

static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
  // Check that the source of the element keeps flipping
  // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
  bool PrevElemFromFirstVec = Mask[0] < NumElts;
  for (int i = 1, e = Mask.size(); i < e; i++) {
    if (PrevElemFromFirstVec && Mask[i] < NumElts)
      return false;
    if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
      return false;
    PrevElemFromFirstVec = !PrevElemFromFirstVec;
  }
  return true;
}

static bool isSplatBV(SDValue Op) {
  if (Op.getOpcode() != ISD::BUILD_VECTOR)
    return false;
  SDValue FirstOp;

  // Find first non-undef input.
  for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
    FirstOp = Op.getOperand(i);
    if (!FirstOp.isUndef())
      break;
  }

  // All inputs are undef or the same as the first non-undef input.
  for (int i = 1, e = Op.getNumOperands(); i < e; i++)
    if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
      return false;
  return true;
}

static SDValue isScalarToVec(SDValue Op) {
  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
    return Op;
  if (Op.getOpcode() != ISD::BITCAST)
    return SDValue();
  Op = Op.getOperand(0);
  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
    return Op;
  return SDValue();
}

static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
                                            int LHSMaxIdx, int RHSMinIdx,
                                            int RHSMaxIdx, int HalfVec) {
  for (int i = 0, e = ShuffV.size(); i < e; i++) {
    int Idx = ShuffV[i];
    if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
      ShuffV[i] += HalfVec;
  }
  return;
}

// Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
// the original is:
// (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
// In such a case, just change the shuffle mask to extract the element
// from the permuted index.
static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
  SDLoc dl(OrigSToV);
  EVT VT = OrigSToV.getValueType();
  assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
         "Expecting a SCALAR_TO_VECTOR here");
  SDValue Input = OrigSToV.getOperand(0);

  if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
    ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
    SDValue OrigVector = Input.getOperand(0);

    // Can't handle non-const element indices or different vector types
    // for the input to the extract and the output of the scalar_to_vector.
    if (Idx && VT == OrigVector.getValueType()) {
      SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
      NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
      return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
    }
  }
  return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
                     OrigSToV.getOperand(0));
}

// On little endian subtargets, combine shuffles such as:
// vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
// into:
// vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
// because the latter can be matched to a single instruction merge.
// Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
// to put the value into element zero. Adjust the shuffle mask so that the
// vector can remain in permuted form (to prevent a swap prior to a shuffle).
SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
                                                SelectionDAG &DAG) const {
  SDValue LHS = SVN->getOperand(0);
  SDValue RHS = SVN->getOperand(1);
  auto Mask = SVN->getMask();
  int NumElts = LHS.getValueType().getVectorNumElements();
  SDValue Res(SVN, 0);
  SDLoc dl(SVN);

  // None of these combines are useful on big endian systems since the ISA
  // already has a big endian bias.
  if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
    return Res;

  // If this is not a shuffle of a shuffle and the first element comes from
  // the second vector, canonicalize to the commuted form. This will make it
  // more likely to match one of the single instruction patterns.
  if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
      RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
    std::swap(LHS, RHS);
    Res = DAG.getCommutedVectorShuffle(*SVN);
    Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
  }

  // Adjust the shuffle mask if either input vector comes from a
  // SCALAR_TO_VECTOR and keep the respective input vector in permuted
  // form (to prevent the need for a swap).
  SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
  SDValue SToVLHS = isScalarToVec(LHS);
  SDValue SToVRHS = isScalarToVec(RHS);
  if (SToVLHS || SToVRHS) {
    int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
                            : SToVRHS.getValueType().getVectorNumElements();
    int NumEltsOut = ShuffV.size();

    // Initially assume that neither input is permuted. These will be adjusted
    // accordingly if either input is.
    int LHSMaxIdx = -1;
    int RHSMinIdx = -1;
    int RHSMaxIdx = -1;
    int HalfVec = LHS.getValueType().getVectorNumElements() / 2;

    // Get the permuted scalar to vector nodes for the source(s) that come from
    // ISD::SCALAR_TO_VECTOR.
    if (SToVLHS) {
      // Set up the values for the shuffle vector fixup.
      LHSMaxIdx = NumEltsOut / NumEltsIn;
      SToVLHS = getSToVPermuted(SToVLHS, DAG);
      if (SToVLHS.getValueType() != LHS.getValueType())
        SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
      LHS = SToVLHS;
    }
    if (SToVRHS) {
      RHSMinIdx = NumEltsOut;
      RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
      SToVRHS = getSToVPermuted(SToVRHS, DAG);
      if (SToVRHS.getValueType() != RHS.getValueType())
        SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
      RHS = SToVRHS;
    }

    // Fix up the shuffle mask to reflect where the desired element actually is.
    // The minimum and maximum indices that correspond to element zero for both
    // the LHS and RHS are computed and will control which shuffle mask entries
    // are to be changed. For example, if the RHS is permuted, any shuffle mask
    // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
    // HalfVec to refer to the corresponding element in the permuted vector.
    fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
                                    HalfVec);
    Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);

    // We may have simplified away the shuffle. We won't be able to do anything
    // further with it here.
    if (!isa<ShuffleVectorSDNode>(Res))
      return Res;
    Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
  }

  // The common case after we commuted the shuffle is that the RHS is a splat
  // and we have elements coming in from the splat at indices that are not
  // conducive to using a merge.
  // Example:
  // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
  if (!isSplatBV(RHS))
    return Res;

  // We are looking for a mask such that all even elements are from
  // one vector and all odd elements from the other.
  if (!isAlternatingShuffMask(Mask, NumElts))
    return Res;

  // Adjust the mask so we are pulling in the same index from the splat
  // as the index from the interesting vector in consecutive elements.
  // Example (even elements from first vector):
  // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
  if (Mask[0] < NumElts)
    for (int i = 1, e = Mask.size(); i < e; i += 2)
      ShuffV[i] = (ShuffV[i - 1] + NumElts);
  // Example (odd elements from first vector):
  // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
  else
    for (int i = 0, e = Mask.size(); i < e; i += 2)
      ShuffV[i] = (ShuffV[i + 1] + NumElts);

  // If the RHS has undefs, we need to remove them since we may have created
  // a shuffle that adds those instead of the splat value.
  SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
  RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);

  Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
  return Res;
}

SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
                                                LSBaseSDNode *LSBase,
                                                DAGCombinerInfo &DCI) const {
  assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
        "Not a reverse memop pattern!");

  auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
    auto Mask = SVN->getMask();
    int i = 0;
    auto I = Mask.rbegin();
    auto E = Mask.rend();

    for (; I != E; ++I) {
      if (*I != i)
        return false;
      i++;
    }
    return true;
  };

  SelectionDAG &DAG = DCI.DAG;
  EVT VT = SVN->getValueType(0);

  if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
    return SDValue();

  // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
  // See comment in PPCVSXSwapRemoval.cpp.
  // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
  if (!Subtarget.hasP9Vector())
    return SDValue();

  if(!IsElementReverse(SVN))
    return SDValue();

  if (LSBase->getOpcode() == ISD::LOAD) {
    SDLoc dl(SVN);
    SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
    return DAG.getMemIntrinsicNode(
        PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
        LSBase->getMemoryVT(), LSBase->getMemOperand());
  }

  if (LSBase->getOpcode() == ISD::STORE) {
    SDLoc dl(LSBase);
    SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
                          LSBase->getBasePtr()};
    return DAG.getMemIntrinsicNode(
        PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
        LSBase->getMemoryVT(), LSBase->getMemOperand());
  }

  llvm_unreachable("Expected a load or store node here");
}

SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
                                             DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  switch (N->getOpcode()) {
  default: break;
  case ISD::ADD:
    return combineADD(N, DCI);
  case ISD::SHL:
    return combineSHL(N, DCI);
  case ISD::SRA:
    return combineSRA(N, DCI);
  case ISD::SRL:
    return combineSRL(N, DCI);
  case ISD::MUL:
    return combineMUL(N, DCI);
  case ISD::FMA:
  case PPCISD::FNMSUB:
    return combineFMALike(N, DCI);
  case PPCISD::SHL:
    if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
        return N->getOperand(0);
    break;
  case PPCISD::SRL:
    if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
        return N->getOperand(0);
    break;
  case PPCISD::SRA:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
      if (C->isNullValue() ||   //  0 >>s V -> 0.
          C->isAllOnesValue())    // -1 >>s V -> -1.
        return N->getOperand(0);
    }
    break;
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::ANY_EXTEND:
    return DAGCombineExtBoolTrunc(N, DCI);
  case ISD::TRUNCATE:
    return combineTRUNCATE(N, DCI);
  case ISD::SETCC:
    if (SDValue CSCC = combineSetCC(N, DCI))
      return CSCC;
    LLVM_FALLTHROUGH;
  case ISD::SELECT_CC:
    return DAGCombineTruncBoolExt(N, DCI);
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    return combineFPToIntToFP(N, DCI);
  case ISD::VECTOR_SHUFFLE:
    if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
      LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
      return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
    }
    return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
  case ISD::STORE: {

    EVT Op1VT = N->getOperand(1).getValueType();
    unsigned Opcode = N->getOperand(1).getOpcode();

    if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
      SDValue Val= combineStoreFPToInt(N, DCI);
      if (Val)
        return Val;
    }

    if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
      SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
      if (Val)
        return Val;
    }

