PPCISelLowering.cpp
670 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//
#include "PPCISelLowering.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCCCState.h"
#include "PPCCallingConv.h"
#include "PPCFrameLowering.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCPerfectShuffle.h"
#include "PPCRegisterInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "ppc-lowering"
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
static cl::opt<bool> DisableSCO("disable-ppc-sco",
cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
cl::desc("use absolute jump tables on ppc"), cl::Hidden);
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumSiblingCalls, "Number of sibling calls");
STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
// FIXME: Remove this once the bug has been fixed!
extern cl::opt<bool> ANDIGlueBug;
PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
const PPCSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
// On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
// arguments are at least 4/8 bytes aligned.
bool isPPC64 = Subtarget.isPPC64();
setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
// Set up the register classes.
addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
if (!useSoftFloat()) {
if (hasSPE()) {
addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
} else {
addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
}
}
// Match BITREVERSE to customized fast code sequence in the td file.
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
// Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
}
if (Subtarget.isISA3_0()) {
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
setTruncStoreAction(MVT::f64, MVT::f16, Legal);
setTruncStoreAction(MVT::f32, MVT::f16, Legal);
} else {
// No extending loads from f16 or HW conversions back and forth.
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
}
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PowerPC has pre-inc load and store's.
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
if (!Subtarget.hasSPE()) {
setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
}
// PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
for (MVT VT : ScalarIntVTs) {
setOperationAction(ISD::ADDC, VT, Legal);
setOperationAction(ISD::ADDE, VT, Legal);
setOperationAction(ISD::SUBC, VT, Legal);
setOperationAction(ISD::SUBE, VT, Legal);
}
if (Subtarget.useCRBits()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (isPPC64 || Subtarget.hasFPCVT()) {
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
isPPC64 ? MVT::i64 : MVT::i32);
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
isPPC64 ? MVT::i64 : MVT::i32);
} else {
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
}
// PowerPC does not support direct load/store of condition registers.
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
// FIXME: Remove this once the ANDI glue bug is fixed:
if (ANDIGlueBug)
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setTruncStoreAction(VT, MVT::i1, Expand);
}
addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
}
// Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
// PPC (the libcall is not available).
setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
// We do not currently implement these libm ops for PowerPC.
setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
// PowerPC has no SREM/UREM instructions unless we are on P9
// On P9 we may use a hardware instruction to compute the remainder.
// When the result of both the remainder and the division is required it is
// more efficient to compute the remainder from the result of the division
// rather than use the remainder instruction. The instructions are legalized
// directly because the DivRemPairsPass performs the transformation at the IR
// level.
if (Subtarget.isISA3_0()) {
setOperationAction(ISD::SREM, MVT::i32, Legal);
setOperationAction(ISD::UREM, MVT::i32, Legal);
setOperationAction(ISD::SREM, MVT::i64, Legal);
setOperationAction(ISD::UREM, MVT::i64, Legal);
} else {
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
}
// Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
// Handle constrained floating-point operations of scalar.
// TODO: Handle SPE specific operation.
setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
if (Subtarget.hasVSX())
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
if (Subtarget.hasFSQRT()) {
setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
}
if (Subtarget.hasFPRND()) {
setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
}
// We don't support sin/cos/sqrt/fmod/pow
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
if (Subtarget.hasSPE()) {
setOperationAction(ISD::FMA , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f32, Expand);
} else {
setOperationAction(ISD::FMA , MVT::f64, Legal);
setOperationAction(ISD::FMA , MVT::f32, Legal);
}
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
// If we're enabling GP optimizations, use hardware square root
if (!Subtarget.hasFSQRT() &&
!(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
Subtarget.hasFRE()))
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
if (!Subtarget.hasFSQRT() &&
!(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
Subtarget.hasFRES()))
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
if (Subtarget.hasFCPSGN()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
} else {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
}
if (Subtarget.hasFPRND()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
}
// PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
// to speed up scalar BSWAP64.
// CTPOP or CTTZ were introduced in P8/P9 respectively
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
if (Subtarget.hasP9Vector())
setOperationAction(ISD::BSWAP, MVT::i64 , Custom);
else
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
if (Subtarget.isISA3_0()) {
setOperationAction(ISD::CTTZ , MVT::i32 , Legal);
setOperationAction(ISD::CTTZ , MVT::i64 , Legal);
} else {
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
}
if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
} else {
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
}
// PowerPC does not have ROTR
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
if (!Subtarget.useCRBits()) {
// PowerPC does not have Select
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
}
// PowerPC wants to turn select_cc of FP into fsel when possible.
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// PowerPC wants to optimize integer setcc a bit
if (!Subtarget.useCRBits())
setOperationAction(ISD::SETCC, MVT::i32, Custom);
// PowerPC does not have BRCOND which requires SetCC
if (!Subtarget.useCRBits())
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
if (Subtarget.hasSPE()) {
// SPE has built-in conversions
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
} else {
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
// PowerPC does not have [U|S]INT_TO_FP
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
}
if (Subtarget.hasDirectMove() && isPPC64) {
setOperationAction(ISD::BITCAST, MVT::f32, Legal);
setOperationAction(ISD::BITCAST, MVT::i32, Legal);
setOperationAction(ISD::BITCAST, MVT::i64, Legal);
setOperationAction(ISD::BITCAST, MVT::f64, Legal);
if (TM.Options.UnsafeFPMath) {
setOperationAction(ISD::LRINT, MVT::f64, Legal);
setOperationAction(ISD::LRINT, MVT::f32, Legal);
setOperationAction(ISD::LLRINT, MVT::f64, Legal);
setOperationAction(ISD::LLRINT, MVT::f32, Legal);
setOperationAction(ISD::LROUND, MVT::f64, Legal);
setOperationAction(ISD::LROUND, MVT::f32, Legal);
setOperationAction(ISD::LLROUND, MVT::f64, Legal);
setOperationAction(ISD::LLROUND, MVT::f32, Legal);
}
} else {
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
}
// We cannot sextinreg(i1). Expand to shifts.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
// support continuation, user-level threading, and etc.. As a result, no
// other SjLj exception interfaces are implemented and please don't build
// your own exception handling based on them.
// LLVM/Clang supports zero-cost DWARF exception handling.
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
// We want to legalize GlobalAddress and ConstantPool nodes into the
// appropriate instructions to materialize the address.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
// TRAP is legal.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// TRAMPOLINE is custom lowered.
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
if (Subtarget.is64BitELFABI()) {
// VAARG always uses double-word chunks, so promote anything smaller.
setOperationAction(ISD::VAARG, MVT::i1, Promote);
AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i8, Promote);
AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i16, Promote);
AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i32, Promote);
AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
} else if (Subtarget.is32BitELFABI()) {
// VAARG is custom lowered with the 32-bit SVR4 ABI.
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::i64, Custom);
} else
setOperationAction(ISD::VAARG, MVT::Other, Expand);
// VACOPY is custom lowered with the 32-bit SVR4 ABI.
if (Subtarget.is32BitELFABI())
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
else
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
// Use the default implementation.
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// To handle counter-based loop conditions.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
// Comparisons that require checking two conditions.
if (Subtarget.hasSPE()) {
setCondCodeAction(ISD::SETO, MVT::f32, Expand);
setCondCodeAction(ISD::SETO, MVT::f64, Expand);
setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
}
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
if (Subtarget.has64BitSupport()) {
// They also have instructions for converting between i64 and fp.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
// This is just the low 32 bits of a (signed) fp->i64 conversion.
// We cannot do this with Promote because i64 is not a legal type.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
} else {
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
if (Subtarget.hasSPE()) {
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
} else
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
}
// With the instructions enabled under FPCVT, we can do everything.
if (Subtarget.hasFPCVT()) {
if (Subtarget.has64BitSupport()) {
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
}
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
}
if (Subtarget.use64BitRegs()) {
// 64-bit PowerPC implementations can support i64 types directly
addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// 64-bit PowerPC wants to expand i128 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
} else {
// 32-bit PowerPC wants to expand i64 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
if (Subtarget.hasVSX()) {
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
}
if (Subtarget.hasAltivec()) {
for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
}
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD, VT, Legal);
setOperationAction(ISD::SUB, VT, Legal);
// For v2i64, these are only valid with P8Vector. This is corrected after
// the loop.
if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
}
else {
setOperationAction(ISD::SMAX, VT, Expand);
setOperationAction(ISD::SMIN, VT, Expand);
setOperationAction(ISD::UMAX, VT, Expand);
setOperationAction(ISD::UMIN, VT, Expand);
}
if (Subtarget.hasVSX()) {
setOperationAction(ISD::FMAXNUM, VT, Legal);
setOperationAction(ISD::FMINNUM, VT, Legal);
}
// Vector instructions introduced in P8
if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
setOperationAction(ISD::CTPOP, VT, Legal);
setOperationAction(ISD::CTLZ, VT, Legal);
}
else {
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
}
// Vector instructions introduced in P9
if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
setOperationAction(ISD::CTTZ, VT, Legal);
else
setOperationAction(ISD::CTTZ, VT, Expand);
// We promote all shuffles to v16i8.
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
// We promote all non-typed operations to v4i32.
setOperationAction(ISD::AND , VT, Promote);
AddPromotedToType (ISD::AND , VT, MVT::v4i32);
setOperationAction(ISD::OR , VT, Promote);
AddPromotedToType (ISD::OR , VT, MVT::v4i32);
setOperationAction(ISD::XOR , VT, Promote);
AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
setOperationAction(ISD::LOAD , VT, Promote);
AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
setOperationAction(ISD::SELECT, VT, Promote);
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
setOperationAction(ISD::VSELECT, VT, Legal);
setOperationAction(ISD::SELECT_CC, VT, Promote);
AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
// No other operations are legal.
setOperationAction(ISD::MUL , VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
if (!Subtarget.hasP8Vector()) {
setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
}
for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
setOperationAction(ISD::ABS, VT, Custom);
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
// with merges, splats, etc.
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
// Vector truncates to sub-word integer that fit in an Altivec/VSX register
// are cheap, so handle them before they get expanded to scalar.
setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
setOperationAction(ISD::AND , MVT::v4i32, Legal);
setOperationAction(ISD::OR , MVT::v4i32, Legal);
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
setOperationAction(ISD::SELECT, MVT::v4i32,
Subtarget.useCRBits() ? Legal : Expand);
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
// Without hasP8Altivec set, v2i64 SMAX isn't available.
// But ABS custom lowering requires SMAX support.
if (!Subtarget.hasP8Altivec())
setOperationAction(ISD::ABS, MVT::v2i64, Expand);
// Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
// With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
if (Subtarget.hasAltivec())
for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
setOperationAction(ISD::ROTL, VT, Legal);
// With hasP8Altivec set, we can lower ISD::ROTL to vrld.
if (Subtarget.hasP8Altivec())
setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
if (Subtarget.hasVSX()) {
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
}
if (Subtarget.hasP8Altivec())
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
else
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
// Altivec does not contain unordered floating-point compare instructions
setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
if (Subtarget.hasVSX()) {
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
if (Subtarget.hasP8Vector()) {
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
}
if (Subtarget.hasDirectMove() && isPPC64) {
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
}
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
// The nearbyint variants are not allowed to raise the inexact exception
// so we can only code-gen them with unsafe math.
if (TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
}
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::MUL, MVT::v2f64, Legal);
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
// Share the Altivec comparison restrictions.
setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
setOperationAction(ISD::STORE, MVT::v2f64, Legal);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
if (Subtarget.hasP8Vector())
addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
if (Subtarget.hasP8Altivec()) {
setOperationAction(ISD::SHL, MVT::v2i64, Legal);
setOperationAction(ISD::SRA, MVT::v2i64, Legal);
setOperationAction(ISD::SRL, MVT::v2i64, Legal);
// 128 bit shifts can be accomplished via 3 instructions for SHL and
// SRL, but not for SRA because of the instructions available:
// VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
// doing
setOperationAction(ISD::SHL, MVT::v1i128, Expand);
setOperationAction(ISD::SRL, MVT::v1i128, Expand);
setOperationAction(ISD::SRA, MVT::v1i128, Expand);
setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
}
else {
setOperationAction(ISD::SHL, MVT::v2i64, Expand);
setOperationAction(ISD::SRA, MVT::v2i64, Expand);
setOperationAction(ISD::SRL, MVT::v2i64, Expand);
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
// VSX v2i64 only supports non-arithmetic operations.
setOperationAction(ISD::ADD, MVT::v2i64, Expand);
setOperationAction(ISD::SUB, MVT::v2i64, Expand);
}
setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
// Custom handling for partial vectors of integers converted to
// floating point. We already have optimal handling for v2i32 through
// the DAG combine, so those aren't necessary.
setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
setOperationAction(ISD::FABS, MVT::v4f32, Legal);
setOperationAction(ISD::FABS, MVT::v2f64, Legal);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
if (Subtarget.hasDirectMove())
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
// Handle constrained floating-point operations of vector.
// The predictor is `hasVSX` because altivec instruction has
// no exception but VSX vector instruction has.
setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
}
if (Subtarget.hasP8Altivec()) {
addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
}
if (Subtarget.hasP9Vector()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
// 128 bit shifts can be accomplished via 3 instructions for SHL and
// SRL, but not for SRA because of the instructions available:
// VS{RL} and VS{RL}O.
setOperationAction(ISD::SHL, MVT::v1i128, Legal);
setOperationAction(ISD::SRL, MVT::v1i128, Legal);
setOperationAction(ISD::SRA, MVT::v1i128, Expand);
addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
setOperationAction(ISD::FADD, MVT::f128, Legal);
setOperationAction(ISD::FSUB, MVT::f128, Legal);
setOperationAction(ISD::FDIV, MVT::f128, Legal);
setOperationAction(ISD::FMUL, MVT::f128, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
// No extending loads to f128 on PPC.
for (MVT FPT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
setOperationAction(ISD::FMA, MVT::f128, Legal);
setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
setOperationAction(ISD::FRINT, MVT::f128, Legal);
setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
setOperationAction(ISD::FCEIL, MVT::f128, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
setOperationAction(ISD::FROUND, MVT::f128, Legal);
setOperationAction(ISD::SELECT, MVT::f128, Expand);
setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i128, Custom);
// No implementation for these ops for PowerPC.
setOperationAction(ISD::FSIN, MVT::f128, Expand);
setOperationAction(ISD::FCOS, MVT::f128, Expand);
setOperationAction(ISD::FPOW, MVT::f128, Expand);
setOperationAction(ISD::FPOWI, MVT::f128, Expand);
setOperationAction(ISD::FREM, MVT::f128, Expand);
// Handle constrained floating-point operations of fp128
setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
}
if (Subtarget.hasP9Altivec()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
}
}
if (Subtarget.hasQPX()) {
setOperationAction(ISD::FADD, MVT::v4f64, Legal);
setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
setOperationAction(ISD::FREM, MVT::v4f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
setOperationAction(ISD::LOAD , MVT::v4f64, Custom);
setOperationAction(ISD::STORE , MVT::v4f64, Custom);
setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
if (!Subtarget.useCRBits())
setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
setOperationAction(ISD::FABS , MVT::v4f64, Legal);
setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::FREM, MVT::v4f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
setOperationAction(ISD::LOAD , MVT::v4f32, Custom);
setOperationAction(ISD::STORE , MVT::v4f32, Custom);
if (!Subtarget.useCRBits())
setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
setOperationAction(ISD::FABS , MVT::v4f32, Legal);
setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
setOperationAction(ISD::AND , MVT::v4i1, Legal);
setOperationAction(ISD::OR , MVT::v4i1, Legal);
setOperationAction(ISD::XOR , MVT::v4i1, Legal);
if (!Subtarget.useCRBits())
setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
setOperationAction(ISD::LOAD , MVT::v4i1, Custom);
setOperationAction(ISD::STORE , MVT::v4i1, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
// These need to set FE_INEXACT, and so cannot be vectorized here.
setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
if (TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
} else {
setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
}
// TODO: Handle constrained floating-point operations of v4f64
}
if (Subtarget.has64BitSupport())
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
if (!isPPC64) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
}
setBooleanContents(ZeroOrOneBooleanContent);
if (Subtarget.hasAltivec()) {
// Altivec instructions set fields to all zeros or all ones.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
}
if (!isPPC64) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
if (!isPPC64)
setMaxAtomicSizeInBitsSupported(32);
setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::FMA);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::BUILD_VECTOR);
if (Subtarget.hasFPCVT())
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
if (Subtarget.useCRBits())
setTargetDAGCombine(ISD::BRCOND);
setTargetDAGCombine(ISD::BSWAP);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
if (Subtarget.useCRBits()) {
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::SELECT_CC);
}
if (Subtarget.hasP9Altivec()) {
setTargetDAGCombine(ISD::ABS);
setTargetDAGCombine(ISD::VSELECT);
}
setLibcallName(RTLIB::LOG_F128, "logf128");
setLibcallName(RTLIB::LOG2_F128, "log2f128");
setLibcallName(RTLIB::LOG10_F128, "log10f128");
setLibcallName(RTLIB::EXP_F128, "expf128");
setLibcallName(RTLIB::EXP2_F128, "exp2f128");
setLibcallName(RTLIB::SIN_F128, "sinf128");
setLibcallName(RTLIB::COS_F128, "cosf128");
setLibcallName(RTLIB::POW_F128, "powf128");
setLibcallName(RTLIB::FMIN_F128, "fminf128");
setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
setLibcallName(RTLIB::POWI_F128, "__powikf2");
setLibcallName(RTLIB::REM_F128, "fmodf128");
// With 32 condition bits, we don't need to sink (and duplicate) compares
// aggressively in CodeGenPrep.
if (Subtarget.useCRBits()) {
setHasMultipleConditionRegisters();
setJumpIsExpensive();
}
setMinFunctionAlignment(Align(4));
switch (Subtarget.getCPUDirective()) {
default: break;
case PPC::DIR_970:
case PPC::DIR_A2:
case PPC::DIR_E500:
case PPC::DIR_E500mc:
case PPC::DIR_E5500:
case PPC::DIR_PWR4:
case PPC::DIR_PWR5:
case PPC::DIR_PWR5X:
case PPC::DIR_PWR6:
case PPC::DIR_PWR6X:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8:
case PPC::DIR_PWR9:
case PPC::DIR_PWR10:
case PPC::DIR_PWR_FUTURE:
setPrefLoopAlignment(Align(16));
setPrefFunctionAlignment(Align(16));
break;
}
if (Subtarget.enableMachineScheduler())
setSchedulingPreference(Sched::Source);
else
setSchedulingPreference(Sched::Hybrid);
computeRegisterProperties(STI.getRegisterInfo());
// The Freescale cores do better with aggressive inlining of memcpy and
// friends. GCC uses same threshold of 128 bytes (= 32 word stores).
if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
Subtarget.getCPUDirective() == PPC::DIR_E5500) {
MaxStoresPerMemset = 32;
MaxStoresPerMemsetOptSize = 16;
MaxStoresPerMemcpy = 32;
MaxStoresPerMemcpyOptSize = 8;
MaxStoresPerMemmove = 32;
MaxStoresPerMemmoveOptSize = 8;
} else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
// The A2 also benefits from (very) aggressive inlining of memcpy and
// friends. The overhead of a the function call, even when warm, can be
// over one hundred cycles.
MaxStoresPerMemset = 128;
MaxStoresPerMemcpy = 128;
MaxStoresPerMemmove = 128;
MaxLoadsPerMemcmp = 128;
} else {
MaxLoadsPerMemcmp = 8;
MaxLoadsPerMemcmpOptSize = 4;
}
// Let the subtarget (CPU) decide if a predictable select is more expensive
// than the corresponding branch. This information is used in CGP to decide
// when to convert selects into branches.
PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
}
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
if (MaxAlign == MaxMaxAlign)
return;
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (MaxMaxAlign >= 32 &&
VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
MaxAlign = Align(32);
else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
MaxAlign < 16)
MaxAlign = Align(16);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Align EltAlign;
getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (auto *EltTy : STy->elements()) {
Align EltAlign;
getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == MaxMaxAlign)
break;
}
}
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area.
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const {
// 16byte and wider vectors are passed on 16byte boundary.
// The rest is 8 on PPC64 and 4 on PPC32 boundary.
Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
if (Subtarget.hasAltivec() || Subtarget.hasQPX())
getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16));
return Alignment.value();
}
bool PPCTargetLowering::useSoftFloat() const {
return Subtarget.useSoftFloat();
}
bool PPCTargetLowering::hasSPE() const {
return Subtarget.hasSPE();
}
bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
return VT.isScalarInteger();
}
/// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
/// type is cheaper than a multiply followed by a shift.
/// This is true for words and doublewords on 64-bit PowerPC.
bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
isOperationLegal(ISD::MULHU, Type)))
return true;
return TargetLowering::isMulhCheaperThanMulShift(Type);
}
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((PPCISD::NodeType)Opcode) {
case PPCISD::FIRST_NUMBER: break;
case PPCISD::FSEL: return "PPCISD::FSEL";
case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP";
case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP";
case PPCISD::FCFID: return "PPCISD::FCFID";
case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
case PPCISD::FP_TO_UINT_IN_VSR:
return "PPCISD::FP_TO_UINT_IN_VSR,";
case PPCISD::FP_TO_SINT_IN_VSR:
return "PPCISD::FP_TO_SINT_IN_VSR";
case PPCISD::FRE: return "PPCISD::FRE";
case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
case PPCISD::STFIWX: return "PPCISD::STFIWX";
case PPCISD::VPERM: return "PPCISD::VPERM";
case PPCISD::XXSPLT: return "PPCISD::XXSPLT";
case PPCISD::XXSPLTI_SP_TO_DP:
return "PPCISD::XXSPLTI_SP_TO_DP";
case PPCISD::XXSPLTI32DX:
return "PPCISD::XXSPLTI32DX";
case PPCISD::VECINSERT: return "PPCISD::VECINSERT";
case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI";
case PPCISD::VECSHL: return "PPCISD::VECSHL";
case PPCISD::CMPB: return "PPCISD::CMPB";
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET";
case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA";
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
case PPCISD::SRL: return "PPCISD::SRL";
case PPCISD::SRA: return "PPCISD::SRA";
case PPCISD::SHL: return "PPCISD::SHL";
case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE";
case PPCISD::CALL: return "PPCISD::CALL";
case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC";
case PPCISD::MTCTR: return "PPCISD::MTCTR";
case PPCISD::BCTRL: return "PPCISD::BCTRL";
case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
case PPCISD::MFVSR: return "PPCISD::MFVSR";
case PPCISD::MTVSRA: return "PPCISD::MTVSRA";
case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ";
case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP";
case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP";
case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
case PPCISD::ANDI_rec_1_EQ_BIT:
return "PPCISD::ANDI_rec_1_EQ_BIT";
case PPCISD::ANDI_rec_1_GT_BIT:
return "PPCISD::ANDI_rec_1_GT_BIT";
case PPCISD::VCMP: return "PPCISD::VCMP";
case PPCISD::VCMPo: return "PPCISD::VCMPo";
case PPCISD::LBRX: return "PPCISD::LBRX";
case PPCISD::STBRX: return "PPCISD::STBRX";
case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
case PPCISD::LXSIZX: return "PPCISD::LXSIZX";
case PPCISD::STXSIX: return "PPCISD::STXSIX";
case PPCISD::VEXTS: return "PPCISD::VEXTS";
case PPCISD::LXVD2X: return "PPCISD::LXVD2X";
case PPCISD::STXVD2X: return "PPCISD::STXVD2X";
case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE";
case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE";
case PPCISD::ST_VSR_SCAL_INT:
return "PPCISD::ST_VSR_SCAL_INT";
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
case PPCISD::BDNZ: return "PPCISD::BDNZ";
case PPCISD::BDZ: return "PPCISD::BDZ";
case PPCISD::MFFS: return "PPCISD::MFFS";
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
case PPCISD::CR6SET: return "PPCISD::CR6SET";
case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT";
case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
case PPCISD::SC: return "PPCISD::SC";
case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB";
case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE";
case PPCISD::RFEBB: return "PPCISD::RFEBB";
case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD";
case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN";
case PPCISD::VABSD: return "PPCISD::VABSD";
case PPCISD::QVFPERM: return "PPCISD::QVFPERM";
case PPCISD::QVGPCI: return "PPCISD::QVGPCI";
case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI";
case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI";
case PPCISD::QBFLT: return "PPCISD::QBFLT";
case PPCISD::QVLFSb: return "PPCISD::QVLFSb";
case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128";
case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64";
case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE";
case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI";
case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH";
case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF";
case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR";
case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT";
case PPCISD::FNMSUB: return "PPCISD::FNMSUB";
}
return nullptr;
}
EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
EVT VT) const {
if (!VT.isVector())
return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
if (Subtarget.hasQPX())
return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
return VT.changeVectorElementTypeToInteger();
}
bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
return true;
}
//===----------------------------------------------------------------------===//
// Node matching predicates, for use by the tblgen matching code.
//===----------------------------------------------------------------------===//
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isZero();
}
return false;
}
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(int Op, int Val) {
return Op < 0 || Op == Val;
}
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operations with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
bool IsLE = DAG.getDataLayout().isLittleEndian();
if (ShuffleKind == 0) {
if (IsLE)
return false;
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
return false;
} else if (ShuffleKind == 2) {
if (!IsLE)
return false;
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2))
return false;
} else if (ShuffleKind == 1) {
unsigned j = IsLE ? 0 : 1;
for (unsigned i = 0; i != 8; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
return false;
}
return true;
}
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operations with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
bool IsLE = DAG.getDataLayout().isLittleEndian();
if (ShuffleKind == 0) {
if (IsLE)
return false;
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
return false;
} else if (ShuffleKind == 2) {
if (!IsLE)
return false;
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
return false;
} else if (ShuffleKind == 1) {
unsigned j = IsLE ? 0 : 2;
for (unsigned i = 0; i != 8; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
return false;
}
return true;
}
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
/// current subtarget.
///
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operations with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
const PPCSubtarget& Subtarget =
static_cast<const PPCSubtarget&>(DAG.getSubtarget());
if (!Subtarget.hasP8Vector())
return false;
bool IsLE = DAG.getDataLayout().isLittleEndian();
if (ShuffleKind == 0) {
if (IsLE)
return false;
for (unsigned i = 0; i != 16; i += 4)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+5) ||
!isConstantOrUndef(N->getMaskElt(i+2), i*2+6) ||
!isConstantOrUndef(N->getMaskElt(i+3), i*2+7))
return false;
} else if (ShuffleKind == 2) {
if (!IsLE)
return false;
for (unsigned i = 0; i != 16; i += 4)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+1) ||
!isConstantOrUndef(N->getMaskElt(i+2), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+3), i*2+3))
return false;
} else if (ShuffleKind == 1) {
unsigned j = IsLE ? 0 : 4;
for (unsigned i = 0; i != 8; i += 4)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
!isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) ||
!isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) ||
!isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
!isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
return false;
}
return true;
}
/// isVMerge - Common function, used to match vmrg* shuffles.
///
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned LHSStart, unsigned RHSStart) {
if (N->getValueType(0) != MVT::v16i8)
return false;
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
"Unsupported merge size!");
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
LHSStart+j+i*UnitSize) ||
!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
RHSStart+j+i*UnitSize))
return false;
}
return true;
}
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
/// The ShuffleKind distinguishes between big-endian merges with two
/// different inputs (0), either-endian merges with two identical inputs (1),
/// and little-endian merges with two different inputs (2). For the latter,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG) {
if (DAG.getDataLayout().isLittleEndian()) {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 0, 0);
else if (ShuffleKind == 2) // swapped
return isVMerge(N, UnitSize, 0, 16);
else
return false;
} else {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 8, 8);
else if (ShuffleKind == 0) // normal
return isVMerge(N, UnitSize, 8, 24);
else
return false;
}
}
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
/// The ShuffleKind distinguishes between big-endian merges with two
/// different inputs (0), either-endian merges with two identical inputs (1),
/// and little-endian merges with two different inputs (2). For the latter,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG) {
if (DAG.getDataLayout().isLittleEndian()) {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 8, 8);
else if (ShuffleKind == 2) // swapped
return isVMerge(N, UnitSize, 8, 24);
else
return false;
} else {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 0, 0);
else if (ShuffleKind == 0) // normal
return isVMerge(N, UnitSize, 0, 16);
else
return false;
}
}
/**
* Common function used to match vmrgew and vmrgow shuffles
*
* The indexOffset determines whether to look for even or odd words in
* the shuffle mask. This is based on the of the endianness of the target
* machine.
* - Little Endian:
* - Use offset of 0 to check for odd elements
* - Use offset of 4 to check for even elements
* - Big Endian:
* - Use offset of 0 to check for even elements
* - Use offset of 4 to check for odd elements
* A detailed description of the vector element ordering for little endian and
* big endian can be found at
* http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
* Targeting your applications - what little endian and big endian IBM XL C/C++
* compiler differences mean to you
*
* The mask to the shuffle vector instruction specifies the indices of the
* elements from the two input vectors to place in the result. The elements are
* numbered in array-access order, starting with the first vector. These vectors
* are always of type v16i8, thus each vector will contain 16 elements of size
* 8. More info on the shuffle vector can be found in the
* http://llvm.org/docs/LangRef.html#shufflevector-instruction
* Language Reference.
*
* The RHSStartValue indicates whether the same input vectors are used (unary)
* or two different input vectors are used, based on the following:
* - If the instruction uses the same vector for both inputs, the range of the
* indices will be 0 to 15. In this case, the RHSStart value passed should
* be 0.
* - If the instruction has two different vectors then the range of the
* indices will be 0 to 31. In this case, the RHSStart value passed should
* be 16 (indices 0-15 specify elements in the first vector while indices 16
* to 31 specify elements in the second vector).
*
* \param[in] N The shuffle vector SD Node to analyze
* \param[in] IndexOffset Specifies whether to look for even or odd elements
* \param[in] RHSStartValue Specifies the starting index for the righthand input
* vector to the shuffle_vector instruction
* \return true iff this shuffle vector represents an even or odd word merge
*/
static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
unsigned RHSStartValue) {
if (N->getValueType(0) != MVT::v16i8)
return false;
for (unsigned i = 0; i < 2; ++i)
for (unsigned j = 0; j < 4; ++j)
if (!isConstantOrUndef(N->getMaskElt(i*4+j),
i*RHSStartValue+j+IndexOffset) ||
!isConstantOrUndef(N->getMaskElt(i*4+j+8),
i*RHSStartValue+j+IndexOffset+8))
return false;
return true;
}
/**
* Determine if the specified shuffle mask is suitable for the vmrgew or
* vmrgow instructions.
*
* \param[in] N The shuffle vector SD Node to analyze
* \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
* \param[in] ShuffleKind Identify the type of merge:
* - 0 = big-endian merge with two different inputs;
* - 1 = either-endian merge with two identical inputs;
* - 2 = little-endian merge with two different inputs (inputs are swapped for
* little-endian merges).
* \param[in] DAG The current SelectionDAG
* \return true iff this shuffle mask
*/
bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
unsigned ShuffleKind, SelectionDAG &DAG) {
if (DAG.getDataLayout().isLittleEndian()) {
unsigned indexOffset = CheckEven ? 4 : 0;
if (ShuffleKind == 1) // Unary
return isVMerge(N, indexOffset, 0);
else if (ShuffleKind == 2) // swapped
return isVMerge(N, indexOffset, 16);
else
return false;
}
else {
unsigned indexOffset = CheckEven ? 0 : 4;
if (ShuffleKind == 1) // Unary
return isVMerge(N, indexOffset, 0);
else if (ShuffleKind == 0) // Normal
return isVMerge(N, indexOffset, 16);
else
return false;
}
return false;
}
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
/// The ShuffleKind distinguishes between big-endian operations with two
/// different inputs (0), either-endian operations with two identical inputs
/// (1), and little-endian operations with two different inputs (2). For the
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
if (N->getValueType(0) != MVT::v16i8)
return -1;
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
// Find the first non-undef value in the shuffle mask.
unsigned i;
for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
/*search*/;
if (i == 16) return -1; // all undef.
// Otherwise, check to see if the rest of the elements are consecutively
// numbered from this value.
unsigned ShiftAmt = SVOp->getMaskElt(i);
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
bool isLE = DAG.getDataLayout().isLittleEndian();
if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
return -1;
} else if (ShuffleKind == 1) {
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
return -1;
} else
return -1;
if (isLE)
ShiftAmt = 16 - ShiftAmt;
return ShiftAmt;
}
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
// The consecutive indices need to specify an element, not part of two
// different elements. So abandon ship early if this isn't the case.
if (N->getMaskElt(0) % EltSize != 0)
return false;
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned ElementBase = N->getMaskElt(0);
// FIXME: Handle UNDEF elements too!
if (ElementBase >= 16)
return false;
// Check that the indices are consecutive, in the case of a multi-byte element
// splatted with a v16i8 mask.
for (unsigned i = 1; i != EltSize; ++i)
if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
return false;
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
if (N->getMaskElt(i) < 0) continue;
for (unsigned j = 0; j != EltSize; ++j)
if (N->getMaskElt(i+j) != N->getMaskElt(j))
return false;
}
return true;
}
/// Check that the mask is shuffling N byte elements. Within each N byte
/// element of the mask, the indices could be either in increasing or
/// decreasing order as long as they are consecutive.
/// \param[in] N the shuffle vector SD Node to analyze
/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
/// Word/DoubleWord/QuadWord).
/// \param[in] StepLen the delta indices number among the N byte element, if
/// the mask is in increasing/decreasing order then it is 1/-1.
/// \return true iff the mask is shuffling N byte elements.
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
int StepLen) {
assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
"Unexpected element width.");
assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
unsigned NumOfElem = 16 / Width;
unsigned MaskVal[16]; // Width is never greater than 16
for (unsigned i = 0; i < NumOfElem; ++i) {
MaskVal[0] = N->getMaskElt(i * Width);
if ((StepLen == 1) && (MaskVal[0] % Width)) {
return false;
} else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
return false;
}
for (unsigned int j = 1; j < Width; ++j) {
MaskVal[j] = N->getMaskElt(i * Width + j);
if (MaskVal[j] != MaskVal[j-1] + StepLen) {
return false;
}
}
}
return true;
}
bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
unsigned &InsertAtByte, bool &Swap, bool IsLE) {
if (!isNByteElemShuffleMask(N, 4, 1))
return false;
// Now we look at mask elements 0,4,8,12
unsigned M0 = N->getMaskElt(0) / 4;
unsigned M1 = N->getMaskElt(4) / 4;
unsigned M2 = N->getMaskElt(8) / 4;
unsigned M3 = N->getMaskElt(12) / 4;
unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
// Below, let H and L be arbitrary elements of the shuffle mask
// where H is in the range [4,7] and L is in the range [0,3].
// H, 1, 2, 3 or L, 5, 6, 7
if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
(M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
InsertAtByte = IsLE ? 12 : 0;
Swap = M0 < 4;
return true;
}
// 0, H, 2, 3 or 4, L, 6, 7
if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
(M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
InsertAtByte = IsLE ? 8 : 4;
Swap = M1 < 4;
return true;
}
// 0, 1, H, 3 or 4, 5, L, 7
if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
(M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
InsertAtByte = IsLE ? 4 : 8;
Swap = M2 < 4;
return true;
}
// 0, 1, 2, H or 4, 5, 6, L
if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
(M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
InsertAtByte = IsLE ? 0 : 12;
Swap = M3 < 4;
return true;
}
// If both vector operands for the shuffle are the same vector, the mask will
// contain only elements from the first one and the second one will be undef.
if (N->getOperand(1).isUndef()) {
ShiftElts = 0;
Swap = true;
unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
InsertAtByte = IsLE ? 12 : 0;
return true;
}
if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
InsertAtByte = IsLE ? 8 : 4;
return true;
}
if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
InsertAtByte = IsLE ? 4 : 8;
return true;
}
if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
InsertAtByte = IsLE ? 0 : 12;
return true;
}
}
return false;
}
bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
bool &Swap, bool IsLE) {
assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
// Ensure each byte index of the word is consecutive.
if (!isNByteElemShuffleMask(N, 4, 1))
return false;
// Now we look at mask elements 0,4,8,12, which are the beginning of words.
unsigned M0 = N->getMaskElt(0) / 4;
unsigned M1 = N->getMaskElt(4) / 4;
unsigned M2 = N->getMaskElt(8) / 4;
unsigned M3 = N->getMaskElt(12) / 4;
// If both vector operands for the shuffle are the same vector, the mask will
// contain only elements from the first one and the second one will be undef.
if (N->getOperand(1).isUndef()) {
assert(M0 < 4 && "Indexing into an undef vector?");
if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
return false;
ShiftElts = IsLE ? (4 - M0) % 4 : M0;
Swap = false;
return true;
}
// Ensure each word index of the ShuffleVector Mask is consecutive.
if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
return false;
if (IsLE) {
if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
// Input vectors don't need to be swapped if the leading element
// of the result is one of the 3 left elements of the second vector
// (or if there is no shift to be done at all).
Swap = false;
ShiftElts = (8 - M0) % 8;
} else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
// Input vectors need to be swapped if the leading element
// of the result is one of the 3 left elements of the first vector
// (or if we're shifting by 4 - thereby simply swapping the vectors).
Swap = true;
ShiftElts = (4 - M0) % 4;
}
return true;
} else { // BE
if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
// Input vectors don't need to be swapped if the leading element
// of the result is one of the 4 elements of the first vector.
Swap = false;
ShiftElts = M0;
} else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
// Input vectors need to be swapped if the leading element
// of the result is one of the 4 elements of the right vector.
Swap = true;
ShiftElts = M0 - 4;
}
return true;
}
}
bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
if (!isNByteElemShuffleMask(N, Width, -1))
return false;
for (int i = 0; i < 16; i += Width)
if (N->getMaskElt(i) != i + Width - 1)
return false;
return true;
}
bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
return isXXBRShuffleMaskHelper(N, 2);
}
bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
return isXXBRShuffleMaskHelper(N, 4);
}
bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
return isXXBRShuffleMaskHelper(N, 8);
}
bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
return isXXBRShuffleMaskHelper(N, 16);
}
/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
/// if the inputs to the instruction should be swapped and set \p DM to the
/// value for the immediate.
/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
/// AND element 0 of the result comes from the first input (LE) or second input
/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
/// mask.
bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
bool &Swap, bool IsLE) {
assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
// Ensure each byte index of the double word is consecutive.
if (!isNByteElemShuffleMask(N, 8, 1))
return false;
unsigned M0 = N->getMaskElt(0) / 8;
unsigned M1 = N->getMaskElt(8) / 8;
assert(((M0 | M1) < 4) && "A mask element out of bounds?");
// If both vector operands for the shuffle are the same vector, the mask will
// contain only elements from the first one and the second one will be undef.
if (N->getOperand(1).isUndef()) {
if ((M0 | M1) < 2) {
DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
Swap = false;
return true;
} else
return false;
}
if (IsLE) {
if (M0 > 1 && M1 < 2) {
Swap = false;
} else if (M0 < 2 && M1 > 1) {
M0 = (M0 + 2) % 4;
M1 = (M1 + 2) % 4;
Swap = true;
} else
return false;
// Note: if control flow comes here that means Swap is already set above
DM = (((~M1) & 1) << 1) + ((~M0) & 1);
return true;
} else { // BE
if (M0 < 2 && M1 > 1) {
Swap = false;
} else if (M0 > 1 && M1 < 2) {
M0 = (M0 + 2) % 4;
M1 = (M1 + 2) % 4;
Swap = true;
} else
return false;
// Note: if control flow comes here that means Swap is already set above
DM = (M0 << 1) + (M1 & 1);
return true;
}
}
/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
/// appropriate for PPC mnemonics (which have a big endian bias - namely
/// elements are counted from the left of the vector register).
unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
assert(isSplatShuffleMask(SVOp, EltSize));
if (DAG.getDataLayout().isLittleEndian())
return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
else
return SVOp->getMaskElt(0) / EltSize;
}
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
/// by using a vspltis[bhw] instruction of the specified element size, return
/// the constant being splatted. The ByteSize field indicates the number of
/// bytes of each element [124] -> [bhw].
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
SDValue OpVal(nullptr, 0);
// If ByteSize of the splat is bigger than the element size of the
// build_vector, then we have a case where we are checking for a splat where
// multiple elements of the buildvector are folded together into a single
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
unsigned EltSize = 16/N->getNumOperands();
if (EltSize < ByteSize) {
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
SDValue UniquedVals[4];
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
// See if all of the elements in the buildvector agree across.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).isUndef()) continue;
// If the element isn't a constant, bail fully out.
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
if (!UniquedVals[i&(Multiple-1)].getNode())
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
return SDValue(); // no match.
}
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
// either constant or undef values that are identical for each chunk. See
// if these chunks can form into a larger vspltis*.