    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
    if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
        N->getOperand(1).getNode()->hasOneUse() &&
        (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
         (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {

      // STBRX can only handle simple types and it makes no sense to store less
      // two bytes in byte-reversed order.
      EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
      if (mVT.isExtended() || mVT.getSizeInBits() < 16)
        break;

      SDValue BSwapOp = N->getOperand(1).getOperand(0);
      // Do an any-extend to 32-bits if this is a half-word input.
      if (BSwapOp.getValueType() == MVT::i16)
        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);

      // If the type of BSWAP operand is wider than stored memory width
      // it need to be shifted to the right side before STBRX.
      if (Op1VT.bitsGT(mVT)) {
        int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
        BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
                              DAG.getConstant(Shift, dl, MVT::i32));
        // Need to truncate if this is a bswap of i64 stored as i32/i16.
        if (Op1VT == MVT::i64)
          BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
      }

      SDValue Ops[] = {
        N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
      };
      return
        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
                                cast<StoreSDNode>(N)->getMemOperand());
    }

    // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
    // So it can increase the chance of CSE constant construction.
    if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
        isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
      // Need to sign-extended to 64-bits to handle negative values.
      EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
      uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
                                    MemVT.getSizeInBits());
      SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);

      // DAG.getTruncStore() can't be used here because it doesn't accept
      // the general (base + offset) addressing mode.
      // So we use UpdateNodeOperands and setTruncatingStore instead.
      DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
                             N->getOperand(3));
      cast<StoreSDNode>(N)->setTruncatingStore(true);
      return SDValue(N, 0);
    }

    // For little endian, VSX stores require generating xxswapd/lxvd2x.
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
    if (Op1VT.isSimple()) {
      MVT StoreVT = Op1VT.getSimpleVT();
      if (Subtarget.needsSwapsForVSXMemOps() &&
          (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
           StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
        return expandVSXStoreForLE(N, DCI);
    }
    break;
  }
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(N);
    EVT VT = LD->getValueType(0);

    // For little endian, VSX loads require generating lxvd2x/xxswapd.
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
    if (VT.isSimple()) {
      MVT LoadVT = VT.getSimpleVT();
      if (Subtarget.needsSwapsForVSXMemOps() &&
          (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
           LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
        return expandVSXLoadForLE(N, DCI);
    }

    // We sometimes end up with a 64-bit integer load, from which we extract
    // two single-precision floating-point numbers. This happens with
    // std::complex<float>, and other similar structures, because of the way we
    // canonicalize structure copies. However, if we lack direct moves,
    // then the final bitcasts from the extracted integer values to the
    // floating-point numbers turn into store/load pairs. Even with direct moves,
    // just loading the two floating-point numbers is likely better.
    auto ReplaceTwoFloatLoad = [&]() {
      if (VT != MVT::i64)
        return false;

      if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
          LD->isVolatile())
        return false;

      //  We're looking for a sequence like this:
      //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
      //      t16: i64 = srl t13, Constant:i32<32>
      //    t17: i32 = truncate t16
      //  t18: f32 = bitcast t17
      //    t19: i32 = truncate t13
      //  t20: f32 = bitcast t19

      if (!LD->hasNUsesOfValue(2, 0))
        return false;

      auto UI = LD->use_begin();
      while (UI.getUse().getResNo() != 0) ++UI;
      SDNode *Trunc = *UI++;
      while (UI.getUse().getResNo() != 0) ++UI;
      SDNode *RightShift = *UI;
      if (Trunc->getOpcode() != ISD::TRUNCATE)
        std::swap(Trunc, RightShift);

      if (Trunc->getOpcode() != ISD::TRUNCATE ||
          Trunc->getValueType(0) != MVT::i32 ||
          !Trunc->hasOneUse())
        return false;
      if (RightShift->getOpcode() != ISD::SRL ||
          !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
          RightShift->getConstantOperandVal(1) != 32 ||
          !RightShift->hasOneUse())
        return false;

      SDNode *Trunc2 = *RightShift->use_begin();
      if (Trunc2->getOpcode() != ISD::TRUNCATE ||
          Trunc2->getValueType(0) != MVT::i32 ||
          !Trunc2->hasOneUse())
        return false;

      SDNode *Bitcast = *Trunc->use_begin();
      SDNode *Bitcast2 = *Trunc2->use_begin();

      if (Bitcast->getOpcode() != ISD::BITCAST ||
          Bitcast->getValueType(0) != MVT::f32)
        return false;
      if (Bitcast2->getOpcode() != ISD::BITCAST ||
          Bitcast2->getValueType(0) != MVT::f32)
        return false;

      if (Subtarget.isLittleEndian())
        std::swap(Bitcast, Bitcast2);

      // Bitcast has the second float (in memory-layout order) and Bitcast2
      // has the first one.

      SDValue BasePtr = LD->getBasePtr();
      if (LD->isIndexed()) {
        assert(LD->getAddressingMode() == ISD::PRE_INC &&
               "Non-pre-inc AM on PPC?");
        BasePtr =
          DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
                      LD->getOffset());
      }

      auto MMOFlags =
          LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
      SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
                                      LD->getPointerInfo(), LD->getAlignment(),
                                      MMOFlags, LD->getAAInfo());
      SDValue AddPtr =
        DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
                    BasePtr, DAG.getIntPtrConstant(4, dl));
      SDValue FloatLoad2 = DAG.getLoad(
          MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
          LD->getPointerInfo().getWithOffset(4),
          MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());

      if (LD->isIndexed()) {
        // Note that DAGCombine should re-form any pre-increment load(s) from
        // what is produced here if that makes sense.
        DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
      }

      DCI.CombineTo(Bitcast2, FloatLoad);
      DCI.CombineTo(Bitcast, FloatLoad2);

      DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
                                    SDValue(FloatLoad2.getNode(), 1));
      return true;
    };

    if (ReplaceTwoFloatLoad())
      return SDValue(N, 0);

    EVT MemVT = LD->getMemoryVT();
    Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
    Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
    Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
    Align ScalarABIAlignment = DAG.getDataLayout().getABITypeAlign(STy);
    if (LD->isUnindexed() && VT.isVector() &&
        ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
          // P8 and later hardware should just use LOAD.
          !Subtarget.hasP8Vector() &&
          (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
           VT == MVT::v4f32)) ||
         (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
          LD->getAlign() >= ScalarABIAlignment)) &&
        LD->getAlign() < ABIAlignment) {
      // This is a type-legal unaligned Altivec or QPX load.
      SDValue Chain = LD->getChain();
      SDValue Ptr = LD->getBasePtr();
      bool isLittleEndian = Subtarget.isLittleEndian();

      // This implements the loading of unaligned vectors as described in
      // the venerable Apple Velocity Engine overview. Specifically:
      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
      //
      // The general idea is to expand a sequence of one or more unaligned
      // loads into an alignment-based permutation-control instruction (lvsl
      // or lvsr), a series of regular vector loads (which always truncate
      // their input address to an aligned address), and a series of
      // permutations.  The results of these permutations are the requested
      // loaded values.  The trick is that the last "extra" load is not taken
      // from the address you might suspect (sizeof(vector) bytes after the
      // last requested load), but rather sizeof(vector) - 1 bytes after the
      // last requested vector. The point of this is to avoid a page fault if
      // the base address happened to be aligned. This works because if the
      // base address is aligned, then adding less than a full vector length
      // will cause the last vector in the sequence to be (re)loaded.
      // Otherwise, the next vector will be fetched as you might suspect was
      // necessary.

      // We might be able to reuse the permutation generation from
      // a different base address offset from this one by an aligned amount.
      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
      // optimization later.
      Intrinsic::ID Intr, IntrLD, IntrPerm;
      MVT PermCntlTy, PermTy, LDTy;
      if (Subtarget.hasAltivec()) {
        Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
                                 Intrinsic::ppc_altivec_lvsl;
        IntrLD = Intrinsic::ppc_altivec_lvx;
        IntrPerm = Intrinsic::ppc_altivec_vperm;
        PermCntlTy = MVT::v16i8;
        PermTy = MVT::v4i32;
        LDTy = MVT::v4i32;
      } else {
        Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
                                       Intrinsic::ppc_qpx_qvlpcls;
        IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
                                       Intrinsic::ppc_qpx_qvlfs;
        IntrPerm = Intrinsic::ppc_qpx_qvfperm;
        PermCntlTy = MVT::v4f64;
        PermTy = MVT::v4f64;
        LDTy = MemVT.getSimpleVT();
      }

      SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);

      // Create the new MMO for the new base load. It is like the original MMO,
      // but represents an area in memory almost twice the vector size centered
      // on the original address. If the address is unaligned, we might start
      // reading up to (sizeof(vector)-1) bytes below the address of the
      // original unaligned load.
      MachineFunction &MF = DAG.getMachineFunction();
      MachineMemOperand *BaseMMO =
        MF.getMachineMemOperand(LD->getMemOperand(),
                                -(long)MemVT.getStoreSize()+1,
                                2*MemVT.getStoreSize()-1);

      // Create the new base load.
      SDValue LDXIntID =
          DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
      SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
      SDValue BaseLoad =
        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
                                DAG.getVTList(PermTy, MVT::Other),
                                BaseLoadOps, LDTy, BaseMMO);

      // Note that the value of IncOffset (which is provided to the next
      // load's pointer info offset value, and thus used to calculate the
      // alignment), and the value of IncValue (which is actually used to
      // increment the pointer value) are different! This is because we
      // require the next load to appear to be aligned, even though it
      // is actually offset from the base pointer by a lesser amount.
      int IncOffset = VT.getSizeInBits() / 8;
      int IncValue = IncOffset;

      // Walk (both up and down) the chain looking for another load at the real
      // (aligned) offset (the alignment of the other load does not matter in
      // this case). If found, then do not use the offset reduction trick, as
      // that will prevent the loads from being later combined (as they would
      // otherwise be duplicates).
      if (!findConsecutiveLoad(LD, DAG))
        --IncValue;

      SDValue Increment =
          DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);

      MachineMemOperand *ExtraMMO =
        MF.getMachineMemOperand(LD->getMemOperand(),
                                1, 2*MemVT.getStoreSize()-1);
      SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
      SDValue ExtraLoad =
        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
                                DAG.getVTList(PermTy, MVT::Other),
                                ExtraLoadOps, LDTy, ExtraMMO);

      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
        BaseLoad.getValue(1), ExtraLoad.getValue(1));

      // Because vperm has a big-endian bias, we must reverse the order
      // of the input vectors and complement the permute control vector
      // when generating little endian code.  We have already handled the
      // latter by using lvsr instead of lvsl, so just reverse BaseLoad
      // and ExtraLoad here.
      SDValue Perm;
      if (isLittleEndian)
        Perm = BuildIntrinsicOp(IntrPerm,
                                ExtraLoad, BaseLoad, PermCntl, DAG, dl);
      else
        Perm = BuildIntrinsicOp(IntrPerm,
                                BaseLoad, ExtraLoad, PermCntl, DAG, dl);

      if (VT != PermTy)
        Perm = Subtarget.hasAltivec() ?
                 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
                 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
                               DAG.getTargetConstant(1, dl, MVT::i64));
                               // second argument is 1 because this rounding
                               // is always exact.

      // The output of the permutation is our loaded result, the TokenFactor is
      // our new chain.
      DCI.CombineTo(N, Perm, TF);
      return SDValue(N, 0);
    }
    }
    break;
    case ISD::INTRINSIC_WO_CHAIN: {
      bool isLittleEndian = Subtarget.isLittleEndian();
      unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
      Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
                                           : Intrinsic::ppc_altivec_lvsl);
      if ((IID == Intr ||
           IID == Intrinsic::ppc_qpx_qvlpcld  ||
           IID == Intrinsic::ppc_qpx_qvlpcls) &&
        N->getOperand(1)->getOpcode() == ISD::ADD) {
        SDValue Add = N->getOperand(1);

        int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
                   5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;

        if (DAG.MaskedValueIsZero(Add->getOperand(1),
                                  APInt::getAllOnesValue(Bits /* alignment */)
                                      .zext(Add.getScalarValueSizeInBits()))) {
          SDNode *BasePtr = Add->getOperand(0).getNode();
          for (SDNode::use_iterator UI = BasePtr->use_begin(),
                                    UE = BasePtr->use_end();
               UI != UE; ++UI) {
            if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
                cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
              // We've found another LVSL/LVSR, and this address is an aligned
              // multiple of that one. The results will be the same, so use the
              // one we've just found instead.

              return SDValue(*UI, 0);
            }
          }
        }

        if (isa<ConstantSDNode>(Add->getOperand(1))) {
          SDNode *BasePtr = Add->getOperand(0).getNode();
          for (SDNode::use_iterator UI = BasePtr->use_begin(),
               UE = BasePtr->use_end(); UI != UE; ++UI) {
            if (UI->getOpcode() == ISD::ADD &&
                isa<ConstantSDNode>(UI->getOperand(1)) &&
                (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
                 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
                (1ULL << Bits) == 0) {
              SDNode *OtherAdd = *UI;
              for (SDNode::use_iterator VI = OtherAdd->use_begin(),
                   VE = OtherAdd->use_end(); VI != VE; ++VI) {
                if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
                    cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
                  return SDValue(*VI, 0);
                }
              }
            }
          }
        }
      }

      // Combine vmaxsw/h/b(a, a's negation) to abs(a)
      // Expose the vabsduw/h/b opportunity for down stream
      if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
          (IID == Intrinsic::ppc_altivec_vmaxsw ||
           IID == Intrinsic::ppc_altivec_vmaxsh ||
           IID == Intrinsic::ppc_altivec_vmaxsb)) {
        SDValue V1 = N->getOperand(1);
        SDValue V2 = N->getOperand(2);
        if ((V1.getSimpleValueType() == MVT::v4i32 ||
             V1.getSimpleValueType() == MVT::v8i16 ||
             V1.getSimpleValueType() == MVT::v16i8) &&
            V1.getSimpleValueType() == V2.getSimpleValueType()) {
          // (0-a, a)
          if (V1.getOpcode() == ISD::SUB &&
              ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
              V1.getOperand(1) == V2) {
            return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
          }
          // (a, 0-a)
          if (V2.getOpcode() == ISD::SUB &&
              ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
              V2.getOperand(1) == V1) {
            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
          }
          // (x-y, y-x)
          if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
              V1.getOperand(0) == V2.getOperand(1) &&
              V1.getOperand(1) == V2.getOperand(0)) {
            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
          }
        }
      }
    }

    break;
  case ISD::INTRINSIC_W_CHAIN:
    // For little endian, VSX loads require generating lxvd2x/xxswapd.
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
    if (Subtarget.needsSwapsForVSXMemOps()) {
      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
      default:
        break;
      case Intrinsic::ppc_vsx_lxvw4x:
      case Intrinsic::ppc_vsx_lxvd2x:
        return expandVSXLoadForLE(N, DCI);
      }
    }
    break;
  case ISD::INTRINSIC_VOID:
    // For little endian, VSX stores require generating xxswapd/stxvd2x.
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
    if (Subtarget.needsSwapsForVSXMemOps()) {
      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
      default:
        break;
      case Intrinsic::ppc_vsx_stxvw4x:
      case Intrinsic::ppc_vsx_stxvd2x:
        return expandVSXStoreForLE(N, DCI);
      }
    }
    break;
  case ISD::BSWAP:
    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
        N->getOperand(0).hasOneUse() &&
        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
         (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
          N->getValueType(0) == MVT::i64))) {
      SDValue Load = N->getOperand(0);
      LoadSDNode *LD = cast<LoadSDNode>(Load);
      // Create the byte-swapping load.
      SDValue Ops[] = {
        LD->getChain(),    // Chain
        LD->getBasePtr(),  // Ptr
        DAG.getValueType(N->getValueType(0)) // VT
      };
      SDValue BSLoad =
        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
                                              MVT::i64 : MVT::i32, MVT::Other),
                                Ops, LD->getMemoryVT(), LD->getMemOperand());

      // If this is an i16 load, insert the truncate.
      SDValue ResVal = BSLoad;
      if (N->getValueType(0) == MVT::i16)
        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);

      // First, combine the bswap away.  This makes the value produced by the
      // load dead.
      DCI.CombineTo(N, ResVal);

      // Next, combine the load away, we give it a bogus result value but a real
      // chain result.  The result value is dead because the bswap is dead.
      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));

      // Return N so it doesn't get rechecked!
      return SDValue(N, 0);
    }
    break;
  case PPCISD::VCMP:
    // If a VCMPo node already exists with exactly the same operands as this
    // node, use its result instead of this node (VCMPo computes both a CR6 and
    // a normal output).
    //
    if (!N->getOperand(0).hasOneUse() &&
        !N->getOperand(1).hasOneUse() &&
        !N->getOperand(2).hasOneUse()) {

      // Scan all of the users of the LHS, looking for VCMPo's that match.
      SDNode *VCMPoNode = nullptr;

      SDNode *LHSN = N->getOperand(0).getNode();
      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
           UI != E; ++UI)
        if (UI->getOpcode() == PPCISD::VCMPo &&
            UI->getOperand(1) == N->getOperand(1) &&
            UI->getOperand(2) == N->getOperand(2) &&
            UI->getOperand(0) == N->getOperand(0)) {
          VCMPoNode = *UI;
          break;
        }

      // If there is no VCMPo node, or if the flag value has a single use, don't
      // transform this.
      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
        break;

      // Look at the (necessarily single) use of the flag value.  If it has a
      // chain, this transformation is more complex.  Note that multiple things
      // could use the value result, which we should ignore.
      SDNode *FlagUser = nullptr;
      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
           FlagUser == nullptr; ++UI) {
        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
        SDNode *User = *UI;
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
            FlagUser = User;
            break;
          }
        }
      }

      // If the user is a MFOCRF instruction, we know this is safe.
      // Otherwise we give up for right now.
      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
        return SDValue(VCMPoNode, 0);
    }
    break;
  case ISD::BRCOND: {
    SDValue Cond = N->getOperand(1);
    SDValue Target = N->getOperand(2);

    if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
        cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
          Intrinsic::loop_decrement) {