// Check to see if all of the leading entries are either 0 or -1. If
// neither, then this won't fit into the immediate field.
bool LeadingZero = true;
bool LeadingOnes = true;
for (unsigned i = 0; i != Multiple-1; ++i) {
if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
LeadingZero &= isNullConstant(UniquedVals[i]);
LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
}
// Finally, check the least significant entry.
if (LeadingZero) {
if (!UniquedVals[Multiple-1].getNode())
return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
if (Val < 16) // 0,0,0,4 -> vspltisw(4)
return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
}
if (LeadingOnes) {
if (!UniquedVals[Multiple-1].getNode())
return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
}
return SDValue();
}
// Check to see if this buildvec has a single non-undef value in its elements.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).isUndef()) continue;
if (!OpVal.getNode())
OpVal = N->getOperand(i);
else if (OpVal != N->getOperand(i))
return SDValue();
}
if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
unsigned ValSizeInBytes = EltSize;
uint64_t Value = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
Value = CN->getZExtValue();
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Value = FloatToBits(CN->getValueAPF().convertToFloat());
}
// If the splat value is larger than the element value, then we can never do
// this splat. The only case that we could fit the replicated bits into our
// immediate field for would be zero, and we prefer to use vxor for it.
if (ValSizeInBytes < ByteSize) return SDValue();
// If the element value is larger than the splat value, check if it consists
// of a repeated bit pattern of size ByteSize.
if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
return SDValue();
// Properly sign extend the value.
int MaskVal = SignExtend32(Value, ByteSize * 8);
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
if (MaskVal == 0) return SDValue();
// Finally, if this value fits in a 5 bit sext field, return it
if (SignExtend32<5>(MaskVal) == MaskVal)
return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
return SDValue();
}
/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
/// amount, otherwise return -1.
int PPC::isQVALIGNIShuffleMask(SDNode *N) {
EVT VT = N->getValueType(0);
if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
return -1;
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
// Find the first non-undef value in the shuffle mask.
unsigned i;
for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
/*search*/;
if (i == 4) return -1; // all undef.
// Otherwise, check to see if the rest of the elements are consecutively
// numbered from this value.
unsigned ShiftAmt = SVOp->getMaskElt(i);
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 4; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
return -1;
return ShiftAmt;
}
//===----------------------------------------------------------------------===//
// Addressing Mode Selection
//===----------------------------------------------------------------------===//
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value. If so, this returns true and the
/// immediate.
bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
if (!isa<ConstantSDNode>(N))
return false;
Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
if (N->getValueType(0) == MVT::i32)
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
else
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
}
bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
return isIntS16Immediate(Op.getNode(), Imm);
}
/// SelectAddressEVXRegReg - Given the specified address, check to see if it can
/// be represented as an indexed [r+r] operation.
bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
SDValue &Index,
SelectionDAG &DAG) const {
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI) {
if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
if (Memop->getMemoryVT() == MVT::f64) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
}
}
return false;
}
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation. Returns false if it
/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
/// non-zero and N can be represented by a base register plus a signed 16-bit
/// displacement, make a more precise judgement by checking (displacement % \p
/// EncodingAlignment).
bool PPCTargetLowering::SelectAddressRegReg(
SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
MaybeAlign EncodingAlignment) const {
// If we have a PC Relative target flag don't select as [reg+reg]. It will be
// a [pc+imm].
if (SelectAddressPCRel(N, Base))
return false;
int16_t Imm = 0;
if (N.getOpcode() == ISD::ADD) {
// Is there any SPE load/store (f64), which can't handle 16bit offset?
// SPE load/store can only handle 8-bit offsets.
if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
return true;
if (isIntS16Immediate(N.getOperand(1), Imm) &&
(!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
return false; // r+i
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
return false; // r+i
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (N.getOpcode() == ISD::OR) {
if (isIntS16Immediate(N.getOperand(1), Imm) &&
(!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
return false; // r+i can fold it if we can.
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are provably
// disjoint.
KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
if (LHSKnown.Zero.getBoolValue()) {
KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
}
}
return false;
}
// If we happen to be doing an i64 load or store into a stack slot that has
// less than a 4-byte alignment, then the frame-index elimination may need to
// use an indexed load or store instruction (because the offset may not be a
// multiple of 4). The extra register needed to hold the offset comes from the
// register scavenger, and it is possible that the scavenger will need to use
// an emergency spill slot. As a result, we need to make sure that a spill slot
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
// stack slot.
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
// FIXME: This does not handle the LWA case.
if (VT != MVT::i64)
return;
// NOTE: We'll exclude negative FIs here, which come from argument
// lowering, because there are no known test cases triggering this problem
// using packed structures (or similar). We can remove this exclusion if
// we find such a test case. The reason why this is so test-case driven is
// because this entire 'fixup' is only to prevent crashes (from the
// register scavenger) on not-really-valid inputs. For example, if we have:
// %a = alloca i1
// %b = bitcast i1* %a to i64*
// store i64* a, i64 b
// then the store should really be marked as 'align 1', but is not. If it
// were marked as 'align 1' then the indexed form would have been
// instruction-selected initially, and the problem this 'fixup' is preventing
// won't happen regardless.
if (FrameIdx < 0)
return;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
if (MFI.getObjectAlign(FrameIdx) >= Align(4))
return;
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setHasNonRISpills();
}
/// Returns true if the address N can be represented by a base register plus
/// a signed 16-bit displacement [r+imm], and if it is not better
/// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept
/// displacements that are multiples of that value.
bool PPCTargetLowering::SelectAddressRegImm(
SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
MaybeAlign EncodingAlignment) const {
// FIXME dl should come from parent load or store, not from address
SDLoc dl(N);
// If we have a PC Relative target flag don't select as [reg+imm]. It will be
// a [pc+imm].
if (SelectAddressPCRel(N, Base))
return false;
// If this can be more profitably realized as r+r, fail.
if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
return false;
if (N.getOpcode() == ISD::ADD) {
int16_t imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) &&
(!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
// Match LOAD (ADD (X, Lo(G))).
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
&& "Cannot handle constant offsets yet!");
Disp = N.getOperand(1).getOperand(0); // The global address.
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
Disp.getOpcode() == ISD::TargetConstantPool ||
Disp.getOpcode() == ISD::TargetJumpTable);
Base = N.getOperand(0);
return true; // [&g+r]
}
} else if (N.getOpcode() == ISD::OR) {
int16_t imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) &&
(!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are
// provably disjoint.
KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
if (FrameIndexSDNode *FI =
dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
return true;
}
}
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// Loading from a constant address.
// If this address fits entirely in a 16-bit sext immediate field, codegen
// this as "d, 0"
int16_t Imm;
if (isIntS16Immediate(CN, Imm) &&
(!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
CN->getValueType(0));
return true;
}
// Handle 32-bit sext immediates with LIS + addr mode.
if ((CN->getValueType(0) == MVT::i32 ||
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
(!EncodingAlignment ||
isAligned(*EncodingAlignment, CN->getZExtValue()))) {
int Addr = (int)CN->getZExtValue();
// Otherwise, break this down into an LIS + disp.
Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
MVT::i32);
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
return true;
}
}
Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else
Base = N;
return true; // [r+0]
}
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
SDValue &Index,
SelectionDAG &DAG) const {
// Check to see if we can easily represent this as an [r+r] address. This
// will fail if it thinks that the address is more profitably represented as
// reg+imm, e.g. where imm = 0.
if (SelectAddressRegReg(N, Base, Index, DAG))
return true;
// If the address is the result of an add, we will utilize the fact that the
// address calculation includes an implicit add. However, we can reduce
// register pressure if we do not materialize a constant just for use as the
// index register. We only get rid of the add if it is not an add of a
// value and a 16-bit signed constant and both have a single use.
int16_t imm = 0;
if (N.getOpcode() == ISD::ADD &&
(!isIntS16Immediate(N.getOperand(1), imm) ||
!N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
// Otherwise, do it the hard way, using R0 as the base register.
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
N.getValueType());
Index = N;
return true;
}
template <typename Ty> static bool isValidPCRelNode(SDValue N) {
Ty *PCRelCand = dyn_cast<Ty>(N);
return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
}
/// Returns true if this address is a PC Relative address.
/// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
/// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
// This is a materialize PC Relative node. Always select this as PC Relative.
Base = N;
if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
return true;
if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
isValidPCRelNode<GlobalAddressSDNode>(N) ||
isValidPCRelNode<JumpTableSDNode>(N) ||
isValidPCRelNode<BlockAddressSDNode>(N))
return true;
return false;
}
/// Returns true if we should use a direct load into vector instruction
/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
// If there are any other uses other than scalar to vector, then we should
// keep it as a scalar load -> direct move pattern to prevent multiple
// loads.
LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
if (!LD)
return false;
EVT MemVT = LD->getMemoryVT();
if (!MemVT.isSimple())
return false;
switch(MemVT.getSimpleVT().SimpleTy) {
case MVT::i64:
break;
case MVT::i32:
if (!ST.hasP8Vector())
return false;
break;
case MVT::i16:
case MVT::i8:
if (!ST.hasP9Vector())
return false;
break;
default:
return false;
}
SDValue LoadedVal(N, 0);
if (!LoadedVal.hasOneUse())
return false;
for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
UI != UE; ++UI)
if (UI.getUse().get().getResNo() == 0 &&
UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
return false;
return true;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (DisablePPCPreinc) return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
unsigned Alignment;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
Alignment = LD->getAlignment();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
Alignment = ST->getAlignment();
isLoad = false;
} else
return false;
// Do not generate pre-inc forms for specific loads that feed scalar_to_vector
// instructions because we can fold these into a more efficient instruction
// instead, (such as LXSD).
if (isLoad && usePartialVectorLoads(N, Subtarget)) {
return false;
}
// PowerPC doesn't have preinc load/store instructions for vectors (except
// for QPX, which does have preinc r+r forms).
if (VT.isVector()) {
if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
return false;
} else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
AM = ISD::PRE_INC;
return true;
}
}
if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
// Common code will reject creating a pre-inc form if the base pointer
// is a frame index, or if N is a store and the base pointer is either
// the same as or a predecessor of the value being stored. Check for
// those situations here, and try with swapped Base/Offset instead.
bool Swap = false;
if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
Swap = true;
else if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
Swap = true;
}
if (Swap)
std::swap(Base, Offset);
AM = ISD::PRE_INC;
return true;
}
// LDU/STU can only handle immediates that are a multiple of 4.
if (VT != MVT::i64) {
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
return false;
} else {
// LDU/STU need an address with at least 4-byte alignment.
if (Alignment < 4)
return false;
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
return false;
}
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
// PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
// sext i32 to i64 when addr mode is r+i.
if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
LD->getExtensionType() == ISD::SEXTLOAD &&
isa<ConstantSDNode>(Offset))
return false;
}
AM = ISD::PRE_INC;
return true;
}
//===----------------------------------------------------------------------===//
// LowerOperation implementation
//===----------------------------------------------------------------------===//
/// Return true if we should reference labels using a PICBase, set the HiOpFlags
/// and LoOpFlags to the target MO flags.
static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
unsigned &HiOpFlags, unsigned &LoOpFlags,
const GlobalValue *GV = nullptr) {
HiOpFlags = PPCII::MO_HA;
LoOpFlags = PPCII::MO_LO;
// Don't use the pic base if not in PIC relocation model.
if (IsPIC) {
HiOpFlags |= PPCII::MO_PIC_FLAG;
LoOpFlags |= PPCII::MO_PIC_FLAG;
}
}
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
SelectionDAG &DAG) {
SDLoc DL(HiPart);
EVT PtrVT = HiPart.getValueType();
SDValue Zero = DAG.getConstant(0, DL, PtrVT);
SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
// With PIC, the first instruction is actually "GR+hi(&G)".
if (isPIC)
Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
// Generate non-pic code that has direct accesses to the constant pool.
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
}
static void setUsesTOCBasePtr(MachineFunction &MF) {
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setUsesTOCBasePtr();
}
static void setUsesTOCBasePtr(SelectionDAG &DAG) {
setUsesTOCBasePtr(DAG.getMachineFunction());
}
SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
SDValue GA) const {
const bool Is64Bit = Subtarget.isPPC64();
EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
: Subtarget.isAIXABI()
? DAG.getRegister(PPC::R2, VT)
: DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
SDValue Ops[] = { GA, Reg };
return DAG.getMemIntrinsicNode(
PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
MachineMemOperand::MOLoad);
}
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
const Constant *C = CP->getConstVal();
// 64-bit SVR4 ABI and AIX ABI code are always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
if (Subtarget.isUsingPCRelativeCalls()) {
SDLoc DL(CP);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue ConstPool = DAG.getTargetConstantPool(
C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
}
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
return getTOCEntry(DAG, SDLoc(CP), GA);
}
unsigned MOHiFlag, MOLoFlag;
bool IsPIC = isPositionIndependent();
getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
if (IsPIC && Subtarget.isSVR4ABI()) {
SDValue GA =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
return getTOCEntry(DAG, SDLoc(CP), GA);
}
SDValue CPIHi =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
SDValue CPILo =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
}
// For 64-bit PowerPC, prefer the more compact relative encodings.
// This trades 32 bits per jump table entry for one or two instructions
// on the jump site.
unsigned PPCTargetLowering::getJumpTableEncoding() const {
if (isJumpTableRelative())
return MachineJumpTableInfo::EK_LabelDifference32;
return TargetLowering::getJumpTableEncoding();
}
bool PPCTargetLowering::isJumpTableRelative() const {
if (UseAbsoluteJumpTables)
return false;
if (Subtarget.isPPC64() || Subtarget.isAIXABI())
return true;
return TargetLowering::isJumpTableRelative();
}
SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
switch (getTargetMachine().getCodeModel()) {
case CodeModel::Small:
case CodeModel::Medium:
return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
default:
return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()));
}
}
const MCExpr *
PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI,
MCContext &Ctx) const {
if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
switch (getTargetMachine().getCodeModel()) {
case CodeModel::Small:
case CodeModel::Medium:
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
default:
return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
}
}
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// isUsingPCRelativeCalls() returns true when PCRelative is enabled
if (Subtarget.isUsingPCRelativeCalls()) {
SDLoc DL(JT);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue GA =
DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
return MatAddr;
}
// 64-bit SVR4 ABI and AIX ABI code are always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return getTOCEntry(DAG, SDLoc(JT), GA);
}
unsigned MOHiFlag, MOLoFlag;
bool IsPIC = isPositionIndependent();
getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
if (IsPIC && Subtarget.isSVR4ABI()) {
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
PPCII::MO_PIC_FLAG);
return getTOCEntry(DAG, SDLoc(GA), GA);
}
SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
}
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
const BlockAddress *BA = BASDN->getBlockAddress();
// isUsingPCRelativeCalls() returns true when PCRelative is enabled
if (Subtarget.isUsingPCRelativeCalls()) {
SDLoc DL(BASDN);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
PPCII::MO_PCREL_FLAG);
SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
return MatAddr;
}
// 64-bit SVR4 ABI and AIX ABI code are always position-independent.
// The actual BlockAddress is stored in the TOC.
if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
return getTOCEntry(DAG, SDLoc(BASDN), GA);
}
// 32-bit position-independent ELF stores the BlockAddress in the .got.
if (Subtarget.is32BitELFABI() && isPositionIndependent())
return getTOCEntry(
DAG, SDLoc(BASDN),
DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
unsigned MOHiFlag, MOLoFlag;
bool IsPIC = isPositionIndependent();
getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
}
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
// FIXME: TLS addresses currently use medium model code sequences,
// which is the most useful form. Eventually support for small and
// large models could be added if users need it, at the cost of
// additional complexity.
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
SDLoc dl(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
bool is64bit = Subtarget.isPPC64();
const Module *M = DAG.getMachineFunction().getFunction().getParent();
PICLevel::Level picLevel = M->getPICLevel();
const TargetMachine &TM = getTargetMachine();
TLSModel::Model Model = TM.getTLSModel(GV);
if (Model == TLSModel::LocalExec) {
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TPREL_HA);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TPREL_LO);
SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
: DAG.getRegister(PPC::R2, MVT::i32);
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
}
if (Model == TLSModel::InitialExec) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TLS);
SDValue GOTPtr;
if (is64bit) {
setUsesTOCBasePtr(DAG);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
PtrVT, GOTReg, TGA);
} else {
if (!TM.isPositionIndependent())
GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
else if (picLevel == PICLevel::SmallPIC)
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
else
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
}
SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
PtrVT, TGA, GOTPtr);
return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
}
if (Model == TLSModel::GeneralDynamic) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue GOTPtr;
if (is64bit) {
setUsesTOCBasePtr(DAG);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
GOTReg, TGA);
} else {
if (picLevel == PICLevel::SmallPIC)
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
else
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
}
return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
GOTPtr, TGA, TGA);
}
if (Model == TLSModel::LocalDynamic) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue GOTPtr;
if (is64bit) {
setUsesTOCBasePtr(DAG);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
GOTReg, TGA);
} else {
if (picLevel == PICLevel::SmallPIC)
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
else
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
}
SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
PtrVT, GOTPtr, TGA, TGA);
SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
PtrVT, TLSAddr, TGA);
return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
}
llvm_unreachable("Unknown TLS model!");
}
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
SDLoc DL(GSDN);
const GlobalValue *GV = GSDN->getGlobal();
// 64-bit SVR4 ABI & AIX ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
if (Subtarget.isUsingPCRelativeCalls()) {
EVT Ty = getPointerTy(DAG.getDataLayout());
if (isAccessedAsGotIndirect(Op)) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
PPCII::MO_PCREL_FLAG |
PPCII::MO_GOT_FLAG);
SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
MachinePointerInfo());
return Load;
} else {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
PPCII::MO_PCREL_FLAG);
return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
}
}
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
return getTOCEntry(DAG, DL, GA);
}
unsigned MOHiFlag, MOLoFlag;
bool IsPIC = isPositionIndependent();
getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
if (IsPIC && Subtarget.isSVR4ABI()) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
GSDN->getOffset(),
PPCII::MO_PIC_FLAG);
return getTOCEntry(DAG, DL, GA);
}
SDValue GAHi =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
SDValue GALo =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
}
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc dl(Op);
if (Op.getValueType() == MVT::v2i64) {
// When the operands themselves are v2i64 values, we need to do something
// special because VSX has no underlying comparison operations for these.
if (Op.getOperand(0).getValueType() == MVT::v2i64) {
// Equality can be handled by casting to the legal type for Altivec
// comparisons, everything else needs to be expanded.
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
DAG.getSetCC(dl, MVT::v4i32,
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
CC));
}
return SDValue();
}
// We handle most of these in the usual way.
return Op;
}
// If we're comparing for equality to zero, expose the fact that this is
// implemented as a ctlz/srl pair on ppc, so that the dag combiner can
// fold the new nodes.
if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
return V;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
// Leave comparisons against 0 and -1 alone for now, since they're usually
// optimized. FIXME: revisit this when we can custom lower all setcc
// optimizations.
if (C->isAllOnesValue() || C->isNullValue())
return SDValue();
}
// If we have an integer seteq/setne, turn it into a compare against zero
// by xor'ing the rhs with the lhs, which is faster than setting a
// condition register, reading it back out, and masking the correct bit. The
// normal approach here uses sub to do this instead of xor. Using xor exposes
// the result to other bit-twiddling opportunities.
EVT LHSVT = Op.getOperand(0).getValueType();
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
EVT VT = Op.getValueType();
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
}
return SDValue();
}
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc dl(Node);
assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
// gpr_index
SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
VAListPtr, MachinePointerInfo(SV), MVT::i8);
InChain = GprIndex.getValue(1);
if (VT == MVT::i64) {
// Check if GprIndex is even
SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
DAG.getConstant(1, dl, MVT::i32));
SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
DAG.getConstant(1, dl, MVT::i32));
// Align GprIndex to be even if it isn't
GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
GprIndex);
}
// fpr index is 1 byte after gpr
SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(1, dl, MVT::i32));
// fpr
SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
FprPtr, MachinePointerInfo(SV), MVT::i8);
InChain = FprIndex.getValue(1);
SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(8, dl, MVT::i32));
SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(4, dl, MVT::i32));
// areas
SDValue OverflowArea =
DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
InChain = OverflowArea.getValue(1);
SDValue RegSaveArea =
DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
InChain = RegSaveArea.getValue(1);
// select overflow_area if index > 8
SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
// adjustment constant gpr_index * 4/8
SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
MVT::i32));
// OurReg = RegSaveArea + RegConstant
SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
RegConstant);
// Floating types are 32 bytes into RegSaveArea
if (VT.isFloatingPoint())
OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
DAG.getConstant(32, dl, MVT::i32));
// increase {f,g}pr_index by 1 (or 2 if VT is i64)
SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
MVT::i32));
InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
VT.isInteger() ? VAListPtr : FprPtr,
MachinePointerInfo(SV), MVT::i8);
// determine if we should load from reg_save_area or overflow_area
SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
// increase overflow_area by 4/8 if gpr/fpr > 8
SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
DAG.getConstant(VT.isInteger() ? 4 : 8,
dl, MVT::i32));
OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
OverflowAreaPlusN);
InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
MachinePointerInfo(), MVT::i32);
return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
}
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
// We have to copy the entire va_list struct:
// 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
false, true, false, MachinePointerInfo(),
MachinePointerInfo());
}
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
if (Subtarget.isAIXABI())
report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
return Op.getOperand(0);
}
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
if (Subtarget.isAIXABI())
report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
SDValue Chain = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
bool isPPC64 = (PtrVT == MVT::i64);
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = Trmp; Args.push_back(Entry);
// TrampSize == (isPPC64 ? 48 : 40);
Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
isPPC64 ? MVT::i64 : MVT::i32);
Args.push_back(Entry);
Entry.Node = FPtr; Args.push_back(Entry);
Entry.Node = Nest; Args.push_back(Entry);
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
}
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = getPointerTy(MF.getDataLayout());
SDLoc dl(Op);
if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
// For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
// We suppose the given va_list is already allocated.
//
// typedef struct {
// char gpr; /* index into the array of 8 GPRs
// * stored in the register save area
// * gpr=0 corresponds to r3,
// * gpr=1 to r4, etc.
// */
// char fpr; /* index into the array of 8 FPRs
// * stored in the register save area
// * fpr=0 corresponds to f1,
// * fpr=1 to f2, etc.
// */
// char *overflow_arg_area;
// /* location on stack that holds
// * the next overflow argument
// */
// char *reg_save_area;
// /* where r3:r10 and f1:f8 (if saved)
// * are stored
// */
// } va_list[1];
SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
PtrVT);
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
PtrVT);
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
uint64_t FPROffset = 1;
SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Store first byte : number of int regs
SDValue firstStore =
DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
MachinePointerInfo(SV), MVT::i8);
uint64_t nextOffset = FPROffset;
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
ConstFPROffset);
// Store second byte : number of float regs
SDValue secondStore =
DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
MachinePointerInfo(SV, nextOffset), MVT::i8);
nextOffset += StackOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
// Store second word : arguments given on stack
SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
MachinePointerInfo(SV, nextOffset));
nextOffset += FrameOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
// Store third word : arguments given in registers
return DAG.getStore(thirdStore, dl, FR, nextPtr,
MachinePointerInfo(SV, nextOffset));
}
/// FPR - The set of FP registers that should be allocated for arguments
/// on Darwin and AIX.
static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
PPC::F11, PPC::F12, PPC::F13};
/// QFPR - The set of QPX registers that should be allocated for arguments.
static const MCPhysReg QFPR[] = {
PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7,
PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
/// the stack.
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
unsigned PtrByteSize) {
unsigned ArgSize = ArgVT.getStoreSize();
if (Flags.isByVal())
ArgSize = Flags.getByValSize();
// Round up to multiples of the pointer size, except for array members,
// which are always packed.
if (!Flags.isInConsecutiveRegs())
ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
return ArgSize;
}
/// CalculateStackSlotAlignment - Calculates the alignment of this argument
/// on the stack.
static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
ISD::ArgFlagsTy Flags,
unsigned PtrByteSize) {
Align Alignment(PtrByteSize);
// Altivec parameters are padded to a 16 byte boundary.
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
Alignment = Align(16);
// QPX vector types stored in double-precision are padded to a 32 byte
// boundary.
else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
Alignment = Align(32);
// ByVal parameters are aligned as requested.
if (Flags.isByVal()) {
auto BVAlign = Flags.getNonZeroByValAlign();
if (BVAlign > PtrByteSize) {
if (BVAlign.value() % PtrByteSize != 0)
llvm_unreachable(
"ByVal alignment is not a multiple of the pointer size");
Alignment = BVAlign;
}
}
// Array members are always packed to their original alignment.
if (Flags.isInConsecutiveRegs()) {
// If the array member was split into multiple registers, the first
// needs to be aligned to the size of the full type. (Except for
// ppcf128, which is only aligned as its f64 components.)
if (Flags.isSplit() && OrigVT != MVT::ppcf128)
Alignment = Align(OrigVT.getStoreSize());
else
Alignment = Align(ArgVT.getStoreSize());
}
return Alignment;
}
/// CalculateStackSlotUsed - Return whether this argument will use its
/// stack slot (instead of being passed in registers). ArgOffset,
/// AvailableFPRs, and AvailableVRs must hold the current argument
/// position, and will be updated to account for this argument.
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
ISD::ArgFlagsTy Flags,
unsigned PtrByteSize,
unsigned LinkageSize,
unsigned ParamAreaSize,
unsigned &ArgOffset,
unsigned &AvailableFPRs,
unsigned &AvailableVRs, bool HasQPX) {
bool UseMemory = false;
// Respect alignment of argument on the stack.
Align Alignment =
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
ArgOffset = alignTo(ArgOffset, Alignment);
// If there's no space left in the argument save area, we must
// use memory (this check also catches zero-sized arguments).
if (ArgOffset >= LinkageSize + ParamAreaSize)
UseMemory = true;
// Allocate argument on the stack.
ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
if (Flags.isInConsecutiveRegsLast())
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// If we overran the argument save area, we must use memory
// (this check catches arguments passed partially in memory)
if (ArgOffset > LinkageSize + ParamAreaSize)
UseMemory = true;
// However, if the argument is actually passed in an FPR or a VR,
// we don't use memory after all.
if (!Flags.isByVal()) {
if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
// QPX registers overlap with the scalar FP registers.
(HasQPX && (ArgVT == MVT::v4f32 ||
ArgVT == MVT::v4f64 ||
ArgVT == MVT::v4i1)))
if (AvailableFPRs > 0) {
--AvailableFPRs;
return false;
}
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
if (AvailableVRs > 0) {
--AvailableVRs;
return false;
}
}
return UseMemory;
}
/// EnsureStackAlignment - Round stack frame size up from NumBytes to
/// ensure minimum alignment required for target.
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
unsigned NumBytes) {
return alignTo(NumBytes, Lowering->getStackAlign());
}
SDValue PPCTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget.isAIXABI())
return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
InVals);
if (Subtarget.is64BitELFABI())
return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
InVals);
if (Subtarget.is32BitELFABI())
return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
InVals);
return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
InVals);
}
SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// 32-bit SVR4 ABI Stack Frame Layout:
// +-----------------------------------+
// +--> | Back chain |
// | +-----------------------------------+
// | | Floating-point register save area |
// | +-----------------------------------+
// | | General register save area |
// | +-----------------------------------+
// | | CR save word |
// | +-----------------------------------+
// | | VRSAVE save word |
// | +-----------------------------------+
// | | Alignment padding |
// | +-----------------------------------+
// | | Vector register save area |
// | +-----------------------------------+
// | | Local variable space |
// | +-----------------------------------+
// | | Parameter list area |
// | +-----------------------------------+
// | | LR save word |
// | +-----------------------------------+
// SP--> +--- | Back chain |
// +-----------------------------------+
//
// Specifications:
// System V Application Binary Interface PowerPC Processor Supplement
// AltiVec Technology Programming Interface Manual
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = getPointerTy(MF.getDataLayout());
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
const Align PtrAlign(4);
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Reserve space for the linkage area on the stack.
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
CCInfo.AllocateStack(LinkageSize, PtrAlign);
if (useSoftFloat())
CCInfo.PreAnalyzeFormalArguments(Ins);
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
CCInfo.clearWasPPCF128();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored in registers.
if (VA.isRegLoc()) {
const TargetRegisterClass *RC;
EVT ValVT = VA.getValVT();
switch (ValVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("ValVT not supported by formal arguments Lowering");
case MVT::i1:
case MVT::i32:
RC = &PPC::GPRCRegClass;
break;
case MVT::f32:
if (Subtarget.hasP8Vector())
RC = &PPC::VSSRCRegClass;
else if (Subtarget.hasSPE())
RC = &PPC::GPRCRegClass;
else
RC = &PPC::F4RCRegClass;
break;
case MVT::f64:
if (Subtarget.hasVSX())
RC = &PPC::VSFRCRegClass;
else if (Subtarget.hasSPE())
// SPE passes doubles in GPR pairs.
RC = &PPC::GPRCRegClass;
else
RC = &PPC::F8RCRegClass;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
RC = &PPC::VRRCRegClass;
break;
case MVT::v4f32:
RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
break;
case MVT::v2f64:
case MVT::v2i64:
RC = &PPC::VRRCRegClass;
break;
case MVT::v4f64:
RC = &PPC::QFRCRegClass;
break;
case MVT::v4i1:
RC = &PPC::QBRCRegClass;
break;
}
SDValue ArgValue;
// Transform the arguments stored in physical registers into
// virtual ones.
if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
assert(i + 1 < e && "No second half of double precision argument");
unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
if (!Subtarget.isLittleEndian())
std::swap (ArgValueLo, ArgValueHi);
ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
ArgValueHi);
} else {
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
ValVT == MVT::i1 ? MVT::i32 : ValVT);
if (ValVT == MVT::i1)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
}
InVals.push_back(ArgValue);
} else {
// Argument stored in memory.
assert(VA.isMemLoc());
// Get the extended size of the argument type in stack
unsigned ArgSize = VA.getLocVT().getStoreSize();
// Get the actual size of the argument type
unsigned ObjSize = VA.getValVT().getStoreSize();
unsigned ArgOffset = VA.getLocMemOffset();
// Stack objects in PPC32 are right justified.
ArgOffset += ArgSize - ObjSize;
int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(
DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
}
}
// Assign locations to all of the incoming aggregate by value arguments.
// Aggregates passed by value are stored in the local variable space of the
// caller's stack frame, right above the parameter list area.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
MinReservedArea = std::max(MinReservedArea, LinkageSize);
// Set the size that is at least reserved in caller of this function. Tail
// call optimized function's reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
MinReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
FuncInfo->setMinReservedArea(MinReservedArea);
SmallVector<SDValue, 8> MemOps;
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
static const MCPhysReg GPArgRegs[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
static const MCPhysReg FPArgRegs[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
};
unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
if (useSoftFloat() || hasSPE())
NumFPArgRegs = 0;
FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
// Make room for NumGPArgRegs and NumFPArgRegs.
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
FuncInfo->setVarArgsStackOffset(
MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
CCInfo.getNextStackOffset(), true));
FuncInfo->setVarArgsFrameIndex(
MFI.CreateStackObject(Depth, Align(8), false));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// The fixed integer arguments of a variadic function are stored to the
// VarArgsFrameIndex on the stack so that they may be loaded by
// dereferencing the result of va_next.
for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
// Get an existing live-in vreg, or add a new one.
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
if (!VReg)
VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
// FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
// is set.
// The double arguments are stored to the VarArgsFrameIndex
// on the stack.
for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
// Get an existing live-in vreg, or add a new one.
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
if (!VReg)
VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
EVT ObjectVT, SelectionDAG &DAG,
SDValue ArgVal,
const SDLoc &dl) const {
if (Flags.isSExt())
ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
DAG.getValueType(ObjectVT));
else if (Flags.isZExt())
ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
DAG.getValueType(ObjectVT));
return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
}
SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
bool isELFv2ABI = Subtarget.isELFv2ABI();
bool isLittleEndian = Subtarget.isLittleEndian();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
assert(!(CallConv == CallingConv::Fast && isVarArg) &&
"fastcc not supported on varargs functions");
EVT PtrVT = getPointerTy(MF.getDataLayout());
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = 8;
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned Num_GPR_Regs = array_lengthof(GPR);
const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
const unsigned Num_VR_Regs = array_lengthof(VR);
const unsigned Num_QFPR_Regs = Num_FPR_Regs;
// Do a first pass over the arguments to determine whether the ABI
// guarantees that our caller has allocated the parameter save area
// on its stack frame. In the ELFv1 ABI, this is always the case;
// in the ELFv2 ABI, it is true if this is a vararg function or if
// any parameter is located in a stack slot.
bool HasParameterArea = !isELFv2ABI || isVarArg;
unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
unsigned NumBytes = LinkageSize;
unsigned AvailableFPRs = Num_FPR_Regs;
unsigned AvailableVRs = Num_VR_Regs;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
if (Ins[i].Flags.isNest())
continue;
if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
PtrByteSize, LinkageSize, ParamAreaSize,
NumBytes, AvailableFPRs, AvailableVRs,
Subtarget.hasQPX()))
HasParameterArea = true;
}
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
unsigned ArgOffset = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
unsigned &QFPR_idx = FPR_idx;
SmallVector<SDValue, 8> MemOps;
Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
EVT ObjectVT = Ins[ArgNo].VT;
EVT OrigVT = Ins[ArgNo].ArgVT;
unsigned ObjSize = ObjectVT.getStoreSize();
unsigned ArgSize = ObjSize;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Ins[ArgNo].isOrigArg()) {
std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[ArgNo].getOrigArgIndex();
}
// We re-align the argument offset for each argument, except when using the
// fast calling convention, when we need to make sure we do that only when
// we'll actually use a stack slot.
unsigned CurArgOffset;
Align Alignment;
auto ComputeArgOffset = [&]() {
/* Respect alignment of argument on the stack. */
Alignment =
CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
ArgOffset = alignTo(ArgOffset, Alignment);
CurArgOffset = ArgOffset;
};
if (CallConv != CallingConv::Fast) {
ComputeArgOffset();
/* Compute GPR index associated with argument offset. */
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
}
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
if (Flags.isByVal()) {
assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
ObjSize = Flags.getByValSize();
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// Empty aggregate parameters do not take up registers. Examples:
// struct { } a;
// union { } b;
// int c[0];
// etc. However, we have to provide a place-holder in InVals, so
// pretend we have an 8-byte item at the current address for that
// purpose.
if (!ObjSize) {
int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
continue;
}
// Create a stack object covering all stack doublewords occupied
// by the argument. If the argument is (fully or partially) on
// the stack, or if the argument is fully in registers but the
// caller has allocated the parameter save anyway, we can refer
// directly to the caller's stack frame. Otherwise, create a
// local copy in our own frame.
int FI;
if (HasParameterArea ||
ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
else
FI = MFI.CreateStackObject(ArgSize, Alignment, false);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
// Handle aggregates smaller than 8 bytes.
if (ObjSize < PtrByteSize) {
// The value of the object is its address, which differs from the
// address of the enclosing doubleword on big-endian systems.
SDValue Arg = FIN;
if (!isLittleEndian) {
SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
}
InVals.push_back(Arg);
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
FuncInfo->addLiveInAttr(VReg, Flags);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store;
if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
EVT ObjType = (ObjSize == 1 ? MVT::i8 :
(ObjSize == 2 ? MVT::i16 : MVT::i32));
Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
MachinePointerInfo(&*FuncArg), ObjType);
} else {
// For sizes that don't fit a truncating store (3, 5, 6, 7),
// store the whole register as-is to the parameter save area
// slot.
Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(&*FuncArg));
}
MemOps.push_back(Store);
}
// Whether we copied from a register or not, advance the offset
// into the parameter save area by a full doubleword.
ArgOffset += PtrByteSize;
continue;
}
// The value of the object is its address, which is the address of
// its first stack doubleword.
InVals.push_back(FIN);
// Store whatever pieces of the object are in registers to memory.
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
if (GPR_idx == Num_GPR_Regs)
break;
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
FuncInfo->addLiveInAttr(VReg, Flags);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Addr = FIN;
if (j) {
SDValue Off = DAG.getConstant(j, dl, PtrVT);
Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
}
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
MachinePointerInfo(&*FuncArg, j));
MemOps.push_back(Store);
++GPR_idx;
}
ArgOffset += ArgSize;
continue;
}
switch (ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
if (Flags.isNest()) {
// The 'nest' parameter, if any, is passed in R11.
unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
break;
}
// These can be scalar arguments or elements of an integer array type
// passed directly. Clang may use those instead of "byval" aggregate
// types to avoid forcing arguments to memory unnecessarily.
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
FuncInfo->addLiveInAttr(VReg, Flags);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
ArgSize = PtrByteSize;
}
if (CallConv != CallingConv::Fast || needsLoad)
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
// These can be scalar arguments or elements of a float array type
// passed directly. The latter are used to implement ELFv2 homogenous
// float aggregates.
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx],
Subtarget.hasP8Vector()
? &PPC::VSSRCRegClass
: &PPC::F4RCRegClass);
else
VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
? &PPC::VSFRCRegClass
: &PPC::F8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
// FIXME: We may want to re-enable this for CallingConv::Fast on the P8
// once we support fp <-> gpr moves.
// This can only ever happen in the presence of f32 array types,
// since otherwise we never run out of FPRs before running out
// of GPRs.
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
FuncInfo->addLiveInAttr(VReg, Flags);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::f32) {
if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
DAG.getConstant(32, dl, MVT::i32));
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
}
ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
}
// When passing an array of floats, the array occupies consecutive
// space in the argument area; only round up to the next doubleword
// at the end of the array. Otherwise, each float takes 8 bytes.
if (CallConv != CallingConv::Fast || needsLoad) {
ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
ArgOffset += ArgSize;
if (Flags.isInConsecutiveRegsLast())
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
}
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
case MVT::v1i128:
case MVT::f128:
if (!Subtarget.hasQPX()) {
// These can be scalar arguments or elements of a vector array type
// passed directly. The latter are used to implement ELFv2 homogenous
// vector aggregates.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++VR_idx;
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
}
if (CallConv != CallingConv::Fast || needsLoad)
ArgOffset += 16;
break;
} // not QPX
assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
"Invalid QPX parameter type");
LLVM_FALLTHROUGH;
case MVT::v4f64:
case MVT::v4i1:
// QPX vectors are treated like their scalar floating-point subregisters
// (except that they're larger).
unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
if (QFPR_idx != Num_QFPR_Regs) {
const TargetRegisterClass *RC;
switch (ObjectVT.getSimpleVT().SimpleTy) {
case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
default: RC = &PPC::QBRCRegClass; break;
}
unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++QFPR_idx;
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
}
if (CallConv != CallingConv::Fast || needsLoad)
ArgOffset += Sz;
break;
}
// We need to load the argument to a virtual register if we determined
// above that we ran out of physical registers of the appropriate type.
if (needsLoad) {
if (ObjSize < ArgSize && !isLittleEndian)
CurArgOffset += ArgSize - ObjSize;
int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
}
InVals.push_back(ArgVal);
}
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea;
if (HasParameterArea)
MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
else
MinReservedArea = LinkageSize;
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
MinReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
FuncInfo->setMinReservedArea(MinReservedArea);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
// On ELFv2ABI spec, it writes:
// C programs that are intended to be *portable* across different compilers
// and architectures must use the header file <stdarg.h> to deal with variable
// argument lists.
if (isVarArg && MFI.hasVAStart()) {
int Depth = ArgOffset;
FuncInfo->setVarArgsFrameIndex(
MFI.CreateFixedObject(PtrByteSize, Depth, true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by dereferencing
// the result of va_next.
for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
GPR_idx < Num_GPR_Regs; ++GPR_idx) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = getPointerTy(MF.getDataLayout());
bool isPPC64 = PtrVT == MVT::i64;
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = isPPC64 ? 8 : 4;
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
unsigned ArgOffset = LinkageSize;
// Area that is at least reserved in caller of this function.
unsigned MinReservedArea = ArgOffset;
static const MCPhysReg GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const MCPhysReg GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
const unsigned Num_VR_Regs = array_lengthof( VR);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
// In 32-bit non-varargs functions, the stack space for vectors is after the
// stack space for non-vectors. We do not use this space unless we have
// too many vectors to fit in registers, something that only occurs in
// constructed examples:), but we have to walk the arglist to figure
// that out...for the pathological case, compute VecArgOffset as the
// start of the vector parameter area. Computing VecArgOffset is the
// entire point of the following loop.
unsigned VecArgOffset = ArgOffset;
if (!isVarArg && !isPPC64) {
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
++ArgNo) {
EVT ObjectVT = Ins[ArgNo].VT;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
unsigned ObjSize = Flags.getByValSize();
unsigned ArgSize =
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
VecArgOffset += ArgSize;
continue;
}
switch(ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i32:
case MVT::f32:
VecArgOffset += 4;
break;
case MVT::i64: // PPC64
case MVT::f64:
// FIXME: We are guaranteed to be !isPPC64 at this point.
// Does MVT::i64 apply?
VecArgOffset += 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Nothing to do, we're only looking at Nonvector args here.
break;
}
}
}
// We've found where the vector parameter area in memory is. Skip the
// first 12 parameters; these don't use that memory.
VecArgOffset = ((VecArgOffset+15)/16)*16;
VecArgOffset += 12*16;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
SmallVector<SDValue, 8> MemOps;
unsigned nAltivecParamsAtEnd = 0;
Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
unsigned ArgSize = ObjSize;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Ins[ArgNo].isOrigArg()) {
std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[ArgNo].getOrigArgIndex();
}
unsigned CurArgOffset = ArgOffset;
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
if (isVarArg || isPPC64) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += CalculateStackSlotSize(ObjectVT,
Flags,
PtrByteSize);
} else nAltivecParamsAtEnd++;
} else
// Calculate min reserved area.