      // We now need to make the intrinsic dead (it cannot be instruction
      // selected).
      DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
      assert(Cond.getNode()->hasOneUse() &&
             "Counter decrement has more than one use");

      return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
                         N->getOperand(0), Target);
    }
  }
  break;
  case ISD::BR_CC: {
    // If this is a branch on an altivec predicate comparison, lower this so
    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
    // lowering is done pre-legalize, because the legalizer lowers the predicate
    // compare down to code that is difficult to reassemble.
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);

    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
    // value. If so, pass-through the AND to get to the intrinsic.
    if (LHS.getOpcode() == ISD::AND &&
        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
          Intrinsic::loop_decrement &&
        isa<ConstantSDNode>(LHS.getOperand(1)) &&
        !isNullConstant(LHS.getOperand(1)))
      LHS = LHS.getOperand(0);

    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
          Intrinsic::loop_decrement &&
        isa<ConstantSDNode>(RHS)) {
      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
             "Counter decrement comparison is not EQ or NE");

      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
                    (CC == ISD::SETNE && !Val);

      // We now need to make the intrinsic dead (it cannot be instruction
      // selected).
      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
      assert(LHS.getNode()->hasOneUse() &&
             "Counter decrement has more than one use");

      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
                         N->getOperand(0), N->getOperand(4));
    }

    int CompareOpc;
    bool isDot;

    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
        getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
      assert(isDot && "Can't compare against a vector result!");

      // If this is a comparison against something other than 0/1, then we know
      // that the condition is never/always true.
      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
      if (Val != 0 && Val != 1) {
        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
          return N->getOperand(0);
        // Always !=, turn it into an unconditional branch.
        return DAG.getNode(ISD::BR, dl, MVT::Other,
                           N->getOperand(0), N->getOperand(4));
      }

      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);

      // Create the PPCISD altivec 'dot' comparison node.
      SDValue Ops[] = {
        LHS.getOperand(2),  // LHS of compare
        LHS.getOperand(3),  // RHS of compare
        DAG.getConstant(CompareOpc, dl, MVT::i32)
      };
      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);

      // Unpack the result based on how the target uses it.
      PPC::Predicate CompOpc;
      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
      default:  // Can't happen, don't crash on invalid number though.
      case 0:   // Branch on the value of the EQ bit of CR6.
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
        break;
      case 1:   // Branch on the inverted value of the EQ bit of CR6.
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
        break;
      case 2:   // Branch on the value of the LT bit of CR6.
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
        break;
      case 3:   // Branch on the inverted value of the LT bit of CR6.
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
        break;
      }

      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
                         DAG.getConstant(CompOpc, dl, MVT::i32),
                         DAG.getRegister(PPC::CR6, MVT::i32),
                         N->getOperand(4), CompNode.getValue(1));
    }
    break;
  }
  case ISD::BUILD_VECTOR:
    return DAGCombineBuildVector(N, DCI);
  case ISD::ABS:
    return combineABS(N, DCI);
  case ISD::VSELECT:
    return combineVSelect(N, DCI);
  }

  return SDValue();
}

SDValue
PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
                                 SelectionDAG &DAG,
                                 SmallVectorImpl<SDNode *> &Created) const {
  // fold (sdiv X, pow2)
  EVT VT = N->getValueType(0);
  if (VT == MVT::i64 && !Subtarget.isPPC64())
    return SDValue();
  if ((VT != MVT::i32 && VT != MVT::i64) ||
      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
    return SDValue();

  SDLoc DL(N);
  SDValue N0 = N->getOperand(0);

  bool IsNegPow2 = (-Divisor).isPowerOf2();
  unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
  SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);

  SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
  Created.push_back(Op.getNode());

  if (IsNegPow2) {
    Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
    Created.push_back(Op.getNode());
  }

  return Op;
}

//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//

void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
                                                      KnownBits &Known,
                                                      const APInt &DemandedElts,
                                                      const SelectionDAG &DAG,
                                                      unsigned Depth) const {
  Known.resetAll();
  switch (Op.getOpcode()) {
  default: break;
  case PPCISD::LBRX: {
    // lhbrx is known to have the top bits cleared out.
    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
      Known.Zero = 0xFFFF0000;
    break;
  }
  case ISD::INTRINSIC_WO_CHAIN: {
    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
    default: break;
    case Intrinsic::ppc_altivec_vcmpbfp_p:
    case Intrinsic::ppc_altivec_vcmpeqfp_p:
    case Intrinsic::ppc_altivec_vcmpequb_p:
    case Intrinsic::ppc_altivec_vcmpequh_p:
    case Intrinsic::ppc_altivec_vcmpequw_p:
    case Intrinsic::ppc_altivec_vcmpequd_p:
    case Intrinsic::ppc_altivec_vcmpgefp_p:
    case Intrinsic::ppc_altivec_vcmpgtfp_p:
    case Intrinsic::ppc_altivec_vcmpgtsb_p:
    case Intrinsic::ppc_altivec_vcmpgtsh_p:
    case Intrinsic::ppc_altivec_vcmpgtsw_p:
    case Intrinsic::ppc_altivec_vcmpgtsd_p:
    case Intrinsic::ppc_altivec_vcmpgtub_p:
    case Intrinsic::ppc_altivec_vcmpgtuh_p:
    case Intrinsic::ppc_altivec_vcmpgtuw_p:
    case Intrinsic::ppc_altivec_vcmpgtud_p:
      Known.Zero = ~1U;  // All bits but the low one are known to be zero.
      break;
    }
  }
  }
}

Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
  switch (Subtarget.getCPUDirective()) {
  default: break;
  case PPC::DIR_970:
  case PPC::DIR_PWR4:
  case PPC::DIR_PWR5:
  case PPC::DIR_PWR5X:
  case PPC::DIR_PWR6:
  case PPC::DIR_PWR6X:
  case PPC::DIR_PWR7:
  case PPC::DIR_PWR8:
  case PPC::DIR_PWR9:
  case PPC::DIR_PWR10:
  case PPC::DIR_PWR_FUTURE: {
    if (!ML)
      break;

    if (!DisableInnermostLoopAlign32) {
      // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
      // so that we can decrease cache misses and branch-prediction misses.
      // Actual alignment of the loop will depend on the hotness check and other
      // logic in alignBlocks.
      if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
        return Align(32);
    }

    const PPCInstrInfo *TII = Subtarget.getInstrInfo();

    // For small loops (between 5 and 8 instructions), align to a 32-byte
    // boundary so that the entire loop fits in one instruction-cache line.
    uint64_t LoopSize = 0;
    for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
      for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
        LoopSize += TII->getInstSizeInBytes(*J);
        if (LoopSize > 32)
          break;
      }

    if (LoopSize > 16 && LoopSize <= 32)
      return Align(32);

    break;
  }
  }

  return TargetLowering::getPrefLoopAlignment(ML);
}

/// getConstraintType - Given a constraint, return the type of
/// constraint it is for this target.
PPCTargetLowering::ConstraintType
PPCTargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    default: break;
    case 'b':
    case 'r':
    case 'f':
    case 'd':
    case 'v':
    case 'y':
      return C_RegisterClass;
    case 'Z':
      // FIXME: While Z does indicate a memory constraint, it specifically
      // indicates an r+r address (used in conjunction with the 'y' modifier
      // in the replacement string). Currently, we're forcing the base
      // register to be r0 in the asm printer (which is interpreted as zero)
      // and forming the complete address in the second register. This is
      // suboptimal.
      return C_Memory;
    }
  } else if (Constraint == "wc") { // individual CR bits.
    return C_RegisterClass;
  } else if (Constraint == "wa" || Constraint == "wd" ||
             Constraint == "wf" || Constraint == "ws" ||
             Constraint == "wi" || Constraint == "ww") {
    return C_RegisterClass; // VSX registers.
  }
  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
PPCTargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
    // If we don't have a value, we can't do a match,
    // but allow it at the lowest weight.
  if (!CallOperandVal)
    return CW_Default;
  Type *type = CallOperandVal->getType();

  // Look at the constraint type.
  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
    return CW_Register; // an individual CR bit.
  else if ((StringRef(constraint) == "wa" ||
            StringRef(constraint) == "wd" ||
            StringRef(constraint) == "wf") &&
           type->isVectorTy())
    return CW_Register;
  else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
    return CW_Register; // just hold 64-bit integers data.
  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
    return CW_Register;
  else if (StringRef(constraint) == "ww" && type->isFloatTy())
    return CW_Register;

  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'b':
    if (type->isIntegerTy())
      weight = CW_Register;
    break;
  case 'f':
    if (type->isFloatTy())
      weight = CW_Register;
    break;
  case 'd':
    if (type->isDoubleTy())
      weight = CW_Register;
    break;
  case 'v':
    if (type->isVectorTy())
      weight = CW_Register;
    break;
  case 'y':
    weight = CW_Register;
    break;
  case 'Z':
    weight = CW_Memory;
    break;
  }
  return weight;
}

std::pair<unsigned, const TargetRegisterClass *>
PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                StringRef Constraint,
                                                MVT VT) const {
  if (Constraint.size() == 1) {
    // GCC RS6000 Constraint Letters
    switch (Constraint[0]) {
    case 'b':   // R1-R31
      if (VT == MVT::i64 && Subtarget.isPPC64())
        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
    case 'r':   // R0-R31
      if (VT == MVT::i64 && Subtarget.isPPC64())
        return std::make_pair(0U, &PPC::G8RCRegClass);
      return std::make_pair(0U, &PPC::GPRCRegClass);
    // 'd' and 'f' constraints are both defined to be "the floating point
    // registers", where one is for 32-bit and the other for 64-bit. We don't
    // really care overly much here so just give them all the same reg classes.
    case 'd':
    case 'f':
      if (Subtarget.hasSPE()) {
        if (VT == MVT::f32 || VT == MVT::i32)
          return std::make_pair(0U, &PPC::GPRCRegClass);
        if (VT == MVT::f64 || VT == MVT::i64)
          return std::make_pair(0U, &PPC::SPERCRegClass);
      } else {
        if (VT == MVT::f32 || VT == MVT::i32)
          return std::make_pair(0U, &PPC::F4RCRegClass);
        if (VT == MVT::f64 || VT == MVT::i64)
          return std::make_pair(0U, &PPC::F8RCRegClass);
        if (VT == MVT::v4f64 && Subtarget.hasQPX())
          return std::make_pair(0U, &PPC::QFRCRegClass);
        if (VT == MVT::v4f32 && Subtarget.hasQPX())
          return std::make_pair(0U, &PPC::QSRCRegClass);
      }
      break;
    case 'v':
      if (VT == MVT::v4f64 && Subtarget.hasQPX())
        return std::make_pair(0U, &PPC::QFRCRegClass);
      if (VT == MVT::v4f32 && Subtarget.hasQPX())
        return std::make_pair(0U, &PPC::QSRCRegClass);
      if (Subtarget.hasAltivec())
        return std::make_pair(0U, &PPC::VRRCRegClass);
      break;
    case 'y':   // crrc
      return std::make_pair(0U, &PPC::CRRCRegClass);
    }
  } else if (Constraint == "wc" && Subtarget.useCRBits()) {
    // An individual CR bit.
    return std::make_pair(0U, &PPC::CRBITRCRegClass);
  } else if ((Constraint == "wa" || Constraint == "wd" ||
             Constraint == "wf" || Constraint == "wi") &&
             Subtarget.hasVSX()) {
    return std::make_pair(0U, &PPC::VSRCRegClass);
  } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
    if (VT == MVT::f32 && Subtarget.hasP8Vector())
      return std::make_pair(0U, &PPC::VSSRCRegClass);
    else
      return std::make_pair(0U, &PPC::VSFRCRegClass);
  }

  // If we name a VSX register, we can't defer to the base class because it
  // will not recognize the correct register (their names will be VSL{0-31}
  // and V{0-31} so they won't match). So we match them here.
  if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
    int VSNum = atoi(Constraint.data() + 3);
    assert(VSNum >= 0 && VSNum <= 63 &&
           "Attempted to access a vsr out of range");
    if (VSNum < 32)
      return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
    return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
  }
  std::pair<unsigned, const TargetRegisterClass *> R =
      TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);

  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
  // register.
  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
  if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
      PPC::GPRCRegClass.contains(R.first))
    return std::make_pair(TRI->getMatchingSuperReg(R.first,
                            PPC::sub_32, &PPC::G8RCRegClass),
                          &PPC::G8RCRegClass);

  // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
  if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
    R.first = PPC::CR0;
    R.second = &PPC::CRRCRegClass;
  }

  return R;
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                     std::string &Constraint,
                                                     std::vector<SDValue>&Ops,
                                                     SelectionDAG &DAG) const {
  SDValue Result;

  // Only support length 1 constraints.
  if (Constraint.length() > 1) return;

  char Letter = Constraint[0];
  switch (Letter) {
  default: break;
  case 'I':
  case 'J':
  case 'K':
  case 'L':
  case 'M':
  case 'N':
  case 'O':
  case 'P': {
    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
    if (!CST) return; // Must be an immediate to match.
    SDLoc dl(Op);
    int64_t Value = CST->getSExtValue();
    EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
                         // numbers are printed as such.
    switch (Letter) {
    default: llvm_unreachable("Unknown constraint letter!");
    case 'I':  // "I" is a signed 16-bit constant.
      if (isInt<16>(Value))
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
      if (isShiftedUInt<16, 16>(Value))
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
      if (isShiftedInt<16, 16>(Value))
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
      if (isUInt<16>(Value))
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'M':  // "M" is a constant that is greater than 31.
      if (Value > 31)
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'N':  // "N" is a positive constant that is an exact power of two.
      if (Value > 0 && isPowerOf2_64(Value))
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'O':  // "O" is the constant zero.
      if (Value == 0)
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
      if (isInt<16>(-Value))
        Result = DAG.getTargetConstant(Value, dl, TCVT);
      break;
    }
    break;
  }
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  // Handle standard constraint letters.
  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                              const AddrMode &AM, Type *Ty,
                                              unsigned AS, Instruction *I) const {
  // PPC does not allow r+i addressing modes for vectors!
  if (Ty->isVectorTy() && AM.BaseOffs != 0)
    return false;

  // PPC allows a sign-extended 16-bit immediate field.
  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
    return false;

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  // PPC only support r+r,
  switch (AM.Scale) {
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
    break;
  case 1:
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
      return false;
    // Otherwise we have r+r or r+i.
    break;
  case 2:
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
      return false;
    // Allow 2*r as r+r.
    break;
  default:
    // No other scales are supported.
    return false;
  }

  return true;
}

SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
                                           SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();

  // Make sure the function does not optimize away the store of the RA to
  // the stack.
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setLRStoreRequired();
  bool isPPC64 = Subtarget.isPPC64();
  auto PtrVT = getPointerTy(MF.getDataLayout());

  if (Depth > 0) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset =
        DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
                        isPPC64 ? MVT::i64 : MVT::i32);
    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
                       MachinePointerInfo());
  }

  // Just load the return address off the stack.
  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
                     MachinePointerInfo());
}

SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
                                          SelectionDAG &DAG) const {
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT PtrVT = getPointerTy(MF.getDataLayout());
  bool isPPC64 = PtrVT == MVT::i64;

  // Naked functions never have a frame pointer, and so we use r1. For all
  // other functions, this decision must be delayed until during PEI.
  unsigned FrameReg;
  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
  else
    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;

  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
                                         PtrVT);
  while (Depth--)
    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
                            FrameAddr, MachinePointerInfo());
  return FrameAddr;
}

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
                                              const MachineFunction &MF) const {
  bool isPPC64 = Subtarget.isPPC64();

  bool is64Bit = isPPC64 && VT == LLT::scalar(64);
  if (!is64Bit && VT != LLT::scalar(32))
    report_fatal_error("Invalid register global variable type");

  Register Reg = StringSwitch<Register>(RegName)
                     .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
                     .Case("r2", isPPC64 ? Register() : PPC::R2)
                     .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
                     .Default(Register());

  if (Reg)
    return Reg;
  report_fatal_error("Invalid register name global variable");
}

bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
  // 32-bit SVR4 ABI access everything as got-indirect.
  if (Subtarget.is32BitELFABI())
    return true;

  // AIX accesses everything indirectly through the TOC, which is similar to
  // the GOT.
  if (Subtarget.isAIXABI())
    return true;

  CodeModel::Model CModel = getTargetMachine().getCodeModel();
  // If it is small or large code model, module locals are accessed
  // indirectly by loading their address from .toc/.got.
  if (CModel == CodeModel::Small || CModel == CodeModel::Large)
    return true;

  // JumpTable and BlockAddress are accessed as got-indirect.
  if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
    return true;

  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
    return Subtarget.isGVIndirectSymbol(G->getGlobal());

  return false;
}

bool
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  // The PowerPC target isn't yet aware of offsets.
  return false;
}

bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                           const CallInst &I,
                                           MachineFunction &MF,
                                           unsigned Intrinsic) const {
  switch (Intrinsic) {
  case Intrinsic::ppc_qpx_qvlfd:
  case Intrinsic::ppc_qpx_qvlfs:
  case Intrinsic::ppc_qpx_qvlfcd:
  case Intrinsic::ppc_qpx_qvlfcs:
  case Intrinsic::ppc_qpx_qvlfiwa:
  case Intrinsic::ppc_qpx_qvlfiwz:
  case Intrinsic::ppc_altivec_lvx:
  case Intrinsic::ppc_altivec_lvxl:
  case Intrinsic::ppc_altivec_lvebx:
  case Intrinsic::ppc_altivec_lvehx:
  case Intrinsic::ppc_altivec_lvewx:
  case Intrinsic::ppc_vsx_lxvd2x:
  case Intrinsic::ppc_vsx_lxvw4x: {
    EVT VT;
    switch (Intrinsic) {
    case Intrinsic::ppc_altivec_lvebx:
      VT = MVT::i8;
      break;
    case Intrinsic::ppc_altivec_lvehx:
      VT = MVT::i16;
      break;
    case Intrinsic::ppc_altivec_lvewx:
      VT = MVT::i32;
      break;
    case Intrinsic::ppc_vsx_lxvd2x:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvlfd:
      VT = MVT::v4f64;
      break;
    case Intrinsic::ppc_qpx_qvlfs:
      VT = MVT::v4f32;
      break;
    case Intrinsic::ppc_qpx_qvlfcd:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvlfcs:
      VT = MVT::v2f32;
      break;
    default:
      VT = MVT::v4i32;
      break;
    }