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
Flags,
PtrByteSize);
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
if (Flags.isByVal()) {
assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
ObjSize = Flags.getByValSize();
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// Objects of size 1 and 2 are right justified, everything else is
// left justified. This means the memory address is adjusted forwards.
if (ObjSize==1 || ObjSize==2) {
CurArgOffset = CurArgOffset + (4 - ObjSize);
}
// The value of the object is its address.
int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
if (ObjSize==1 || ObjSize==2) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
SDValue Store =
DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(&*FuncArg), ObjType);
MemOps.push_back(Store);
++GPR_idx;
}
ArgOffset += PtrByteSize;
continue;
}
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
// Store whatever pieces of the object are in registers
// to memory. ArgOffset will be the address of the beginning
// of the object.
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(&*FuncArg, j));
MemOps.push_back(Store);
++GPR_idx;
ArgOffset += PtrByteSize;
} else {
ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
break;
}
}
continue;
}
switch (ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i32:
if (!isPPC64) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (ObjectVT == MVT::i1)
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
// All int arguments reserve stack space in the Darwin ABI.
ArgOffset += PtrByteSize;
break;
}
LLVM_FALLTHROUGH;
case MVT::i64: // PPC64
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
// All int arguments reserve stack space in the Darwin ABI.
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
// Every 4 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_idx != Num_GPR_Regs) {
++GPR_idx;
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
++GPR_idx;
}
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
else
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else {
needsLoad = true;
}
// All FP arguments reserve stack space in the Darwin ABI.
ArgOffset += isPPC64 ? 8 : ObjSize;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Note that vector arguments in registers don't reserve stack space,
// except in varargs functions.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
if (isVarArg) {
while ((ArgOffset % 16) != 0) {
ArgOffset += PtrByteSize;
if (GPR_idx != Num_GPR_Regs)
GPR_idx++;
}
ArgOffset += 16;
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
}
++VR_idx;
} else {
if (!isVarArg && !isPPC64) {
// Vectors go after all the nonvectors.
CurArgOffset = VecArgOffset;
VecArgOffset += 16;
} else {
// Vectors are aligned.
ArgOffset = ((ArgOffset+15)/16)*16;
CurArgOffset = ArgOffset;
ArgOffset += 16;
}
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type.
if (needsLoad) {
int FI = MFI.CreateFixedObject(ObjSize,
CurArgOffset + (ArgSize - ObjSize),
isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
}
InVals.push_back(ArgVal);
}
// Allow for Altivec parameters at the end, if needed.
if (nAltivecParamsAtEnd) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += 16*nAltivecParamsAtEnd;
}
// Area that is at least reserved in the caller of this function.
MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
MinReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
FuncInfo->setMinReservedArea(MinReservedArea);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
int Depth = ArgOffset;
FuncInfo->setVarArgsFrameIndex(
MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
Depth, true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by dereferencing
// the result of va_next.
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
/// adjusted to accommodate the arguments for the tailcall.
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
unsigned ParamSize) {
if (!isTailCall) return 0;
PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
unsigned CallerMinReservedArea = FI->getMinReservedArea();
int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
// Remember only if the new adjustment is bigger.
if (SPDiff < FI->getTailCallSPDelta())
FI->setTailCallSPDelta(SPDiff);
return SPDiff;
}
static bool isFunctionGlobalAddress(SDValue Callee);
static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
const TargetMachine &TM) {
// It does not make sense to call callsShareTOCBase() with a caller that
// is PC Relative since PC Relative callers do not have a TOC.
#ifndef NDEBUG
const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
assert(!STICaller->isUsingPCRelativeCalls() &&
"PC Relative callers do not have a TOC and cannot share a TOC Base");
#endif
// Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
// don't have enough information to determine if the caller and callee share
// the same TOC base, so we have to pessimistically assume they don't for
// correctness.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (!G)
return false;
const GlobalValue *GV = G->getGlobal();
// If the callee is preemptable, then the static linker will use a plt-stub
// which saves the toc to the stack, and needs a nop after the call
// instruction to convert to a toc-restore.
if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
return false;
// Functions with PC Relative enabled may clobber the TOC in the same DSO.
// We may need a TOC restore in the situation where the caller requires a
// valid TOC but the callee is PC Relative and does not.
const Function *F = dyn_cast<Function>(GV);
const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
// If we have an Alias we can try to get the function from there.
if (Alias) {
const GlobalObject *GlobalObj = Alias->getBaseObject();
F = dyn_cast<Function>(GlobalObj);
}
// If we still have no valid function pointer we do not have enough
// information to determine if the callee uses PC Relative calls so we must
// assume that it does.
if (!F)
return false;
// If the callee uses PC Relative we cannot guarantee that the callee won't
// clobber the TOC of the caller and so we must assume that the two
// functions do not share a TOC base.
const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
if (STICallee->isUsingPCRelativeCalls())
return false;
// The medium and large code models are expected to provide a sufficiently
// large TOC to provide all data addressing needs of a module with a
// single TOC.
if (CodeModel::Medium == TM.getCodeModel() ||
CodeModel::Large == TM.getCodeModel())
return true;
// Otherwise we need to ensure callee and caller are in the same section,
// since the linker may allocate multiple TOCs, and we don't know which
// sections will belong to the same TOC base.
if (!GV->isStrongDefinitionForLinker())
return false;
// Any explicitly-specified sections and section prefixes must also match.
// Also, if we're using -ffunction-sections, then each function is always in
// a different section (the same is true for COMDAT functions).
if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
GV->getSection() != Caller->getSection())
return false;
if (const auto *F = dyn_cast<Function>(GV)) {
if (F->getSectionPrefix() != Caller->getSectionPrefix())
return false;
}
return true;
}
static bool
needStackSlotPassParameters(const PPCSubtarget &Subtarget,
const SmallVectorImpl<ISD::OutputArg> &Outs) {
assert(Subtarget.is64BitELFABI());
const unsigned PtrByteSize = 8;
const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = array_lengthof(GPR);
const unsigned NumFPRs = 13;
const unsigned NumVRs = array_lengthof(VR);
const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
unsigned NumBytes = LinkageSize;
unsigned AvailableFPRs = NumFPRs;
unsigned AvailableVRs = NumVRs;
for (const ISD::OutputArg& Param : Outs) {
if (Param.Flags.isNest()) continue;
if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
PtrByteSize, LinkageSize, ParamAreaSize,
NumBytes, AvailableFPRs, AvailableVRs,
Subtarget.hasQPX()))
return true;
}
return false;
}
static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
if (CB.arg_size() != CallerFn->arg_size())
return false;
auto CalleeArgIter = CB.arg_begin();
auto CalleeArgEnd = CB.arg_end();
Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
const Value* CalleeArg = *CalleeArgIter;
const Value* CallerArg = &(*CallerArgIter);
if (CalleeArg == CallerArg)
continue;
// e.g. @caller([4 x i64] %a, [4 x i64] %b) {
// tail call @callee([4 x i64] undef, [4 x i64] %b)
// }
// 1st argument of callee is undef and has the same type as caller.
if (CalleeArg->getType() == CallerArg->getType() &&
isa<UndefValue>(CalleeArg))
continue;
return false;
}
return true;
}
// Returns true if TCO is possible between the callers and callees
// calling conventions.
static bool
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
CallingConv::ID CalleeCC) {
// Tail calls are possible with fastcc and ccc.
auto isTailCallableCC = [] (CallingConv::ID CC){
return CC == CallingConv::C || CC == CallingConv::Fast;
};
if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
return false;
// We can safely tail call both fastcc and ccc callees from a c calling
// convention caller. If the caller is fastcc, we may have less stack space
// than a non-fastcc caller with the same signature so disable tail-calls in
// that case.
return CallerCC == CallingConv::C || CallerCC == CalleeCC;
}
bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
if (DisableSCO && !TailCallOpt) return false;
// Variadic argument functions are not supported.
if (isVarArg) return false;
auto &Caller = DAG.getMachineFunction().getFunction();
// Check that the calling conventions are compatible for tco.
if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
return false;
// Caller contains any byval parameter is not supported.
if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
return false;
// Callee contains any byval parameter is not supported, too.
// Note: This is a quick work around, because in some cases, e.g.
// caller's stack size > callee's stack size, we are still able to apply
// sibling call optimization. For example, gcc is able to do SCO for caller1
// in the following example, but not for caller2.
// struct test {
// long int a;
// char ary[56];
// } gTest;
// __attribute__((noinline)) int callee(struct test v, struct test *b) {
// b->a = v.a;
// return 0;
// }
// void caller1(struct test a, struct test c, struct test *b) {
// callee(gTest, b); }
// void caller2(struct test *b) { callee(gTest, b); }
if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
return false;
// If callee and caller use different calling conventions, we cannot pass
// parameters on stack since offsets for the parameter area may be different.
if (Caller.getCallingConv() != CalleeCC &&
needStackSlotPassParameters(Subtarget, Outs))
return false;
// All variants of 64-bit ELF ABIs without PC-Relative addressing require that
// the caller and callee share the same TOC for TCO/SCO. If the caller and
// callee potentially have different TOC bases then we cannot tail call since
// we need to restore the TOC pointer after the call.
// ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
// We cannot guarantee this for indirect calls or calls to external functions.
// When PC-Relative addressing is used, the concept of the TOC is no longer
// applicable so this check is not required.
// Check first for indirect calls.
if (!Subtarget.isUsingPCRelativeCalls() &&
!isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
return false;
// Check if we share the TOC base.
if (!Subtarget.isUsingPCRelativeCalls() &&
!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
return false;
// TCO allows altering callee ABI, so we don't have to check further.
if (CalleeCC == CallingConv::Fast && TailCallOpt)
return true;
if (DisableSCO) return false;
// If callee use the same argument list that caller is using, then we can
// apply SCO on this case. If it is not, then we need to check if callee needs
// stack for passing arguments.
// PC Relative tail calls may not have a CallBase.
// If there is no CallBase we cannot verify if we have the same argument
// list so assume that we don't have the same argument list.
if (CB && !hasSameArgumentList(&Caller, *CB) &&
needStackSlotPassParameters(Subtarget, Outs))
return false;
else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
return false;
return true;
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
if (!getTargetMachine().Options.GuaranteedTailCallOpt)
return false;
// Variable argument functions are not supported.
if (isVarArg)
return false;
MachineFunction &MF = DAG.getMachineFunction();
CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
// Functions containing by val parameters are not supported.
for (unsigned i = 0; i != Ins.size(); i++) {
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) return false;
}
// Non-PIC/GOT tail calls are supported.
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return true;
// At the moment we can only do local tail calls (in same module, hidden
// or protected) if we are generating PIC.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
return G->getGlobal()->hasHiddenVisibility()
|| G->getGlobal()->hasProtectedVisibility();
}
return false;
}
/// isCallCompatibleAddress - Return the immediate to use if the specified
/// 32-bit value is representable in the immediate field of a BxA instruction.
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C) return nullptr;
int Addr = C->getZExtValue();
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
SignExtend32<26>(Addr) != Addr)
return nullptr; // Top 6 bits have to be sext of immediate.
return DAG
.getConstant(
(int)C->getZExtValue() >> 2, SDLoc(Op),
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
.getNode();
}
namespace {
struct TailCallArgumentInfo {
SDValue Arg;
SDValue FrameIdxOp;
int FrameIdx = 0;
TailCallArgumentInfo() = default;
};
} // end anonymous namespace
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
static void StoreTailCallArgumentsToStackSlot(
SelectionDAG &DAG, SDValue Chain,
const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
SDValue Arg = TailCallArgs[i].Arg;
SDValue FIN = TailCallArgs[i].FrameIdxOp;
int FI = TailCallArgs[i].FrameIdx;
// Store relative to framepointer.
MemOpChains.push_back(DAG.getStore(
Chain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
}
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
/// the appropriate stack slot for the tail call optimized function call.
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
SDValue OldRetAddr, SDValue OldFP,
int SPDiff, const SDLoc &dl) {
if (SPDiff) {
// Calculate the new stack slot for the return address.
MachineFunction &MF = DAG.getMachineFunction();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const PPCFrameLowering *FL = Subtarget.getFrameLowering();
bool isPPC64 = Subtarget.isPPC64();
int SlotSize = isPPC64 ? 8 : 4;
int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
NewRetAddrLoc, true);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(MF, NewRetAddr));
}
return Chain;
}
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
/// the position of the argument.
static void
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
SDValue Arg, int SPDiff, unsigned ArgOffset,
SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
int Offset = ArgOffset + SPDiff;
uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue FIN = DAG.getFrameIndex(FI, VT);
TailCallArgumentInfo Info;
Info.Arg = Arg;
Info.FrameIdxOp = FIN;
Info.FrameIdx = FI;
TailCallArguments.push_back(Info);
}
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
/// stack slot. Returns the chain as result and the loaded frame pointers in
/// LROpOut/FPOpout. Used when tail calling.
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
SDValue &FPOpOut, const SDLoc &dl) const {
if (SPDiff) {
// Load the LR and FP stack slot for later adjusting.
EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
LROpOut = getReturnAddrFrameIndex(DAG);
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
Chain = SDValue(LROpOut.getNode(), 1);
}
return Chain;
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.
/// Sometimes what we are copying is the end of a larger object, the part that
/// does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
SDValue Chain, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, const SDLoc &dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
Flags.getNonZeroByValAlign(), false, false, false,
MachinePointerInfo(), MachinePointerInfo());
}
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
/// tail calls.
static void LowerMemOpCallTo(
SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
if (!isTailCall) {
if (isVector) {
SDValue StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, dl, PtrVT));
}
MemOpChains.push_back(
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
// Calculate and remember argument location.
} else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
TailCallArguments);
}
static void
PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
SDValue FPOp,
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
// Emit a sequence of copyto/copyfrom virtual registers for arguments that
// might overwrite each other in case of tail call optimization.
SmallVector<SDValue, 8> MemOpChains2;
// Do not flag preceding copytoreg stuff together with the following stuff.
InFlag = SDValue();
StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
MemOpChains2, dl);
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
// Emit callseq_end just before tailcall node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
// Is this global address that of a function that can be called by name? (as
// opposed to something that must hold a descriptor for an indirect call).
static bool isFunctionGlobalAddress(SDValue Callee) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
return false;
return G->getGlobal()->getValueType()->isFunctionTy();
}
return false;
}
SDValue PPCTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCRetInfo.AnalyzeCallResult(
Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
? RetCC_PPC_Cold
: RetCC_PPC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Val;
if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget.isLittleEndian())
std::swap (Lo, Hi);
Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
} else {
Val = DAG.getCopyFromReg(Chain, dl,
VA.getLocReg(), VA.getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
const PPCSubtarget &Subtarget, bool isPatchPoint) {
// PatchPoint calls are not indirect.
if (isPatchPoint)
return false;
if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
return false;
// Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
// becuase the immediate function pointer points to a descriptor instead of
// a function entry point. The ELFv2 ABI cannot use a BLA because the function
// pointer immediate points to the global entry point, while the BLA would
// need to jump to the local entry point (see rL211174).
if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
isBLACompatibleAddress(Callee, DAG))
return false;
return true;
}
// AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
return Subtarget.isAIXABI() ||
(Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
}
static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
const Function &Caller,
const SDValue &Callee,
const PPCSubtarget &Subtarget,
const TargetMachine &TM) {
if (CFlags.IsTailCall)
return PPCISD::TC_RETURN;
// This is a call through a function pointer.
if (CFlags.IsIndirect) {
// AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
// indirect calls. The save of the caller's TOC pointer to the stack will be
// inserted into the DAG as part of call lowering. The restore of the TOC
// pointer is modeled by using a pseudo instruction for the call opcode that
// represents the 2 instruction sequence of an indirect branch and link,
// immediately followed by a load of the TOC pointer from the the stack save
// slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
// as it is not saved or used.
return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
: PPCISD::BCTRL;
}
if (Subtarget.isUsingPCRelativeCalls()) {
assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
return PPCISD::CALL_NOTOC;
}
// The ABIs that maintain a TOC pointer accross calls need to have a nop
// immediately following the call instruction if the caller and callee may
// have different TOC bases. At link time if the linker determines the calls
// may not share a TOC base, the call is redirected to a trampoline inserted
// by the linker. The trampoline will (among other things) save the callers
// TOC pointer at an ABI designated offset in the linkage area and the linker
// will rewrite the nop to be a load of the TOC pointer from the linkage area
// into gpr2.
if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
: PPCISD::CALL_NOP;
return PPCISD::CALL;
}
static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
const SDLoc &dl, const PPCSubtarget &Subtarget) {
if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
return SDValue(Dest, 0);
// Returns true if the callee is local, and false otherwise.
auto isLocalCallee = [&]() {
const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
const GlobalValue *GV = G ? G->getGlobal() : nullptr;
return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
!dyn_cast_or_null<GlobalIFunc>(GV);
};
// The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in
// a static relocation model causes some versions of GNU LD (2.17.50, at
// least) to force BSS-PLT, instead of secure-PLT, even if all objects are
// built with secure-PLT.
bool UsePlt =
Subtarget.is32BitELFABI() && !isLocalCallee() &&
Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
// On AIX, direct function calls reference the symbol for the function's
// entry point, which is named by prepending a "." before the function's
// C-linkage name.
const auto getAIXFuncEntryPointSymbolSDNode =
[&](StringRef FuncName, bool IsDeclaration,
const XCOFF::StorageClass &SC) {
auto &Context = DAG.getMachineFunction().getMMI().getContext();
MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
if (IsDeclaration && !S->hasRepresentedCsectSet()) {
// On AIX, an undefined symbol needs to be associated with a
// MCSectionXCOFF to get the correct storage mapping class.
// In this case, XCOFF::XMC_PR.
MCSectionXCOFF *Sec = Context.getXCOFFSection(
S->getSymbolTableName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
SectionKind::getMetadata());
S->setRepresentedCsect(Sec);
}
MVT PtrVT =
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
return DAG.getMCSymbol(S, PtrVT);
};
if (isFunctionGlobalAddress(Callee)) {
const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
const GlobalValue *GV = G->getGlobal();
if (!Subtarget.isAIXABI())
return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
UsePlt ? PPCII::MO_PLT : 0);
assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
const GlobalObject *GO = cast<GlobalObject>(GV);
const XCOFF::StorageClass SC =
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
SC);
}
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *SymName = S->getSymbol();
if (!Subtarget.isAIXABI())
return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
UsePlt ? PPCII::MO_PLT : 0);
// If there exists a user-declared function whose name is the same as the
// ExternalSymbol's, then we pick up the user-declared version.
const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
if (const Function *F =
dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
const XCOFF::StorageClass SC =
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
SC);
}
return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
}
// No transformation needed.
assert(Callee.getNode() && "What no callee?");
return Callee;
}
static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
"Expected a CALLSEQ_STARTSDNode.");
// The last operand is the chain, except when the node has glue. If the node
// has glue, then the last operand is the glue, and the chain is the second
// last operand.
SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
if (LastValue.getValueType() != MVT::Glue)
return LastValue;
return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
}
// Creates the node that moves a functions address into the count register
// to prepare for an indirect call instruction.
static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
SDValue &Glue, SDValue &Chain,
const SDLoc &dl) {
SDValue MTCTROps[] = {Chain, Callee, Glue};
EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
// The glue is the second value produced.
Glue = Chain.getValue(1);
}
static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
SDValue &Glue, SDValue &Chain,
SDValue CallSeqStart,
const CallBase *CB, const SDLoc &dl,
bool hasNest,
const PPCSubtarget &Subtarget) {
// Function pointers in the 64-bit SVR4 ABI do not point to the function
// entry point, but to the function descriptor (the function entry point
// address is part of the function descriptor though).
// The function descriptor is a three doubleword structure with the
// following fields: function entry point, TOC base address and
// environment pointer.
// Thus for a call through a function pointer, the following actions need
// to be performed:
// 1. Save the TOC of the caller in the TOC save area of its stack
// frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
// 2. Load the address of the function entry point from the function
// descriptor.
// 3. Load the TOC of the callee from the function descriptor into r2.
// 4. Load the environment pointer from the function descriptor into
// r11.
// 5. Branch to the function entry point address.
// 6. On return of the callee, the TOC of the caller needs to be
// restored (this is done in FinishCall()).
//
// The loads are scheduled at the beginning of the call sequence, and the
// register copies are flagged together to ensure that no other
// operations can be scheduled in between. E.g. without flagging the
// copies together, a TOC access in the caller could be scheduled between
// the assignment of the callee TOC and the branch to the callee, which leads
// to incorrect code.
// Start by loading the function address from the descriptor.
SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
? (MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant)
: MachineMemOperand::MONone;
MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
// Registers used in building the DAG.
const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
// Offsets of descriptor members.
const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
// One load for the functions entry point address.
SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
Alignment, MMOFlags);
// One for loading the TOC anchor for the module that contains the called
// function.
SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
SDValue TOCPtr =
DAG.getLoad(RegVT, dl, LDChain, AddTOC,
MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
// One for loading the environment pointer.
SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
SDValue LoadEnvPtr =
DAG.getLoad(RegVT, dl, LDChain, AddPtr,
MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
// Then copy the newly loaded TOC anchor to the TOC pointer.
SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
Chain = TOCVal.getValue(0);
Glue = TOCVal.getValue(1);
// If the function call has an explicit 'nest' parameter, it takes the
// place of the environment pointer.
assert((!hasNest || !Subtarget.isAIXABI()) &&
"Nest parameter is not supported on AIX.");
if (!hasNest) {
SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
Chain = EnvVal.getValue(0);
Glue = EnvVal.getValue(1);
}
// The rest of the indirect call sequence is the same as the non-descriptor
// DAG.
prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
}
static void
buildCallOperands(SmallVectorImpl<SDValue> &Ops,
PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
const PPCSubtarget &Subtarget) {
const bool IsPPC64 = Subtarget.isPPC64();
// MVT for a general purpose register.
const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
// First operand is always the chain.
Ops.push_back(Chain);
// If it's a direct call pass the callee as the second operand.
if (!CFlags.IsIndirect)
Ops.push_back(Callee);
else {
assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
// For the TOC based ABIs, we have saved the TOC pointer to the linkage area
// on the stack (this would have been done in `LowerCall_64SVR4` or
// `LowerCall_AIX`). The call instruction is a pseudo instruction that
// represents both the indirect branch and a load that restores the TOC
// pointer from the linkage area. The operand for the TOC restore is an add
// of the TOC save offset to the stack pointer. This must be the second
// operand: after the chain input but before any other variadic arguments.
// For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
// saved or used.
if (isTOCSaveRestoreRequired(Subtarget)) {
const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
Ops.push_back(AddTOC);
}
// Add the register used for the environment pointer.
if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
RegVT));
// Add CTR register as callee so a bctr can be emitted later.
if (CFlags.IsTailCall)
Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
}
// If this is a tail call add stack pointer delta.
if (CFlags.IsTailCall)
Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
// no way to mark dependencies as implicit here.
// We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
!CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// If the glue is valid, it is the last operand.
if (Glue.getNode())
Ops.push_back(Glue);
}
SDValue PPCTargetLowering::FinishCall(
CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
Subtarget.isAIXABI())
setUsesTOCBasePtr(DAG);
unsigned CallOpc =
getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
Subtarget, DAG.getTarget());
if (!CFlags.IsIndirect)
Callee = transformCallee(Callee, DAG, dl, Subtarget);
else if (Subtarget.usesFunctionDescriptors())
prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
dl, CFlags.HasNest, Subtarget);
else
prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
// Build the operand list for the call instruction.
SmallVector<SDValue, 8> Ops;
buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
SPDiff, Subtarget);
// Emit tail call.
if (CFlags.IsTailCall) {
// Indirect tail call when using PC Relative calls do not have the same
// constraints.
assert(((Callee.getOpcode() == ISD::Register &&
cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
Callee.getOpcode() == ISD::TargetExternalSymbol ||
Callee.getOpcode() == ISD::TargetGlobalAddress ||
isa<ConstantSDNode>(Callee) ||
(CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
"Expecting a global address, external symbol, absolute value, "
"register or an indirect tail call when PC Relative calls are "
"used.");
// PC Relative calls also use TC_RETURN as the way to mark tail calls.
assert(CallOpc == PPCISD::TC_RETURN &&
"Unexpected call opcode for a tail call.");
DAG.getMachineFunction().getFrameInfo().setHasTailCall();
return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
}
std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
Glue = Chain.getValue(1);
// When performing tail call optimization the callee pops its arguments off
// the stack. Account for this here so these bytes can be pushed back on in
// PPCFrameLowering::eliminateCallFramePseudoInstr.
int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
getTargetMachine().Options.GuaranteedTailCallOpt)
? NumBytes
: 0;
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(BytesCalleePops, dl, true),
Glue, dl);
Glue = Chain.getValue(1);
return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
DAG, InVals);
}
SDValue
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
bool isPatchPoint = CLI.IsPatchPoint;
const CallBase *CB = CLI.CB;
if (isTailCall) {
if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
isTailCall = false;
else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
isTailCall = IsEligibleForTailCallOptimization_64SVR4(
Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
else
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
Ins, DAG);
if (isTailCall) {
++NumTailCalls;
if (!getTargetMachine().Options.GuaranteedTailCallOpt)
++NumSiblingCalls;
// PC Relative calls no longer guarantee that the callee is a Global
// Address Node. The callee could be an indirect tail call in which
// case the SDValue for the callee could be a load (to load the address
// of a function pointer) or it may be a register copy (to move the
// address of the callee from a function parameter into a virtual
// register). It may also be an ExternalSymbolSDNode (ex memcopy).
assert((Subtarget.isUsingPCRelativeCalls() ||
isa<GlobalAddressSDNode>(Callee)) &&
"Callee should be an llvm::Function object.");
LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
<< "\nTCO callee: ");
LLVM_DEBUG(Callee.dump());
}
}
if (!isTailCall && CB && CB->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// When long calls (i.e. indirect calls) are always used, calls are always
// made via function pointer. If we have a function name, first translate it
// into a pointer.
if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
!isTailCall)
Callee = LowerGlobalAddress(Callee, DAG);
CallFlags CFlags(
CallConv, isTailCall, isVarArg, isPatchPoint,
isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
// hasNest
Subtarget.is64BitELFABI() &&
any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
CLI.NoMerge);
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
InVals, CB);
if (Subtarget.isSVR4ABI())
return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
InVals, CB);
if (Subtarget.isAIXABI())
return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
InVals, CB);
return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
InVals, CB);
}
SDValue PPCTargetLowering::LowerCall_32SVR4(
SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
const CallBase *CB) const {
// See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
// of the 32-bit SVR4 ABI stack frame layout.
const CallingConv::ID CallConv = CFlags.CallConv;
const bool IsVarArg = CFlags.IsVarArg;
const bool IsTailCall = CFlags.IsTailCall;
assert((CallConv == CallingConv::C ||
CallConv == CallingConv::Cold ||
CallConv == CallingConv::Fast) && "Unknown calling convention!");
const Align PtrAlign(4);
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
// Count how many bytes are to be pushed on the stack, including the linkage
// area, parameter list area and the part of the local variable space which
// contains copies of aggregates which are passed by value.
// Assign locations to all of the outgoing arguments.
SmallVector<CCValAssign, 16> ArgLocs;
PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
PtrAlign);
if (useSoftFloat())
CCInfo.PreAnalyzeCallOperands(Outs);
if (IsVarArg) {
// Handle fixed and variable vector arguments differently.
// Fixed vector arguments go into registers as long as registers are
// available. Variable vector arguments always go into memory.
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
bool Result;
if (Outs[i].IsFixed) {
Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
CCInfo);
} else {
Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo);
}
if (Result) {
#ifndef NDEBUG
errs() << "Call operand #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n";
#endif
llvm_unreachable(nullptr);
}
}
} else {
// All arguments are treated the same.
CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
}
CCInfo.clearWasPPCF128();
// Assign locations to all of the outgoing aggregate by value arguments.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
// Size of the linkage area, parameter list area and the part of the local
// space variable where copies of aggregates which are passed by value are
// stored.
unsigned NumBytes = CCByValInfo.getNextStackOffset();
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be moved somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
bool seenFloatArg = false;
// Walk the register/memloc assignments, inserting copies/loads.
// i - Tracks the index into the list of registers allocated for the call
// RealArgIdx - Tracks the index into the list of actual function arguments
// j - Tracks the index into the list of byval arguments
for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
i != e;
++i, ++RealArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[RealArgIdx];
ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
if (Flags.isByVal()) {
// Argument is an aggregate which is passed by value, thus we need to
// create a copy of it in the local variable space of the current stack
// frame (which is the stack frame of the caller) and pass the address of
// this copy to the callee.
assert((j < ByValArgLocs.size()) && "Index out of bounds!");
CCValAssign &ByValVA = ByValArgLocs[j++];
assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
// Memory reserved in the local variable space of the callers stack frame.
unsigned LocMemOffset = ByValVA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
StackPtr, PtrOff);
// Create a copy of the argument in the local area of the current
// stack frame.
SDValue MemcpyCall =
CreateCopyOfByValArgument(Arg, PtrOff,
CallSeqStart.getNode()->getOperand(0),
Flags, DAG, dl);
// This must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
SDLoc(MemcpyCall));
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
NewCallSeqStart.getNode());
Chain = CallSeqStart = NewCallSeqStart;
// Pass the address of the aggregate copy on the stack either in a
// physical register or in the parameter list area of the current stack
// frame to the callee.
Arg = PtrOff;
}
// When useCRBits() is true, there can be i1 arguments.
// It is because getRegisterType(MVT::i1) => MVT::i1,
// and for other integer types getRegisterType() => MVT::i32.
// Extend i1 and ensure callee will get i32.
if (Arg.getValueType() == MVT::i1)
Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
dl, MVT::i32, Arg);
if (VA.isRegLoc()) {
seenFloatArg |= VA.getLocVT().isFloatingPoint();
// Put argument in a physical register.
if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
bool IsLE = Subtarget.isLittleEndian();
SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
SVal.getValue(0)));
} else
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
// Put argument in the parameter list area of the current stack frame.
assert(VA.isMemLoc());
unsigned LocMemOffset = VA.getLocMemOffset();
if (!IsTailCall) {
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
} else {
// Calculate and remember argument location.
CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
TailCallArguments);
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// Set CR bit 6 to true if this is a vararg call with floating args passed in
// registers.
if (IsVarArg) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, InFlag };
Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
InFlag = Chain.getValue(1);
}
if (IsTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
TailCallArguments);
return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
Callee, SPDiff, NumBytes, Ins, InVals, CB);
}
// Copy an argument into memory, being careful to do this outside the
// call sequence for the call to which the argument belongs.
SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, const SDLoc &dl) const {
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
CallSeqStart.getNode()->getOperand(0),
Flags, DAG, dl);
// The MEMCPY must go outside the CALLSEQ_START..END.
int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
SDLoc(MemcpyCall));
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
NewCallSeqStart.getNode());
return NewCallSeqStart;
}
SDValue PPCTargetLowering::LowerCall_64SVR4(
SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
const CallBase *CB) const {
bool isELFv2ABI = Subtarget.isELFv2ABI();
bool isLittleEndian = Subtarget.isLittleEndian();
unsigned NumOps = Outs.size();
bool IsSibCall = false;
bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
unsigned PtrByteSize = 8;
MachineFunction &MF = DAG.getMachineFunction();
if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
IsSibCall = true;
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
assert(!(IsFastCall && CFlags.IsVarArg) &&
"fastcc not supported on varargs functions");
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
// reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
// area is 32 bytes reserved space for [SP][CR][LR][TOC].
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
unsigned NumBytes = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
unsigned &QFPR_idx = FPR_idx;
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = array_lengthof(GPR);
const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
const unsigned NumVRs = array_lengthof(VR);
const unsigned NumQFPRs = NumFPRs;
// On ELFv2, we can avoid allocating the parameter area if all the arguments
// can be passed to the callee in registers.
// For the fast calling convention, there is another check below.
// Note: We should keep consistent with LowerFormalArguments_64SVR4()
bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
if (!HasParameterArea) {
unsigned ParamAreaSize = NumGPRs * PtrByteSize;
unsigned AvailableFPRs = NumFPRs;
unsigned AvailableVRs = NumVRs;
unsigned NumBytesTmp = NumBytes;
for (unsigned i = 0; i != NumOps; ++i) {
if (Outs[i].Flags.isNest()) continue;
if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
PtrByteSize, LinkageSize, ParamAreaSize,
NumBytesTmp, AvailableFPRs, AvailableVRs,
Subtarget.hasQPX()))
HasParameterArea = true;
}
}
// When using the fast calling convention, we don't provide backing for
// arguments that will be in registers.
unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
// Avoid allocating parameter area for fastcc functions if all the arguments
// can be passed in the registers.
if (IsFastCall)
HasParameterArea = false;
// Add up all the space actually used.
for (unsigned i = 0; i != NumOps; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
EVT OrigVT = Outs[i].ArgVT;
if (Flags.isNest())
continue;
if (IsFastCall) {
if (Flags.isByVal()) {
NumGPRsUsed += (Flags.getByValSize()+7)/8;
if (NumGPRsUsed > NumGPRs)
HasParameterArea = true;
} else {
switch (ArgVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
if (++NumGPRsUsed <= NumGPRs)
continue;
break;
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
case MVT::v1i128:
case MVT::f128:
if (++NumVRsUsed <= NumVRs)
continue;
break;
case MVT::v4f32:
// When using QPX, this is handled like a FP register, otherwise, it
// is an Altivec register.
if (Subtarget.hasQPX()) {
if (++NumFPRsUsed <= NumFPRs)
continue;
} else {
if (++NumVRsUsed <= NumVRs)
continue;
}
break;
case MVT::f32:
case MVT::f64:
case MVT::v4f64: // QPX
case MVT::v4i1: // QPX
if (++NumFPRsUsed <= NumFPRs)
continue;
break;
}
HasParameterArea = true;
}
}
/* Respect alignment of argument on the stack. */
auto Alignement =
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
NumBytes = alignTo(NumBytes, Alignement);
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
if (Flags.isInConsecutiveRegsLast())
NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
}
unsigned NumBytesActuallyUsed = NumBytes;
// In the old ELFv1 ABI,
// the prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
// In the ELFv2 ABI, we allocate the parameter area iff a callee
// really requires memory operands, e.g. a vararg function.
if (HasParameterArea)
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
else
NumBytes = LinkageSize;
// Tail call needs the stack to be aligned.
if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
int SPDiff = 0;
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
if (!IsSibCall)
SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
// To protect arguments on the stack from being clobbered in a tail call,
// force all the loads to happen before doing any other lowering.
if (CFlags.IsTailCall)
Chain = DAG.getStackArgumentTokenFactor(Chain);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
if (!IsSibCall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = LinkageSize;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
EVT OrigVT = Outs[i].ArgVT;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
// We re-align the argument offset for each argument, except when using the
// fast calling convention, when we need to make sure we do that only when
// we'll actually use a stack slot.
auto ComputePtrOff = [&]() {
/* Respect alignment of argument on the stack. */
auto Alignment =
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
ArgOffset = alignTo(ArgOffset, Alignment);
PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
};
if (!IsFastCall) {
ComputePtrOff();
/* Compute GPR index associated with argument offset. */
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
GPR_idx = std::min(GPR_idx, NumGPRs);
}
// Promote integers to 64-bit values.
if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
}
// FIXME memcpy is used way more than necessary. Correctness first.
// Note: "by value" is code for passing a structure by value, not
// basic types.
if (Flags.isByVal()) {
// Note: Size includes alignment padding, so
// struct x { short a; char b; }
// will have Size = 4. With #pragma pack(1), it will have Size = 3.
// These are the proper values we need for right-justifying the
// aggregate in a parameter register.
unsigned Size = Flags.getByValSize();
// An empty aggregate parameter takes up no storage and no
// registers.
if (Size == 0)
continue;
if (IsFastCall)
ComputePtrOff();
// All aggregates smaller than 8 bytes must be passed right-justified.
if (Size==1 || Size==2 || Size==4) {
EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
continue;
}
}
if (GPR_idx == NumGPRs && Size < 8) {
SDValue AddPtr = PtrOff;
if (!isLittleEndian) {
SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
PtrOff.getValueType());
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
}
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
ArgOffset += PtrByteSize;
continue;
}
// Copy entire object into memory. There are cases where gcc-generated
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
// FIXME: The above statement is likely due to a misunderstanding of the
// documents. All arguments must be copied into the parameter area BY
// THE CALLEE in the event that the callee takes the address of any
// formal argument. That has not yet been implemented. However, it is
// reasonable to use the stack area as a staging area for the register
// load.
// Skip this for small aggregates, as we will use the same slot for a
// right-justified copy, below.
if (Size >= 8)
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
CallSeqStart,
Flags, DAG, dl);
// When a register is available, pass a small aggregate right-justified.
if (Size < 8 && GPR_idx != NumGPRs) {
// The easiest way to get this right-justified in a register
// is to copy the structure into the rightmost portion of a
// local variable slot, then load the whole slot into the
// register.
// FIXME: The memcpy seems to produce pretty awful code for
// small aggregates, particularly for packed ones.
// FIXME: It would be preferable to use the slot in the
// parameter save area instead of a new local variable.
SDValue AddPtr = PtrOff;
if (!isLittleEndian) {
SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
}
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
// Load the slot into the register.
SDValue Load =
DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
// Done with this argument.
ArgOffset += PtrByteSize;
continue;
}
// For aggregates larger than PtrByteSize, copy the pieces of the
// object that fit into registers from the parameter save area.
for (unsigned j=0; j<Size; j+=PtrByteSize) {
SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
if (GPR_idx != NumGPRs) {
SDValue Load =
DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
break;
}
}
continue;
}
switch (Arg.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
if (Flags.isNest()) {
// The 'nest' parameter, if any, is passed in R11.
RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
break;
}
// These can be scalar arguments or elements of an integer array type
// passed directly. Clang may use those instead of "byval" aggregate
// types to avoid forcing arguments to memory unnecessarily.
if (GPR_idx != NumGPRs) {
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
if (IsFastCall)
ComputePtrOff();
assert(HasParameterArea &&
"Parameter area must exist to pass an argument in memory.");
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, CFlags.IsTailCall, false, MemOpChains,
TailCallArguments, dl);
if (IsFastCall)
ArgOffset += PtrByteSize;
}
if (!IsFastCall)
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64: {
// These can be scalar arguments or elements of a float array type
// passed directly. The latter are used to implement ELFv2 homogenous
// float aggregates.
// Named arguments go into FPRs first, and once they overflow, the
// remaining arguments go into GPRs and then the parameter save area.
// Unnamed arguments for vararg functions always go to GPRs and
// then the parameter save area. For now, put all arguments to vararg
// routines always in both locations (FPR *and* GPR or stack slot).
bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
bool NeededLoad = false;
// First load the argument into the next available FPR.
if (FPR_idx != NumFPRs)
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
// Next, load the argument into GPR or stack slot if needed.
if (!NeedGPROrStack)
;
else if (GPR_idx != NumGPRs && !IsFastCall) {
// FIXME: We may want to re-enable this for CallingConv::Fast on the P8
// once we support fp <-> gpr moves.
// In the non-vararg case, this can only ever happen in the
// presence of f32 array types, since otherwise we never run
// out of FPRs before running out of GPRs.
SDValue ArgVal;
// Double values are always passed in a single GPR.
if (Arg.getValueType() != MVT::f32) {
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
// Non-array float values are extended and passed in a GPR.
} else if (!Flags.isInConsecutiveRegs()) {
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
// If we have an array of floats, we collect every odd element
// together with its predecessor into one GPR.
} else if (ArgOffset % PtrByteSize != 0) {
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
if (!isLittleEndian)
std::swap(Lo, Hi);
ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
// The final element, if even, goes into the first half of a GPR.
} else if (Flags.isInConsecutiveRegsLast()) {
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
if (!isLittleEndian)
ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
DAG.getConstant(32, dl, MVT::i32));
// Non-final even elements are skipped; they will be handled
// together the with subsequent argument on the next go-around.
} else
ArgVal = SDValue();
if (ArgVal.getNode())
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
} else {
if (IsFastCall)
ComputePtrOff();
// Single-precision floating-point values are mapped to the
// second (rightmost) word of the stack doubleword.
if (Arg.getValueType() == MVT::f32 &&
!isLittleEndian && !Flags.isInConsecutiveRegs()) {
SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
}
assert(HasParameterArea &&
"Parameter area must exist to pass an argument in memory.");
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, CFlags.IsTailCall, false, MemOpChains,
TailCallArguments, dl);
NeededLoad = true;
}
// When passing an array of floats, the array occupies consecutive
// space in the argument area; only round up to the next doubleword
// at the end of the array. Otherwise, each float takes 8 bytes.
if (!IsFastCall || NeededLoad) {
ArgOffset += (Arg.getValueType() == MVT::f32 &&
Flags.isInConsecutiveRegs()) ? 4 : 8;
if (Flags.isInConsecutiveRegsLast())
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
}
break;
}
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
case MVT::v1i128:
case MVT::f128:
if (!Subtarget.hasQPX()) {
// These can be scalar arguments or elements of a vector array type
// passed directly. The latter are used to implement ELFv2 homogenous
// vector aggregates.
// For a varargs call, named arguments go into VRs or on the stack as
// usual; unnamed arguments always go to the stack or the corresponding
// GPRs when within range. For now, we always put the value in both
// locations (or even all three).
if (CFlags.IsVarArg) {
assert(HasParameterArea &&
"Parameter area must exist if we have a varargs call.");
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
SDValue Store =
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Store);
if (VR_idx != NumVRs) {
SDValue Load =
DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
}
ArgOffset += 16;
for (unsigned i=0; i<16; i+=PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, dl, PtrVT));
SDValue Load =
DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs Altivec params go into VRs or on the stack.
if (VR_idx != NumVRs) {
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
} else {
if (IsFastCall)
ComputePtrOff();
assert(HasParameterArea &&
"Parameter area must exist to pass an argument in memory.");
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, CFlags.IsTailCall, true, MemOpChains,
TailCallArguments, dl);
if (IsFastCall)
ArgOffset += 16;
}
if (!IsFastCall)
ArgOffset += 16;
break;
} // not QPX
assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
"Invalid QPX parameter type");
LLVM_FALLTHROUGH;
case MVT::v4f64:
case MVT::v4i1: {
bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
if (CFlags.IsVarArg) {
assert(HasParameterArea &&
"Parameter area must exist if we have a varargs call.");
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
SDValue Store =
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Store);
if (QFPR_idx != NumQFPRs) {
SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
PtrOff, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
}
ArgOffset += (IsF32 ? 16 : 32);
for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, dl, PtrVT));
SDValue Load =
DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs QPX params go into registers or on the stack.
if (QFPR_idx != NumQFPRs) {
RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
} else {
if (IsFastCall)
ComputePtrOff();
assert(HasParameterArea &&
"Parameter area must exist to pass an argument in memory.");
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, CFlags.IsTailCall, true, MemOpChains,
TailCallArguments, dl);
if (IsFastCall)
ArgOffset += (IsF32 ? 16 : 32);
}
if (!IsFastCall)
ArgOffset += (IsF32 ? 16 : 32);
break;
}
}
}
assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
"mismatch in size of parameter area");
(void)NumBytesActuallyUsed;
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Check if this is an indirect call (MTCTR/BCTRL).
// See prepareDescriptorIndirectCall and buildCallOperands for more
// information about calls through function pointers in the 64-bit SVR4 ABI.
if (CFlags.IsIndirect) {
// For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
// caller in the TOC save area.
if (isTOCSaveRestoreRequired(Subtarget)) {
assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
// Load r2 into a virtual register and store it to the TOC save area.
setUsesTOCBasePtr(DAG);
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
// TOC save area offset.
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
MachinePointerInfo::getStack(
DAG.getMachineFunction(), TOCSaveOffset));
}
// In the ELFv2 ABI, R12 must contain the address of an indirect callee.
// This does not mean the MTCTR instruction must use R12; it's easier
// to model this as an extra parameter, so do that.
if (isELFv2ABI && !CFlags.IsPatchPoint)
RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (CFlags.IsTailCall && !IsSibCall)
PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
TailCallArguments);
return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
Callee, SPDiff, NumBytes, Ins, InVals, CB);
}
SDValue PPCTargetLowering::LowerCall_Darwin(
SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
const CallBase *CB) const {
unsigned NumOps = Outs.size();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
bool isPPC64 = PtrVT == MVT::i64;
unsigned PtrByteSize = isPPC64 ? 8 : 4;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CFlags.CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
unsigned NumBytes = LinkageSize;
// Add up all the space actually used.
// In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
// they all go in registers, but we must reserve stack space for them for
// possible use by the caller. In varargs or 64-bit calls, parameters are
// assigned stack space in order, with padding so Altivec parameters are
// 16-byte aligned.
unsigned nAltivecParamsAtEnd = 0;
for (unsigned i = 0; i != NumOps; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
// Varargs Altivec parameters are padded to a 16 byte boundary.
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
if (!CFlags.IsVarArg && !isPPC64) {
// Non-varargs Altivec parameters go after all the non-Altivec
// parameters; handle those later so we know how much padding we need.
nAltivecParamsAtEnd++;
continue;
}
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
NumBytes = ((NumBytes+15)/16)*16;
}
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
}
// Allow for Altivec parameters at the end, if needed.
if (nAltivecParamsAtEnd) {
NumBytes = ((NumBytes+15)/16)*16;
NumBytes += 16*nAltivecParamsAtEnd;
}
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
// Tail call needs the stack to be aligned.
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CFlags.CallConv == CallingConv::Fast)
NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
// To protect arguments on the stack from being clobbered in a tail call,
// force all the loads to happen before doing any other lowering.
if (CFlags.IsTailCall)
Chain = DAG.getStackArgumentTokenFactor(Chain);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const MCPhysReg GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const MCPhysReg GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = array_lengthof(GPR_32);
const unsigned NumFPRs = 13;
const unsigned NumVRs = array_lengthof(VR);
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
// On PPC64, promote integers to 64-bit values.
if (isPPC64 && Arg.getValueType() == MVT::i32) {
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
}
// FIXME memcpy is used way more than necessary. Correctness first.
// Note: "by value" is code for passing a structure by value, not
// basic types.
if (Flags.isByVal()) {
unsigned Size = Flags.getByValSize();
// Very small objects are passed right-justified. Everything else is
// passed left-justified.
if (Size==1 || Size==2) {
EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
PtrOff.getValueType());
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
ArgOffset += PtrByteSize;
}
continue;
}
// Copy entire object into memory. There are cases where gcc-generated
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
CallSeqStart,
Flags, DAG, dl);
// For small aggregates (Darwin only) and aggregates >= PtrByteSize,
// copy the pieces of the object that fit into registers from the
// parameter save area.
for (unsigned j=0; j<Size; j+=PtrByteSize) {
SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
if (GPR_idx != NumGPRs) {
SDValue Load =
DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
break;
}
}
continue;
}
switch (Arg.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
if (Arg.getValueType() == MVT::i1)
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, CFlags.IsTailCall, false, MemOpChains,
TailCallArguments, dl);
}
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64:
if (FPR_idx != NumFPRs) {
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
if (CFlags.IsVarArg) {
SDValue Store =
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Store);
// Float varargs are always shadowed in available integer registers
if (GPR_idx != NumGPRs) {
SDValue Load =
DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
SDValue Load =
DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
} else {
// If we have any FPRs remaining, we may also have GPRs remaining.
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
// GPRs.
if (GPR_idx != NumGPRs)
++GPR_idx;
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
!isPPC64) // PPC64 has 64-bit GPR's obviously :)
++GPR_idx;
}
} else
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, CFlags.IsTailCall, false, MemOpChains,
TailCallArguments, dl);
if (isPPC64)
ArgOffset += 8;
else
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
if (CFlags.IsVarArg) {
// These go aligned on the stack, or in the corresponding R registers
// when within range. The Darwin PPC ABI doc claims they also go in
// V registers; in fact gcc does this only for arguments that are
// prototyped, not for those that match the ... We do it for all
// arguments, seems to work.
while (ArgOffset % 16 !=0) {
ArgOffset += PtrByteSize;
if (GPR_idx != NumGPRs)
GPR_idx++;
}
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, dl, PtrVT));
SDValue Store =
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Store);
if (VR_idx != NumVRs) {
SDValue Load =
DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
}
ArgOffset += 16;
for (unsigned i=0; i<16; i+=PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, dl, PtrVT));
SDValue Load =
DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs Altivec params generally go in registers, but have
// stack space allocated at the end.
if (VR_idx != NumVRs) {
// Doesn't have GPR space allocated.
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
} else if (nAltivecParamsAtEnd==0) {
// We are emitting Altivec params in order.
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, CFlags.IsTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
break;
}
}
// If all Altivec parameters fit in registers, as they usually do,
// they get stack space following the non-Altivec parameters. We
// don't track this here because nobody below needs it.
// If there are more Altivec parameters than fit in registers emit
// the stores here.
if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
unsigned j = 0;
// Offset is aligned; skip 1st 12 params which go in V registers.
ArgOffset = ((ArgOffset+15)/16)*16;
ArgOffset += 12*16;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
EVT ArgType = Outs[i].VT;
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
if (++j > NumVRs) {
SDValue PtrOff;
// We are emitting Altivec params in order.
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, CFlags.IsTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// On Darwin, R12 must contain the address of an indirect callee. This does
// not mean the MTCTR instruction must use R12; it's easier to model this as
// an extra parameter, so do that.
if (CFlags.IsIndirect) {
assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
PPC::R12), Callee));
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (CFlags.IsTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
TailCallArguments);
return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
Callee, SPDiff, NumBytes, Ins, InVals, CB);
}
static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State) {
const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
State.getMachineFunction().getSubtarget());
const bool IsPPC64 = Subtarget.isPPC64();
const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
assert((!ValVT.isInteger() ||
(ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
"Integer argument exceeds register size: should have been legalized");
if (ValVT == MVT::f128)
report_fatal_error("f128 is unimplemented on AIX.");
if (ArgFlags.isNest())
report_fatal_error("Nest arguments are unimplemented.");
if (ValVT.isVector() || LocVT.isVector())
report_fatal_error("Vector arguments are unimplemented on AIX.");
static const MCPhysReg GPR_32[] = {// 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10};
static const MCPhysReg GPR_64[] = {// 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10};
if (ArgFlags.isByVal()) {
if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
report_fatal_error("Pass-by-value arguments with alignment greater than "
"register width are not supported.");
const unsigned ByValSize = ArgFlags.getByValSize();
// An empty aggregate parameter takes up no storage and no registers,
// but needs a MemLoc for a stack slot for the formal arguments side.
if (ByValSize == 0) {
State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
State.getNextStackOffset(), RegVT,
LocInfo));
return false;
}
const unsigned StackSize = alignTo(ByValSize, PtrAlign);
unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
for (const unsigned E = Offset + StackSize; Offset < E;
Offset += PtrAlign.value()) {
if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
else {
State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
LocInfo));
break;
}
}
return false;
}
// Arguments always reserve parameter save area.
switch (ValVT.SimpleTy) {
default:
report_fatal_error("Unhandled value type for argument.");
case MVT::i64:
// i64 arguments should have been split to i32 for PPC32.
assert(IsPPC64 && "PPC32 should have split i64 values.");
LLVM_FALLTHROUGH;
case MVT::i1:
case MVT::i32: {
const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
// AIX integer arguments are always passed in register width.
if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
: CCValAssign::LocInfo::ZExt;
if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
else
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
return false;
}
case MVT::f32:
case MVT::f64: {
// Parameter save area (PSA) is reserved even if the float passes in fpr.
const unsigned StoreSize = LocVT.getStoreSize();
// Floats are always 4-byte aligned in the PSA on AIX.
// This includes f64 in 64-bit mode for ABI compatibility.
const unsigned Offset =
State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
unsigned FReg = State.AllocateReg(FPR);
if (FReg)
State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
// Reserve and initialize GPRs or initialize the PSA as required.
for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
assert(FReg && "An FPR should be available when a GPR is reserved.");
if (State.isVarArg()) {
// Successfully reserved GPRs are only initialized for vararg calls.
// Custom handling is required for:
// f64 in PPC32 needs to be split into 2 GPRs.
// f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
State.addLoc(
CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
}
} else {
// If there are insufficient GPRs, the PSA needs to be initialized.
// Initialization occurs even if an FPR was initialized for
// compatibility with the AIX XL compiler. The full memory for the
// argument will be initialized even if a prior word is saved in GPR.
// A custom memLoc is used when the argument also passes in FPR so
// that the callee handling can skip over it easily.
State.addLoc(
FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
LocInfo)
: CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
break;
}
}
return false;
}
}
return true;
}
static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
bool IsPPC64) {
assert((IsPPC64 || SVT != MVT::i64) &&
"i64 should have been split for 32-bit codegen.");
switch (SVT) {
default:
report_fatal_error("Unexpected value type for formal argument");
case MVT::i1:
case MVT::i32:
case MVT::i64:
return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
case MVT::f32:
return &PPC::F4RCRegClass;
case MVT::f64:
return &PPC::F8RCRegClass;
}
}
static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
SelectionDAG &DAG, SDValue ArgValue,
MVT LocVT, const SDLoc &dl) {
assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
if (Flags.isSExt())
ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
DAG.getValueType(ValVT));
else if (Flags.isZExt())
ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
DAG.getValueType(ValVT));
return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
}
static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
const unsigned LASize = FL->getLinkageSize();
if (PPC::GPRCRegClass.contains(Reg)) {
assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
"Reg must be a valid argument register!");
return LASize + 4 * (Reg - PPC::R3);
}
if (PPC::G8RCRegClass.contains(Reg)) {
assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
"Reg must be a valid argument register!");
return LASize + 8 * (Reg - PPC::X3);
}
llvm_unreachable("Only general purpose registers expected.");
}
// AIX ABI Stack Frame Layout:
//
// Low Memory +--------------------------------------------+
// SP +---> | Back chain | ---+
// | +--------------------------------------------+ |
// | | Saved Condition Register | |
// | +--------------------------------------------+ |
// | | Saved Linkage Register | |
// | +--------------------------------------------+ | Linkage Area
// | | Reserved for compilers | |
// | +--------------------------------------------+ |
// | | Reserved for binders | |
// | +--------------------------------------------+ |
// | | Saved TOC pointer | ---+
// | +--------------------------------------------+
// | | Parameter save area |
// | +--------------------------------------------+
// | | Alloca space |
// | +--------------------------------------------+
// | | Local variable space |
// | +--------------------------------------------+
// | | Float/int conversion temporary |
// | +--------------------------------------------+
// | | Save area for AltiVec registers |
// | +--------------------------------------------+
// | | AltiVec alignment padding |
// | +--------------------------------------------+
// | | Save area for VRSAVE register |
// | +--------------------------------------------+
// | | Save area for General Purpose registers |
// | +--------------------------------------------+
// | | Save area for Floating Point registers |
// | +--------------------------------------------+
// +---- | Back chain |
// High Memory +--------------------------------------------+
//
// Specifications:
// AIX 7.2 Assembler Language Reference
// Subroutine linkage convention
SDValue PPCTargetLowering::LowerFormalArguments_AIX(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
CallConv == CallingConv::Fast) &&
"Unexpected calling convention!");
if (getTargetMachine().Options.GuaranteedTailCallOpt)
report_fatal_error("Tail call support is unimplemented on AIX.");
if (useSoftFloat())
report_fatal_error("Soft float support is unimplemented on AIX.");
const PPCSubtarget &Subtarget =
static_cast<const PPCSubtarget &>(DAG.getSubtarget());
if (Subtarget.hasQPX())
report_fatal_error("QPX support is not supported on AIX.");
const bool IsPPC64 = Subtarget.isPPC64();
const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
const EVT PtrVT = getPointerTy(MF.getDataLayout());
// Reserve space for the linkage area on the stack.
const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
SmallVector<SDValue, 8> MemOps;
for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
CCValAssign &VA = ArgLocs[I++];
MVT LocVT = VA.getLocVT();
ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
// For compatibility with the AIX XL compiler, the float args in the
// parameter save area are initialized even if the argument is available
// in register. The caller is required to initialize both the register
// and memory, however, the callee can choose to expect it in either.
// The memloc is dismissed here because the argument is retrieved from
// the register.
if (VA.isMemLoc() && VA.needsCustom())
continue;
if (Flags.isByVal() && VA.isMemLoc()) {
const unsigned Size =
alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
PtrByteSize);
const int FI = MF.getFrameInfo().CreateFixedObject(
Size, VA.getLocMemOffset(), /* IsImmutable */ false,
/* IsAliased */ true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
continue;
}
if (Flags.isByVal()) {
assert(VA.isRegLoc() && "MemLocs should already be handled.");
const MCPhysReg ArgReg = VA.getLocReg();
const PPCFrameLowering *FL = Subtarget.getFrameLowering();
if (Flags.getNonZeroByValAlign() > PtrByteSize)
report_fatal_error("Over aligned byvals not supported yet.");
const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
const int FI = MF.getFrameInfo().CreateFixedObject(
StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
/* IsAliased */ true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
// Add live ins for all the RegLocs for the same ByVal.
const TargetRegisterClass *RegClass =
IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
unsigned Offset) {
const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
// Since the callers side has left justified the aggregate in the
// register, we can simply store the entire register into the stack
// slot.
SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
// The store to the fixedstack object is needed becuase accessing a
// field of the ByVal will use a gep and load. Ideally we will optimize
// to extracting the value from the register directly, and elide the
// stores when the arguments address is not taken, but that will need to
// be future work.
SDValue Store =
DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
DAG.getObjectPtrOffset(dl, FIN, Offset),
MachinePointerInfo::getFixedStack(MF, FI, Offset));
MemOps.push_back(Store);
};
unsigned Offset = 0;
HandleRegLoc(VA.getLocReg(), Offset);
Offset += PtrByteSize;
for (; Offset != StackSize && ArgLocs[I].isRegLoc();
Offset += PtrByteSize) {
assert(ArgLocs[I].getValNo() == VA.getValNo() &&
"RegLocs should be for ByVal argument.");
const CCValAssign RL = ArgLocs[I++];
HandleRegLoc(RL.getLocReg(), Offset);
}
if (Offset != StackSize) {
assert(ArgLocs[I].getValNo() == VA.getValNo() &&
"Expected MemLoc for remaining bytes.");
assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
// Consume the MemLoc.The InVal has already been emitted, so nothing
// more needs to be done.
++I;
}
continue;
}
EVT ValVT = VA.getValVT();
if (VA.isRegLoc() && !VA.needsCustom()) {
MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
unsigned VReg =
MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
if (ValVT.isScalarInteger() &&
(ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
ArgValue =
truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
}
InVals.push_back(ArgValue);
continue;
}
if (VA.isMemLoc()) {
const unsigned LocSize = LocVT.getStoreSize();
const unsigned ValSize = ValVT.getStoreSize();
assert((ValSize <= LocSize) &&
"Object size is larger than size of MemLoc");
int CurArgOffset = VA.getLocMemOffset();
// Objects are right-justified because AIX is big-endian.
if (LocSize > ValSize)
CurArgOffset += LocSize - ValSize;
// Potential tail calls could cause overwriting of argument stack slots.
const bool IsImmutable =
!(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue ArgValue =
DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
InVals.push_back(ArgValue);
continue;
}
}
// On AIX a minimum of 8 words is saved to the parameter save area.
const unsigned MinParameterSaveArea = 8 * PtrByteSize;
// Area that is at least reserved in the caller of this function.
unsigned CallerReservedArea =
std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
// Set the size that is at least reserved in caller of this function. Tail
// call optimized function's reserved stack space needs to be aligned so
// that taking the difference between two stack areas will result in an
// aligned stack.
CallerReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setMinReservedArea(CallerReservedArea);
if (isVarArg) {
FuncInfo->setVarArgsFrameIndex(
MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10};
static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10};
const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
// The fixed integer arguments of a variadic function are stored to the
// VarArgsFrameIndex on the stack so that they may be loaded by
// dereferencing the result of va_next.
for (unsigned GPRIndex =
(CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
GPRIndex < NumGPArgRegs; ++GPRIndex) {
const unsigned VReg =
IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
: MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
MemOps.push_back(Store);
// Increment the address for the next argument to store.
SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
SDValue PPCTargetLowering::LowerCall_AIX(
SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
const CallBase *CB) const {
// See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
// AIX ABI stack frame layout.
assert((CFlags.CallConv == CallingConv::C ||
CFlags.CallConv == CallingConv::Cold ||
CFlags.CallConv == CallingConv::Fast) &&
"Unexpected calling convention!");
if (CFlags.IsPatchPoint)
report_fatal_error("This call type is unimplemented on AIX.");
const PPCSubtarget& Subtarget =
static_cast<const PPCSubtarget&>(DAG.getSubtarget());
if (Subtarget.hasQPX())
report_fatal_error("QPX is not supported on AIX.");
if (Subtarget.hasAltivec())
report_fatal_error("Altivec support is unimplemented on AIX.");
MachineFunction &MF = DAG.getMachineFunction();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
*DAG.getContext());
// Reserve space for the linkage save area (LSA) on the stack.
// In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
// [SP][CR][LR][2 x reserved][TOC].
// The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
const bool IsPPC64 = Subtarget.isPPC64();
const EVT PtrVT = getPointerTy(DAG.getDataLayout());
const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if the callee
// is variadic.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
CCInfo.getNextStackOffset());
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass.
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SDValue CallSeqStart = Chain;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
// Set up a copy of the stack pointer for loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
: DAG.getRegister(PPC::R1, MVT::i32);
for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
const unsigned ValNo = ArgLocs[I].getValNo();
SDValue Arg = OutVals[ValNo];
ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
if (Flags.isByVal()) {
const unsigned ByValSize = Flags.getByValSize();
// Nothing to do for zero-sized ByVals on the caller side.
if (!ByValSize) {
++I;
continue;
}
auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
(LoadOffset != 0)
? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
: Arg,
MachinePointerInfo(), VT);
};
unsigned LoadOffset = 0;
// Initialize registers, which are fully occupied by the by-val argument.
while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
SDValue Load = GetLoad(PtrVT, LoadOffset);
MemOpChains.push_back(Load.getValue(1));
LoadOffset += PtrByteSize;
const CCValAssign &ByValVA = ArgLocs[I++];
assert(ByValVA.getValNo() == ValNo &&
"Unexpected location for pass-by-value argument.");
RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
}
if (LoadOffset == ByValSize)
continue;
// There must be one more loc to handle the remainder.
assert(ArgLocs[I].getValNo() == ValNo &&
"Expected additional location for by-value argument.");
if (ArgLocs[I].isMemLoc()) {
assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
const CCValAssign &ByValVA = ArgLocs[I++];
ISD::ArgFlagsTy MemcpyFlags = Flags;
// Only memcpy the bytes that don't pass in register.
MemcpyFlags.setByValSize(ByValSize - LoadOffset);
Chain = CallSeqStart = createMemcpyOutsideCallSeq(
(LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
: Arg,
DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
CallSeqStart, MemcpyFlags, DAG, dl);
continue;
}
// Initialize the final register residue.
// Any residue that occupies the final by-val arg register must be
// left-justified on AIX. Loads must be a power-of-2 size and cannot be
// larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
// 2 and 1 byte loads.
const unsigned ResidueBytes = ByValSize % PtrByteSize;
assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
"Unexpected register residue for by-value argument.");
SDValue ResidueVal;
for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
const MVT VT =
N == 1 ? MVT::i8
: ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
SDValue Load = GetLoad(VT, LoadOffset);
MemOpChains.push_back(Load.getValue(1));
LoadOffset += N;
Bytes += N;
// By-val arguments are passed left-justfied in register.
// Every load here needs to be shifted, otherwise a full register load
// should have been used.
assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
"Unexpected load emitted during handling of pass-by-value "
"argument.");
unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
EVT ShiftAmountTy =
getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
SDValue ShiftedLoad =
DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
ShiftedLoad)
: ShiftedLoad;
}
const CCValAssign &ByValVA = ArgLocs[I++];
RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
continue;
}
CCValAssign &VA = ArgLocs[I++];
const MVT LocVT = VA.getLocVT();
const MVT ValVT = VA.getValVT();
switch (VA.getLocInfo()) {
default:
report_fatal_error("Unexpected argument extension type.");
case CCValAssign::Full:
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc() && !VA.needsCustom()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
if (VA.isMemLoc()) {
SDValue PtrOff =
DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
continue;
}
// Custom handling is used for GPR initializations for vararg float
// arguments.
assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
ValVT.isFloatingPoint() && LocVT.isInteger() &&
"Unexpected register handling for calling convention.");
SDValue ArgAsInt =
DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
// f32 in 32-bit GPR
// f64 in 64-bit GPR
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
// f32 in 64-bit GPR.
RegsToPass.push_back(std::make_pair(
VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
else {
// f64 in two 32-bit GPRs
// The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
"Unexpected custom register for argument!");
CCValAssign &GPR1 = VA;
SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
DAG.getConstant(32, dl, MVT::i8));
RegsToPass.push_back(std::make_pair(
GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
if (I != E) {
// If only 1 GPR was available, there will only be one custom GPR and
// the argument will also pass in memory.
CCValAssign &PeekArg = ArgLocs[I];
if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
CCValAssign &GPR2 = ArgLocs[I++];
RegsToPass.push_back(std::make_pair(
GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
}
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// For indirect calls, we need to save the TOC base to the stack for
// restoration after the call.
if (CFlags.IsIndirect) {
assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
const unsigned TOCSaveOffset =
Subtarget.getFrameLowering()->getTOCSaveOffset();
setUsesTOCBasePtr(DAG);
SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
Chain = DAG.getStore(
Val.getValue(1), dl, Val, AddPtr,
MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (auto Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
InFlag = Chain.getValue(1);
}
const int SPDiff = 0;
return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
Callee, SPDiff, NumBytes, Ins, InVals, CB);
}
bool
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(
Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
? RetCC_PPC_Cold
: RetCC_PPC);
}
SDValue
PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeReturn(Outs,
(Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
? RetCC_PPC_Cold
: RetCC_PPC);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[RealResIdx];
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
bool isLittleEndian = Subtarget.isLittleEndian();
// Legalize ret f64 -> ret 2 x i32.
SDValue SVal =
DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
Flag = Chain.getValue(1);
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
} else
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
}
SDValue
PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// Get the correct type for integers.
EVT IntVT = Op.getValueType();
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
// Build a DYNAREAOFFSET node.
SDValue Ops[2] = {Chain, FPSIdx};
SDVTList VTs = DAG.getVTList(IntVT);
return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
}
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
// When we pop the dynamic allocation we need to restore the SP link.
SDLoc dl(Op);
// Get the correct type for pointers.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// Construct the stack pointer operand.
bool isPPC64 = Subtarget.isPPC64();
unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
SDValue StackPtr = DAG.getRegister(SP, PtrVT);
// Get the operands for the STACKRESTORE.
SDValue Chain = Op.getOperand(0);
SDValue SaveSP = Op.getOperand(1);
// Load the old link SP.
SDValue LoadLinkSP =
DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
// Restore the stack pointer.
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
// Store the old link SP.
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
}
SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = Subtarget.isPPC64();
EVT PtrVT = getPointerTy(MF.getDataLayout());
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int RASI = FI->getReturnAddrSaveIndex();
// If the frame pointer save index hasn't been defined yet.
if (!RASI) {
// Find out what the fix offset of the frame pointer save area.
int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
// Allocate the frame index for frame pointer save area.
RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
// Save the result.
FI->setReturnAddrSaveIndex(RASI);
}
return DAG.getFrameIndex(RASI, PtrVT);
}
SDValue
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = Subtarget.isPPC64();
EVT PtrVT = getPointerTy(MF.getDataLayout());
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// If the frame pointer save index hasn't been defined yet.
if (!FPSI) {
// Find out what the fix offset of the frame pointer save area.
int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
// Allocate the frame index for frame pointer save area.
FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
// Save the result.
FI->setFramePointerSaveIndex(FPSI);
}
return DAG.getFrameIndex(FPSI, PtrVT);
}
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDLoc dl(Op);
// Get the correct type for pointers.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// Negate the size.
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
DAG.getConstant(0, dl, PtrVT), Size);
// Construct a node for the frame pointer save index.
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
SDValue Ops[3] = { Chain, NegSize, FPSIdx };
SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
if (hasInlineStackProbe(MF))
return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
}
SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = Subtarget.isPPC64();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
return DAG.getFrameIndex(FI, PtrVT);
}
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
}
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return LowerVectorLoad(Op, DAG);
assert(Op.getValueType() == MVT::i1 &&
"Custom lowering only for i1 loads");
// First, load 8 bits into 32 bits, then truncate to 1 bit.
SDLoc dl(Op);
LoadSDNode *LD = cast<LoadSDNode>(Op);
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
MachineMemOperand *MMO = LD->getMemOperand();
SDValue NewLD =
DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
BasePtr, MVT::i8, MMO);
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
return DAG.getMergeValues(Ops, dl);
}
SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
if (Op.getOperand(1).getValueType().isVector())
return LowerVectorStore(Op, DAG);
assert(Op.getOperand(1).getValueType() == MVT::i1 &&
"Custom lowering only for i1 stores");
// First, zero extend to 32 bits, then use a truncating store to 8 bits.
SDLoc dl(Op);
StoreSDNode *ST = cast<StoreSDNode>(Op);
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
SDValue Value = ST->getValue();
MachineMemOperand *MMO = ST->getMemOperand();
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
Value);
return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
}
// FIXME: Remove this once the ANDI glue bug is fixed:
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::i1 &&
"Custom lowering only for i1 results");
SDLoc DL(Op);
return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
}
SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
SelectionDAG &DAG) const {
// Implements a vector truncate that fits in a vector register as a shuffle.
// We want to legalize vector truncates down to where the source fits in
// a vector register (and target is therefore smaller than vector register
// size). At that point legalization will try to custom lower the sub-legal
// result and get here - where we can contain the truncate as a single target
// operation.
// For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
// <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
//
// We will implement it for big-endian ordering as this (where x denotes
// undefined):
// < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
// < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
//
// The same operation in little-endian ordering will be:
// <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
// <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
assert(Op.getValueType().isVector() && "Vector type expected.");
SDLoc DL(Op);
SDValue N1 = Op.getOperand(0);
unsigned SrcSize = N1.getValueType().getSizeInBits();
assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
EVT TrgVT = Op.getValueType();
unsigned TrgNumElts = TrgVT.getVectorNumElements();
EVT EltVT = TrgVT.getVectorElementType();
unsigned WideNumElts = 128 / EltVT.getSizeInBits();
EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
// First list the elements we want to keep.
unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
SmallVector<int, 16> ShuffV;
if (Subtarget.isLittleEndian())
for (unsigned i = 0; i < TrgNumElts; ++i)
ShuffV.push_back(i * SizeMult);
else
for (unsigned i = 1; i <= TrgNumElts; ++i)
ShuffV.push_back(i * SizeMult - 1);
// Populate the remaining elements with undefs.
for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
// ShuffV.push_back(i + WideNumElts);
ShuffV.push_back(WideNumElts + 1);
SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
}
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
/// possible.
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
// Not FP? Not a fsel.
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
!Op.getOperand(2).getValueType().isFloatingPoint())
return Op;
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
EVT ResVT = Op.getValueType();
EVT CmpVT = Op.getOperand(0).getValueType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
SDLoc dl(Op);
SDNodeFlags Flags = Op.getNode()->getFlags();
// We have xsmaxcdp/xsmincdp which are OK to emit even in the
// presence of infinities.
if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
switch (CC) {
default:
break;
case ISD::SETOGT:
case ISD::SETGT:
return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
case ISD::SETOLT:
case ISD::SETLT:
return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
}
}
// We might be able to do better than this under some circumstances, but in
// general, fsel-based lowering of select is a finite-math-only optimization.
// For more information, see section F.3 of the 2.06 ISA specification.
// With ISA 3.0
if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
(!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
return Op;
// If the RHS of the comparison is a 0.0, we don't need to do the
// subtraction at all.
SDValue Sel1;
if (isFloatingPointZero(RHS))
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETNE:
std::swap(TV, FV);
LLVM_FALLTHROUGH;
case ISD::SETEQ:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
case ISD::SETULT:
case ISD::SETLT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
LLVM_FALLTHROUGH;
case ISD::SETOGE:
case ISD::SETGE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
case ISD::SETUGT:
case ISD::SETGT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
LLVM_FALLTHROUGH;
case ISD::SETOLE:
case ISD::SETLE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
}
SDValue Cmp;
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETNE:
std::swap(TV, FV);
LLVM_FALLTHROUGH;
case ISD::SETEQ:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
case ISD::SETULT:
case ISD::SETLT:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
case ISD::SETOGE:
case ISD::SETGE:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
case ISD::SETUGT:
case ISD::SETGT:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
case ISD::SETOLE:
case ISD::SETLE:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
}
return Op;
}
void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
SelectionDAG &DAG,
const SDLoc &dl) const {
assert(Op.getOperand(0).getValueType().isFloatingPoint());
SDValue Src = Op.getOperand(0);
if (Src.getValueType() == MVT::f32)
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
SDValue Tmp;
switch (Op.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(
Op.getOpcode() == ISD::FP_TO_SINT
? PPCISD::FCTIWZ
: (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
dl, MVT::f64, Src);
break;
case MVT::i64:
assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
"i64 FP_TO_UINT is supported only with FPCVT");
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ,
dl, MVT::f64, Src);
break;
}
// Convert the FP value to an int value through memory.
bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
(Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
MachinePointerInfo MPI =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
// Emit a store to the stack slot.
SDValue Chain;
Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
if (i32Stack) {
MachineFunction &MF = DAG.getMachineFunction();
Alignment = Align(4);
MachineMemOperand *MMO =
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
} else
Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
// Result is a load from the stack slot. If loading 4 bytes, make sure to
// add in a bias on big endian.
if (Op.getValueType() == MVT::i32 && !i32Stack) {
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
DAG.getConstant(4, dl, FIPtr.getValueType()));
MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
}
RLI.Chain = Chain;
RLI.Ptr = FIPtr;
RLI.MPI = MPI;
RLI.Alignment = Alignment;
}
/// Custom lowers floating point to integer conversions to use
/// the direct move instructions available in ISA 2.07 to avoid the
/// need for load/store combinations.
SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
SelectionDAG &DAG,
const SDLoc &dl) const {
assert(Op.getOperand(0).getValueType().isFloatingPoint());
SDValue Src = Op.getOperand(0);
if (Src.getValueType() == MVT::f32)
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
SDValue Tmp;
switch (Op.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(
Op.getOpcode() == ISD::FP_TO_SINT
? PPCISD::FCTIWZ
: (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
dl, MVT::f64, Src);
Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
break;
case MVT::i64:
assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
"i64 FP_TO_UINT is supported only with FPCVT");
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ,
dl, MVT::f64, Src);
Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
break;
}
return Tmp;
}
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
const SDLoc &dl) const {
// FP to INT conversions are legal for f128.
if (Op->getOperand(0).getValueType() == MVT::f128)
return Op;
// Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
// PPC (the libcall is not available).
if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
if (Op.getValueType() == MVT::i32) {
if (Op.getOpcode() == ISD::FP_TO_SINT) {
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, Op.getOperand(0),
DAG.getIntPtrConstant(0, dl));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, Op.getOperand(0),
DAG.getIntPtrConstant(1, dl));
// Add the two halves of the long double in round-to-zero mode.
SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
// Now use a smaller FP_TO_SINT.
return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
}
if (Op.getOpcode() == ISD::FP_TO_UINT) {
const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
// X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
// FIXME: generated code sucks.
// TODO: Are there fast-math-flags to propagate to this FSUB?
SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
Op.getOperand(0), Tmp);
True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
DAG.getConstant(0x80000000, dl, MVT::i32));
SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
Op.getOperand(0));
return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
ISD::SETGE);
}
}
return SDValue();
}
if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
return LowerFP_TO_INTDirectMove(Op, DAG, dl);
ReuseLoadInfo RLI;
LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
}
// We're trying to insert a regular store, S, and then a load, L. If the
// incoming value, O, is a load, we might just be able to have our load use the
// address used by O. However, we don't know if anything else will store to
// that address before we can load from it. To prevent this situation, we need
// to insert our load, L, into the chain as a peer of O. To do this, we give L
// the same chain operand as O, we create a token factor from the chain results
// of O and L, and we replace all uses of O's chain result with that token
// factor (see spliceIntoChain below for this last part).
bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
ReuseLoadInfo &RLI,
SelectionDAG &DAG,
ISD::LoadExtType ET) const {
SDLoc dl(Op);
bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
(Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
if (ET == ISD::NON_EXTLOAD &&
(ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
isOperationLegalOrCustom(Op.getOpcode(),
Op.getOperand(0).getValueType())) {
LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
return true;
}
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
LD->isNonTemporal())
return false;
if (LD->getMemoryVT() != MemVT)
return false;
RLI.Ptr = LD->getBasePtr();
if (LD->isIndexed() && !LD->getOffset().isUndef()) {
assert(LD->getAddressingMode() == ISD::PRE_INC &&
"Non-pre-inc AM on PPC?");
RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
LD->getOffset());
}
RLI.Chain = LD->getChain();
RLI.MPI = LD->getPointerInfo();
RLI.IsDereferenceable = LD->isDereferenceable();
RLI.IsInvariant = LD->isInvariant();
RLI.Alignment = LD->getAlign();
RLI.AAInfo = LD->getAAInfo();
RLI.Ranges = LD->getRanges();
RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
return true;
}
// Given the head of the old chain, ResChain, insert a token factor containing
// it and NewResChain, and make users of ResChain now be users of that token
// factor.
// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
SDValue NewResChain,
SelectionDAG &DAG) const {
if (!ResChain)
return;
SDLoc dl(NewResChain);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
NewResChain, DAG.getUNDEF(MVT::Other));
assert(TF.getNode() != NewResChain.getNode() &&
"A new TF really is required here");
DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
}
/// Analyze profitability of direct move
/// prefer float load to int load plus direct move
/// when there is no integer use of int load
bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
SDNode *Origin = Op.getOperand(0).getNode();
if (Origin->getOpcode() != ISD::LOAD)
return true;
// If there is no LXSIBZX/LXSIHZX, like Power8,
// prefer direct move if the memory size is 1 or 2 bytes.
MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
return true;
for (SDNode::use_iterator UI = Origin->use_begin(),
UE = Origin->use_end();
UI != UE; ++UI) {
// Only look at the users of the loaded value.
if (UI.getUse().get().getResNo() != 0)
continue;
if (UI->getOpcode() != ISD::SINT_TO_FP &&
UI->getOpcode() != ISD::UINT_TO_FP)
return true;
}
return false;
}
/// Custom lowers integer to floating point conversions to use
/// the direct move instructions available in ISA 2.07 to avoid the
/// need for load/store combinations.
SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
SelectionDAG &DAG,
const SDLoc &dl) const {
assert((Op.getValueType() == MVT::f32 ||
Op.getValueType() == MVT::f64) &&
"Invalid floating point type as target of conversion");
assert(Subtarget.hasFPCVT() &&
"Int to FP conversions with direct moves require FPCVT");
SDValue FP;
SDValue Src = Op.getOperand(0);
bool SinglePrec = Op.getValueType() == MVT::f32;
bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
(SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
if (WordInt) {
FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
dl, MVT::f64, Src);
FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
}
else {
FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
}
return FP;
}
static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
EVT VecVT = Vec.getValueType();
assert(VecVT.isVector() && "Expected a vector type.");
assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
EVT EltVT = VecVT.getVectorElementType();
unsigned WideNumElts = 128 / EltVT.getSizeInBits();
EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(NumConcat);
Ops[0] = Vec;
SDValue UndefVec = DAG.getUNDEF(VecVT);
for (unsigned i = 1; i < NumConcat; ++i)
Ops[i] = UndefVec;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
}
SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
const SDLoc &dl) const {
unsigned Opc = Op.getOpcode();
assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
"Unexpected conversion type");
assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
"Supports conversions to v2f64/v4f32 only.");
bool SignedConv = Opc == ISD::SINT_TO_FP;
bool FourEltRes = Op.getValueType() == MVT::v4f32;
SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
EVT WideVT = Wide.getValueType();
unsigned WideNumElts = WideVT.getVectorNumElements();
MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
SmallVector<int, 16> ShuffV;
for (unsigned i = 0; i < WideNumElts; ++i)
ShuffV.push_back(i + WideNumElts);
int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
int SaveElts = FourEltRes ? 4 : 2;
if (Subtarget.isLittleEndian())
for (int i = 0; i < SaveElts; i++)
ShuffV[i * Stride] = i;
else
for (int i = 1; i <= SaveElts; i++)
ShuffV[i * Stride - 1] = i - 1;
SDValue ShuffleSrc2 =
SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
SDValue Extend;
if (SignedConv) {
Arrange = DAG.getBitcast(IntermediateVT, Arrange);
EVT ExtVT = Op.getOperand(0).getValueType();
if (Subtarget.hasP9Altivec())
ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
IntermediateVT.getVectorNumElements());
Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
DAG.getValueType(ExtVT));
} else
Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
}
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT InVT = Op.getOperand(0).getValueType();
EVT OutVT = Op.getValueType();
if (OutVT.isVector() && OutVT.isFloatingPoint() &&
isOperationCustom(Op.getOpcode(), InVT))
return LowerINT_TO_FPVector(Op, DAG, dl);
// Conversions to f128 are legal.
if (Op.getValueType() == MVT::f128)
return Op;
if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
return SDValue();
SDValue Value = Op.getOperand(0);
// The values are now known to be -1 (false) or 1 (true). To convert this
// into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
// This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
if (Op.getValueType() != MVT::v4f64)
Value = DAG.getNode(ISD::FP_ROUND, dl,
Op.getValueType(), Value,
DAG.getIntPtrConstant(1, dl));
return Value;
}
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
return SDValue();
if (Op.getOperand(0).getValueType() == MVT::i1)
return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
DAG.getConstantFP(1.0, dl, Op.getValueType()),
DAG.getConstantFP(0.0, dl, Op.getValueType()));
// If we have direct moves, we can do all the conversion, skip the store/load
// however, without FPCVT we can't do most conversions.
if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
Subtarget.isPPC64() && Subtarget.hasFPCVT())
return LowerINT_TO_FPDirectMove(Op, DAG, dl);
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
"UINT_TO_FP is supported only with FPCVT");
// If we have FCFIDS, then use it when converting to single-precision.
// Otherwise, convert to double-precision and then round.
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
: PPCISD::FCFIDS)
: (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
: PPCISD::FCFID);
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? MVT::f32
: MVT::f64;
if (Op.getOperand(0).getValueType() == MVT::i64) {
SDValue SINT = Op.getOperand(0);
// When converting to single-precision, we actually need to convert
// to double-precision first and then round to single-precision.