    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = VT;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = -VT.getStoreSize()+1;
    Info.size = 2*VT.getStoreSize()-1;
    Info.align = Align(1);
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::ppc_qpx_qvlfda:
  case Intrinsic::ppc_qpx_qvlfsa:
  case Intrinsic::ppc_qpx_qvlfcda:
  case Intrinsic::ppc_qpx_qvlfcsa:
  case Intrinsic::ppc_qpx_qvlfiwaa:
  case Intrinsic::ppc_qpx_qvlfiwza: {
    EVT VT;
    switch (Intrinsic) {
    case Intrinsic::ppc_qpx_qvlfda:
      VT = MVT::v4f64;
      break;
    case Intrinsic::ppc_qpx_qvlfsa:
      VT = MVT::v4f32;
      break;
    case Intrinsic::ppc_qpx_qvlfcda:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvlfcsa:
      VT = MVT::v2f32;
      break;
    default:
      VT = MVT::v4i32;
      break;
    }

    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = VT;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.size = VT.getStoreSize();
    Info.align = Align(1);
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::ppc_qpx_qvstfd:
  case Intrinsic::ppc_qpx_qvstfs:
  case Intrinsic::ppc_qpx_qvstfcd:
  case Intrinsic::ppc_qpx_qvstfcs:
  case Intrinsic::ppc_qpx_qvstfiw:
  case Intrinsic::ppc_altivec_stvx:
  case Intrinsic::ppc_altivec_stvxl:
  case Intrinsic::ppc_altivec_stvebx:
  case Intrinsic::ppc_altivec_stvehx:
  case Intrinsic::ppc_altivec_stvewx:
  case Intrinsic::ppc_vsx_stxvd2x:
  case Intrinsic::ppc_vsx_stxvw4x: {
    EVT VT;
    switch (Intrinsic) {
    case Intrinsic::ppc_altivec_stvebx:
      VT = MVT::i8;
      break;
    case Intrinsic::ppc_altivec_stvehx:
      VT = MVT::i16;
      break;
    case Intrinsic::ppc_altivec_stvewx:
      VT = MVT::i32;
      break;
    case Intrinsic::ppc_vsx_stxvd2x:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvstfd:
      VT = MVT::v4f64;
      break;
    case Intrinsic::ppc_qpx_qvstfs:
      VT = MVT::v4f32;
      break;
    case Intrinsic::ppc_qpx_qvstfcd:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvstfcs:
      VT = MVT::v2f32;
      break;
    default:
      VT = MVT::v4i32;
      break;
    }

    Info.opc = ISD::INTRINSIC_VOID;
    Info.memVT = VT;
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = -VT.getStoreSize()+1;
    Info.size = 2*VT.getStoreSize()-1;
    Info.align = Align(1);
    Info.flags = MachineMemOperand::MOStore;
    return true;
  }
  case Intrinsic::ppc_qpx_qvstfda:
  case Intrinsic::ppc_qpx_qvstfsa:
  case Intrinsic::ppc_qpx_qvstfcda:
  case Intrinsic::ppc_qpx_qvstfcsa:
  case Intrinsic::ppc_qpx_qvstfiwa: {
    EVT VT;
    switch (Intrinsic) {
    case Intrinsic::ppc_qpx_qvstfda:
      VT = MVT::v4f64;
      break;
    case Intrinsic::ppc_qpx_qvstfsa:
      VT = MVT::v4f32;
      break;
    case Intrinsic::ppc_qpx_qvstfcda:
      VT = MVT::v2f64;
      break;
    case Intrinsic::ppc_qpx_qvstfcsa:
      VT = MVT::v2f32;
      break;
    default:
      VT = MVT::v4i32;
      break;
    }

    Info.opc = ISD::INTRINSIC_VOID;
    Info.memVT = VT;
    Info.ptrVal = I.getArgOperand(1);
    Info.offset = 0;
    Info.size = VT.getStoreSize();
    Info.align = Align(1);
    Info.flags = MachineMemOperand::MOStore;
    return true;
  }
  default:
    break;
  }

  return false;
}

/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT PPCTargetLowering::getOptimalMemOpType(
    const MemOp &Op, const AttributeList &FuncAttributes) const {
  if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
    // When expanding a memset, require at least two QPX instructions to cover
    // the cost of loading the value to be stored from the constant pool.
    if (Subtarget.hasQPX() && Op.size() >= 32 &&
        (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
        !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
      return MVT::v4f64;
    }

    // We should use Altivec/VSX loads and stores when available. For unaligned
    // addresses, unaligned VSX loads are only fast starting with the P8.
    if (Subtarget.hasAltivec() && Op.size() >= 16 &&
        (Op.isAligned(Align(16)) ||
         ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
      return MVT::v4i32;
  }

  if (Subtarget.isPPC64()) {
    return MVT::i64;
  }

  return MVT::i32;
}

/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                                          Type *Ty) const {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  return !(BitSize == 0 || BitSize > 64);
}

bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  return NumBits1 == 64 && NumBits2 == 32;
}

bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (!VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  return NumBits1 == 64 && NumBits2 == 32;
}

bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
  // Generally speaking, zexts are not free, but they are free when they can be
  // folded with other operations.
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
    EVT MemVT = LD->getMemoryVT();
    if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
         (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
        (LD->getExtensionType() == ISD::NON_EXTLOAD ||
         LD->getExtensionType() == ISD::ZEXTLOAD))
      return true;
  }

  // FIXME: Add other cases...
  //  - 32-bit shifts with a zext to i64
  //  - zext after ctlz, bswap, etc.
  //  - zext after and by a constant mask

  return TargetLowering::isZExtFree(Val, VT2);
}

bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
  assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
         "invalid fpext types");
  // Extending to float128 is not free.
  if (DestVT == MVT::f128)
    return false;
  return true;
}

bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
  return isInt<16>(Imm) || isUInt<16>(Imm);
}

bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
  return isInt<16>(Imm) || isUInt<16>(Imm);
}

bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
                                                       unsigned,
                                                       unsigned,
                                                       MachineMemOperand::Flags,
                                                       bool *Fast) const {
  if (DisablePPCUnaligned)
    return false;

  // PowerPC supports unaligned memory access for simple non-vector types.
  // Although accessing unaligned addresses is not as efficient as accessing
  // aligned addresses, it is generally more efficient than manual expansion,
  // and generally only traps for software emulation when crossing page
  // boundaries.

  if (!VT.isSimple())
    return false;

  if (VT.isFloatingPoint() && !VT.isVector() &&
      !Subtarget.allowsUnalignedFPAccess())
    return false;

  if (VT.getSimpleVT().isVector()) {
    if (Subtarget.hasVSX()) {
      if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
          VT != MVT::v4f32 && VT != MVT::v4i32)
        return false;
    } else {
      return false;
    }
  }

  if (VT == MVT::ppcf128)
    return false;

  if (Fast)
    *Fast = true;

  return true;
}

bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                                   EVT VT) const {
  return isFMAFasterThanFMulAndFAdd(
      MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
}

bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
                                                   Type *Ty) const {
  switch (Ty->getScalarType()->getTypeID()) {
  case Type::FloatTyID:
  case Type::DoubleTyID:
    return true;
  case Type::FP128TyID:
    return Subtarget.hasP9Vector();
  default:
    return false;
  }
}

// Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
// FIXME: add more patterns which are profitable to hoist.
bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
  if (I->getOpcode() != Instruction::FMul)
    return true;

  if (!I->hasOneUse())
    return true;

  Instruction *User = I->user_back();
  assert(User && "A single use instruction with no uses.");

  if (User->getOpcode() != Instruction::FSub &&
      User->getOpcode() != Instruction::FAdd)
    return true;

  const TargetOptions &Options = getTargetMachine().Options;
  const Function *F = I->getFunction();
  const DataLayout &DL = F->getParent()->getDataLayout();
  Type *Ty = User->getOperand(0)->getType();

  return !(
      isFMAFasterThanFMulAndFAdd(*F, Ty) &&
      isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
}

const MCPhysReg *
PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
  // LR is a callee-save register, but we must treat it as clobbered by any call
  // site. Hence we include LR in the scratch registers, which are in turn added
  // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
  // to CTR, which is used by any indirect call.
  static const MCPhysReg ScratchRegs[] = {
    PPC::X12, PPC::LR8, PPC::CTR8, 0
  };

  return ScratchRegs;
}

Register PPCTargetLowering::getExceptionPointerRegister(
    const Constant *PersonalityFn) const {
  return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
}

Register PPCTargetLowering::getExceptionSelectorRegister(
    const Constant *PersonalityFn) const {
  return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
}

bool
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
                     EVT VT , unsigned DefinedValues) const {
  if (VT == MVT::v2i64)
    return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves

  if (Subtarget.hasVSX() || Subtarget.hasQPX())
    return true;

  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
}

Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
  if (DisableILPPref || Subtarget.enableMachineScheduler())
    return TargetLowering::getSchedulingPreference(N);

  return Sched::ILP;
}

// Create a fast isel object.
FastISel *
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
                                  const TargetLibraryInfo *LibInfo) const {
  return PPC::createFastISel(FuncInfo, LibInfo);
}

// 'Inverted' means the FMA opcode after negating one multiplicand.
// For example, (fma -a b c) = (fnmsub a b c)
static unsigned invertFMAOpcode(unsigned Opc) {
  switch (Opc) {
  default:
    llvm_unreachable("Invalid FMA opcode for PowerPC!");
  case ISD::FMA:
    return PPCISD::FNMSUB;
  case PPCISD::FNMSUB:
    return ISD::FMA;
  }
}

SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
                                                bool LegalOps, bool OptForSize,
                                                NegatibleCost &Cost,
                                                unsigned Depth) const {
  if (Depth > SelectionDAG::MaxRecursionDepth)
    return SDValue();

  unsigned Opc = Op.getOpcode();
  EVT VT = Op.getValueType();
  SDNodeFlags Flags = Op.getNode()->getFlags();

  switch (Opc) {
  case PPCISD::FNMSUB:
    // TODO: QPX subtarget is deprecated. No transformation here.
    if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX())
      break;

    const TargetOptions &Options = getTargetMachine().Options;
    SDValue N0 = Op.getOperand(0);
    SDValue N1 = Op.getOperand(1);
    SDValue N2 = Op.getOperand(2);
    SDLoc Loc(Op);

    NegatibleCost N2Cost = NegatibleCost::Expensive;
    SDValue NegN2 =
        getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);

    if (!NegN2)
      return SDValue();

    // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
    // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
    // These transformations may change sign of zeroes. For example,
    // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
    if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
      // Try and choose the cheaper one to negate.
      NegatibleCost N0Cost = NegatibleCost::Expensive;
      SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
                                           N0Cost, Depth + 1);

      NegatibleCost N1Cost = NegatibleCost::Expensive;
      SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
                                           N1Cost, Depth + 1);

      if (NegN0 && N0Cost <= N1Cost) {
        Cost = std::min(N0Cost, N2Cost);
        return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
      } else if (NegN1) {
        Cost = std::min(N1Cost, N2Cost);
        return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
      }
    }

    // (fneg (fnmsub a b c)) => (fma a b (fneg c))
    if (isOperationLegal(ISD::FMA, VT)) {
      Cost = N2Cost;
      return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
    }

    break;
  }

  return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
                                              Cost, Depth);
}

// Override to enable LOAD_STACK_GUARD lowering on Linux.
bool PPCTargetLowering::useLoadStackGuardNode() const {
  if (!Subtarget.isTargetLinux())
    return TargetLowering::useLoadStackGuardNode();
  return true;
}

// Override to disable global variable loading on Linux.
void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
  if (!Subtarget.isTargetLinux())
    return TargetLowering::insertSSPDeclarations(M);
}

bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                     bool ForCodeSize) const {
  if (!VT.isSimple() || !Subtarget.hasVSX())
    return false;

  switch(VT.getSimpleVT().SimpleTy) {
  default:
    // For FP types that are currently not supported by PPC backend, return
    // false. Examples: f16, f80.
    return false;
  case MVT::f32:
  case MVT::f64:
    if (Subtarget.hasPrefixInstrs()) {
      // With prefixed instructions, we can materialize anything that can be
      // represented with a 32-bit immediate, not just positive zero.
      APFloat APFloatOfImm = Imm;
      return convertToNonDenormSingle(APFloatOfImm);
    }
    LLVM_FALLTHROUGH;
  case MVT::ppcf128:
    return Imm.isPosZero();
  }
}

// For vector shift operation op, fold
// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
                                  SelectionDAG &DAG) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  EVT VT = N0.getValueType();
  unsigned OpSizeInBits = VT.getScalarSizeInBits();
  unsigned Opcode = N->getOpcode();
  unsigned TargetOpcode;

  switch (Opcode) {
  default:
    llvm_unreachable("Unexpected shift operation");
  case ISD::SHL:
    TargetOpcode = PPCISD::SHL;
    break;
  case ISD::SRL:
    TargetOpcode = PPCISD::SRL;
    break;
  case ISD::SRA:
    TargetOpcode = PPCISD::SRA;
    break;
  }

  if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
      N1->getOpcode() == ISD::AND)
    if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
      if (Mask->getZExtValue() == OpSizeInBits - 1)
        return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));

  return SDValue();
}

SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
    return Value;

  SDValue N0 = N->getOperand(0);
  ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!Subtarget.isISA3_0() ||
      N0.getOpcode() != ISD::SIGN_EXTEND ||
      N0.getOperand(0).getValueType() != MVT::i32 ||
      CN1 == nullptr || N->getValueType(0) != MVT::i64)
    return SDValue();

  // We can't save an operation here if the value is already extended, and
  // the existing shift is easier to combine.
  SDValue ExtsSrc = N0.getOperand(0);
  if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
      ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
    return SDValue();

  SDLoc DL(N0);
  SDValue ShiftBy = SDValue(CN1, 0);
  // We want the shift amount to be i32 on the extswli, but the shift could
  // have an i64.
  if (ShiftBy.getValueType() == MVT::i64)
    ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);

  return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
                         ShiftBy);
}

SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
    return Value;

  return SDValue();
}

SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
    return Value;

  return SDValue();
}

// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
// Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
// When C is zero, the equation (addi Z, -C) can be simplified to Z
// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
                                 const PPCSubtarget &Subtarget) {
  if (!Subtarget.isPPC64())
    return SDValue();

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  auto isZextOfCompareWithConstant = [](SDValue Op) {
    if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
        Op.getValueType() != MVT::i64)
      return false;

    SDValue Cmp = Op.getOperand(0);
    if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
        Cmp.getOperand(0).getValueType() != MVT::i64)
      return false;

    if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
      int64_t NegConstant = 0 - Constant->getSExtValue();
      // Due to the limitations of the addi instruction,
      // -C is required to be [-32768, 32767].
      return isInt<16>(NegConstant);
    }

    return false;
  };

  bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
  bool RHSHasPattern = isZextOfCompareWithConstant(RHS);

  // If there is a pattern, canonicalize a zext operand to the RHS.
  if (LHSHasPattern && !RHSHasPattern)
    std::swap(LHS, RHS);
  else if (!LHSHasPattern && !RHSHasPattern)
    return SDValue();

  SDLoc DL(N);
  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
  SDValue Cmp = RHS.getOperand(0);
  SDValue Z = Cmp.getOperand(0);
  auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));

  assert(Constant && "Constant Should not be a null pointer.");
  int64_t NegConstant = 0 - Constant->getSExtValue();

  switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
  default: break;
  case ISD::SETNE: {
    //                                 when C == 0
    //                             --> addze X, (addic Z, -1).carry
    //                            /
    // add X, (zext(setne Z, C))--
    //                            \    when -32768 <= -C <= 32767 && C != 0
    //                             --> addze X, (addic (addi Z, -C), -1).carry
    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
                              DAG.getConstant(NegConstant, DL, MVT::i64));
    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
    SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
                               AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
                       SDValue(Addc.getNode(), 1));
    }
  case ISD::SETEQ: {
    //                                 when C == 0
    //                             --> addze X, (subfic Z, 0).carry
    //                            /
    // add X, (zext(sete  Z, C))--
    //                            \    when -32768 <= -C <= 32767 && C != 0
    //                             --> addze X, (subfic (addi Z, -C), 0).carry
    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
                              DAG.getConstant(NegConstant, DL, MVT::i64));
    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
    SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
                               DAG.getConstant(0, DL, MVT::i64), AddOrZ);
    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
                       SDValue(Subc.getNode(), 1));
    }
  }

  return SDValue();
}

// Transform
// (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
// (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
// In this case both C1 and C2 must be known constants.
// C1+C2 must fit into a 34 bit signed integer.
static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
                                          const PPCSubtarget &Subtarget) {
  if (!Subtarget.isUsingPCRelativeCalls())
    return SDValue();

  // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
  // If we find that node try to cast the Global Address and the Constant.
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
    std::swap(LHS, RHS);

  if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
    return SDValue();

  // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
  GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
  ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);

  // Check that both casts succeeded.
  if (!GSDN || !ConstNode)
    return SDValue();

  int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
  SDLoc DL(GSDN);

  // The signed int offset needs to fit in 34 bits.
  if (!isInt<34>(NewOffset))
    return SDValue();

  // The new global address is a copy of the old global address except
  // that it has the updated Offset.
  SDValue GA =
      DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
                                 NewOffset, GSDN->getTargetFlags());
  SDValue MatPCRel =
      DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
  return MatPCRel;
}

SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
  if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
    return Value;

  if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
    return Value;

  return SDValue();
}

// Detect TRUNCATE operations on bitcasts of float128 values.
// What we are looking for here is the situtation where we extract a subset
// of bits from a 128 bit float.
// This can be of two forms:
// 1) BITCAST of f128 feeding TRUNCATE
// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
// The reason this is required is because we do not have a legal i128 type
// and so we want to prevent having to store the f128 and then reload part
// of it.
SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
                                           DAGCombinerInfo &DCI) const {
  // If we are using CRBits then try that first.
  if (Subtarget.useCRBits()) {
    // Check if CRBits did anything and return that if it did.
    if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
      return CRTruncValue;
  }