// To avoid double-rounding effects during that operation, we have
// to prepare the input operand. Bits that might be truncated when
// converting to double-precision are replaced by a bit that won't
// be lost at this stage, but is below the single-precision rounding
// position.
//
// However, if -enable-unsafe-fp-math is in effect, accept double
// rounding to avoid the extra overhead.
if (Op.getValueType() == MVT::f32 &&
!Subtarget.hasFPCVT() &&
!DAG.getTarget().Options.UnsafeFPMath) {
// Twiddle input to make sure the low 11 bits are zero. (If this
// is the case, we are guaranteed the value will fit into the 53 bit
// mantissa of an IEEE double-precision value without rounding.)
// If any of those low 11 bits were not zero originally, make sure
// bit 12 (value 2048) is set instead, so that the final rounding
// to single-precision gets the correct result.
SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
SINT, DAG.getConstant(2047, dl, MVT::i64));
Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
Round, DAG.getConstant(2047, dl, MVT::i64));
Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
Round = DAG.getNode(ISD::AND, dl, MVT::i64,
Round, DAG.getConstant(-2048, dl, MVT::i64));
// However, we cannot use that value unconditionally: if the magnitude
// of the input value is small, the bit-twiddling we did above might
// end up visibly changing the output. Fortunately, in that case, we
// don't need to twiddle bits since the original input will convert
// exactly to double-precision floating-point already. Therefore,
// construct a conditional to use the original value if the top 11
// bits are all sign-bit copies, and use the rounded value computed
// above otherwise.
SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
SINT, DAG.getConstant(53, dl, MVT::i32));
Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
Cond, DAG.getConstant(1, dl, MVT::i64));
Cond = DAG.getSetCC(
dl,
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
}
ReuseLoadInfo RLI;
SDValue Bits;
MachineFunction &MF = DAG.getMachineFunction();
if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
} else if (Subtarget.hasLFIWAX() &&
canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
} else if (Subtarget.hasFPCVT() &&
canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
} else if (((Subtarget.hasLFIWAX() &&
SINT.getOpcode() == ISD::SIGN_EXTEND) ||
(Subtarget.hasFPCVT() &&
SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
SINT.getOperand(0).getValueType() == MVT::i32) {
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Store =
DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FrameIdx));
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
"Expected an i32 store");
RLI.Ptr = FIdx;
RLI.Chain = Store;
RLI.MPI =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
RLI.Alignment = Align(4);
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
PPCISD::LFIWZX : PPCISD::LFIWAX,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
} else
Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
return FP;
}
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
"Unhandled INT_TO_FP type in custom expander!");
// Since we only generate this in 64-bit mode, we can take advantage of
// 64-bit registers. In particular, sign extend the input value into the
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
// then lfd it and fcfid it.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT PtrVT = getPointerTy(MF.getDataLayout());
SDValue Ld;
if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
ReuseLoadInfo RLI;
bool ReusingLoad;
if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
DAG))) {
int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Store =
DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FrameIdx));
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
"Expected an i32 store");
RLI.Ptr = FIdx;
RLI.Chain = Store;
RLI.MPI =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
RLI.Alignment = Align(4);
}
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::LFIWZX : PPCISD::LFIWAX,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
if (ReusingLoad)
spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
} else {
assert(Subtarget.isPPC64() &&
"i32->FP without LFIWAX supported only on PPC64");
int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
Op.getOperand(0));
// STD the extended value into the stack slot.
SDValue Store = DAG.getStore(
DAG.getEntryNode(), dl, Ext64, FIdx,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
// Load the value as a double.
Ld = DAG.getLoad(
MVT::f64, dl, Store, FIdx,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
}
// FCFID it and return it.
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
DAG.getIntPtrConstant(0, dl));
return FP;
}
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
/*
The rounding mode is in bits 30:31 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to 0
10 Round to +inf
11 Round to -inf
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
*/
MachineFunction &MF = DAG.getMachineFunction();
EVT VT = Op.getValueType();
EVT PtrVT = getPointerTy(MF.getDataLayout());
// Save FP Control Word to register
SDValue Chain = Op.getOperand(0);
SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
Chain = MFFS.getValue(1);
// Save FP register to stack slot
int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
// Load FP Control Word from low 32 bits of stack slot.
SDValue Four = DAG.getConstant(4, dl, PtrVT);
SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
Chain = CWD.getValue(1);
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::AND, dl, MVT::i32,
CWD, DAG.getConstant(3, dl, MVT::i32));
SDValue CWD2 =
DAG.getNode(ISD::SRL, dl, MVT::i32,
DAG.getNode(ISD::AND, dl, MVT::i32,
DAG.getNode(ISD::XOR, dl, MVT::i32,
CWD, DAG.getConstant(3, dl, MVT::i32)),
DAG.getConstant(3, dl, MVT::i32)),
DAG.getConstant(1, dl, MVT::i32));
SDValue RetVal =
DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
RetVal =
DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
dl, VT, RetVal);
return DAG.getMergeValues({RetVal, Chain}, dl);
}
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
SDLoc dl(Op);
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SHL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, dl, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, dl, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, dl);
}
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, dl, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, dl, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, dl);
}
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRA!");
// Expand into a bunch of logical ops, followed by a select_cc.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, dl, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, dl, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
Tmp4, Tmp6, ISD::SETLE);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, dl);
}
//===----------------------------------------------------------------------===//
// Vector related lowering.
//
/// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
/// element size of SplatSize. Cast the result to VT.
static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
SelectionDAG &DAG, const SDLoc &dl) {
static const MVT VTys[] = { // canonical VT to use for each size.
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
};
EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
// For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
if (Val == ((1LU << (SplatSize * 8)) - 1)) {
SplatSize = 1;
Val = 0xFF;
}
EVT CanonicalVT = VTys[SplatSize-1];
// Build a canonical splat for this value.
return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
}
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
const SDLoc &dl, EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, dl, MVT::i32), Op);
}
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
SelectionDAG &DAG, const SDLoc &dl,
EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
}
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
}
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
/// amount. The result has the specified value type.
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
SelectionDAG &DAG, const SDLoc &dl) {
// Force LHS/RHS to be the right type.
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
int Ops[16];
for (unsigned i = 0; i != 16; ++i)
Ops[i] = i + Amt;
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
/// Do we have an efficient pattern in a .td file for this node?
///
/// \param V - pointer to the BuildVectorSDNode being matched
/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
///
/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
/// the opposite is true (expansion is beneficial) are:
/// - The node builds a vector out of integers that are not 32 or 64-bits
/// - The node builds a vector out of constants
/// - The node is a "load-and-splat"
/// In all other cases, we will choose to keep the BUILD_VECTOR.
static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
bool HasDirectMove,
bool HasP8Vector) {
EVT VecVT = V->getValueType(0);
bool RightType = VecVT == MVT::v2f64 ||
(HasP8Vector && VecVT == MVT::v4f32) ||
(HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
if (!RightType)
return false;
bool IsSplat = true;
bool IsLoad = false;
SDValue Op0 = V->getOperand(0);
// This function is called in a block that confirms the node is not a constant
// splat. So a constant BUILD_VECTOR here means the vector is built out of
// different constants.
if (V->isConstant())
return false;
for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
if (V->getOperand(i).isUndef())
return false;
// We want to expand nodes that represent load-and-splat even if the
// loaded value is a floating point truncation or conversion to int.
if (V->getOperand(i).getOpcode() == ISD::LOAD ||
(V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
(V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
(V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
IsLoad = true;
// If the operands are different or the input is not a load and has more
// uses than just this BV node, then it isn't a splat.
if (V->getOperand(i) != Op0 ||
(!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
IsSplat = false;
}
return !(IsSplat && IsLoad);
}
// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Op0 = Op->getOperand(0);
if ((Op.getValueType() != MVT::f128) ||
(Op0.getOpcode() != ISD::BUILD_PAIR) ||
(Op0.getOperand(0).getValueType() != MVT::i64) ||
(Op0.getOperand(1).getValueType() != MVT::i64))
return SDValue();
return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
Op0.getOperand(1));
}
static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
const SDValue *InputLoad = &Op;
if (InputLoad->getOpcode() == ISD::BITCAST)
InputLoad = &InputLoad->getOperand(0);
if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
InputLoad = &InputLoad->getOperand(0);
}
if (InputLoad->getOpcode() != ISD::LOAD)
return nullptr;
LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
}
// Convert the argument APFloat to a single precision APFloat if there is no
// loss in information during the conversion to single precision APFloat and the
// resulting number is not a denormal number. Return true if successful.
bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
APFloat APFloatToConvert = ArgAPFloat;
bool LosesInfo = true;
APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
&LosesInfo);
bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
if (Success)
ArgAPFloat = APFloatToConvert;
return Success;
}
// Bitcast the argument APInt to a double and convert it to a single precision
// APFloat, bitcast the APFloat to an APInt and assign it to the original
// argument if there is no loss in information during the conversion from
// double to single precision APFloat and the resulting number is not a denormal
// number. Return true if successful.
bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
double DpValue = ArgAPInt.bitsToDouble();
APFloat APFloatDp(DpValue);
bool Success = convertToNonDenormSingle(APFloatDp);
if (Success)
ArgAPInt = APFloatDp.bitcastToAPInt();
return Success;
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it. If we CAN select this case, and if it
// selects to a single instruction, return Op. Otherwise, if we can codegen
// this case more efficiently than a constant pool load, lower it to the
// sequence of ops that should be used.
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
// We first build an i32 vector, load it into a QPX register,
// then convert it to a floating-point vector and compare it
// to a zero vector to get the boolean result.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
assert(BVN->getNumOperands() == 4 &&
"BUILD_VECTOR for v4i1 does not have 4 operands");
bool IsConst = true;
for (unsigned i = 0; i < 4; ++i) {
if (BVN->getOperand(i).isUndef()) continue;
if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
IsConst = false;
break;
}
}
if (IsConst) {
Constant *One =
ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
Constant *NegOne =
ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
Constant *CV[4];
for (unsigned i = 0; i < 4; ++i) {
if (BVN->getOperand(i).isUndef())
CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
else if (isNullConstant(BVN->getOperand(i)))
CV[i] = NegOne;
else
CV[i] = One;
}
Constant *CP = ConstantVector::get(CV);
SDValue CPIdx =
DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16));
SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
return DAG.getMemIntrinsicNode(
PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
SmallVector<SDValue, 4> Stores;
for (unsigned i = 0; i < 4; ++i) {
if (BVN->getOperand(i).isUndef()) continue;
unsigned Offset = 4*i;
SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
if (StoreSize > 4) {
Stores.push_back(
DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
PtrInfo.getWithOffset(Offset), MVT::i32));
} else {
SDValue StoreValue = BVN->getOperand(i);
if (StoreSize < 4)
StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
PtrInfo.getWithOffset(Offset)));
}
}
SDValue StoreChain;
if (!Stores.empty())
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
else
StoreChain = DAG.getEntryNode();
// Now load from v4i32 into the QPX register; this will extend it to
// v4i64 but not yet convert it to a floating point. Nevertheless, this
// is typed as v4f64 because the QPX register integer states are not
// explicitly represented.
SDValue Ops[] = {StoreChain,
DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
FIdx};
SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
dl, VTs, Ops, MVT::v4i32, PtrInfo);
LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
LoadedVect);
SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
}
// All other QPX vectors are handled by generic code.
if (Subtarget.hasQPX())
return SDValue();
// Check if this is a splat of a constant value.
APInt APSplatBits, APSplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
bool BVNIsConstantSplat =
BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
HasAnyUndefs, 0, !Subtarget.isLittleEndian());
// If it is a splat of a double, check if we can shrink it to a 32 bit
// non-denormal float which when converted back to double gives us the same
// double. This is to exploit the XXSPLTIDP instruction.
if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
(SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
convertToNonDenormSingle(APSplatBits)) {
SDValue SplatNode = DAG.getNode(
PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
return DAG.getBitcast(Op.getValueType(), SplatNode);
}
if (!BVNIsConstantSplat || SplatBitSize > 32) {
bool IsPermutedLoad = false;
const SDValue *InputLoad =
getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
// Handle load-and-splat patterns as we have instructions that will do this
// in one go.
if (InputLoad && DAG.isSplatValue(Op, true)) {
LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
// We have handling for 4 and 8 byte elements.
unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
// Checking for a single use of this load, we have to check for vector
// width (128 bits) / ElementSize uses (since each operand of the
// BUILD_VECTOR is a separate use of the value.
if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
((Subtarget.hasVSX() && ElementSize == 64) ||
(Subtarget.hasP9Vector() && ElementSize == 32))) {
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr(), // Ptr
DAG.getValueType(Op.getValueType()) // VT
};
return
DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
DAG.getVTList(Op.getValueType(), MVT::Other),
Ops, LD->getMemoryVT(), LD->getMemOperand());
}
}
// BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
// lowered to VSX instructions under certain conditions.
// Without VSX, there is no pattern more efficient than expanding the node.
if (Subtarget.hasVSX() &&
haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
Subtarget.hasP8Vector()))
return Op;
return SDValue();
}
uint64_t SplatBits = APSplatBits.getZExtValue();
uint64_t SplatUndef = APSplatUndef.getZExtValue();
unsigned SplatSize = SplatBitSize / 8;
// First, handle single instruction cases.
// All zeros?
if (SplatBits == 0) {
// Canonicalize all zero vectors to be v4i32.
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
}
return Op;
}
// We have XXSPLTIW for constant splats four bytes wide.
// Given vector length is a multiple of 4, 2-byte splats can be replaced
// with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
// make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
// turned into a 4-byte splat of 0xABABABAB.
if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
Op.getValueType(), DAG, dl);
if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
dl);
// We have XXSPLTIB for constant splats one byte wide.
if (Subtarget.hasP9Vector() && SplatSize == 1)
return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
dl);
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
(32-SplatBitSize));
if (SextVal >= -16 && SextVal <= 15)
return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
dl);
// Two instruction sequences.
// If this value is in the range [-32,30] and is even, use:
// VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
// If this value is in the range [17,31] and is odd, use:
// VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
// If this value is in the range [-31,-17] and is odd, use:
// VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
// Note the last two are three-instruction sequences.
if (SextVal >= -32 && SextVal <= 31) {
// To avoid having these optimizations undone by constant folding,
// we convert to a pseudo that will be expanded later into one of
// the above forms.
SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
EVT VT = (SplatSize == 1 ? MVT::v16i8 :
(SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
if (VT == Op.getValueType())
return RetVal;
else
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
}
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
// for fneg/fabs.
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
// Make -1 and vspltisw -1:
SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
// Make the VSLW intrinsic, computing 0x8000_0000.
SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
OnesV, DAG, dl);
// xor by OnesV to invert it.
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// Check to see if this is a wide variety of vsplti*, binop self cases.
static const signed char SplatCsts[] = {
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
};
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
int i = SplatCsts[idx];
// Figure out what shift amount will be used by altivec if shifted by i in
// this splat size.
unsigned TypeShiftAmt = i & (SplatBitSize-1);
// vsplti + shl self.
if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
Intrinsic::ppc_altivec_vslw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + srl self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
Intrinsic::ppc_altivec_vsrw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + sra self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
Intrinsic::ppc_altivec_vsraw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + rol self.
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
Intrinsic::ppc_altivec_vrlw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// t = vsplti c, result = vsldoi t, t, 1
if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
}
// t = vsplti c, result = vsldoi t, t, 2
if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
}
// t = vsplti c, result = vsldoi t, t, 3
if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
}
}
return SDValue();
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VMRGHW,
OP_VMRGLW,
OP_VSPLTISW0,
OP_VSPLTISW1,
OP_VSPLTISW2,
OP_VSPLTISW3,
OP_VSLDOI4,
OP_VSLDOI8,
OP_VSLDOI12
};
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
int ShufIdxs[16];
switch (OpNum) {
default: llvm_unreachable("Unknown i32 permute!");
case OP_VMRGHW:
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
break;
case OP_VMRGLW:
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
break;
case OP_VSPLTISW0:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+0;
break;
case OP_VSPLTISW1:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+4;
break;
case OP_VSPLTISW2:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+8;
break;
case OP_VSPLTISW3:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+12;
break;
case OP_VSLDOI4:
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
case OP_VSLDOI8:
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
case OP_VSLDOI12:
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
}
EVT VT = OpLHS.getValueType();
OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
/// SDValue.
SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
SelectionDAG &DAG) const {
const unsigned BytesInVector = 16;
bool IsLE = Subtarget.isLittleEndian();
SDLoc dl(N);
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
unsigned ShiftElts = 0, InsertAtByte = 0;
bool Swap = false;
// Shifts required to get the byte we want at element 7.
unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1,
0, 15, 14, 13, 12, 11, 10, 9};
unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
1, 2, 3, 4, 5, 6, 7, 8};
ArrayRef<int> Mask = N->getMask();
int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
// For each mask element, find out if we're just inserting something
// from V2 into V1 or vice versa.
// Possible permutations inserting an element from V2 into V1:
// X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
// 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
// ...
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
// Inserting from V1 into V2 will be similar, except mask range will be
// [16,31].
bool FoundCandidate = false;
// If both vector operands for the shuffle are the same vector, the mask
// will contain only elements from the first one and the second one will be
// undef.
unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
// Go through the mask of half-words to find an element that's being moved
// from one vector to the other.
for (unsigned i = 0; i < BytesInVector; ++i) {
unsigned CurrentElement = Mask[i];
// If 2nd operand is undefined, we should only look for element 7 in the
// Mask.
if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
continue;
bool OtherElementsInOrder = true;
// Examine the other elements in the Mask to see if they're in original
// order.
for (unsigned j = 0; j < BytesInVector; ++j) {
if (j == i)
continue;
// If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
// from V2 [16,31] and vice versa. Unless the 2nd operand is undefined,
// in which we always assume we're always picking from the 1st operand.
int MaskOffset =
(!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
if (Mask[j] != OriginalOrder[j] + MaskOffset) {
OtherElementsInOrder = false;
break;
}
}
// If other elements are in original order, we record the number of shifts
// we need to get the element we want into element 7. Also record which byte
// in the vector we should insert into.
if (OtherElementsInOrder) {
// If 2nd operand is undefined, we assume no shifts and no swapping.
if (V2.isUndef()) {
ShiftElts = 0;
Swap = false;
} else {
// Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
: BigEndianShifts[CurrentElement & 0xF];
Swap = CurrentElement < BytesInVector;
}
InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
FoundCandidate = true;
break;
}
}
if (!FoundCandidate)
return SDValue();
// Candidate found, construct the proper SDAG sequence with VINSERTB,
// optionally with VECSHL if shift is required.
if (Swap)
std::swap(V1, V2);
if (V2.isUndef())
V2 = V1;
if (ShiftElts) {
SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
DAG.getConstant(ShiftElts, dl, MVT::i32));
return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
}
return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
}
/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
/// SDValue.
SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
SelectionDAG &DAG) const {
const unsigned NumHalfWords = 8;
const unsigned BytesInVector = NumHalfWords * 2;
// Check that the shuffle is on half-words.
if (!isNByteElemShuffleMask(N, 2, 1))
return SDValue();
bool IsLE = Subtarget.isLittleEndian();
SDLoc dl(N);
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
unsigned ShiftElts = 0, InsertAtByte = 0;
bool Swap = false;
// Shifts required to get the half-word we want at element 3.
unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
uint32_t Mask = 0;
uint32_t OriginalOrderLow = 0x1234567;
uint32_t OriginalOrderHigh = 0x89ABCDEF;
// Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a
// 32-bit space, only need 4-bit nibbles per element.
for (unsigned i = 0; i < NumHalfWords; ++i) {
unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
}
// For each mask element, find out if we're just inserting something
// from V2 into V1 or vice versa. Possible permutations inserting an element
// from V2 into V1:
// X, 1, 2, 3, 4, 5, 6, 7
// 0, X, 2, 3, 4, 5, 6, 7
// 0, 1, X, 3, 4, 5, 6, 7
// 0, 1, 2, X, 4, 5, 6, 7
// 0, 1, 2, 3, X, 5, 6, 7
// 0, 1, 2, 3, 4, X, 6, 7
// 0, 1, 2, 3, 4, 5, X, 7
// 0, 1, 2, 3, 4, 5, 6, X
// Inserting from V1 into V2 will be similar, except mask range will be [8,15].
bool FoundCandidate = false;
// Go through the mask of half-words to find an element that's being moved
// from one vector to the other.
for (unsigned i = 0; i < NumHalfWords; ++i) {
unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
uint32_t MaskOtherElts = ~(0xF << MaskShift);
uint32_t TargetOrder = 0x0;
// If both vector operands for the shuffle are the same vector, the mask
// will contain only elements from the first one and the second one will be
// undef.
if (V2.isUndef()) {
ShiftElts = 0;
unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
TargetOrder = OriginalOrderLow;
Swap = false;
// Skip if not the correct element or mask of other elements don't equal
// to our expected order.
if (MaskOneElt == VINSERTHSrcElem &&
(Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
FoundCandidate = true;
break;
}
} else { // If both operands are defined.
// Target order is [8,15] if the current mask is between [0,7].
TargetOrder =
(MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
// Skip if mask of other elements don't equal our expected order.
if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
// We only need the last 3 bits for the number of shifts.
ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
: BigEndianShifts[MaskOneElt & 0x7];
InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
Swap = MaskOneElt < NumHalfWords;
FoundCandidate = true;
break;
}
}
}
if (!FoundCandidate)
return SDValue();
// Candidate found, construct the proper SDAG sequence with VINSERTH,
// optionally with VECSHL if shift is required.
if (Swap)
std::swap(V1, V2);
if (V2.isUndef())
V2 = V1;
SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
if (ShiftElts) {
// Double ShiftElts because we're left shifting on v16i8 type.
SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
}
SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
}
/// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
/// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
/// return the default SDValue.
SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG) const {
// The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
// to v16i8. Peek through the bitcasts to get the actual operands.
SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
auto ShuffleMask = SVN->getMask();
SDValue VecShuffle(SVN, 0);
SDLoc DL(SVN);
// Check that we have a four byte shuffle.
if (!isNByteElemShuffleMask(SVN, 4, 1))
return SDValue();
// Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
std::swap(LHS, RHS);
VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
}
// Ensure that the RHS is a vector of constants.
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
if (!BVN)
return SDValue();
// Check if RHS is a splat of 4-bytes (or smaller).
APInt APSplatValue, APSplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
SplatBitSize > 32)
return SDValue();
// Check that the shuffle mask matches the semantics of XXSPLTI32DX.
// The instruction splats a constant C into two words of the source vector
// producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
// Thus we check that the shuffle mask is the equivalent of
// <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
// Note: the check above of isNByteElemShuffleMask() ensures that the bytes
// within each word are consecutive, so we only need to check the first byte.
SDValue Index;
bool IsLE = Subtarget.isLittleEndian();
if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
(ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
(ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
else
return SDValue();
// If the splat is narrower than 32-bits, we need to get the 32-bit value
// for XXSPLTI32DX.
unsigned SplatVal = APSplatValue.getZExtValue();
for (; SplatBitSize < 32; SplatBitSize <<= 1)
SplatVal |= (SplatVal << SplatBitSize);
SDValue SplatNode = DAG.getNode(
PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
}
/// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
/// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
/// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
/// i.e (or (shl x, C1), (srl x, 128-C1)).
SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
assert(Op.getValueType() == MVT::v1i128 &&
"Only set v1i128 as custom, other type shouldn't reach here!");
SDLoc dl(Op);
SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
unsigned SHLAmt = N1.getConstantOperandVal(0);
if (SHLAmt % 8 == 0) {
SmallVector<int, 16> Mask(16, 0);
std::iota(Mask.begin(), Mask.end(), 0);
std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
if (SDValue Shuffle =
DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
DAG.getUNDEF(MVT::v16i8), Mask))
return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
}
SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
DAG.getConstant(SHLAmt, dl, MVT::i32));
SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
}
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
/// return the code it can be lowered into. Worst case, it can always be
/// lowered into a vperm.
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
// Any nodes that were combined in the target-independent combiner prior
// to vector legalization will not be sent to the target combine. Try to
// combine it here.
if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
if (!isa<ShuffleVectorSDNode>(NewShuffle))
return NewShuffle;
Op = NewShuffle;
SVOp = cast<ShuffleVectorSDNode>(Op);
V1 = Op.getOperand(0);
V2 = Op.getOperand(1);
}
EVT VT = Op.getValueType();
bool isLittleEndian = Subtarget.isLittleEndian();
unsigned ShiftElts, InsertAtByte;
bool Swap = false;
// If this is a load-and-splat, we can do that with a single instruction
// in some cases. However if the load has multiple uses, we don't want to
// combine it because that will just produce multiple loads.
bool IsPermutedLoad = false;
const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
(PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
InputLoad->hasOneUse()) {
bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
int SplatIdx =
PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
// The splat index for permuted loads will be in the left half of the vector
// which is strictly wider than the loaded value by 8 bytes. So we need to
// adjust the splat index to point to the correct address in memory.
if (IsPermutedLoad) {
assert(isLittleEndian && "Unexpected permuted load on big endian target");
SplatIdx += IsFourByte ? 2 : 1;
assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
"Splat of a value outside of the loaded memory");
}
LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
// For 4-byte load-and-splat, we need Power9.
if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
uint64_t Offset = 0;
if (IsFourByte)
Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
else
Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
SDValue BasePtr = LD->getBasePtr();
if (Offset != 0)
BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
BasePtr, DAG.getIntPtrConstant(Offset, dl));
SDValue Ops[] = {
LD->getChain(), // Chain
BasePtr, // BasePtr
DAG.getValueType(Op.getValueType()) // VT
};
SDVTList VTL =
DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
SDValue LdSplt =
DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
Ops, LD->getMemoryVT(), LD->getMemOperand());
if (LdSplt.getValueType() != SVOp->getValueType(0))
LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
return LdSplt;
}
}
if (Subtarget.hasP9Vector() &&
PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
isLittleEndian)) {
if (Swap)
std::swap(V1, V2);
SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
if (ShiftElts) {
SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
DAG.getConstant(ShiftElts, dl, MVT::i32));
SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
}
SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
}
if (Subtarget.hasPrefixInstrs()) {
SDValue SplatInsertNode;
if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
return SplatInsertNode;
}
if (Subtarget.hasP9Altivec()) {
SDValue NewISDNode;
if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
return NewISDNode;
if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
return NewISDNode;
}
if (Subtarget.hasVSX() &&
PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
if (Swap)
std::swap(V1, V2);
SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
SDValue Conv2 =
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
DAG.getConstant(ShiftElts, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
}
if (Subtarget.hasVSX() &&
PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
if (Swap)
std::swap(V1, V2);
SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
SDValue Conv2 =
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
DAG.getConstant(ShiftElts, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
}
if (Subtarget.hasP9Vector()) {
if (PPC::isXXBRHShuffleMask(SVOp)) {
SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
} else if (PPC::isXXBRWShuffleMask(SVOp)) {
SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
} else if (PPC::isXXBRDShuffleMask(SVOp)) {
SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
} else if (PPC::isXXBRQShuffleMask(SVOp)) {
SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
}
}
if (Subtarget.hasVSX()) {
if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
DAG.getConstant(SplatIdx, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
}
// Left shifts of 8 bytes are actually swaps. Convert accordingly.
if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
}
}
if (Subtarget.hasQPX()) {
if (VT.getVectorNumElements() != 4)
return SDValue();
if (V2.isUndef()) V2 = V1;
int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
if (AlignIdx != -1) {
return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
DAG.getConstant(AlignIdx, dl, MVT::i32));
} else if (SVOp->isSplat()) {
int SplatIdx = SVOp->getSplatIndex();
if (SplatIdx >= 4) {
std::swap(V1, V2);
SplatIdx -= 4;
}
return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
DAG.getConstant(SplatIdx, dl, MVT::i32));
}
// Lower this into a qvgpci/qvfperm pair.
// Compute the qvgpci literal
unsigned idx = 0;
for (unsigned i = 0; i < 4; ++i) {
int m = SVOp->getMaskElt(i);
unsigned mm = m >= 0 ? (unsigned) m : i;
idx |= mm << (3-i)*3;
}
SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
DAG.getConstant(idx, dl, MVT::i32));
return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
}
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
// selected by the instruction selector.
if (V2.isUndef()) {
if (PPC::isSplatShuffleMask(SVOp, 1) ||
PPC::isSplatShuffleMask(SVOp, 2) ||
PPC::isSplatShuffleMask(SVOp, 4) ||
PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
(Subtarget.hasP8Altivec() && (
PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
return Op;
}
}
// Altivec has a variety of "shuffle immediates" that take two vector inputs
// and produce a fixed permutation. If any of these match, do not lower to
// VPERM.
unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
(Subtarget.hasP8Altivec() && (
PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
return Op;
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
// perfect shuffle table to emit an optimal matching sequence.
ArrayRef<int> PermMask = SVOp->getMask();
unsigned PFIndexes[4];
bool isFourElementShuffle = true;
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
unsigned EltNo = 8; // Start out undef.
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
if (PermMask[i*4+j] < 0)
continue; // Undef, ignore it.
unsigned ByteSource = PermMask[i*4+j];
if ((ByteSource & 3) != j) {
isFourElementShuffle = false;
break;
}
if (EltNo == 8) {
EltNo = ByteSource/4;
} else if (EltNo != ByteSource/4) {
isFourElementShuffle = false;
break;
}
}
PFIndexes[i] = EltNo;
}
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
// perfect shuffle vector to determine if it is cost effective to do this as
// discrete instructions, or whether we should use a vperm.
// For now, we skip this for little endian until such time as we have a
// little-endian perfect shuffle table.
if (isFourElementShuffle && !isLittleEndian) {
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
// Determining when to avoid vperm is tricky. Many things affect the cost
// of vperm, particularly how many times the perm mask needs to be computed.
// For example, if the perm mask can be hoisted out of a loop or is already
// used (perhaps because there are multiple permutes with the same shuffle
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
// the loop requires an extra register.
//
// As a compromise, we only emit discrete instructions if the shuffle can be
// generated in 3 or fewer operations. When we have loop information
// available, if this block is within a loop, we should avoid using vperm
// for 3-operation perms and use a constant pool load instead.
if (Cost < 3)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
// vector that will get spilled to the constant pool.
if (V2.isUndef()) V2 = V1;
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
// For little endian, the order of the input vectors is reversed, and
// the permutation mask is complemented with respect to 31. This is
// necessary to produce proper semantics with the big-endian-biased vperm
// instruction.
EVT EltVT = V1.getValueType().getVectorElementType();
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
SmallVector<SDValue, 16> ResultMask;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
for (unsigned j = 0; j != BytesPerElement; ++j)
if (isLittleEndian)
ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
dl, MVT::i32));
else
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
MVT::i32));
}
ShufflesHandledWithVPERM++;
SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
LLVM_DEBUG(SVOp->dump());
LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
LLVM_DEBUG(VPermMask.dump());
if (isLittleEndian)
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
V2, V1, VPermMask);
else
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
V1, V2, VPermMask);
}
/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
/// vector comparison. If it is, return true and fill in Opc/isDot with
/// information about the intrinsic.
static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
bool &isDot, const PPCSubtarget &Subtarget) {
unsigned IntrinsicID =
cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
CompareOpc = -1;
isDot = false;
switch (IntrinsicID) {
default:
return false;
// Comparison predicates.
case Intrinsic::ppc_altivec_vcmpbfp_p:
CompareOpc = 966;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpeqfp_p:
CompareOpc = 198;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpequb_p:
CompareOpc = 6;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpequh_p:
CompareOpc = 70;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpequw_p:
CompareOpc = 134;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpequd_p:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 199;
isDot = true;
} else
return false;
break;
case Intrinsic::ppc_altivec_vcmpneb_p:
case Intrinsic::ppc_altivec_vcmpneh_p:
case Intrinsic::ppc_altivec_vcmpnew_p:
case Intrinsic::ppc_altivec_vcmpnezb_p:
case Intrinsic::ppc_altivec_vcmpnezh_p:
case Intrinsic::ppc_altivec_vcmpnezw_p:
if (Subtarget.hasP9Altivec()) {
switch (IntrinsicID) {
default:
llvm_unreachable("Unknown comparison intrinsic.");
case Intrinsic::ppc_altivec_vcmpneb_p:
CompareOpc = 7;
break;
case Intrinsic::ppc_altivec_vcmpneh_p:
CompareOpc = 71;
break;
case Intrinsic::ppc_altivec_vcmpnew_p:
CompareOpc = 135;
break;
case Intrinsic::ppc_altivec_vcmpnezb_p:
CompareOpc = 263;
break;
case Intrinsic::ppc_altivec_vcmpnezh_p:
CompareOpc = 327;
break;
case Intrinsic::ppc_altivec_vcmpnezw_p:
CompareOpc = 391;
break;
}
isDot = true;
} else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgefp_p:
CompareOpc = 454;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtfp_p:
CompareOpc = 710;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtsb_p:
CompareOpc = 774;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtsh_p:
CompareOpc = 838;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtsw_p:
CompareOpc = 902;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtsd_p:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 967;
isDot = true;
} else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgtub_p:
CompareOpc = 518;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtuh_p:
CompareOpc = 582;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtuw_p:
CompareOpc = 646;
isDot = true;
break;
case Intrinsic::ppc_altivec_vcmpgtud_p:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 711;
isDot = true;
} else
return false;
break;
// VSX predicate comparisons use the same infrastructure
case Intrinsic::ppc_vsx_xvcmpeqdp_p:
case Intrinsic::ppc_vsx_xvcmpgedp_p:
case Intrinsic::ppc_vsx_xvcmpgtdp_p:
case Intrinsic::ppc_vsx_xvcmpeqsp_p:
case Intrinsic::ppc_vsx_xvcmpgesp_p:
case Intrinsic::ppc_vsx_xvcmpgtsp_p:
if (Subtarget.hasVSX()) {
switch (IntrinsicID) {
case Intrinsic::ppc_vsx_xvcmpeqdp_p:
CompareOpc = 99;
break;
case Intrinsic::ppc_vsx_xvcmpgedp_p:
CompareOpc = 115;
break;
case Intrinsic::ppc_vsx_xvcmpgtdp_p:
CompareOpc = 107;
break;
case Intrinsic::ppc_vsx_xvcmpeqsp_p:
CompareOpc = 67;
break;
case Intrinsic::ppc_vsx_xvcmpgesp_p:
CompareOpc = 83;
break;
case Intrinsic::ppc_vsx_xvcmpgtsp_p:
CompareOpc = 75;
break;
}
isDot = true;
} else
return false;
break;
// Normal Comparisons.
case Intrinsic::ppc_altivec_vcmpbfp:
CompareOpc = 966;
break;
case Intrinsic::ppc_altivec_vcmpeqfp:
CompareOpc = 198;
break;
case Intrinsic::ppc_altivec_vcmpequb:
CompareOpc = 6;
break;
case Intrinsic::ppc_altivec_vcmpequh:
CompareOpc = 70;
break;
case Intrinsic::ppc_altivec_vcmpequw:
CompareOpc = 134;
break;
case Intrinsic::ppc_altivec_vcmpequd:
if (Subtarget.hasP8Altivec())
CompareOpc = 199;
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpneb:
case Intrinsic::ppc_altivec_vcmpneh:
case Intrinsic::ppc_altivec_vcmpnew:
case Intrinsic::ppc_altivec_vcmpnezb:
case Intrinsic::ppc_altivec_vcmpnezh:
case Intrinsic::ppc_altivec_vcmpnezw:
if (Subtarget.hasP9Altivec())
switch (IntrinsicID) {
default:
llvm_unreachable("Unknown comparison intrinsic.");
case Intrinsic::ppc_altivec_vcmpneb:
CompareOpc = 7;
break;
case Intrinsic::ppc_altivec_vcmpneh:
CompareOpc = 71;
break;
case Intrinsic::ppc_altivec_vcmpnew:
CompareOpc = 135;
break;
case Intrinsic::ppc_altivec_vcmpnezb:
CompareOpc = 263;
break;
case Intrinsic::ppc_altivec_vcmpnezh:
CompareOpc = 327;
break;
case Intrinsic::ppc_altivec_vcmpnezw:
CompareOpc = 391;
break;
}
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgefp:
CompareOpc = 454;
break;
case Intrinsic::ppc_altivec_vcmpgtfp:
CompareOpc = 710;
break;
case Intrinsic::ppc_altivec_vcmpgtsb:
CompareOpc = 774;
break;
case Intrinsic::ppc_altivec_vcmpgtsh:
CompareOpc = 838;
break;
case Intrinsic::ppc_altivec_vcmpgtsw:
CompareOpc = 902;
break;
case Intrinsic::ppc_altivec_vcmpgtsd:
if (Subtarget.hasP8Altivec())
CompareOpc = 967;
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgtub:
CompareOpc = 518;
break;
case Intrinsic::ppc_altivec_vcmpgtuh:
CompareOpc = 582;
break;
case Intrinsic::ppc_altivec_vcmpgtuw:
CompareOpc = 646;
break;
case Intrinsic::ppc_altivec_vcmpgtud:
if (Subtarget.hasP8Altivec())
CompareOpc = 711;
else
return false;
break;
}
return true;
}
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
/// lower, do it, otherwise return null.
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
if (IntrinsicID == Intrinsic::thread_pointer) {
// Reads the thread pointer register, used for __builtin_thread_pointer.
if (Subtarget.isPPC64())
return DAG.getRegister(PPC::X13, MVT::i64);
return DAG.getRegister(PPC::R2, MVT::i32);
}
// If this is a lowered altivec predicate compare, CompareOpc is set to the
// opcode number of the comparison.
int CompareOpc;
bool isDot;
if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
return SDValue(); // Don't custom lower most intrinsics.
// If this is a non-dot comparison, make the VCMP node and we are done.
if (!isDot) {
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(CompareOpc, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
}
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
Op.getOperand(2), // LHS
Op.getOperand(3), // RHS
DAG.getConstant(CompareOpc, dl, MVT::i32)
};
EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
// Now that we have the comparison, emit a copy from the CR to a GPR.
// This is flagged to the above dot comparison.
SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
DAG.getRegister(PPC::CR6, MVT::i32),
CompNode.getValue(1));
// Unpack the result based on how the target uses it.
unsigned BitNo; // Bit # of CR6.
bool InvertBit; // Invert result?
switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Return the value of the EQ bit of CR6.
BitNo = 0; InvertBit = false;
break;
case 1: // Return the inverted value of the EQ bit of CR6.
BitNo = 0; InvertBit = true;
break;
case 2: // Return the value of the LT bit of CR6.
BitNo = 2; InvertBit = false;
break;
case 3: // Return the inverted value of the LT bit of CR6.
BitNo = 2; InvertBit = true;
break;
}
// Shift the bit into the low position.
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
// Isolate the bit.
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
DAG.getConstant(1, dl, MVT::i32));
// If we are supposed to, toggle the bit.
if (InvertBit)
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
DAG.getConstant(1, dl, MVT::i32));
return Flags;
}
SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
// SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
// the beginning of the argument list.
int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
SDLoc DL(Op);
switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
case Intrinsic::ppc_cfence: {
assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
Op.getOperand(ArgStart + 1)),
Op.getOperand(0)),
0);
}
default:
break;
}
return SDValue();
}
// Lower scalar BSWAP64 to xxbrd.
SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
// MTVSRDD
Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
Op.getOperand(0));
// XXBRD
Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
// MFVSRD
int VectorIndex = 0;
if (Subtarget.isLittleEndian())
VectorIndex = 1;
Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
return Op;
}
// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
// compared to a value that is atomically loaded (atomic loads zero-extend).
SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
"Expecting an atomic compare-and-swap here.");
SDLoc dl(Op);
auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
EVT MemVT = AtomicNode->getMemoryVT();
if (MemVT.getSizeInBits() >= 32)
return Op;
SDValue CmpOp = Op.getOperand(2);
// If this is already correctly zero-extended, leave it alone.
auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
if (DAG.MaskedValueIsZero(CmpOp, HighBits))
return Op;
// Clear the high bits of the compare operand.
unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
SDValue NewCmpOp =
DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
DAG.getConstant(MaskVal, dl, MVT::i32));
// Replace the existing compare operand with the properly zero-extended one.
SmallVector<SDValue, 4> Ops;
for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
Ops.push_back(AtomicNode->getOperand(i));
Ops[2] = NewCmpOp;
MachineMemOperand *MMO = AtomicNode->getMemOperand();
SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
auto NodeTy =
(MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
}
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// Create a stack slot that is 16-byte aligned.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
// Store the input value into Value#0 of the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
MachinePointerInfo());
// Load it out.
return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
}
SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
"Should only be called for ISD::INSERT_VECTOR_ELT");
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
// We have legal lowering for constant indices but not for variable ones.
if (!C)
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
// We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
if (VT == MVT::v8i16 || VT == MVT::v16i8) {
SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
unsigned InsertAtElement = C->getZExtValue();
unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
if (Subtarget.isLittleEndian()) {
InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
}
return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
DAG.getConstant(InsertAtByte, dl, MVT::i32));
}
return Op;
}
SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDNode *N = Op.getNode();
assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
"Unknown extract_vector_elt type");
SDValue Value = N->getOperand(0);
// The first part of this is like the store lowering except that we don't
// need to track the chain.