  SDLoc dl(N);
  SDValue Op0 = N->getOperand(0);

  // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
  if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
    EVT VT = N->getValueType(0);
    if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
      return SDValue();
    SDValue Sub = Op0.getOperand(0);
    if (Sub.getOpcode() == ISD::SUB) {
      SDValue SubOp0 = Sub.getOperand(0);
      SDValue SubOp1 = Sub.getOperand(1);
      if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
          (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
        return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
                               SubOp1.getOperand(0),
                               DCI.DAG.getTargetConstant(0, dl, MVT::i32));
      }
    }
  }

  // Looking for a truncate of i128 to i64.
  if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
    return SDValue();

  int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;

  // SRL feeding TRUNCATE.
  if (Op0.getOpcode() == ISD::SRL) {
    ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
    // The right shift has to be by 64 bits.
    if (!ConstNode || ConstNode->getZExtValue() != 64)
      return SDValue();

    // Switch the element number to extract.
    EltToExtract = EltToExtract ? 0 : 1;
    // Update Op0 past the SRL.
    Op0 = Op0.getOperand(0);
  }

  // BITCAST feeding a TRUNCATE possibly via SRL.
  if (Op0.getOpcode() == ISD::BITCAST &&
      Op0.getValueType() == MVT::i128 &&
      Op0.getOperand(0).getValueType() == MVT::f128) {
    SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
    return DCI.DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
        DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
  }
  return SDValue();
}

SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;

  ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
  if (!ConstOpOrElement)
    return SDValue();

  // An imul is usually smaller than the alternative sequence for legal type.
  if (DAG.getMachineFunction().getFunction().hasMinSize() &&
      isOperationLegal(ISD::MUL, N->getValueType(0)))
    return SDValue();

  auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
    switch (this->Subtarget.getCPUDirective()) {
    default:
      // TODO: enhance the condition for subtarget before pwr8
      return false;
    case PPC::DIR_PWR8:
      //  type        mul     add    shl
      // scalar        4       1      1
      // vector        7       2      2
      return true;
    case PPC::DIR_PWR9:
    case PPC::DIR_PWR10:
    case PPC::DIR_PWR_FUTURE:
      //  type        mul     add    shl
      // scalar        5       2      2
      // vector        7       2      2

      // The cycle RATIO of related operations are showed as a table above.
      // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
      // scalar and vector type. For 2 instrs patterns, add/sub + shl
      // are 4, it is always profitable; but for 3 instrs patterns
      // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
      // So we should only do it for vector type.
      return IsAddOne && IsNeg ? VT.isVector() : true;
    }
  };

  EVT VT = N->getValueType(0);
  SDLoc DL(N);

  const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
  bool IsNeg = MulAmt.isNegative();
  APInt MulAmtAbs = MulAmt.abs();

  if ((MulAmtAbs - 1).isPowerOf2()) {
    // (mul x, 2^N + 1) => (add (shl x, N), x)
    // (mul x, -(2^N + 1)) => -(add (shl x, N), x)

    if (!IsProfitable(IsNeg, true, VT))
      return SDValue();

    SDValue Op0 = N->getOperand(0);
    SDValue Op1 =
        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
                    DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
    SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);

    if (!IsNeg)
      return Res;

    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
  } else if ((MulAmtAbs + 1).isPowerOf2()) {
    // (mul x, 2^N - 1) => (sub (shl x, N), x)
    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))

    if (!IsProfitable(IsNeg, false, VT))
      return SDValue();

    SDValue Op0 = N->getOperand(0);
    SDValue Op1 =
        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
                    DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));

    if (!IsNeg)
      return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
    else
      return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);

  } else {
    return SDValue();
  }
}

// Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
// in combiner since we need to check SD flags and other subtarget features.
SDValue PPCTargetLowering::combineFMALike(SDNode *N,
                                          DAGCombinerInfo &DCI) const {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);
  SDValue N2 = N->getOperand(2);
  SDNodeFlags Flags = N->getFlags();
  EVT VT = N->getValueType(0);
  SelectionDAG &DAG = DCI.DAG;
  const TargetOptions &Options = getTargetMachine().Options;
  unsigned Opc = N->getOpcode();
  bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
  bool LegalOps = !DCI.isBeforeLegalizeOps();
  SDLoc Loc(N);

  // TODO: QPX subtarget is deprecated. No transformation here.
  if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT))
    return SDValue();

  // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
  // since (fnmsub a b c)=-0 while c-ab=+0.
  if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
    return SDValue();

  // (fma (fneg a) b c) => (fnmsub a b c)
  // (fnmsub (fneg a) b c) => (fma a b c)
  if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
    return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);

  // (fma a (fneg b) c) => (fnmsub a b c)
  // (fnmsub a (fneg b) c) => (fma a b c)
  if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
    return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);

  return SDValue();
}

bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
  if (!Subtarget.is64BitELFABI())
    return false;

  // If not a tail call then no need to proceed.
  if (!CI->isTailCall())
    return false;

  // If sibling calls have been disabled and tail-calls aren't guaranteed
  // there is no reason to duplicate.
  auto &TM = getTargetMachine();
  if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
    return false;

  // Can't tail call a function called indirectly, or if it has variadic args.
  const Function *Callee = CI->getCalledFunction();
  if (!Callee || Callee->isVarArg())
    return false;

  // Make sure the callee and caller calling conventions are eligible for tco.
  const Function *Caller = CI->getParent()->getParent();
  if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
                                           CI->getCallingConv()))
      return false;

  // If the function is local then we have a good chance at tail-calling it
  return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
}

bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
  if (!Subtarget.hasVSX())
    return false;
  if (Subtarget.hasP9Vector() && VT == MVT::f128)
    return true;
  return VT == MVT::f32 || VT == MVT::f64 ||
    VT == MVT::v4f32 || VT == MVT::v2f64;
}

bool PPCTargetLowering::
isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
  const Value *Mask = AndI.getOperand(1);
  // If the mask is suitable for andi. or andis. we should sink the and.
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
    // Can't handle constants wider than 64-bits.
    if (CI->getBitWidth() > 64)
      return false;
    int64_t ConstVal = CI->getZExtValue();
    return isUInt<16>(ConstVal) ||
      (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
  }

  // For non-constant masks, we can always use the record-form and.
  return true;
}

// Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
// Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
// Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
// Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
// Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
  assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
  assert(Subtarget.hasP9Altivec() &&
         "Only combine this when P9 altivec supported!");
  EVT VT = N->getValueType(0);
  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  if (N->getOperand(0).getOpcode() == ISD::SUB) {
    // Even for signed integers, if it's known to be positive (as signed
    // integer) due to zero-extended inputs.
    unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
    unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
    if ((SubOpcd0 == ISD::ZERO_EXTEND ||
         SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
        (SubOpcd1 == ISD::ZERO_EXTEND ||
         SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
                         N->getOperand(0)->getOperand(0),
                         N->getOperand(0)->getOperand(1),
                         DAG.getTargetConstant(0, dl, MVT::i32));
    }

    // For type v4i32, it can be optimized with xvnegsp + vabsduw
    if (N->getOperand(0).getValueType() == MVT::v4i32 &&
        N->getOperand(0).hasOneUse()) {
      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
                         N->getOperand(0)->getOperand(0),
                         N->getOperand(0)->getOperand(1),
                         DAG.getTargetConstant(1, dl, MVT::i32));
    }
  }

  return SDValue();
}

// For type v4i32/v8ii16/v16i8, transform
// from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
// from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
// from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
// from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
SDValue PPCTargetLowering::combineVSelect(SDNode *N,
                                          DAGCombinerInfo &DCI) const {
  assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
  assert(Subtarget.hasP9Altivec() &&
         "Only combine this when P9 altivec supported!");

  SelectionDAG &DAG = DCI.DAG;
  SDLoc dl(N);
  SDValue Cond = N->getOperand(0);
  SDValue TrueOpnd = N->getOperand(1);
  SDValue FalseOpnd = N->getOperand(2);
  EVT VT = N->getOperand(1).getValueType();

  if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
      FalseOpnd.getOpcode() != ISD::SUB)
    return SDValue();

  // ABSD only available for type v4i32/v8i16/v16i8
  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
    return SDValue();

  // At least to save one more dependent computation
  if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
    return SDValue();

  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();

  // Can only handle unsigned comparison here
  switch (CC) {
  default:
    return SDValue();
  case ISD::SETUGT:
  case ISD::SETUGE:
    break;
  case ISD::SETULT:
  case ISD::SETULE:
    std::swap(TrueOpnd, FalseOpnd);
    break;
  }

  SDValue CmpOpnd1 = Cond.getOperand(0);
  SDValue CmpOpnd2 = Cond.getOperand(1);

  // SETCC CmpOpnd1 CmpOpnd2 cond
  // TrueOpnd = CmpOpnd1 - CmpOpnd2
  // FalseOpnd = CmpOpnd2 - CmpOpnd1
  if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
      TrueOpnd.getOperand(1) == CmpOpnd2 &&
      FalseOpnd.getOperand(0) == CmpOpnd2 &&
      FalseOpnd.getOperand(1) == CmpOpnd1) {
    return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
                       CmpOpnd1, CmpOpnd2,
                       DAG.getTargetConstant(0, dl, MVT::i32));
  }

  return SDValue();
}