// The values are now known to be -1 (false) or 1 (true). To convert this
// into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
// This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
// FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
// understand how to form the extending load.
SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
// Now convert to an integer and store.
Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
Value);
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue StoreChain = DAG.getEntryNode();
SDValue Ops[] = {StoreChain,
DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
Value, FIdx};
SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
dl, VTs, Ops, MVT::v4i32, PtrInfo);
// Extract the value requested.
unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
SDValue IntVal =
DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
if (!Subtarget.useCRBits())
return IntVal;
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
}
/// Lowering for QPX v4i1 loads
SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
SDValue LoadChain = LN->getChain();
SDValue BasePtr = LN->getBasePtr();
if (Op.getValueType() == MVT::v4f64 ||
Op.getValueType() == MVT::v4f32) {
EVT MemVT = LN->getMemoryVT();
unsigned Alignment = LN->getAlignment();
// If this load is properly aligned, then it is legal.
if (Alignment >= MemVT.getStoreSize())
return Op;
EVT ScalarVT = Op.getValueType().getScalarType(),
ScalarMemVT = MemVT.getScalarType();
unsigned Stride = ScalarMemVT.getStoreSize();
SDValue Vals[4], LoadChains[4];
for (unsigned Idx = 0; Idx < 4; ++Idx) {
SDValue Load;
if (ScalarVT != ScalarMemVT)
Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
BasePtr,
LN->getPointerInfo().getWithOffset(Idx * Stride),
ScalarMemVT, MinAlign(Alignment, Idx * Stride),
LN->getMemOperand()->getFlags(), LN->getAAInfo());
else
Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
LN->getPointerInfo().getWithOffset(Idx * Stride),
MinAlign(Alignment, Idx * Stride),
LN->getMemOperand()->getFlags(), LN->getAAInfo());
if (Idx == 0 && LN->isIndexed()) {
assert(LN->getAddressingMode() == ISD::PRE_INC &&
"Unknown addressing mode on vector load");
Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
LN->getAddressingMode());
}
Vals[Idx] = Load;
LoadChains[Idx] = Load.getValue(1);
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, dl,
BasePtr.getValueType()));
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
if (LN->isIndexed()) {
SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
return DAG.getMergeValues(RetOps, dl);
}
SDValue RetOps[] = { Value, TF };
return DAG.getMergeValues(RetOps, dl);
}
assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
// To lower v4i1 from a byte array, we load the byte elements of the
// vector and then reuse the BUILD_VECTOR logic.
SDValue VectElmts[4], VectElmtChains[4];
for (unsigned i = 0; i < 4; ++i) {
SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
VectElmts[i] = DAG.getExtLoad(
ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
LN->getPointerInfo().getWithOffset(i), MVT::i8,
/* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
VectElmtChains[i] = VectElmts[i].getValue(1);
}
LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
SDValue RVals[] = { Value, LoadChain };
return DAG.getMergeValues(RVals, dl);
}
/// Lowering for QPX v4i1 stores
SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
SDValue StoreChain = SN->getChain();
SDValue BasePtr = SN->getBasePtr();
SDValue Value = SN->getValue();
if (Value.getValueType() == MVT::v4f64 ||
Value.getValueType() == MVT::v4f32) {
EVT MemVT = SN->getMemoryVT();
unsigned Alignment = SN->getAlignment();
// If this store is properly aligned, then it is legal.
if (Alignment >= MemVT.getStoreSize())
return Op;
EVT ScalarVT = Value.getValueType().getScalarType(),
ScalarMemVT = MemVT.getScalarType();
unsigned Stride = ScalarMemVT.getStoreSize();
SDValue Stores[4];
for (unsigned Idx = 0; Idx < 4; ++Idx) {
SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
DAG.getVectorIdxConstant(Idx, dl));
SDValue Store;
if (ScalarVT != ScalarMemVT)
Store =
DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
SN->getPointerInfo().getWithOffset(Idx * Stride),
ScalarMemVT, MinAlign(Alignment, Idx * Stride),
SN->getMemOperand()->getFlags(), SN->getAAInfo());
else
Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
SN->getPointerInfo().getWithOffset(Idx * Stride),
MinAlign(Alignment, Idx * Stride),
SN->getMemOperand()->getFlags(), SN->getAAInfo());
if (Idx == 0 && SN->isIndexed()) {
assert(SN->getAddressingMode() == ISD::PRE_INC &&
"Unknown addressing mode on vector store");
Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
SN->getAddressingMode());
}
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, dl,
BasePtr.getValueType()));
Stores[Idx] = Store;
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
if (SN->isIndexed()) {
SDValue RetOps[] = { TF, Stores[0].getValue(1) };
return DAG.getMergeValues(RetOps, dl);
}
return TF;
}
assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
// The values are now known to be -1 (false) or 1 (true). To convert this
// into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
// This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
// FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
// understand how to form the extending load.
SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
// Now convert to an integer and store.
Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
Value);
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Ops[] = {StoreChain,
DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
Value, FIdx};
SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
dl, VTs, Ops, MVT::v4i32, PtrInfo);
// Move data into the byte array.
SDValue Loads[4], LoadChains[4];
for (unsigned i = 0; i < 4; ++i) {
unsigned Offset = 4*i;
SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
PtrInfo.getWithOffset(Offset));
LoadChains[i] = Loads[i].getValue(1);
}
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
SDValue Stores[4];
for (unsigned i = 0; i < 4; ++i) {
SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
Stores[i] = DAG.getTruncStore(
StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
SN->getAAInfo());
}
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
return StoreChain;
}
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
if (Op.getValueType() == MVT::v4i32) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
// +16 as shift amt.
SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
SDValue RHSSwap = // = vrlw RHS, 16
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
// Shrinkify inputs to v8i16.
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
// Low parts multiplied together, generating 32-bit results (we ignore the
// top parts).
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
LHS, RHS, DAG, dl, MVT::v4i32);
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
// Shift the high parts up 16 bits.
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
Neg16, DAG, dl);
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
} else if (Op.getValueType() == MVT::v16i8) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
bool isLittleEndian = Subtarget.isLittleEndian();
// Multiply the even 8-bit parts, producing 16-bit sums.
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
LHS, RHS, DAG, dl, MVT::v8i16);
EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
// Multiply the odd 8-bit parts, producing 16-bit sums.
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
LHS, RHS, DAG, dl, MVT::v8i16);
OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
// Merge the results together. Because vmuleub and vmuloub are
// instructions with a big-endian bias, we must reverse the
// element numbering and reverse the meaning of "odd" and "even"
// when generating little endian code.
int Ops[16];
for (unsigned i = 0; i != 8; ++i) {
if (isLittleEndian) {
Ops[i*2 ] = 2*i;
Ops[i*2+1] = 2*i+16;
} else {
Ops[i*2 ] = 2*i+1;
Ops[i*2+1] = 2*i+1+16;
}
}
if (isLittleEndian)
return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
else
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
} else {
llvm_unreachable("Unknown mul to lower!");
}
}
SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
EVT VT = Op.getValueType();
assert(VT.isVector() &&
"Only set vector abs as custom, scalar abs shouldn't reach here!");
assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
VT == MVT::v16i8) &&
"Unexpected vector element type!");
assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
"Current subtarget doesn't support smax v2i64!");
// For vector abs, it can be lowered to:
// abs x
// ==>
// y = -x
// smax(x, y)
SDLoc dl(Op);
SDValue X = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
// SMAX patch https://reviews.llvm.org/D47332
// hasn't landed yet, so use intrinsic first here.
// TODO: Should use SMAX directly once SMAX patch landed
Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
if (VT == MVT::v2i64)
BifID = Intrinsic::ppc_altivec_vmaxsd;
else if (VT == MVT::v8i16)
BifID = Intrinsic::ppc_altivec_vmaxsh;
else if (VT == MVT::v16i8)
BifID = Intrinsic::ppc_altivec_vmaxsb;
return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
}
// Custom lowering for fpext vf32 to v2f64
SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::FP_EXTEND &&
"Should only be called for ISD::FP_EXTEND");
// FIXME: handle extends from half precision float vectors on P9.
// We only want to custom lower an extend from v2f32 to v2f64.
if (Op.getValueType() != MVT::v2f64 ||
Op.getOperand(0).getValueType() != MVT::v2f32)
return SDValue();
SDLoc dl(Op);
SDValue Op0 = Op.getOperand(0);
switch (Op0.getOpcode()) {
default:
return SDValue();
case ISD::EXTRACT_SUBVECTOR: {
assert(Op0.getNumOperands() == 2 &&
isa<ConstantSDNode>(Op0->getOperand(1)) &&
"Node should have 2 operands with second one being a constant!");
if (Op0.getOperand(0).getValueType() != MVT::v4f32)
return SDValue();
// Custom lower is only done for high or low doubleword.
int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
if (Idx % 2 != 0)
return SDValue();
// Since input is v4f32, at this point Idx is either 0 or 2.
// Shift to get the doubleword position we want.
int DWord = Idx >> 1;
// High and low word positions are different on little endian.
if (Subtarget.isLittleEndian())
DWord ^= 0x1;
return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
}
case ISD::FADD:
case ISD::FMUL:
case ISD::FSUB: {
SDValue NewLoad[2];
for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
// Ensure both input are loads.
SDValue LdOp = Op0.getOperand(i);
if (LdOp.getOpcode() != ISD::LOAD)
return SDValue();
// Generate new load node.
LoadSDNode *LD = cast<LoadSDNode>(LdOp);
SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
NewLoad[i] = DAG.getMemIntrinsicNode(
PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
LD->getMemoryVT(), LD->getMemOperand());
}
SDValue NewOp =
DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
NewLoad[1], Op0.getNode()->getFlags());
return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
DAG.getConstant(0, dl, MVT::i32));
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Op0);
SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
SDValue NewLd = DAG.getMemIntrinsicNode(
PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
LD->getMemoryVT(), LD->getMemOperand());
return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
DAG.getConstant(0, dl, MVT::i32));
}
}
llvm_unreachable("ERROR:Should return for all cases within swtich.");
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Wasn't expecting to be able to lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
// Variable argument lowering.
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::GET_DYNAMIC_AREA_OFFSET:
return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
// Exception handling lowering.
case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
// Lower 64-bit shifts.
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
// Vector-related lowering.
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::ABS: return LowerABS(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::ROTL: return LowerROTL(Op, DAG);
// For counter-based loop handling.
case ISD::INTRINSIC_W_CHAIN: return SDValue();
case ISD::BITCAST: return LowerBITCAST(Op, DAG);
// Frame & Return address.
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::INTRINSIC_VOID:
return LowerINTRINSIC_VOID(Op, DAG);
case ISD::BSWAP:
return LowerBSWAP(Op, DAG);
case ISD::ATOMIC_CMP_SWAP:
return LowerATOMIC_CMP_SWAP(Op, DAG);
}
}
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::READCYCLECOUNTER: {
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
Results.push_back(
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
Results.push_back(RTB.getValue(2));
break;
}
case ISD::INTRINSIC_W_CHAIN: {
if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
Intrinsic::loop_decrement)
break;
assert(N->getValueType(0) == MVT::i1 &&
"Unexpected result type for CTR decrement intrinsic");
EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
N->getValueType(0));
SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
N->getOperand(1));
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
Results.push_back(NewInt.getValue(1));
break;
}
case ISD::VAARG: {
if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
return;
EVT VT = N->getValueType(0);
if (VT == MVT::i64) {
SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
Results.push_back(NewNode);
Results.push_back(NewNode.getValue(1));
}
return;
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
// LowerFP_TO_INT() can only handle f32 and f64.
if (N->getOperand(0).getValueType() == MVT::ppcf128)
return;
Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
return;
case ISD::TRUNCATE: {
EVT TrgVT = N->getValueType(0);
EVT OpVT = N->getOperand(0).getValueType();
if (TrgVT.isVector() &&
isOperationCustom(N->getOpcode(), TrgVT) &&
OpVT.getSizeInBits() <= 128 &&
isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
return;
}
case ISD::BITCAST:
// Don't handle bitcast here.
return;
case ISD::FP_EXTEND:
SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
if (Lowered)
Results.push_back(Lowered);
return;
}
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *Func = Intrinsic::getDeclaration(M, Id);
return Builder.CreateCall(Func, {});
}
// The mappings for emitLeading/TrailingFence is taken from
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (Ord == AtomicOrdering::SequentiallyConsistent)
return callIntrinsic(Builder, Intrinsic::ppc_sync);
if (isReleaseOrStronger(Ord))
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
return nullptr;
}
Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
// See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
// http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
// and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
return Builder.CreateCall(
Intrinsic::getDeclaration(
Builder.GetInsertBlock()->getParent()->getParent(),
Intrinsic::ppc_cfence, {Inst->getType()}),
{Inst});
// FIXME: Can use isync for rmw operation.
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
}
return nullptr;
}
MachineBasicBlock *
PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
unsigned AtomicSize,
unsigned BinOpcode,
unsigned CmpOpcode,
unsigned CmpPred) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
auto LoadMnemonic = PPC::LDARX;
auto StoreMnemonic = PPC::STDCX;
switch (AtomicSize) {
default:
llvm_unreachable("Unexpected size of atomic entity");
case 1:
LoadMnemonic = PPC::LBARX;
StoreMnemonic = PPC::STBCX;
assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
break;
case 2:
LoadMnemonic = PPC::LHARX;
StoreMnemonic = PPC::STHCX;
assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
break;
case 4:
LoadMnemonic = PPC::LWARX;
StoreMnemonic = PPC::STWCX;
break;
case 8:
LoadMnemonic = PPC::LDARX;
StoreMnemonic = PPC::STDCX;
break;
}
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineFunction::iterator It = ++BB->getIterator();
Register dest = MI.getOperand(0).getReg();
Register ptrA = MI.getOperand(1).getReg();
Register ptrB = MI.getOperand(2).getReg();
Register incr = MI.getOperand(3).getReg();
DebugLoc dl = MI.getDebugLoc();
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB =
CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loopMBB);
if (CmpOpcode)
F->insert(It, loop2MBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
Register TmpReg = (!BinOpcode) ? incr :
RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// l[wd]arx dest, ptr
// add r0, dest, incr
// st[wd]cx. r0, ptr
// bne- loopMBB
// fallthrough --> exitMBB
// For max/min...
// loopMBB:
// l[wd]arx dest, ptr
// cmpl?[wd] incr, dest
// bgt exitMBB
// loop2MBB:
// st[wd]cx. dest, ptr
// bne- loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
.addReg(ptrA).addReg(ptrB);
if (BinOpcode)
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
if (CmpOpcode) {
// Signed comparisons of byte or halfword values must be sign-extended.
if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
ExtReg).addReg(dest);
BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
.addReg(incr).addReg(ExtReg);
} else
BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
.addReg(incr).addReg(dest);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(exitMBB);
BB = loop2MBB;
}
BuildMI(BB, dl, TII->get(StoreMnemonic))
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
return BB;
}
MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
MachineInstr &MI, MachineBasicBlock *BB,
bool is8bit, // operation
unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
// If we support part-word atomic mnemonics, just use them
if (Subtarget.hasPartwordAtomics())
return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
CmpPred);
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// In 64 bit mode we have to use 64 bits for addresses, even though the
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
// registers without caring whether they're 32 or 64, but here we're
// doing actual arithmetic on the addresses.
bool is64bit = Subtarget.isPPC64();
bool isLittleEndian = Subtarget.isLittleEndian();
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineFunction::iterator It = ++BB->getIterator();
Register dest = MI.getOperand(0).getReg();
Register ptrA = MI.getOperand(1).getReg();
Register ptrB = MI.getOperand(2).getReg();
Register incr = MI.getOperand(3).getReg();
DebugLoc dl = MI.getDebugLoc();
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB =
CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loopMBB);
if (CmpOpcode)
F->insert(It, loop2MBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC =
is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register PtrReg = RegInfo.createVirtualRegister(RC);
Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
Register ShiftReg =
isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
Register MaskReg = RegInfo.createVirtualRegister(GPRC);
Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
Register Ptr1Reg;
Register TmpReg =
(!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// The 4-byte load must be aligned, while a char or short may be
// anywhere in the word. Hence all this nasty bookkeeping code.
// add ptr1, ptrA, ptrB [copy if ptrA==0]
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
// xori shift, shift1, 24 [16]
// rlwinm ptr, ptr1, 0, 0, 29
// slw incr2, incr, shift
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
// slw mask, mask2, shift
// loopMBB:
// lwarx tmpDest, ptr
// add tmp, tmpDest, incr2
// andc tmp2, tmpDest, mask
// and tmp3, tmp, mask
// or tmp4, tmp3, tmp2
// stwcx. tmp4, ptr
// bne- loopMBB
// fallthrough --> exitMBB
// srw dest, tmpDest, shift
if (ptrA != ZeroReg) {
Ptr1Reg = RegInfo.createVirtualRegister(RC);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
.addReg(ptrA)
.addReg(ptrB);
} else {
Ptr1Reg = ptrB;
}
// We need use 32-bit subregister to avoid mismatch register class in 64-bit
// mode.
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
.addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
.addImm(3)
.addImm(27)
.addImm(is8bit ? 28 : 27);
if (!isLittleEndian)
BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
.addReg(Shift1Reg)
.addImm(is8bit ? 24 : 16);
if (is64bit)
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
.addReg(Ptr1Reg)
.addImm(0)
.addImm(61);
else
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
.addReg(Ptr1Reg)
.addImm(0)
.addImm(0)
.addImm(29);
BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
if (is8bit)
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
else {
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
.addReg(Mask3Reg)
.addImm(65535);
}
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
.addReg(Mask2Reg)
.addReg(ShiftReg);
BB = loopMBB;
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
.addReg(ZeroReg)
.addReg(PtrReg);
if (BinOpcode)
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
.addReg(Incr2Reg)
.addReg(TmpDestReg);
BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
.addReg(TmpDestReg)
.addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
if (CmpOpcode) {
// For unsigned comparisons, we can directly compare the shifted values.
// For signed comparisons we shift and sign extend.
Register SReg = RegInfo.createVirtualRegister(GPRC);
BuildMI(BB, dl, TII->get(PPC::AND), SReg)
.addReg(TmpDestReg)
.addReg(MaskReg);
unsigned ValueReg = SReg;
unsigned CmpReg = Incr2Reg;
if (CmpOpcode == PPC::CMPW) {
ValueReg = RegInfo.createVirtualRegister(GPRC);
BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
.addReg(SReg)
.addReg(ShiftReg);
Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
.addReg(ValueReg);
ValueReg = ValueSReg;
CmpReg = incr;
}
BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
.addReg(CmpReg)
.addReg(ValueReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(CmpPred)
.addReg(PPC::CR0)
.addMBB(exitMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(exitMBB);
BB = loop2MBB;
}
BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
BuildMI(BB, dl, TII->get(PPC::STWCX))
.addReg(Tmp4Reg)
.addReg(ZeroReg)
.addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE)
.addReg(PPC::CR0)
.addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
.addReg(TmpDestReg)
.addReg(ShiftReg);
return BB;
}
llvm::MachineBasicBlock *
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
Register DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
Register mainDstReg = MRI.createVirtualRegister(RC);
Register restoreDstReg = MRI.createVirtualRegister(RC);
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
// For v = setjmp(buf), we generate
//
// thisMBB:
// SjLjSetup mainMBB
// bl mainMBB
// v_restore = 1
// b sinkMBB
//
// mainMBB:
// buf[LabelOffset] = LR
// v_main = 0
//
// sinkMBB:
// v = phi(main, restore)
//
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
MachineInstrBuilder MIB;
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// Note that the structure of the jmp_buf used here is not compatible
// with that used by libc, and is not designed to be. Specifically, it
// stores only those 'reserved' registers that LLVM does not otherwise
// understand how to spill. Also, by convention, by the time this
// intrinsic is called, Clang has already stored the frame address in the
// first slot of the buffer and stack address in the third. Following the
// X86 target code, we'll store the jump address in the second slot. We also
// need to save the TOC pointer (R2) to handle jumps between shared
// libraries, and that will be stored in the fourth slot. The thread
// identifier (R13) is not affected.
// thisMBB:
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t TOCOffset = 3 * PVT.getStoreSize();
const int64_t BPOffset = 4 * PVT.getStoreSize();
// Prepare IP either in reg.
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
Register LabelReg = MRI.createVirtualRegister(PtrRC);
Register BufReg = MI.getOperand(1).getReg();
if (Subtarget.is64BitELFABI()) {
setUsesTOCBasePtr(*MBB->getParent());
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
.addReg(PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg)
.cloneMemRefs(MI);
}
// Naked functions never have a base pointer, and so we use r1. For all
// other functions, this decision must be delayed until during PEI.
unsigned BaseReg;
if (MF->getFunction().hasFnAttribute(Attribute::Naked))
BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
else
BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
MIB = BuildMI(*thisMBB, MI, DL,
TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
.addReg(BaseReg)
.addImm(BPOffset)
.addReg(BufReg)
.cloneMemRefs(MI);
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
MIB.addRegMask(TRI->getNoPreservedMask());
BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
.addMBB(mainMBB);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
// mainMBB:
// mainDstReg = 0
MIB =
BuildMI(mainMBB, DL,
TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
// Store IP
if (Subtarget.isPPC64()) {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
.addReg(LabelReg)
.addImm(LabelOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
.addReg(LabelReg)
.addImm(LabelOffset)
.addReg(BufReg);
}
MIB.cloneMemRefs(MI);
BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(PPC::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(restoreDstReg).addMBB(thisMBB);
MI.eraseFromParent();
return sinkMBB;
}
MachineBasicBlock *
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
const TargetRegisterClass *RC =
(PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
Register Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
unsigned BP =
(PVT == MVT::i64)
? PPC::X30
: (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
: PPC::R30);
MachineInstrBuilder MIB;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t SPOffset = 2 * PVT.getStoreSize();
const int64_t TOCOffset = 3 * PVT.getStoreSize();
const int64_t BPOffset = 4 * PVT.getStoreSize();
Register BufReg = MI.getOperand(0).getReg();
// Reload FP (the jumped-to function may not have had a
// frame pointer, and if so, then its r31 will be restored
// as necessary).
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
.addImm(0)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
.addImm(0)
.addReg(BufReg);
}
MIB.cloneMemRefs(MI);
// Reload IP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
.addImm(LabelOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
.addImm(LabelOffset)
.addReg(BufReg);
}
MIB.cloneMemRefs(MI);
// Reload SP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
.addImm(SPOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
.addImm(SPOffset)
.addReg(BufReg);
}
MIB.cloneMemRefs(MI);
// Reload BP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
.addImm(BPOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
.addImm(BPOffset)
.addReg(BufReg);
}
MIB.cloneMemRefs(MI);
// Reload TOC
if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
setUsesTOCBasePtr(*MBB->getParent());
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg)
.cloneMemRefs(MI);
}
// Jump
BuildMI(*MBB, MI, DL,
TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
MI.eraseFromParent();
return MBB;
}
bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
// If the function specifically requests inline stack probes, emit them.
if (MF.getFunction().hasFnAttribute("probe-stack"))
return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
"inline-asm";
return false;
}
unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
unsigned StackAlign = TFI->getStackAlignment();
assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
"Unexpected stack alignment");
// The default stack probe size is 4096 if the function has no
// stack-probe-size attribute.
unsigned StackProbeSize = 4096;
const Function &Fn = MF.getFunction();
if (Fn.hasFnAttribute("stack-probe-size"))
Fn.getFnAttribute("stack-probe-size")
.getValueAsString()
.getAsInteger(0, StackProbeSize);
// Round down to the stack alignment.
StackProbeSize &= ~(StackAlign - 1);
return StackProbeSize ? StackProbeSize : StackAlign;
}
// Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
// into three phases. In the first phase, it uses pseudo instruction
// PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
// FinalStackPtr. In the second phase, it generates a loop for probing blocks.
// At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
// MaxCallFrameSize so that it can calculate correct data area pointer.
MachineBasicBlock *
PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const bool isPPC64 = Subtarget.isPPC64();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
const unsigned ProbeSize = getStackProbeSize(*MF);
const BasicBlock *ProbedBB = MBB->getBasicBlock();
MachineRegisterInfo &MRI = MF->getRegInfo();
// The CFG of probing stack looks as
// +-----+
// | MBB |
// +--+--+
// |
// +----v----+
// +--->+ TestMBB +---+
// | +----+----+ |
// | | |
// | +-----v----+ |
// +---+ BlockMBB | |
// +----------+ |
// |
// +---------+ |
// | TailMBB +<--+
// +---------+
// In MBB, calculate previous frame pointer and final stack pointer.
// In TestMBB, test if sp is equal to final stack pointer, if so, jump to
// TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
// TailMBB is spliced via \p MI.
MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
MachineFunction::iterator MBBIter = ++MBB->getIterator();
MF->insert(MBBIter, TestMBB);
MF->insert(MBBIter, BlockMBB);
MF->insert(MBBIter, TailMBB);
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register DstReg = MI.getOperand(0).getReg();
Register NegSizeReg = MI.getOperand(1).getReg();
Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
// Since value of NegSizeReg might be realigned in prologepilog, insert a
// PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
// NegSize.
unsigned ProbeOpc;
if (!MRI.hasOneNonDBGUse(NegSizeReg))
ProbeOpc =
isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
else
// By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
// and NegSizeReg will be allocated in the same phyreg to avoid
// redundant copy when NegSizeReg has only one use which is current MI and
// will be replaced by PREPARE_PROBED_ALLOCA then.
ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
: PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
.addDef(ActualNegSizeReg)
.addReg(NegSizeReg)
.add(MI.getOperand(2))
.add(MI.getOperand(3));
// Calculate final stack pointer, which equals to SP + ActualNegSize.
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
FinalStackPtr)
.addReg(SPReg)
.addReg(ActualNegSizeReg);
// Materialize a scratch register for update.
int64_t NegProbeSize = -(int64_t)ProbeSize;
assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
if (!isInt<16>(NegProbeSize)) {
Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
.addImm(NegProbeSize >> 16);
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
ScratchReg)
.addReg(TempReg)
.addImm(NegProbeSize & 0xFFFF);
} else
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
.addImm(NegProbeSize);
{
// Probing leading residual part.
Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
.addReg(ActualNegSizeReg)
.addReg(ScratchReg);
Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
.addReg(Div)
.addReg(ScratchReg);
Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
.addReg(Mul)
.addReg(ActualNegSizeReg);
BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
.addReg(FramePointer)
.addReg(SPReg)
.addReg(NegMod);
}
{
// Remaining part should be multiple of ProbeSize.
Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
.addReg(SPReg)
.addReg(FinalStackPtr);
BuildMI(TestMBB, DL, TII->get(PPC::BCC))
.addImm(PPC::PRED_EQ)
.addReg(CmpResult)
.addMBB(TailMBB);
TestMBB->addSuccessor(BlockMBB);
TestMBB->addSuccessor(TailMBB);
}
{
// Touch the block.
// |P...|P...|P...
BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
.addReg(FramePointer)
.addReg(SPReg)
.addReg(ScratchReg);
BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
BlockMBB->addSuccessor(TestMBB);
}
// Calculation of MaxCallFrameSize is deferred to prologepilog, use
// DYNAREAOFFSET pseudo instruction to get the future result.
Register MaxCallFrameSizeReg =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
BuildMI(TailMBB, DL,
TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
MaxCallFrameSizeReg)
.add(MI.getOperand(2))
.add(MI.getOperand(3));
BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
.addReg(SPReg)
.addReg(MaxCallFrameSizeReg);
// Splice instructions after MI to TailMBB.
TailMBB->splice(TailMBB->end(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(TestMBB);
// Delete the pseudo instruction.
MI.eraseFromParent();
++NumDynamicAllocaProbed;
return TailMBB;
}
MachineBasicBlock *
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
if (MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT) {
if (Subtarget.is64BitELFABI() &&
MI.getOpcode() == TargetOpcode::PATCHPOINT &&
!Subtarget.isUsingPCRelativeCalls()) {
// Call lowering should have added an r2 operand to indicate a dependence
// on the TOC base pointer value. It can't however, because there is no
// way to mark the dependence as implicit there, and so the stackmap code
// will confuse it with a regular operand. Instead, add the dependence
// here.
MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
}
return emitPatchPoint(MI, BB);
}
if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
return emitEHSjLjSetJmp(MI, BB);
} else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
return emitEHSjLjLongJmp(MI, BB);
}
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// To "insert" these instructions we actually have to insert their
// control-flow patterns.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
MachineFunction *F = BB->getParent();
if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
MI.getOpcode() == PPC::SELECT_I8) {
SmallVector<MachineOperand, 2> Cond;
if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
MI.getOpcode() == PPC::SELECT_CC_I8)
Cond.push_back(MI.getOperand(4));
else
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
Cond.push_back(MI.getOperand(1));
DebugLoc dl = MI.getDebugLoc();
TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
} else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
MI.getOpcode() == PPC::SELECT_CC_F8 ||
MI.getOpcode() == PPC::SELECT_CC_F16 ||
MI.getOpcode() == PPC::SELECT_CC_QFRC ||
MI.getOpcode() == PPC::SELECT_CC_QSRC ||
MI.getOpcode() == PPC::SELECT_CC_QBRC ||
MI.getOpcode() == PPC::SELECT_CC_VRRC ||
MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
MI.getOpcode() == PPC::SELECT_CC_VSRC ||
MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
MI.getOpcode() == PPC::SELECT_CC_SPE ||
MI.getOpcode() == PPC::SELECT_F4 ||
MI.getOpcode() == PPC::SELECT_F8 ||
MI.getOpcode() == PPC::SELECT_F16 ||
MI.getOpcode() == PPC::SELECT_QFRC ||
MI.getOpcode() == PPC::SELECT_QSRC ||
MI.getOpcode() == PPC::SELECT_QBRC ||
MI.getOpcode() == PPC::SELECT_SPE ||
MI.getOpcode() == PPC::SELECT_SPE4 ||
MI.getOpcode() == PPC::SELECT_VRRC ||
MI.getOpcode() == PPC::SELECT_VSFRC ||
MI.getOpcode() == PPC::SELECT_VSSRC ||
MI.getOpcode() == PPC::SELECT_VSRC) {
// The incoming instruction knows the destination vreg to set, the
// condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
DebugLoc dl = MI.getDebugLoc();
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
MI.getOpcode() == PPC::SELECT_F16 ||
MI.getOpcode() == PPC::SELECT_SPE4 ||
MI.getOpcode() == PPC::SELECT_SPE ||
MI.getOpcode() == PPC::SELECT_QFRC ||
MI.getOpcode() == PPC::SELECT_QSRC ||
MI.getOpcode() == PPC::SELECT_QBRC ||
MI.getOpcode() == PPC::SELECT_VRRC ||
MI.getOpcode() == PPC::SELECT_VSFRC ||
MI.getOpcode() == PPC::SELECT_VSSRC ||
MI.getOpcode() == PPC::SELECT_VSRC) {
BuildMI(BB, dl, TII->get(PPC::BC))
.addReg(MI.getOperand(1).getReg())
.addMBB(sinkMBB);
} else {
unsigned SelectPred = MI.getOperand(4).getImm();
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(SelectPred)
.addReg(MI.getOperand(1).getReg())
.addMBB(sinkMBB);
}
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(3).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB);
} else if (MI.getOpcode() == PPC::ReadTB) {
// To read the 64-bit time-base register on a 32-bit target, we read the
// two halves. Should the counter have wrapped while it was being read, we
// need to try again.
// ...
// readLoop:
// mfspr Rx,TBU # load from TBU
// mfspr Ry,TB # load from TB
// mfspr Rz,TBU # load from TBU
// cmpw crX,Rx,Rz # check if 'old'='new'
// bne readLoop # branch if they're not equal
// ...
MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
DebugLoc dl = MI.getDebugLoc();
F->insert(It, readMBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(readMBB);
BB = readMBB;
MachineRegisterInfo &RegInfo = F->getRegInfo();
Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Register LoReg = MI.getOperand(0).getReg();
Register HiReg = MI.getOperand(1).getReg();
BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
.addReg(HiReg)
.addReg(ReadAgainReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE)
.addReg(CmpReg)
.addMBB(readMBB);
BB->addSuccessor(readMBB);
BB->addSuccessor(sinkMBB);
} else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
BB = EmitAtomicBinary(MI, BB, 4, 0);
else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
BB = EmitAtomicBinary(MI, BB, 8, 0);
else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
(Subtarget.hasPartwordAtomics() &&
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
(Subtarget.hasPartwordAtomics() &&
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
auto LoadMnemonic = PPC::LDARX;
auto StoreMnemonic = PPC::STDCX;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Compare and swap of unknown size");
case PPC::ATOMIC_CMP_SWAP_I8:
LoadMnemonic = PPC::LBARX;
StoreMnemonic = PPC::STBCX;
assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
break;
case PPC::ATOMIC_CMP_SWAP_I16:
LoadMnemonic = PPC::LHARX;
StoreMnemonic = PPC::STHCX;
assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
break;
case PPC::ATOMIC_CMP_SWAP_I32:
LoadMnemonic = PPC::LWARX;
StoreMnemonic = PPC::STWCX;
break;
case PPC::ATOMIC_CMP_SWAP_I64:
LoadMnemonic = PPC::LDARX;
StoreMnemonic = PPC::STDCX;
break;
}
Register dest = MI.getOperand(0).getReg();
Register ptrA = MI.getOperand(1).getReg();
Register ptrB = MI.getOperand(2).getReg();
Register oldval = MI.getOperand(3).getReg();
Register newval = MI.getOperand(4).getReg();
DebugLoc dl = MI.getDebugLoc();
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loop1MBB);
F->insert(It, loop2MBB);
F->insert(It, midMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loop1MBB);
// loop1MBB:
// l[bhwd]arx dest, ptr
// cmp[wd] dest, oldval
// bne- midMBB
// loop2MBB:
// st[bhwd]cx. newval, ptr
// bne- loopMBB
// b exitBB
// midMBB:
// st[bhwd]cx. dest, ptr
// exitBB:
BB = loop1MBB;
BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
.addReg(oldval)
.addReg(dest);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE)
.addReg(PPC::CR0)
.addMBB(midMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(midMBB);
BB = loop2MBB;
BuildMI(BB, dl, TII->get(StoreMnemonic))
.addReg(newval)
.addReg(ptrA)
.addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE)
.addReg(PPC::CR0)
.addMBB(loop1MBB);
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
BB = midMBB;
BuildMI(BB, dl, TII->get(StoreMnemonic))
.addReg(dest)
.addReg(ptrA)
.addReg(ptrB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
} else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
// We must use 64-bit registers for addresses when targeting 64-bit,
// since we're actually doing arithmetic on them. Other registers
// can be 32-bit.
bool is64bit = Subtarget.isPPC64();
bool isLittleEndian = Subtarget.isLittleEndian();
bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
Register dest = MI.getOperand(0).getReg();
Register ptrA = MI.getOperand(1).getReg();
Register ptrB = MI.getOperand(2).getReg();
Register oldval = MI.getOperand(3).getReg();
Register newval = MI.getOperand(4).getReg();
DebugLoc dl = MI.getDebugLoc();
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loop1MBB);
F->insert(It, loop2MBB);
F->insert(It, midMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC =
is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register PtrReg = RegInfo.createVirtualRegister(RC);
Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
Register ShiftReg =
isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
Register MaskReg = RegInfo.createVirtualRegister(GPRC);
Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
Register Ptr1Reg;
Register TmpReg = RegInfo.createVirtualRegister(GPRC);
Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loop1MBB);
// The 4-byte load must be aligned, while a char or short may be
// anywhere in the word. Hence all this nasty bookkeeping code.
// add ptr1, ptrA, ptrB [copy if ptrA==0]
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
// xori shift, shift1, 24 [16]
// rlwinm ptr, ptr1, 0, 0, 29
// slw newval2, newval, shift
// slw oldval2, oldval,shift
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
// slw mask, mask2, shift
// and newval3, newval2, mask
// and oldval3, oldval2, mask
// loop1MBB:
// lwarx tmpDest, ptr
// and tmp, tmpDest, mask
// cmpw tmp, oldval3
// bne- midMBB
// loop2MBB:
// andc tmp2, tmpDest, mask
// or tmp4, tmp2, newval3
// stwcx. tmp4, ptr
// bne- loop1MBB
// b exitBB
// midMBB:
// stwcx. tmpDest, ptr
// exitBB:
// srw dest, tmpDest, shift
if (ptrA != ZeroReg) {
Ptr1Reg = RegInfo.createVirtualRegister(RC);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
.addReg(ptrA)
.addReg(ptrB);
} else {
Ptr1Reg = ptrB;
}
// We need use 32-bit subregister to avoid mismatch register class in 64-bit
// mode.
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
.addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
.addImm(3)
.addImm(27)
.addImm(is8bit ? 28 : 27);
if (!isLittleEndian)
BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
.addReg(Shift1Reg)
.addImm(is8bit ? 24 : 16);
if (is64bit)
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
.addReg(Ptr1Reg)
.addImm(0)
.addImm(61);
else
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
.addReg(Ptr1Reg)
.addImm(0)
.addImm(0)
.addImm(29);
BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
.addReg(newval)
.addReg(ShiftReg);
BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
.addReg(oldval)
.addReg(ShiftReg);
if (is8bit)
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
else {
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
.addReg(Mask3Reg)
.addImm(65535);
}
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
.addReg(Mask2Reg)
.addReg(ShiftReg);
BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
.addReg(NewVal2Reg)
.addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
.addReg(OldVal2Reg)
.addReg(MaskReg);
BB = loop1MBB;
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
.addReg(ZeroReg)
.addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
.addReg(TmpDestReg)
.addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
.addReg(TmpReg)
.addReg(OldVal3Reg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE)
.addReg(PPC::CR0)
.addMBB(midMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(midMBB);
BB = loop2MBB;
BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
.addReg(TmpDestReg)
.addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
.addReg(Tmp2Reg)
.addReg(NewVal3Reg);
BuildMI(BB, dl, TII->get(PPC::STWCX))
.addReg(Tmp4Reg)
.addReg(ZeroReg)
.addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE)
.addReg(PPC::CR0)
.addMBB(loop1MBB);
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
BB = midMBB;
BuildMI(BB, dl, TII->get(PPC::STWCX))
.addReg(TmpDestReg)
.addReg(ZeroReg)
.addReg(PtrReg);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
.addReg(TmpReg)
.addReg(ShiftReg);
} else if (MI.getOpcode() == PPC::FADDrtz) {
// This pseudo performs an FADD with rounding mode temporarily forced
// to round-to-zero. We emit this via custom inserter since the FPSCR
// is not modeled at the SelectionDAG level.
Register Dest = MI.getOperand(0).getReg();
Register Src1 = MI.getOperand(1).getReg();
Register Src2 = MI.getOperand(2).getReg();
DebugLoc dl = MI.getDebugLoc();
MachineRegisterInfo &RegInfo = F->getRegInfo();
Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
// Save FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
// Set rounding mode to round-to-zero.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
// Perform addition.
BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
// Restore FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
} else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
? PPC::ANDI8_rec
: PPC::ANDI_rec;
bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
MachineRegisterInfo &RegInfo = F->getRegInfo();
Register Dest = RegInfo.createVirtualRegister(
Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
DebugLoc Dl = MI.getDebugLoc();
BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
.addReg(MI.getOperand(1).getReg())
.addImm(1);
BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
MI.getOperand(0).getReg())
.addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
} else if (MI.getOpcode() == PPC::TCHECK_RET) {
DebugLoc Dl = MI.getDebugLoc();
MachineRegisterInfo &RegInfo = F->getRegInfo();
Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
MI.getOperand(0).getReg())
.addReg(CRReg);
} else if (MI.getOpcode() == PPC::TBEGIN_RET) {
DebugLoc Dl = MI.getDebugLoc();
unsigned Imm = MI.getOperand(1).getImm();
BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
MI.getOperand(0).getReg())
.addReg(PPC::CR0EQ);
} else if (MI.getOpcode() == PPC::SETRNDi) {
DebugLoc dl = MI.getDebugLoc();
Register OldFPSCRReg = MI.getOperand(0).getReg();
// Save FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
// The floating point rounding mode is in the bits 62:63 of FPCSR, and has
// the following settings:
// 00 Round to nearest
// 01 Round to 0
// 10 Round to +inf
// 11 Round to -inf
// When the operand is immediate, using the two least significant bits of
// the immediate to set the bits 62:63 of FPSCR.
unsigned Mode = MI.getOperand(1).getImm();
BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
.addImm(31);
BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
.addImm(30);
} else if (MI.getOpcode() == PPC::SETRND) {
DebugLoc dl = MI.getDebugLoc();
// Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
// or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
// If the target doesn't have DirectMove, we should use stack to do the
// conversion, because the target doesn't have the instructions like mtvsrd
// or mfvsrd to do this conversion directly.
auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
if (Subtarget.hasDirectMove()) {
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
.addReg(SrcReg);
} else {
// Use stack to do the register copy.
unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
if (RC == &PPC::F8RCRegClass) {
// Copy register from F8RCRegClass to G8RCRegclass.
assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
"Unsupported RegClass.");
StoreOp = PPC::STFD;
LoadOp = PPC::LD;
} else {
// Copy register from G8RCRegClass to F8RCRegclass.
assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
(RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
"Unsupported RegClass.");
}
MachineFrameInfo &MFI = F->getFrameInfo();
int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
MachineMemOperand *MMOStore = F->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
MFI.getObjectAlign(FrameIdx));
// Store the SrcReg into the stack.
BuildMI(*BB, MI, dl, TII->get(StoreOp))
.addReg(SrcReg)
.addImm(0)
.addFrameIndex(FrameIdx)
.addMemOperand(MMOStore);
MachineMemOperand *MMOLoad = F->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
MFI.getObjectAlign(FrameIdx));
// Load from the stack where SrcReg is stored, and save to DestReg,
// so we have done the RegClass conversion from RegClass::SrcReg to
// RegClass::DestReg.
BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
.addImm(0)
.addFrameIndex(FrameIdx)
.addMemOperand(MMOLoad);
}
};
Register OldFPSCRReg = MI.getOperand(0).getReg();
// Save FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
// When the operand is gprc register, use two least significant bits of the
// register and mtfsf instruction to set the bits 62:63 of FPSCR.
//
// copy OldFPSCRTmpReg, OldFPSCRReg
// (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
// rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
// copy NewFPSCRReg, NewFPSCRTmpReg
// mtfsf 255, NewFPSCRReg
MachineOperand SrcOp = MI.getOperand(1);
MachineRegisterInfo &RegInfo = F->getRegInfo();
Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
// The first operand of INSERT_SUBREG should be a register which has
// subregisters, we only care about its RegClass, so we should use an
// IMPLICIT_DEF register.
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
.addReg(ImDefReg)
.add(SrcOp)
.addImm(1);
Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
.addReg(OldFPSCRTmpReg)
.addReg(ExtSrcReg)
.addImm(0)
.addImm(62);
Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
// The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
// bits of FPSCR.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
.addImm(255)
.addReg(NewFPSCRReg)
.addImm(0)
.addImm(0);
} else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
return emitProbedAlloca(MI, BB);
} else {
llvm_unreachable("Unexpected instr type to insert");
}
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
// For the estimates, convergence is quadratic, so we essentially double the
// number of digits correct after every iteration. For both FRE and FRSQRTE,
// the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
// this is 2^-14. IEEE float has 23 digits and double has 52 digits.
int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
RefinementSteps++;
return RefinementSteps;
}
SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &RefinementSteps,
bool &UseOneConstNR,
bool Reciprocal) const {
EVT VT = Operand.getValueType();
if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
(VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX()) ||
(VT == MVT::v4f32 && Subtarget.hasQPX()) ||
(VT == MVT::v4f64 && Subtarget.hasQPX())) {
if (RefinementSteps == ReciprocalEstimate::Unspecified)
RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
// The Newton-Raphson computation with a single constant does not provide
// enough accuracy on some CPUs.
UseOneConstNR = !Subtarget.needsTwoConstNR();
return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled,
int &RefinementSteps) const {
EVT VT = Operand.getValueType();
if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
(VT == MVT::f64 && Subtarget.hasFRE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX()) ||
(VT == MVT::v4f32 && Subtarget.hasQPX()) ||
(VT == MVT::v4f64 && Subtarget.hasQPX())) {
if (RefinementSteps == ReciprocalEstimate::Unspecified)
RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
// Note: This functionality is used only when unsafe-fp-math is enabled, and
// on cores with reciprocal estimates (which are used when unsafe-fp-math is
// enabled for division), this functionality is redundant with the default
// combiner logic (once the division -> reciprocal/multiply transformation
// has taken place). As a result, this matters more for older cores than for
// newer ones.
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal if there are two or more FDIVs (for embedded cores with only
// one FP pipeline) for three or more FDIVs (for generic OOO cores).
switch (Subtarget.getCPUDirective()) {
default:
return 3;
case PPC::DIR_440:
case PPC::DIR_A2:
case PPC::DIR_E500:
case PPC::DIR_E500mc:
case PPC::DIR_E5500:
return 2;
}
}
// isConsecutiveLSLoc needs to work even if all adds have not yet been
// collapsed, and so we need to look through chains of them.
static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
int64_t& Offset, SelectionDAG &DAG) {
if (DAG.isBaseWithConstantOffset(Loc)) {
Base = Loc.getOperand(0);
Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
// The base might itself be a base plus an offset, and if so, accumulate
// that as well.
getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
}
}
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
unsigned Bytes, int Dist,
SelectionDAG &DAG) {
if (VT.getSizeInBits() / 8 != Bytes)
return false;
SDValue BaseLoc = Base->getBasePtr();
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
int FS = MFI.getObjectSize(FI);
int BFS = MFI.getObjectSize(BFI);
if (FS != BFS || FS != (int)Bytes) return false;
return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
}
SDValue Base1 = Loc, Base2 = BaseLoc;
int64_t Offset1 = 0, Offset2 = 0;
getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
return true;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const GlobalValue *GV1 = nullptr;
const GlobalValue *GV2 = nullptr;
Offset1 = 0;
Offset2 = 0;
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
return Offset1 == (Offset2 + Dist*Bytes);
return false;
}
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
// not enforce equality of the chain operands.
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
unsigned Bytes, int Dist,
SelectionDAG &DAG) {
if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
EVT VT = LS->getMemoryVT();
SDValue Loc = LS->getBasePtr();
return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
}
if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
EVT VT;
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default: return false;
case Intrinsic::ppc_qpx_qvlfd:
case Intrinsic::ppc_qpx_qvlfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvlfs:
case Intrinsic::ppc_qpx_qvlfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvlfcd:
case Intrinsic::ppc_qpx_qvlfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfcs:
case Intrinsic::ppc_qpx_qvlfcsa:
VT = MVT::v2f32;
break;
case Intrinsic::ppc_qpx_qvlfiwa:
case Intrinsic::ppc_qpx_qvlfiwz:
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
case Intrinsic::ppc_vsx_lxvw4x:
case Intrinsic::ppc_vsx_lxvw4x_be:
VT = MVT::v4i32;
break;
case Intrinsic::ppc_vsx_lxvd2x:
case Intrinsic::ppc_vsx_lxvd2x_be:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_altivec_lvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_lvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_lvewx:
VT = MVT::i32;
break;
}
return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
}
if (N->getOpcode() == ISD::INTRINSIC_VOID) {
EVT VT;
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default: return false;
case Intrinsic::ppc_qpx_qvstfd:
case Intrinsic::ppc_qpx_qvstfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvstfs:
case Intrinsic::ppc_qpx_qvstfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvstfcd:
case Intrinsic::ppc_qpx_qvstfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfcs:
case Intrinsic::ppc_qpx_qvstfcsa:
VT = MVT::v2f32;
break;
case Intrinsic::ppc_qpx_qvstfiw:
case Intrinsic::ppc_qpx_qvstfiwa:
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
case Intrinsic::ppc_vsx_stxvw4x:
VT = MVT::v4i32;
break;
case Intrinsic::ppc_vsx_stxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_vsx_stxvw4x_be:
VT = MVT::v4i32;
break;
case Intrinsic::ppc_vsx_stxvd2x_be:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_altivec_stvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_stvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_stvewx:
VT = MVT::i32;
break;
}
return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
}
return false;
}
// Return true is there is a nearyby consecutive load to the one provided
// (regardless of alignment). We search up and down the chain, looking though
// token factors and other loads (but nothing else). As a result, a true result
// indicates that it is safe to create a new consecutive load adjacent to the
// load provided.
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
SDValue Chain = LD->getChain();
EVT VT = LD->getMemoryVT();
SmallSet<SDNode *, 16> LoadRoots;
SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
SmallSet<SDNode *, 16> Visited;
// First, search up the chain, branching to follow all token-factor operands.
// If we find a consecutive load, then we're done, otherwise, record all
// nodes just above the top-level loads and token factors.
while (!Queue.empty()) {
SDNode *ChainNext = Queue.pop_back_val();
if (!Visited.insert(ChainNext).second)
continue;
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
if (!Visited.count(ChainLD->getChain().getNode()))
Queue.push_back(ChainLD->getChain().getNode());
} else if (ChainNext->getOpcode() == ISD::TokenFactor) {
for (const SDUse &O : ChainNext->ops())
if (!Visited.count(O.getNode()))
Queue.push_back(O.getNode());
} else
LoadRoots.insert(ChainNext);
}
// Second, search down the chain, starting from the top-level nodes recorded
// in the first phase. These top-level nodes are the nodes just above all
// loads and token factors. Starting with their uses, recursively look though
// all loads (just the chain uses) and token factors to find a consecutive
// load.
Visited.clear();
Queue.clear();
for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
IE = LoadRoots.end(); I != IE; ++I) {
Queue.push_back(*I);
while (!Queue.empty()) {
SDNode *LoadRoot = Queue.pop_back_val();
if (!Visited.insert(LoadRoot).second)
continue;
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
for (SDNode::use_iterator UI = LoadRoot->use_begin(),
UE = LoadRoot->use_end(); UI != UE; ++UI)
if (((isa<MemSDNode>(*UI) &&
cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
Queue.push_back(*UI);
}
}
return false;
}
/// This function is called when we have proved that a SETCC node can be replaced
/// by subtraction (and other supporting instructions) so that the result of
/// comparison is kept in a GPR instead of CR. This function is purely for
/// codegen purposes and has some flags to guide the codegen process.
static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
bool Swap, SDLoc &DL, SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
// Zero extend the operands to the largest legal integer. Originally, they
// must be of a strictly smaller size.
auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
DAG.getConstant(Size, DL, MVT::i32));
auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
DAG.getConstant(Size, DL, MVT::i32));
// Swap if needed. Depends on the condition code.
if (Swap)
std::swap(Op0, Op1);
// Subtract extended integers.
auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
// Move the sign bit to the least significant position and zero out the rest.
// Now the least significant bit carries the result of original comparison.
auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
DAG.getConstant(Size - 1, DL, MVT::i32));
auto Final = Shifted;
// Complement the result if needed. Based on the condition code.
if (Complement)
Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
DAG.getConstant(1, DL, MVT::i64));
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
}
SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
// Size of integers being compared has a critical role in the following
// analysis, so we prefer to do this when all types are legal.
if (!DCI.isAfterLegalizeDAG())
return SDValue();
// If all users of SETCC extend its value to a legal integer type
// then we replace SETCC with a subtraction
for (SDNode::use_iterator UI = N->use_begin(),
UE = N->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
}
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
auto OpSize = N->getOperand(0).getValueSizeInBits();
unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
if (OpSize < Size) {
switch (CC) {
default: break;
case ISD::SETULT:
return generateEquivalentSub(N, Size, false, false, DL, DAG);
case ISD::SETULE:
return generateEquivalentSub(N, Size, true, true, DL, DAG);
case ISD::SETUGT:
return generateEquivalentSub(N, Size, false, true, DL, DAG);
case ISD::SETUGE:
return generateEquivalentSub(N, Size, true, false, DL, DAG);
}
}
return SDValue();
}
SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
// If we're tracking CR bits, we need to be careful that we don't have:
// trunc(binary-ops(zext(x), zext(y)))
// or
// trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
// such that we're unnecessarily moving things into GPRs when it would be
// better to keep them in CR bits.
// Note that trunc here can be an actual i1 trunc, or can be the effective
// truncation that comes from a setcc or select_cc.
if (N->getOpcode() == ISD::TRUNCATE &&
N->getValueType(0) != MVT::i1)
return SDValue();
if (N->getOperand(0).getValueType() != MVT::i32 &&
N->getOperand(0).getValueType() != MVT::i64)
return SDValue();
if (N->getOpcode() == ISD::SETCC ||
N->getOpcode() == ISD::SELECT_CC) {
// If we're looking at a comparison, then we need to make sure that the
// high bits (all except for the first) don't matter the result.
ISD::CondCode CC =
cast<CondCodeSDNode>(N->getOperand(
N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
unsigned OpBits = N->getOperand(0).getValueSizeInBits();
if (ISD::isSignedIntSetCC(CC)) {
if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
return SDValue();
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (!DAG.MaskedValueIsZero(N->getOperand(0),
APInt::getHighBitsSet(OpBits, OpBits-1)) ||
!DAG.MaskedValueIsZero(N->getOperand(1),
APInt::getHighBitsSet(OpBits, OpBits-1)))
return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
: SDValue());
} else {
// This is neither a signed nor an unsigned comparison, just make sure
// that the high bits are equal.
KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
// We don't really care about what is known about the first bit (if
// anything), so clear it in all masks prior to comparing them.
Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
return SDValue();
}
}
// We now know that the higher-order bits are irrelevant, we just need to
// make sure that all of the intermediate operations are bit operations, and
// all inputs are extensions.
if (N->getOperand(0).getOpcode() != ISD::AND &&
N->getOperand(0).getOpcode() != ISD::OR &&
N->getOperand(0).getOpcode() != ISD::XOR &&
N->getOperand(0).getOpcode() != ISD::SELECT &&
N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
return SDValue();
if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
N->getOperand(1).getOpcode() != ISD::AND &&
N->getOperand(1).getOpcode() != ISD::OR &&
N->getOperand(1).getOpcode() != ISD::XOR &&
N->getOperand(1).getOpcode() != ISD::SELECT &&
N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
return SDValue();
SmallVector<SDValue, 4> Inputs;
SmallVector<SDValue, 8> BinOps, PromOps;
SmallPtrSet<SDNode *, 16> Visited;
for (unsigned i = 0; i < 2; ++i) {
if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
isa<ConstantSDNode>(N->getOperand(i)))
Inputs.push_back(N->getOperand(i));
else
BinOps.push_back(N->getOperand(i));
if (N->getOpcode() == ISD::TRUNCATE)
break;
}
// Visit all inputs, collect all binary operations (and, or, xor and
// select) that are all fed by extensions.
while (!BinOps.empty()) {
SDValue BinOp = BinOps.back();
BinOps.pop_back();
if (!Visited.insert(BinOp.getNode()).second)
continue;
PromOps.push_back(BinOp);
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
// The condition of the select is not promoted.
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
continue;
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
continue;
if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
isa<ConstantSDNode>(BinOp.getOperand(i))) {
Inputs.push_back(BinOp.getOperand(i));
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
BinOp.getOperand(i).getOpcode() == ISD::OR ||
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
BinOps.push_back(BinOp.getOperand(i));
} else {
// We have an input that is not an extension or another binary
// operation; we'll abort this transformation.
return SDValue();
}
}
}
// Make sure that this is a self-contained cluster of operations (which
// is not quite the same thing as saying that everything has only one
// use).
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
if (isa<ConstantSDNode>(Inputs[i]))
continue;
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
UE = Inputs[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// Make sure that we're not going to promote the non-output-value
// operand(s) or SELECT or SELECT_CC.
// FIXME: Although we could sometimes handle this, and it does occur in
// practice that one of the condition inputs to the select is also one of
// the outputs, we currently can't deal with this.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == Inputs[i])
return SDValue();
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == Inputs[i] ||
User->getOperand(1) == Inputs[i])
return SDValue();
}
}
}
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
UE = PromOps[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// Make sure that we're not going to promote the non-output-value
// operand(s) or SELECT or SELECT_CC.
// FIXME: Although we could sometimes handle this, and it does occur in
// practice that one of the condition inputs to the select is also one of
// the outputs, we currently can't deal with this.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == PromOps[i])
return SDValue();
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == PromOps[i] ||
User->getOperand(1) == PromOps[i])
return SDValue();
}
}
}
// Replace all inputs with the extension operand.
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
// Constants may have users outside the cluster of to-be-promoted nodes,
// and so we need to replace those as we do the promotions.
if (isa<ConstantSDNode>(Inputs[i]))
continue;
else
DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
}
std::list<HandleSDNode> PromOpHandles;
for (auto &PromOp : PromOps)
PromOpHandles.emplace_back(PromOp);
// Replace all operations (these are all the same, but have a different
// (i1) return type). DAG.getNode will validate that the types of
// a binary operator match, so go through the list in reverse so that
// we've likely promoted both operands first. Any intermediate truncations or
// extensions disappear.
while (!PromOpHandles.empty()) {
SDValue PromOp = PromOpHandles.back().getValue();
PromOpHandles.pop_back();
if (PromOp.getOpcode() == ISD::TRUNCATE ||
PromOp.getOpcode() == ISD::SIGN_EXTEND ||
PromOp.getOpcode() == ISD::ZERO_EXTEND ||
PromOp.getOpcode() == ISD::ANY_EXTEND) {
if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
PromOp.getOperand(0).getValueType() != MVT::i1) {
// The operand is not yet ready (see comment below).
PromOpHandles.emplace_front(PromOp);
continue;
}
SDValue RepValue = PromOp.getOperand(0);
if (isa<ConstantSDNode>(RepValue))
RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
continue;
}
unsigned C;
switch (PromOp.getOpcode()) {
default: C = 0; break;
case ISD::SELECT: C = 1; break;
case ISD::SELECT_CC: C = 2; break;
}
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
PromOp.getOperand(C).getValueType() != MVT::i1) ||
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
// The to-be-promoted operands of this node have not yet been
// promoted (this should be rare because we're going through the
// list backward, but if one of the operands has several users in
// this cluster of to-be-promoted nodes, it is possible).
PromOpHandles.emplace_front(PromOp);
continue;
}
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
PromOp.getNode()->op_end());
// If there are any constant inputs, make sure they're replaced now.
for (unsigned i = 0; i < 2; ++i)
if (isa<ConstantSDNode>(Ops[C+i]))
Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
DAG.ReplaceAllUsesOfValueWith(PromOp,
DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
}
// Now we're left with the initial truncation itself.
if (N->getOpcode() == ISD::TRUNCATE)
return N->getOperand(0);
// Otherwise, this is a comparison. The operands to be compared have just
// changed type (to i1), but everything else is the same.
return SDValue(N, 0);
}
SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
// If we're tracking CR bits, we need to be careful that we don't have:
// zext(binary-ops(trunc(x), trunc(y)))
// or
// zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
// such that we're unnecessarily moving things into CR bits that can more
// efficiently stay in GPRs. Note that if we're not certain that the high
// bits are set as required by the final extension, we still may need to do
// some masking to get the proper behavior.
// This same functionality is important on PPC64 when dealing with
// 32-to-64-bit extensions; these occur often when 32-bit values are used as
// the return values of functions. Because it is so similar, it is handled
// here as well.
if (N->getValueType(0) != MVT::i32 &&
N->getValueType(0) != MVT::i64)
return SDValue();
if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
(N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
return SDValue();
if (N->getOperand(0).getOpcode() != ISD::AND &&
N->getOperand(0).getOpcode() != ISD::OR &&
N->getOperand(0).getOpcode() != ISD::XOR &&
N->getOperand(0).getOpcode() != ISD::SELECT &&
N->getOperand(0).getOpcode() != ISD::SELECT_CC)
return SDValue();
SmallVector<SDValue, 4> Inputs;
SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
SmallPtrSet<SDNode *, 16> Visited;
// Visit all inputs, collect all binary operations (and, or, xor and
// select) that are all fed by truncations.
while (!BinOps.empty()) {
SDValue BinOp = BinOps.back();
BinOps.pop_back();
if (!Visited.insert(BinOp.getNode()).second)
continue;
PromOps.push_back(BinOp);
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
// The condition of the select is not promoted.
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
continue;
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
continue;
if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
isa<ConstantSDNode>(BinOp.getOperand(i))) {
Inputs.push_back(BinOp.getOperand(i));
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
BinOp.getOperand(i).getOpcode() == ISD::OR ||
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
BinOps.push_back(BinOp.getOperand(i));
} else {
// We have an input that is not a truncation or another binary
// operation; we'll abort this transformation.
return SDValue();
}
}
}
// The operands of a select that must be truncated when the select is
// promoted because the operand is actually part of the to-be-promoted set.
DenseMap<SDNode *, EVT> SelectTruncOp[2];
// Make sure that this is a self-contained cluster of operations (which
// is not quite the same thing as saying that everything has only one
// use).
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
if (isa<ConstantSDNode>(Inputs[i]))
continue;
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
UE = Inputs[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// If we're going to promote the non-output-value operand(s) or SELECT or
// SELECT_CC, record them for truncation.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == Inputs[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == Inputs[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
if (User->getOperand(1) == Inputs[i])
SelectTruncOp[1].insert(std::make_pair(User,
User->getOperand(1).getValueType()));
}
}
}
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
UE = PromOps[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// If we're going to promote the non-output-value operand(s) or SELECT or
// SELECT_CC, record them for truncation.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == PromOps[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == PromOps[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
if (User->getOperand(1) == PromOps[i])
SelectTruncOp[1].insert(std::make_pair(User,
User->getOperand(1).getValueType()));
}
}
}
unsigned PromBits = N->getOperand(0).getValueSizeInBits();
bool ReallyNeedsExt = false;
if (N->getOpcode() != ISD::ANY_EXTEND) {
// If all of the inputs are not already sign/zero extended, then
// we'll still need to do that at the end.
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
if (isa<ConstantSDNode>(Inputs[i]))
continue;
unsigned OpBits =
Inputs[i].getOperand(0).getValueSizeInBits();
assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
if ((N->getOpcode() == ISD::ZERO_EXTEND &&
!DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
APInt::getHighBitsSet(OpBits,
OpBits-PromBits))) ||
(N->getOpcode() == ISD::SIGN_EXTEND &&
DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
(OpBits-(PromBits-1)))) {
ReallyNeedsExt = true;
break;
}
}
}
// Replace all inputs, either with the truncation operand, or a
// truncation or extension to the final output type.
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
// Constant inputs need to be replaced with the to-be-promoted nodes that
// use them because they might have users outside of the cluster of
// promoted nodes.
if (isa<ConstantSDNode>(Inputs[i]))
continue;
SDValue InSrc = Inputs[i].getOperand(0);
if (Inputs[i].getValueType() == N->getValueType(0))
DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
else if (N->getOpcode() == ISD::SIGN_EXTEND)
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
else if (N->getOpcode() == ISD::ZERO_EXTEND)
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
else
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
}
std::list<HandleSDNode> PromOpHandles;
for (auto &PromOp : PromOps)
PromOpHandles.emplace_back(PromOp);
// Replace all operations (these are all the same, but have a different
// (promoted) return type). DAG.getNode will validate that the types of
// a binary operator match, so go through the list in reverse so that
// we've likely promoted both operands first.
while (!PromOpHandles.empty()) {
SDValue PromOp = PromOpHandles.back().getValue();
PromOpHandles.pop_back();
unsigned C;
switch (PromOp.getOpcode()) {
default: C = 0; break;
case ISD::SELECT: C = 1; break;
case ISD::SELECT_CC: C = 2; break;
}
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
// The to-be-promoted operands of this node have not yet been
// promoted (this should be rare because we're going through the
// list backward, but if one of the operands has several users in
// this cluster of to-be-promoted nodes, it is possible).
PromOpHandles.emplace_front(PromOp);
continue;
}
// For SELECT and SELECT_CC nodes, we do a similar check for any
// to-be-promoted comparison inputs.
if (PromOp.getOpcode() == ISD::SELECT ||
PromOp.getOpcode() == ISD::SELECT_CC) {
if ((SelectTruncOp[0].count(PromOp.getNode()) &&
PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
(SelectTruncOp[1].count(PromOp.getNode()) &&
PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
PromOpHandles.emplace_front(PromOp);
continue;
}
}
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
PromOp.getNode()->op_end());
// If this node has constant inputs, then they'll need to be promoted here.
for (unsigned i = 0; i < 2; ++i) {
if (!isa<ConstantSDNode>(Ops[C+i]))
continue;
if (Ops[C+i].getValueType() == N->getValueType(0))
continue;
if (N->getOpcode() == ISD::SIGN_EXTEND)
Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
else if (N->getOpcode() == ISD::ZERO_EXTEND)
Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
else
Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
}
// If we've promoted the comparison inputs of a SELECT or SELECT_CC,
// truncate them again to the original value type.
if (PromOp.getOpcode() == ISD::SELECT ||
PromOp.getOpcode() == ISD::SELECT_CC) {
auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
if (SI0 != SelectTruncOp[0].end())
Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
if (SI1 != SelectTruncOp[1].end())
Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
}
DAG.ReplaceAllUsesOfValueWith(PromOp,
DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
}
// Now we're left with the initial extension itself.
if (!ReallyNeedsExt)
return N->getOperand(0);
// To zero extend, just mask off everything except for the first bit (in the
// i1 case).
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
DAG.getConstant(APInt::getLowBitsSet(
N->getValueSizeInBits(0), PromBits),
dl, N->getValueType(0)));
assert(N->getOpcode() == ISD::SIGN_EXTEND &&
"Invalid extension type");
EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
SDValue ShiftCst =
DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
return DAG.getNode(
ISD::SRA, dl, N->getValueType(0),
DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
ShiftCst);
}
SDValue PPCTargetLowering::combineSetCC(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(N->getOpcode() == ISD::SETCC &&
"Should be called with a SETCC node");
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (CC == ISD::SETNE || CC == ISD::SETEQ) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
LHS.hasOneUse())
std::swap(LHS, RHS);
// x == 0-y --> x+y == 0
// x != 0-y --> x+y != 0
if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
RHS.hasOneUse()) {
SDLoc DL(N);
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
EVT OpVT = LHS.getValueType();
SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
}
}
return DAGCombineTruncBoolExt(N, DCI);
}
// Is this an extending load from an f32 to an f64?
static bool isFPExtLoad(SDValue Op) {
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
return LD->getExtensionType() == ISD::EXTLOAD &&
Op.getValueType() == MVT::f64;
return false;
}
/// Reduces the number of fp-to-int conversion when building a vector.
///
/// If this vector is built out of floating to integer conversions,
/// transform it to a vector built out of floating point values followed by a
/// single floating to integer conversion of the vector.
/// Namely (build_vector (fptosi $A), (fptosi $B), ...)
/// becomes (fptosi (build_vector ($A, $B, ...)))
SDValue PPCTargetLowering::
combineElementTruncationToVectorTruncation(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
"Should be called with a BUILD_VECTOR node");
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue FirstInput = N->getOperand(0);
assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
"The input operand must be an fp-to-int conversion.");
// This combine happens after legalization so the fp_to_[su]i nodes are
// already converted to PPCSISD nodes.
unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
if (FirstConversion == PPCISD::FCTIDZ ||
FirstConversion == PPCISD::FCTIDUZ ||
FirstConversion == PPCISD::FCTIWZ ||
FirstConversion == PPCISD::FCTIWUZ) {
bool IsSplat = true;
bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
FirstConversion == PPCISD::FCTIWUZ;
EVT SrcVT = FirstInput.getOperand(0).getValueType();
SmallVector<SDValue, 4> Ops;
EVT TargetVT = N->getValueType(0);
for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
SDValue NextOp = N->getOperand(i);
if (NextOp.getOpcode() != PPCISD::MFVSR)
return SDValue();
unsigned NextConversion = NextOp.getOperand(0).getOpcode();
if (NextConversion != FirstConversion)
return SDValue();
// If we are converting to 32-bit integers, we need to add an FP_ROUND.
// This is not valid if the input was originally double precision. It is
// also not profitable to do unless this is an extending load in which
// case doing this combine will allow us to combine consecutive loads.
if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
return SDValue();
if (N->getOperand(i) != FirstInput)
IsSplat = false;
}
// If this is a splat, we leave it as-is since there will be only a single
// fp-to-int conversion followed by a splat of the integer. This is better
// for 32-bit and smaller ints and neutral for 64-bit ints.
if (IsSplat)
return SDValue();
// Now that we know we have the right type of node, get its operands
for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
SDValue In = N->getOperand(i).getOperand(0);
if (Is32Bit) {
// For 32-bit values, we need to add an FP_ROUND node (if we made it
// here, we know that all inputs are extending loads so this is safe).
if (In.isUndef())
Ops.push_back(DAG.getUNDEF(SrcVT));
else {
SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, In.getOperand(0),
DAG.getIntPtrConstant(1, dl));
Ops.push_back(Trunc);
}
} else
Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
}
unsigned Opcode;
if (FirstConversion == PPCISD::FCTIDZ ||
FirstConversion == PPCISD::FCTIWZ)
Opcode = ISD::FP_TO_SINT;
else
Opcode = ISD::FP_TO_UINT;
EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
return DAG.getNode(Opcode, dl, TargetVT, BV);
}
return SDValue();
}
/// Reduce the number of loads when building a vector.
///
/// Building a vector out of multiple loads can be converted to a load
/// of the vector type if the loads are consecutive. If the loads are
/// consecutive but in descending order, a shuffle is added at the end
/// to reorder the vector.
static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
"Should be called with a BUILD_VECTOR node");
SDLoc dl(N);
// Return early for non byte-sized type, as they can't be consecutive.
if (!N->getValueType(0).getVectorElementType().isByteSized())
return SDValue();
bool InputsAreConsecutiveLoads = true;
bool InputsAreReverseConsecutive = true;
unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
SDValue FirstInput = N->getOperand(0);
bool IsRoundOfExtLoad = false;
if (FirstInput.getOpcode() == ISD::FP_ROUND &&
FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
}
// Not a build vector of (possibly fp_rounded) loads.
if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
N->getNumOperands() == 1)
return SDValue();
for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
// If any inputs are fp_round(extload), they all must be.
if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
return SDValue();
SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
N->getOperand(i);
if (NextInput.getOpcode() != ISD::LOAD)
return SDValue();
SDValue PreviousInput =
IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
// If any inputs are fp_round(extload), they all must be.
if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
return SDValue();
if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
InputsAreConsecutiveLoads = false;
if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
InputsAreReverseConsecutive = false;
// Exit early if the loads are neither consecutive nor reverse consecutive.
if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
return SDValue();
}
assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
"The loads cannot be both consecutive and reverse consecutive.");
SDValue FirstLoadOp =
IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
SDValue LastLoadOp =
IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
N->getOperand(N->getNumOperands()-1);
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
if (InputsAreConsecutiveLoads) {
assert(LD1 && "Input needs to be a LoadSDNode.");
return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
LD1->getBasePtr(), LD1->getPointerInfo(),
LD1->getAlignment());
}
if (InputsAreReverseConsecutive) {
assert(LDL && "Input needs to be a LoadSDNode.");
SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
LDL->getBasePtr(), LDL->getPointerInfo(),
LDL->getAlignment());
SmallVector<int, 16> Ops;
for (int i = N->getNumOperands() - 1; i >= 0; i--)
Ops.push_back(i);
return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
DAG.getUNDEF(N->getValueType(0)), Ops);
}
return SDValue();
}
// This function adds the required vector_shuffle needed to get
// the elements of the vector extract in the correct position
// as specified by the CorrectElems encoding.
static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
SDValue Input, uint64_t Elems,
uint64_t CorrectElems) {
SDLoc dl(N);
unsigned NumElems = Input.getValueType().getVectorNumElements();
SmallVector<int, 16> ShuffleMask(NumElems, -1);
// Knowing the element indices being extracted from the original
// vector and the order in which they're being inserted, just put
// them at element indices required for the instruction.
for (unsigned i = 0; i < N->getNumOperands(); i++) {
if (DAG.getDataLayout().isLittleEndian())
ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
else
ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
CorrectElems = CorrectElems >> 8;
Elems = Elems >> 8;
}
SDValue Shuffle =
DAG.getVectorShuffle(Input.getValueType(), dl, Input,
DAG.getUNDEF(Input.getValueType()), ShuffleMask);
EVT VT = N->getValueType(0);
SDValue Conv = DAG.getBitcast(VT, Shuffle);
EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
Input.getValueType().getVectorElementType(),
VT.getVectorNumElements());
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
DAG.getValueType(ExtVT));
}
// Look for build vector patterns where input operands come from sign
// extended vector_extract elements of specific indices. If the correct indices
// aren't used, add a vector shuffle to fix up the indices and create
// SIGN_EXTEND_INREG node which selects the vector sign extend instructions
// during instruction selection.
static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
// This array encodes the indices that the vector sign extend instructions
// extract from when extending from one type to another for both BE and LE.
// The right nibble of each byte corresponds to the LE incides.
// and the left nibble of each byte corresponds to the BE incides.
// For example: 0x3074B8FC byte->word
// For LE: the allowed indices are: 0x0,0x4,0x8,0xC
// For BE: the allowed indices are: 0x3,0x7,0xB,0xF
// For example: 0x000070F8 byte->double word
// For LE: the allowed indices are: 0x0,0x8
// For BE: the allowed indices are: 0x7,0xF
uint64_t TargetElems[] = {
0x3074B8FC, // b->w
0x000070F8, // b->d
0x10325476, // h->w
0x00003074, // h->d
0x00001032, // w->d
};
uint64_t Elems = 0;
int Index;
SDValue Input;
auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
if (!Op)
return false;
if (Op.getOpcode() != ISD::SIGN_EXTEND &&
Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
return false;
// A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
// of the right width.
SDValue Extract = Op.getOperand(0);
if (Extract.getOpcode() == ISD::ANY_EXTEND)
Extract = Extract.getOperand(0);
if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return false;
ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
if (!ExtOp)
return false;
Index = ExtOp->getZExtValue();
if (Input && Input != Extract.getOperand(0))
return false;
if (!Input)
Input = Extract.getOperand(0);
Elems = Elems << 8;
Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
Elems |= Index;
return true;
};
// If the build vector operands aren't sign extended vector extracts,
// of the same input vector, then return.
for (unsigned i = 0; i < N->getNumOperands(); i++) {
if (!isSExtOfVecExtract(N->getOperand(i))) {
return SDValue();
}
}
// If the vector extract indicies are not correct, add the appropriate
// vector_shuffle.
int TgtElemArrayIdx;
int InputSize = Input.getValueType().getScalarSizeInBits();
int OutputSize = N->getValueType(0).getScalarSizeInBits();
if (InputSize + OutputSize == 40)
TgtElemArrayIdx = 0;
else if (InputSize + OutputSize == 72)
TgtElemArrayIdx = 1;
else if (InputSize + OutputSize == 48)
TgtElemArrayIdx = 2;
else if (InputSize + OutputSize == 80)
TgtElemArrayIdx = 3;
else if (InputSize + OutputSize == 96)
TgtElemArrayIdx = 4;
else
return SDValue();
uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
CorrectElems = DAG.getDataLayout().isLittleEndian()
? CorrectElems & 0x0F0F0F0F0F0F0F0F
: CorrectElems & 0xF0F0F0F0F0F0F0F0;
if (Elems != CorrectElems) {
return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
}
// Regular lowering will catch cases where a shuffle is not needed.
return SDValue();
}
SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
"Should be called with a BUILD_VECTOR node");
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
if (!Subtarget.hasVSX())
return SDValue();
// The target independent DAG combiner will leave a build_vector of
// float-to-int conversions intact. We can generate MUCH better code for
// a float-to-int conversion of a vector of floats.
SDValue FirstInput = N->getOperand(0);
if (FirstInput.getOpcode() == PPCISD::MFVSR) {
SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
if (Reduced)
return Reduced;
}
// If we're building a vector out of consecutive loads, just load that
// vector type.
SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
if (Reduced)
return Reduced;
// If we're building a vector out of extended elements from another vector
// we have P9 vector integer extend instructions. The code assumes legal
// input types (i.e. it can't handle things like v4i16) so do not run before
// legalization.
if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
Reduced = combineBVOfVecSExt(N, DAG);
if (Reduced)
return Reduced;
}
if (N->getValueType(0) != MVT::v2f64)
return SDValue();
// Looking for:
// (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
FirstInput.getOpcode() != ISD::UINT_TO_FP)
return SDValue();
if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
return SDValue();
if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
return SDValue();
SDValue Ext1 = FirstInput.getOperand(0);
SDValue Ext2 = N->getOperand(1).getOperand(0);
if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
if (!Ext1Op || !Ext2Op)
return SDValue();
if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
Ext1.getOperand(0) != Ext2.getOperand(0))
return SDValue();
int FirstElem = Ext1Op->getZExtValue();
int SecondElem = Ext2Op->getZExtValue();
int SubvecIdx;
if (FirstElem == 0 && SecondElem == 1)
SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
else if (FirstElem == 2 && SecondElem == 3)
SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
else
return SDValue();
SDValue SrcVec = Ext1.getOperand(0);
auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
return DAG.getNode(NodeType, dl, MVT::v2f64,
SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
}
SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
DAGCombinerInfo &DCI) const {
assert((N->getOpcode() == ISD::SINT_TO_FP ||
N->getOpcode() == ISD::UINT_TO_FP) &&
"Need an int -> FP conversion node here");
if (useSoftFloat() || !Subtarget.has64BitSupport())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Op(N, 0);
// Don't handle ppc_fp128 here or conversions that are out-of-range capable
// from the hardware.
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
return SDValue();
if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
return SDValue();
SDValue FirstOperand(Op.getOperand(0));
bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
(FirstOperand.getValueType() == MVT::i8 ||
FirstOperand.getValueType() == MVT::i16);
if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
bool DstDouble = Op.getValueType() == MVT::f64;
unsigned ConvOp = Signed ?
(DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) :
(DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
SDValue WidthConst =
DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
dl, false);
LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i8, LDN->getMemOperand());
// For signed conversion, we need to sign-extend the value in the VSR
if (Signed) {
SDValue ExtOps[] = { Ld, WidthConst };
SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
} else
return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
}
// For i32 intermediate values, unfortunately, the conversion functions
// leave the upper 32 bits of the value are undefined. Within the set of
// scalar instructions, we have no method for zero- or sign-extending the
// value. Thus, we cannot handle i32 intermediate values here.
if (Op.getOperand(0).getValueType() == MVT::i32)
return SDValue();
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
"UINT_TO_FP is supported only with FPCVT");
// If we have FCFIDS, then use it when converting to single-precision.
// Otherwise, convert to double-precision and then round.
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
: PPCISD::FCFIDS)
: (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
: PPCISD::FCFID);
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? MVT::f32
: MVT::f64;
// If we're converting from a float, to an int, and back to a float again,
// then we don't need the store/load pair at all.
if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
Subtarget.hasFPCVT()) ||
(Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
SDValue Src = Op.getOperand(0).getOperand(0);
if (Src.getValueType() == MVT::f32) {
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
DCI.AddToWorklist(Src.getNode());
} else if (Src.getValueType() != MVT::f64) {
// Make sure that we don't pick up a ppc_fp128 source value.
return SDValue();
}
unsigned FCTOp =
Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ;
SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
DCI.AddToWorklist(FP.getNode());
}
return FP;
}
return SDValue();
}
// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
// builtins) into loads with swaps.
SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Chain;
SDValue Base;
MachineMemOperand *MMO;
switch (N->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode for little endian VSX load");
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
Chain = LD->getChain();
Base = LD->getBasePtr();
MMO = LD->getMemOperand();
// If the MMO suggests this isn't a load of a full vector, leave
// things alone. For a built-in, we have to make the change for
// correctness, so if there is a size problem that will be a bug.
if (MMO->getSize() < 16)
return SDValue();
break;
}
case ISD::INTRINSIC_W_CHAIN: {
MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
Chain = Intrin->getChain();
// Similarly to the store case below, Intrin->getBasePtr() doesn't get
// us what we want. Get operand 2 instead.
Base = Intrin->getOperand(2);
MMO = Intrin->getMemOperand();
break;
}
}
MVT VecTy = N->getValueType(0).getSimpleVT();
// Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
// aligned and the type is a vector with elements up to 4 bytes
if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
VecTy.getScalarSizeInBits() <= 32) {
return SDValue();
}
SDValue LoadOps[] = { Chain, Base };
SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
DAG.getVTList(MVT::v2f64, MVT::Other),
LoadOps, MVT::v2f64, MMO);
DCI.AddToWorklist(Load.getNode());
Chain = Load.getValue(1);
SDValue Swap = DAG.getNode(
PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
DCI.AddToWorklist(Swap.getNode());
// Add a bitcast if the resulting load type doesn't match v2f64.
if (VecTy != MVT::v2f64) {
SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
DCI.AddToWorklist(N.getNode());
// Package {bitcast value, swap's chain} to match Load's shape.
return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
N, Swap.getValue(1));
}
return Swap;
}
// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
// builtins) into stores with swaps.
SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Chain;
SDValue Base;
unsigned SrcOpnd;
MachineMemOperand *MMO;
switch (N->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode for little endian VSX store");
case ISD::STORE: {
StoreSDNode *ST = cast<StoreSDNode>(N);
Chain = ST->getChain();
Base = ST->getBasePtr();
MMO = ST->getMemOperand();
SrcOpnd = 1;
// If the MMO suggests this isn't a store of a full vector, leave
// things alone. For a built-in, we have to make the change for
// correctness, so if there is a size problem that will be a bug.
if (MMO->getSize() < 16)
return SDValue();
break;
}
case ISD::INTRINSIC_VOID: {
MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
Chain = Intrin->getChain();
// Intrin->getBasePtr() oddly does not get what we want.
Base = Intrin->getOperand(3);
MMO = Intrin->getMemOperand();
SrcOpnd = 2;
break;
}
}
SDValue Src = N->getOperand(SrcOpnd);
MVT VecTy = Src.getValueType().getSimpleVT();
// Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
// aligned and the type is a vector with elements up to 4 bytes
if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
VecTy.getScalarSizeInBits() <= 32) {
return SDValue();
}
// All stores are done as v2f64 and possible bit cast.
if (VecTy != MVT::v2f64) {
Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
DCI.AddToWorklist(Src.getNode());
}
SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
DCI.AddToWorklist(Swap.getNode());
Chain = Swap.getValue(1);
SDValue StoreOps[] = { Chain, Swap, Base };
SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
DAG.getVTList(MVT::Other),
StoreOps, VecTy, MMO);
DCI.AddToWorklist(Store.getNode());
return Store;
}
// Handle DAG combine for STORE (FP_TO_INT F).
SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
unsigned Opcode = N->getOperand(1).getOpcode();
assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
&& "Not a FP_TO_INT Instruction!");
SDValue Val = N->getOperand(1).getOperand(0);
EVT Op1VT = N->getOperand(1).getValueType();
EVT ResVT = Val.getValueType();
// Floating point types smaller than 32 bits are not legal on Power.
if (ResVT.getScalarSizeInBits() < 32)
return SDValue();
// Only perform combine for conversion to i64/i32 or power9 i16/i8.
bool ValidTypeForStoreFltAsInt =
(Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
(Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
return SDValue();
// Extend f32 values to f64
if (ResVT.getScalarSizeInBits() == 32) {
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
}
// Set signed or unsigned conversion opcode.
unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
PPCISD::FP_TO_SINT_IN_VSR :
PPCISD::FP_TO_UINT_IN_VSR;
Val = DAG.getNode(ConvOpcode,
dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
// Set number of bytes being converted.
unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
DAG.getIntPtrConstant(ByteSize, dl, false),
DAG.getValueType(Op1VT) };
Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
DAG.getVTList(MVT::Other), Ops,
cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
DCI.AddToWorklist(Val.getNode());
return Val;
}
static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
// Check that the source of the element keeps flipping
// (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
bool PrevElemFromFirstVec = Mask[0] < NumElts;
for (int i = 1, e = Mask.size(); i < e; i++) {
if (PrevElemFromFirstVec && Mask[i] < NumElts)
return false;
if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
return false;
PrevElemFromFirstVec = !PrevElemFromFirstVec;
}
return true;
}
static bool isSplatBV(SDValue Op) {
if (Op.getOpcode() != ISD::BUILD_VECTOR)
return false;
SDValue FirstOp;
// Find first non-undef input.
for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
FirstOp = Op.getOperand(i);
if (!FirstOp.isUndef())
break;
}
// All inputs are undef or the same as the first non-undef input.
for (int i = 1, e = Op.getNumOperands(); i < e; i++)
if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
return false;
return true;
}
static SDValue isScalarToVec(SDValue Op) {
if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
return Op;
if (Op.getOpcode() != ISD::BITCAST)
return SDValue();
Op = Op.getOperand(0);
if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
return Op;
return SDValue();
}
static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
int LHSMaxIdx, int RHSMinIdx,
int RHSMaxIdx, int HalfVec) {
for (int i = 0, e = ShuffV.size(); i < e; i++) {
int Idx = ShuffV[i];
if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
ShuffV[i] += HalfVec;
}
return;
}
// Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
// the original is:
// (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
// In such a case, just change the shuffle mask to extract the element
// from the permuted index.
static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
SDLoc dl(OrigSToV);
EVT VT = OrigSToV.getValueType();
assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
"Expecting a SCALAR_TO_VECTOR here");
SDValue Input = OrigSToV.getOperand(0);
if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
SDValue OrigVector = Input.getOperand(0);
// Can't handle non-const element indices or different vector types
// for the input to the extract and the output of the scalar_to_vector.
if (Idx && VT == OrigVector.getValueType()) {
SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
}
}
return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
OrigSToV.getOperand(0));
}
// On little endian subtargets, combine shuffles such as:
// vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
// into:
// vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
// because the latter can be matched to a single instruction merge.
// Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
// to put the value into element zero. Adjust the shuffle mask so that the
// vector can remain in permuted form (to prevent a swap prior to a shuffle).
SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
SelectionDAG &DAG) const {
SDValue LHS = SVN->getOperand(0);
SDValue RHS = SVN->getOperand(1);
auto Mask = SVN->getMask();
int NumElts = LHS.getValueType().getVectorNumElements();
SDValue Res(SVN, 0);
SDLoc dl(SVN);
// None of these combines are useful on big endian systems since the ISA
// already has a big endian bias.
if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
return Res;
// If this is not a shuffle of a shuffle and the first element comes from
// the second vector, canonicalize to the commuted form. This will make it
// more likely to match one of the single instruction patterns.
if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
std::swap(LHS, RHS);
Res = DAG.getCommutedVectorShuffle(*SVN);
Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
}
// Adjust the shuffle mask if either input vector comes from a
// SCALAR_TO_VECTOR and keep the respective input vector in permuted
// form (to prevent the need for a swap).
SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
SDValue SToVLHS = isScalarToVec(LHS);
SDValue SToVRHS = isScalarToVec(RHS);
if (SToVLHS || SToVRHS) {
int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
: SToVRHS.getValueType().getVectorNumElements();
int NumEltsOut = ShuffV.size();
// Initially assume that neither input is permuted. These will be adjusted
// accordingly if either input is.
int LHSMaxIdx = -1;
int RHSMinIdx = -1;
int RHSMaxIdx = -1;
int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
// Get the permuted scalar to vector nodes for the source(s) that come from
// ISD::SCALAR_TO_VECTOR.
if (SToVLHS) {
// Set up the values for the shuffle vector fixup.
LHSMaxIdx = NumEltsOut / NumEltsIn;
SToVLHS = getSToVPermuted(SToVLHS, DAG);
if (SToVLHS.getValueType() != LHS.getValueType())
SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
LHS = SToVLHS;
}
if (SToVRHS) {
RHSMinIdx = NumEltsOut;
RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
SToVRHS = getSToVPermuted(SToVRHS, DAG);
if (SToVRHS.getValueType() != RHS.getValueType())
SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
RHS = SToVRHS;
}
// Fix up the shuffle mask to reflect where the desired element actually is.
// The minimum and maximum indices that correspond to element zero for both
// the LHS and RHS are computed and will control which shuffle mask entries
// are to be changed. For example, if the RHS is permuted, any shuffle mask
// entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
// HalfVec to refer to the corresponding element in the permuted vector.
fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
HalfVec);
Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
// We may have simplified away the shuffle. We won't be able to do anything
// further with it here.
if (!isa<ShuffleVectorSDNode>(Res))
return Res;
Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
}
// The common case after we commuted the shuffle is that the RHS is a splat
// and we have elements coming in from the splat at indices that are not
// conducive to using a merge.
// Example:
// vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
if (!isSplatBV(RHS))
return Res;
// We are looking for a mask such that all even elements are from
// one vector and all odd elements from the other.
if (!isAlternatingShuffMask(Mask, NumElts))
return Res;
// Adjust the mask so we are pulling in the same index from the splat
// as the index from the interesting vector in consecutive elements.
// Example (even elements from first vector):
// vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
if (Mask[0] < NumElts)
for (int i = 1, e = Mask.size(); i < e; i += 2)
ShuffV[i] = (ShuffV[i - 1] + NumElts);
// Example (odd elements from first vector):
// vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
else
for (int i = 0, e = Mask.size(); i < e; i += 2)
ShuffV[i] = (ShuffV[i + 1] + NumElts);
// If the RHS has undefs, we need to remove them since we may have created
// a shuffle that adds those instead of the splat value.
SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
return Res;
}
SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
LSBaseSDNode *LSBase,
DAGCombinerInfo &DCI) const {
assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
"Not a reverse memop pattern!");
auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
auto Mask = SVN->getMask();
int i = 0;
auto I = Mask.rbegin();
auto E = Mask.rend();
for (; I != E; ++I) {
if (*I != i)
return false;
i++;
}
return true;
};
SelectionDAG &DAG = DCI.DAG;
EVT VT = SVN->getValueType(0);
if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
return SDValue();
// Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
// See comment in PPCVSXSwapRemoval.cpp.
// It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
if (!Subtarget.hasP9Vector())
return SDValue();
if(!IsElementReverse(SVN))
return SDValue();
if (LSBase->getOpcode() == ISD::LOAD) {
SDLoc dl(SVN);
SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
return DAG.getMemIntrinsicNode(
PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
LSBase->getMemoryVT(), LSBase->getMemOperand());
}
if (LSBase->getOpcode() == ISD::STORE) {
SDLoc dl(LSBase);
SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
LSBase->getBasePtr()};
return DAG.getMemIntrinsicNode(
PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
LSBase->getMemoryVT(), LSBase->getMemOperand());
}
llvm_unreachable("Expected a load or store node here");
}
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
return combineADD(N, DCI);
case ISD::SHL:
return combineSHL(N, DCI);
case ISD::SRA:
return combineSRA(N, DCI);
case ISD::SRL:
return combineSRL(N, DCI);
case ISD::MUL:
return combineMUL(N, DCI);
case ISD::FMA:
case PPCISD::FNMSUB:
return combineFMALike(N, DCI);
case PPCISD::SHL:
if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
return N->getOperand(0);
break;
case PPCISD::SRL:
if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
return N->getOperand(0);
break;
case PPCISD::SRA:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue() || // 0 >>s V -> 0.
C->isAllOnesValue()) // -1 >>s V -> -1.
return N->getOperand(0);
}
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
return DAGCombineExtBoolTrunc(N, DCI);
case ISD::TRUNCATE:
return combineTRUNCATE(N, DCI);
case ISD::SETCC:
if (SDValue CSCC = combineSetCC(N, DCI))
return CSCC;
LLVM_FALLTHROUGH;
case ISD::SELECT_CC:
return DAGCombineTruncBoolExt(N, DCI);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return combineFPToIntToFP(N, DCI);
case ISD::VECTOR_SHUFFLE:
if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
}
return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
case ISD::STORE: {
EVT Op1VT = N->getOperand(1).getValueType();
unsigned Opcode = N->getOperand(1).getOpcode();
if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
SDValue Val= combineStoreFPToInt(N, DCI);
if (Val)
return Val;
}
if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
if (Val)
return Val;
}
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
N->getOperand(1).getNode()->hasOneUse() &&
(Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
(Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
// STBRX can only handle simple types and it makes no sense to store less
// two bytes in byte-reversed order.
EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
if (mVT.isExtended() || mVT.getSizeInBits() < 16)
break;
SDValue BSwapOp = N->getOperand(1).getOperand(0);
// Do an any-extend to 32-bits if this is a half-word input.
if (BSwapOp.getValueType() == MVT::i16)
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
// If the type of BSWAP operand is wider than stored memory width
// it need to be shifted to the right side before STBRX.
if (Op1VT.bitsGT(mVT)) {
int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
DAG.getConstant(Shift, dl, MVT::i32));
// Need to truncate if this is a bswap of i64 stored as i32/i16.
if (Op1VT == MVT::i64)
BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
}
SDValue Ops[] = {
N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
};
return
DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
Ops, cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
}
// STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0>
// So it can increase the chance of CSE constant construction.
if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
// Need to sign-extended to 64-bits to handle negative values.
EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
MemVT.getSizeInBits());
SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
// DAG.getTruncStore() can't be used here because it doesn't accept
// the general (base + offset) addressing mode.
// So we use UpdateNodeOperands and setTruncatingStore instead.
DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
N->getOperand(3));
cast<StoreSDNode>(N)->setTruncatingStore(true);
return SDValue(N, 0);
}
// For little endian, VSX stores require generating xxswapd/lxvd2x.
// Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
if (Op1VT.isSimple()) {
MVT StoreVT = Op1VT.getSimpleVT();
if (Subtarget.needsSwapsForVSXMemOps() &&
(StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
return expandVSXStoreForLE(N, DCI);
}
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT VT = LD->getValueType(0);
// For little endian, VSX loads require generating lxvd2x/xxswapd.
// Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
if (VT.isSimple()) {
MVT LoadVT = VT.getSimpleVT();
if (Subtarget.needsSwapsForVSXMemOps() &&
(LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
return expandVSXLoadForLE(N, DCI);
}
// We sometimes end up with a 64-bit integer load, from which we extract
// two single-precision floating-point numbers. This happens with
// std::complex<float>, and other similar structures, because of the way we
// canonicalize structure copies. However, if we lack direct moves,
// then the final bitcasts from the extracted integer values to the
// floating-point numbers turn into store/load pairs. Even with direct moves,
// just loading the two floating-point numbers is likely better.
auto ReplaceTwoFloatLoad = [&]() {
if (VT != MVT::i64)
return false;
if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
LD->isVolatile())
return false;
// We're looking for a sequence like this:
// t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
// t16: i64 = srl t13, Constant:i32<32>
// t17: i32 = truncate t16
// t18: f32 = bitcast t17
// t19: i32 = truncate t13
// t20: f32 = bitcast t19
if (!LD->hasNUsesOfValue(2, 0))
return false;
auto UI = LD->use_begin();
while (UI.getUse().getResNo() != 0) ++UI;
SDNode *Trunc = *UI++;
while (UI.getUse().getResNo() != 0) ++UI;
SDNode *RightShift = *UI;
if (Trunc->getOpcode() != ISD::TRUNCATE)
std::swap(Trunc, RightShift);
if (Trunc->getOpcode() != ISD::TRUNCATE ||
Trunc->getValueType(0) != MVT::i32 ||
!Trunc->hasOneUse())
return false;
if (RightShift->getOpcode() != ISD::SRL ||
!isa<ConstantSDNode>(RightShift->getOperand(1)) ||
RightShift->getConstantOperandVal(1) != 32 ||
!RightShift->hasOneUse())
return false;
SDNode *Trunc2 = *RightShift->use_begin();
if (Trunc2->getOpcode() != ISD::TRUNCATE ||
Trunc2->getValueType(0) != MVT::i32 ||
!Trunc2->hasOneUse())
return false;
SDNode *Bitcast = *Trunc->use_begin();
SDNode *Bitcast2 = *Trunc2->use_begin();
if (Bitcast->getOpcode() != ISD::BITCAST ||
Bitcast->getValueType(0) != MVT::f32)
return false;
if (Bitcast2->getOpcode() != ISD::BITCAST ||
Bitcast2->getValueType(0) != MVT::f32)
return false;
if (Subtarget.isLittleEndian())
std::swap(Bitcast, Bitcast2);
// Bitcast has the second float (in memory-layout order) and Bitcast2
// has the first one.
SDValue BasePtr = LD->getBasePtr();
if (LD->isIndexed()) {
assert(LD->getAddressingMode() == ISD::PRE_INC &&
"Non-pre-inc AM on PPC?");
BasePtr =
DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
LD->getOffset());
}
auto MMOFlags =
LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
LD->getPointerInfo(), LD->getAlignment(),
MMOFlags, LD->getAAInfo());
SDValue AddPtr =
DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
BasePtr, DAG.getIntPtrConstant(4, dl));
SDValue FloatLoad2 = DAG.getLoad(
MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
LD->getPointerInfo().getWithOffset(4),
MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
if (LD->isIndexed()) {
// Note that DAGCombine should re-form any pre-increment load(s) from
// what is produced here if that makes sense.
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
}
DCI.CombineTo(Bitcast2, FloatLoad);
DCI.CombineTo(Bitcast, FloatLoad2);
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
SDValue(FloatLoad2.getNode(), 1));
return true;
};
if (ReplaceTwoFloatLoad())
return SDValue(N, 0);
EVT MemVT = LD->getMemoryVT();
Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
Align ScalarABIAlignment = DAG.getDataLayout().getABITypeAlign(STy);
if (LD->isUnindexed() && VT.isVector() &&
((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
// P8 and later hardware should just use LOAD.
!Subtarget.hasP8Vector() &&
(VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
VT == MVT::v4f32)) ||
(Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
LD->getAlign() >= ScalarABIAlignment)) &&
LD->getAlign() < ABIAlignment) {
// This is a type-legal unaligned Altivec or QPX load.
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
bool isLittleEndian = Subtarget.isLittleEndian();
// This implements the loading of unaligned vectors as described in
// the venerable Apple Velocity Engine overview. Specifically:
// https://developer.apple.com/hardwaredrivers/ve/alignment.html
// https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
//
// The general idea is to expand a sequence of one or more unaligned
// loads into an alignment-based permutation-control instruction (lvsl
// or lvsr), a series of regular vector loads (which always truncate
// their input address to an aligned address), and a series of
// permutations. The results of these permutations are the requested
// loaded values. The trick is that the last "extra" load is not taken
// from the address you might suspect (sizeof(vector) bytes after the
// last requested load), but rather sizeof(vector) - 1 bytes after the
// last requested vector. The point of this is to avoid a page fault if
// the base address happened to be aligned. This works because if the
// base address is aligned, then adding less than a full vector length
// will cause the last vector in the sequence to be (re)loaded.
// Otherwise, the next vector will be fetched as you might suspect was
// necessary.
// We might be able to reuse the permutation generation from
// a different base address offset from this one by an aligned amount.
// The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
// optimization later.
Intrinsic::ID Intr, IntrLD, IntrPerm;
MVT PermCntlTy, PermTy, LDTy;
if (Subtarget.hasAltivec()) {
Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr :
Intrinsic::ppc_altivec_lvsl;
IntrLD = Intrinsic::ppc_altivec_lvx;
IntrPerm = Intrinsic::ppc_altivec_vperm;
PermCntlTy = MVT::v16i8;
PermTy = MVT::v4i32;
LDTy = MVT::v4i32;
} else {
Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
Intrinsic::ppc_qpx_qvlpcls;
IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
Intrinsic::ppc_qpx_qvlfs;
IntrPerm = Intrinsic::ppc_qpx_qvfperm;
PermCntlTy = MVT::v4f64;
PermTy = MVT::v4f64;
LDTy = MemVT.getSimpleVT();
}
SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
// Create the new MMO for the new base load. It is like the original MMO,
// but represents an area in memory almost twice the vector size centered
// on the original address. If the address is unaligned, we might start
// reading up to (sizeof(vector)-1) bytes below the address of the
// original unaligned load.
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *BaseMMO =
MF.getMachineMemOperand(LD->getMemOperand(),
-(long)MemVT.getStoreSize()+1,
2*MemVT.getStoreSize()-1);
// Create the new base load.
SDValue LDXIntID =
DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
SDValue BaseLoad =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
DAG.getVTList(PermTy, MVT::Other),
BaseLoadOps, LDTy, BaseMMO);
// Note that the value of IncOffset (which is provided to the next
// load's pointer info offset value, and thus used to calculate the
// alignment), and the value of IncValue (which is actually used to
// increment the pointer value) are different! This is because we
// require the next load to appear to be aligned, even though it
// is actually offset from the base pointer by a lesser amount.
int IncOffset = VT.getSizeInBits() / 8;
int IncValue = IncOffset;
// Walk (both up and down) the chain looking for another load at the real
// (aligned) offset (the alignment of the other load does not matter in
// this case). If found, then do not use the offset reduction trick, as
// that will prevent the loads from being later combined (as they would
// otherwise be duplicates).
if (!findConsecutiveLoad(LD, DAG))
--IncValue;
SDValue Increment =
DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
MachineMemOperand *ExtraMMO =
MF.getMachineMemOperand(LD->getMemOperand(),
1, 2*MemVT.getStoreSize()-1);
SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
SDValue ExtraLoad =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
DAG.getVTList(PermTy, MVT::Other),
ExtraLoadOps, LDTy, ExtraMMO);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
BaseLoad.getValue(1), ExtraLoad.getValue(1));
// Because vperm has a big-endian bias, we must reverse the order
// of the input vectors and complement the permute control vector
// when generating little endian code. We have already handled the
// latter by using lvsr instead of lvsl, so just reverse BaseLoad
// and ExtraLoad here.
SDValue Perm;
if (isLittleEndian)
Perm = BuildIntrinsicOp(IntrPerm,
ExtraLoad, BaseLoad, PermCntl, DAG, dl);
else
Perm = BuildIntrinsicOp(IntrPerm,
BaseLoad, ExtraLoad, PermCntl, DAG, dl);
if (VT != PermTy)
Perm = Subtarget.hasAltivec() ?
DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
DAG.getTargetConstant(1, dl, MVT::i64));
// second argument is 1 because this rounding
// is always exact.
// The output of the permutation is our loaded result, the TokenFactor is
// our new chain.
DCI.CombineTo(N, Perm, TF);
return SDValue(N, 0);
}
}
break;
case ISD::INTRINSIC_WO_CHAIN: {
bool isLittleEndian = Subtarget.isLittleEndian();
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
: Intrinsic::ppc_altivec_lvsl);
if ((IID == Intr ||
IID == Intrinsic::ppc_qpx_qvlpcld ||
IID == Intrinsic::ppc_qpx_qvlpcls) &&
N->getOperand(1)->getOpcode() == ISD::ADD) {
SDValue Add = N->getOperand(1);
int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
if (DAG.MaskedValueIsZero(Add->getOperand(1),
APInt::getAllOnesValue(Bits /* alignment */)
.zext(Add.getScalarValueSizeInBits()))) {
SDNode *BasePtr = Add->getOperand(0).getNode();
for (SDNode::use_iterator UI = BasePtr->use_begin(),
UE = BasePtr->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
// We've found another LVSL/LVSR, and this address is an aligned
// multiple of that one. The results will be the same, so use the
// one we've just found instead.
return SDValue(*UI, 0);
}
}
}
if (isa<ConstantSDNode>(Add->getOperand(1))) {
SDNode *BasePtr = Add->getOperand(0).getNode();
for (SDNode::use_iterator UI = BasePtr->use_begin(),
UE = BasePtr->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(UI->getOperand(1)) &&
(cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
(1ULL << Bits) == 0) {
SDNode *OtherAdd = *UI;
for (SDNode::use_iterator VI = OtherAdd->use_begin(),
VE = OtherAdd->use_end(); VI != VE; ++VI) {
if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
return SDValue(*VI, 0);
}
}
}
}
}
}
// Combine vmaxsw/h/b(a, a's negation) to abs(a)
// Expose the vabsduw/h/b opportunity for down stream
if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
(IID == Intrinsic::ppc_altivec_vmaxsw ||
IID == Intrinsic::ppc_altivec_vmaxsh ||
IID == Intrinsic::ppc_altivec_vmaxsb)) {
SDValue V1 = N->getOperand(1);
SDValue V2 = N->getOperand(2);
if ((V1.getSimpleValueType() == MVT::v4i32 ||
V1.getSimpleValueType() == MVT::v8i16 ||
V1.getSimpleValueType() == MVT::v16i8) &&
V1.getSimpleValueType() == V2.getSimpleValueType()) {
// (0-a, a)
if (V1.getOpcode() == ISD::SUB &&
ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
V1.getOperand(1) == V2) {
return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
}
// (a, 0-a)
if (V2.getOpcode() == ISD::SUB &&
ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
V2.getOperand(1) == V1) {
return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
}
// (x-y, y-x)
if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
V1.getOperand(0) == V2.getOperand(1) &&
V1.getOperand(1) == V2.getOperand(0)) {
return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
}
}
}
}
break;
case ISD::INTRINSIC_W_CHAIN:
// For little endian, VSX loads require generating lxvd2x/xxswapd.
// Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
if (Subtarget.needsSwapsForVSXMemOps()) {
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default:
break;
case Intrinsic::ppc_vsx_lxvw4x:
case Intrinsic::ppc_vsx_lxvd2x:
return expandVSXLoadForLE(N, DCI);
}
}
break;
case ISD::INTRINSIC_VOID:
// For little endian, VSX stores require generating xxswapd/stxvd2x.
// Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
if (Subtarget.needsSwapsForVSXMemOps()) {
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default:
break;
case Intrinsic::ppc_vsx_stxvw4x:
case Intrinsic::ppc_vsx_stxvd2x:
return expandVSXStoreForLE(N, DCI);
}
}
break;
case ISD::BSWAP:
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
N->getOperand(0).hasOneUse() &&
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
(Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
N->getValueType(0) == MVT::i64))) {
SDValue Load = N->getOperand(0);
LoadSDNode *LD = cast<LoadSDNode>(Load);
// Create the byte-swapping load.
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr(), // Ptr
DAG.getValueType(N->getValueType(0)) // VT
};
SDValue BSLoad =
DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
DAG.getVTList(N->getValueType(0) == MVT::i64 ?
MVT::i64 : MVT::i32, MVT::Other),
Ops, LD->getMemoryVT(), LD->getMemOperand());
// If this is an i16 load, insert the truncate.
SDValue ResVal = BSLoad;
if (N->getValueType(0) == MVT::i16)
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
// First, combine the bswap away. This makes the value produced by the
// load dead.
DCI.CombineTo(N, ResVal);
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the bswap is dead.
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
break;
case PPCISD::VCMP:
// If a VCMPo node already exists with exactly the same operands as this
// node, use its result instead of this node (VCMPo computes both a CR6 and
// a normal output).
//
if (!N->getOperand(0).hasOneUse() &&
!N->getOperand(1).hasOneUse() &&
!N->getOperand(2).hasOneUse()) {
// Scan all of the users of the LHS, looking for VCMPo's that match.
SDNode *VCMPoNode = nullptr;
SDNode *LHSN = N->getOperand(0).getNode();
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
UI != E; ++UI)
if (UI->getOpcode() == PPCISD::VCMPo &&
UI->getOperand(1) == N->getOperand(1) &&
UI->getOperand(2) == N->getOperand(2) &&
UI->getOperand(0) == N->getOperand(0)) {
VCMPoNode = *UI;
break;
}
// If there is no VCMPo node, or if the flag value has a single use, don't
// transform this.
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
break;
// Look at the (necessarily single) use of the flag value. If it has a
// chain, this transformation is more complex. Note that multiple things
// could use the value result, which we should ignore.
SDNode *FlagUser = nullptr;
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
FlagUser == nullptr; ++UI) {
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
FlagUser = User;
break;
}
}
}
// If the user is a MFOCRF instruction, we know this is safe.
// Otherwise we give up for right now.
if (FlagUser->getOpcode() == PPCISD::MFOCRF)
return SDValue(VCMPoNode, 0);
}
break;
case ISD::BRCOND: {
SDValue Cond = N->getOperand(1);
SDValue Target = N->getOperand(2);
if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
Intrinsic::loop_decrement) {
// We now need to make the intrinsic dead (it cannot be instruction
// selected).
DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
assert(Cond.getNode()->hasOneUse() &&
"Counter decrement has more than one use");
return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
N->getOperand(0), Target);
}
}
break;
case ISD::BR_CC: {
// If this is a branch on an altivec predicate comparison, lower this so
// that we don't have to do a MFOCRF: instead, branch directly on CR6. This
// lowering is done pre-legalize, because the legalizer lowers the predicate
// compare down to code that is difficult to reassemble.
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
// Sometimes the promoted value of the intrinsic is ANDed by some non-zero
// value. If so, pass-through the AND to get to the intrinsic.
if (LHS.getOpcode() == ISD::AND &&
LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
Intrinsic::loop_decrement &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
!isNullConstant(LHS.getOperand(1)))
LHS = LHS.getOperand(0);
if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
Intrinsic::loop_decrement &&
isa<ConstantSDNode>(RHS)) {
assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
"Counter decrement comparison is not EQ or NE");
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
bool isBDNZ = (CC == ISD::SETEQ && Val) ||
(CC == ISD::SETNE && !Val);
// We now need to make the intrinsic dead (it cannot be instruction
// selected).
DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
assert(LHS.getNode()->hasOneUse() &&
"Counter decrement has more than one use");
return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
int CompareOpc;
bool isDot;
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
assert(isDot && "Can't compare against a vector result!");
// If this is a comparison against something other than 0/1, then we know
// that the condition is never/always true.
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
if (Val != 0 && Val != 1) {
if (CC == ISD::SETEQ) // Cond never true, remove branch.
return N->getOperand(0);
// Always !=, turn it into an unconditional branch.
return DAG.getNode(ISD::BR, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
LHS.getOperand(2), // LHS of compare
LHS.getOperand(3), // RHS of compare
DAG.getConstant(CompareOpc, dl, MVT::i32)
};
EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
// Unpack the result based on how the target uses it.
PPC::Predicate CompOpc;
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Branch on the value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
break;
case 1: // Branch on the inverted value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
break;
case 2: // Branch on the value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
break;
case 3: // Branch on the inverted value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
break;
}
return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
DAG.getConstant(CompOpc, dl, MVT::i32),
DAG.getRegister(PPC::CR6, MVT::i32),
N->getOperand(4), CompNode.getValue(1));
}
break;
}
case ISD::BUILD_VECTOR:
return DAGCombineBuildVector(N, DCI);
case ISD::ABS:
return combineABS(N, DCI);
case ISD::VSELECT:
return combineVSelect(N, DCI);
}
return SDValue();
}
SDValue
PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
// fold (sdiv X, pow2)
EVT VT = N->getValueType(0);
if (VT == MVT::i64 && !Subtarget.isPPC64())
return SDValue();
if ((VT != MVT::i32 && VT != MVT::i64) ||
!(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
bool IsNegPow2 = (-Divisor).isPowerOf2();
unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
Created.push_back(Op.getNode());
if (IsNegPow2) {
Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
Created.push_back(Op.getNode());
}
return Op;
}
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
Known.resetAll();
switch (Op.getOpcode()) {
default: break;
case PPCISD::LBRX: {
// lhbrx is known to have the top bits cleared out.
if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
Known.Zero = 0xFFFF0000;
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
default: break;
case Intrinsic::ppc_altivec_vcmpbfp_p:
case Intrinsic::ppc_altivec_vcmpeqfp_p:
case Intrinsic::ppc_altivec_vcmpequb_p:
case Intrinsic::ppc_altivec_vcmpequh_p:
case Intrinsic::ppc_altivec_vcmpequw_p:
case Intrinsic::ppc_altivec_vcmpequd_p:
case Intrinsic::ppc_altivec_vcmpgefp_p:
case Intrinsic::ppc_altivec_vcmpgtfp_p:
case Intrinsic::ppc_altivec_vcmpgtsb_p:
case Intrinsic::ppc_altivec_vcmpgtsh_p:
case Intrinsic::ppc_altivec_vcmpgtsw_p:
case Intrinsic::ppc_altivec_vcmpgtsd_p:
case Intrinsic::ppc_altivec_vcmpgtub_p:
case Intrinsic::ppc_altivec_vcmpgtuh_p:
case Intrinsic::ppc_altivec_vcmpgtuw_p:
case Intrinsic::ppc_altivec_vcmpgtud_p:
Known.Zero = ~1U; // All bits but the low one are known to be zero.
break;
}
}
}
}
Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
switch (Subtarget.getCPUDirective()) {
default: break;
case PPC::DIR_970:
case PPC::DIR_PWR4:
case PPC::DIR_PWR5:
case PPC::DIR_PWR5X:
case PPC::DIR_PWR6:
case PPC::DIR_PWR6X:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8:
case PPC::DIR_PWR9:
case PPC::DIR_PWR10:
case PPC::DIR_PWR_FUTURE: {
if (!ML)
break;
if (!DisableInnermostLoopAlign32) {
// If the nested loop is an innermost loop, prefer to a 32-byte alignment,
// so that we can decrease cache misses and branch-prediction misses.
// Actual alignment of the loop will depend on the hotness check and other
// logic in alignBlocks.
if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
return Align(32);
}
const PPCInstrInfo *TII = Subtarget.getInstrInfo();
// For small loops (between 5 and 8 instructions), align to a 32-byte
// boundary so that the entire loop fits in one instruction-cache line.
uint64_t LoopSize = 0;
for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
LoopSize += TII->getInstSizeInBytes(*J);
if (LoopSize > 32)
break;
}
if (LoopSize > 16 && LoopSize <= 32)
return Align(32);
break;
}
}
return TargetLowering::getPrefLoopAlignment(ML);
}
/// getConstraintType - Given a constraint, return the type of
/// constraint it is for this target.
PPCTargetLowering::ConstraintType
PPCTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'b':
case 'r':
case 'f':
case 'd':
case 'v':
case 'y':
return C_RegisterClass;
case 'Z':
// FIXME: While Z does indicate a memory constraint, it specifically
// indicates an r+r address (used in conjunction with the 'y' modifier
// in the replacement string). Currently, we're forcing the base
// register to be r0 in the asm printer (which is interpreted as zero)
// and forming the complete address in the second register. This is
// suboptimal.
return C_Memory;
}
} else if (Constraint == "wc") { // individual CR bits.
return C_RegisterClass;
} else if (Constraint == "wa" || Constraint == "wd" ||
Constraint == "wf" || Constraint == "ws" ||
Constraint == "wi" || Constraint == "ww") {
return C_RegisterClass; // VSX registers.
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
PPCTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
return CW_Register; // an individual CR bit.
else if ((StringRef(constraint) == "wa" ||
StringRef(constraint) == "wd" ||
StringRef(constraint) == "wf") &&
type->isVectorTy())
return CW_Register;
else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
return CW_Register; // just hold 64-bit integers data.
else if (StringRef(constraint) == "ws" && type->isDoubleTy())
return CW_Register;
else if (StringRef(constraint) == "ww" && type->isFloatTy())
return CW_Register;
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'b':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f':
if (type->isFloatTy())
weight = CW_Register;
break;
case 'd':
if (type->isDoubleTy())
weight = CW_Register;
break;
case 'v':
if (type->isVectorTy())
weight = CW_Register;
break;
case 'y':
weight = CW_Register;
break;
case 'Z':
weight = CW_Memory;
break;
}
return weight;
}
std::pair<unsigned, const TargetRegisterClass *>
PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'b': // R1-R31
if (VT == MVT::i64 && Subtarget.isPPC64())
return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
case 'r': // R0-R31
if (VT == MVT::i64 && Subtarget.isPPC64())
return std::make_pair(0U, &PPC::G8RCRegClass);
return std::make_pair(0U, &PPC::GPRCRegClass);
// 'd' and 'f' constraints are both defined to be "the floating point
// registers", where one is for 32-bit and the other for 64-bit. We don't
// really care overly much here so just give them all the same reg classes.
case 'd':
case 'f':
if (Subtarget.hasSPE()) {
if (VT == MVT::f32 || VT == MVT::i32)
return std::make_pair(0U, &PPC::GPRCRegClass);
if (VT == MVT::f64 || VT == MVT::i64)
return std::make_pair(0U, &PPC::SPERCRegClass);
} else {
if (VT == MVT::f32 || VT == MVT::i32)
return std::make_pair(0U, &PPC::F4RCRegClass);
if (VT == MVT::f64 || VT == MVT::i64)
return std::make_pair(0U, &PPC::F8RCRegClass);
if (VT == MVT::v4f64 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QFRCRegClass);
if (VT == MVT::v4f32 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QSRCRegClass);
}
break;
case 'v':
if (VT == MVT::v4f64 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QFRCRegClass);
if (VT == MVT::v4f32 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QSRCRegClass);
if (Subtarget.hasAltivec())
return std::make_pair(0U, &PPC::VRRCRegClass);
break;
case 'y': // crrc
return std::make_pair(0U, &PPC::CRRCRegClass);
}
} else if (Constraint == "wc" && Subtarget.useCRBits()) {
// An individual CR bit.
return std::make_pair(0U, &PPC::CRBITRCRegClass);
} else if ((Constraint == "wa" || Constraint == "wd" ||
Constraint == "wf" || Constraint == "wi") &&
Subtarget.hasVSX()) {
return std::make_pair(0U, &PPC::VSRCRegClass);
} else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
if (VT == MVT::f32 && Subtarget.hasP8Vector())
return std::make_pair(0U, &PPC::VSSRCRegClass);
else
return std::make_pair(0U, &PPC::VSFRCRegClass);
}
// If we name a VSX register, we can't defer to the base class because it
// will not recognize the correct register (their names will be VSL{0-31}
// and V{0-31} so they won't match). So we match them here.
if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
int VSNum = atoi(Constraint.data() + 3);
assert(VSNum >= 0 && VSNum <= 63 &&
"Attempted to access a vsr out of range");
if (VSNum < 32)
return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
}
std::pair<unsigned, const TargetRegisterClass *> R =
TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
// (which we call X[0-9]+). If a 64-bit value has been requested, and a
// 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
// register.
// FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
PPC::GPRCRegClass.contains(R.first))
return std::make_pair(TRI->getMatchingSuperReg(R.first,
PPC::sub_32, &PPC::G8RCRegClass),
&PPC::G8RCRegClass);
// GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
R.first = PPC::CR0;
R.second = &PPC::CRRCRegClass;
}
return R;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Only support length 1 constraints.
if (Constraint.length() > 1) return;
char Letter = Constraint[0];
switch (Letter) {
default: break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P': {
ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
if (!CST) return; // Must be an immediate to match.
SDLoc dl(Op);
int64_t Value = CST->getSExtValue();
EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
// numbers are printed as such.
switch (Letter) {
default: llvm_unreachable("Unknown constraint letter!");
case 'I': // "I" is a signed 16-bit constant.
if (isInt<16>(Value))
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
if (isShiftedUInt<16, 16>(Value))
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
if (isShiftedInt<16, 16>(Value))
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
if (isUInt<16>(Value))
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'M': // "M" is a constant that is greater than 31.
if (Value > 31)
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'N': // "N" is a positive constant that is an exact power of two.
if (Value > 0 && isPowerOf2_64(Value))
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'O': // "O" is the constant zero.
if (Value == 0)
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
if (isInt<16>(-Value))
Result = DAG.getTargetConstant(Value, dl, TCVT);
break;
}
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
// Handle standard constraint letters.
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// PPC does not allow r+i addressing modes for vectors!
if (Ty->isVectorTy() && AM.BaseOffs != 0)
return false;
// PPC allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// PPC only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
return false;
// Otherwise we have r+r or r+i.
break;
case 2:
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
return false;
// Allow 2*r as r+r.
break;
default:
// No other scales are supported.
return false;
}
return true;
}
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// Make sure the function does not optimize away the store of the RA to
// the stack.
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setLRStoreRequired();
bool isPPC64 = Subtarget.isPPC64();
auto PtrVT = getPointerTy(MF.getDataLayout());
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset =
DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
isPPC64 ? MVT::i64 : MVT::i32);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
MachinePointerInfo());
}
// Just load the return address off the stack.
SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
MachinePointerInfo());
}
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT PtrVT = getPointerTy(MF.getDataLayout());
bool isPPC64 = PtrVT == MVT::i64;
// Naked functions never have a frame pointer, and so we use r1. For all
// other functions, this decision must be delayed until during PEI.
unsigned FrameReg;
if (MF.getFunction().hasFnAttribute(Attribute::Naked))
FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
else
FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
PtrVT);
while (Depth--)
FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
FrameAddr, MachinePointerInfo());
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const {
bool isPPC64 = Subtarget.isPPC64();
bool is64Bit = isPPC64 && VT == LLT::scalar(64);
if (!is64Bit && VT != LLT::scalar(32))
report_fatal_error("Invalid register global variable type");
Register Reg = StringSwitch<Register>(RegName)
.Case("r1", is64Bit ? PPC::X1 : PPC::R1)
.Case("r2", isPPC64 ? Register() : PPC::R2)
.Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
.Default(Register());
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
// 32-bit SVR4 ABI access everything as got-indirect.
if (Subtarget.is32BitELFABI())
return true;
// AIX accesses everything indirectly through the TOC, which is similar to
// the GOT.
if (Subtarget.isAIXABI())
return true;
CodeModel::Model CModel = getTargetMachine().getCodeModel();
// If it is small or large code model, module locals are accessed
// indirectly by loading their address from .toc/.got.
if (CModel == CodeModel::Small || CModel == CodeModel::Large)
return true;
// JumpTable and BlockAddress are accessed as got-indirect.
if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
return true;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
return Subtarget.isGVIndirectSymbol(G->getGlobal());
return false;
}
bool
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The PowerPC target isn't yet aware of offsets.
return false;
}
bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::ppc_qpx_qvlfd:
case Intrinsic::ppc_qpx_qvlfs:
case Intrinsic::ppc_qpx_qvlfcd:
case Intrinsic::ppc_qpx_qvlfcs:
case Intrinsic::ppc_qpx_qvlfiwa:
case Intrinsic::ppc_qpx_qvlfiwz:
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
case Intrinsic::ppc_altivec_lvebx:
case Intrinsic::ppc_altivec_lvehx:
case Intrinsic::ppc_altivec_lvewx:
case Intrinsic::ppc_vsx_lxvd2x:
case Intrinsic::ppc_vsx_lxvw4x: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_altivec_lvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_lvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_lvewx:
VT = MVT::i32;
break;
case Intrinsic::ppc_vsx_lxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfd:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvlfs:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvlfcd:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfcs:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(0);
Info.offset = -VT.getStoreSize()+1;
Info.size = 2*VT.getStoreSize()-1;
Info.align = Align(1);
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::ppc_qpx_qvlfda:
case Intrinsic::ppc_qpx_qvlfsa:
case Intrinsic::ppc_qpx_qvlfcda:
case Intrinsic::ppc_qpx_qvlfcsa:
case Intrinsic::ppc_qpx_qvlfiwaa:
case Intrinsic::ppc_qpx_qvlfiwza: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_qpx_qvlfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvlfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvlfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfcsa:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.size = VT.getStoreSize();
Info.align = Align(1);
Info.flags = MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::ppc_qpx_qvstfd:
case Intrinsic::ppc_qpx_qvstfs:
case Intrinsic::ppc_qpx_qvstfcd:
case Intrinsic::ppc_qpx_qvstfcs:
case Intrinsic::ppc_qpx_qvstfiw:
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
case Intrinsic::ppc_altivec_stvebx:
case Intrinsic::ppc_altivec_stvehx:
case Intrinsic::ppc_altivec_stvewx:
case Intrinsic::ppc_vsx_stxvd2x:
case Intrinsic::ppc_vsx_stxvw4x: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_altivec_stvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_stvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_stvewx:
VT = MVT::i32;
break;
case Intrinsic::ppc_vsx_stxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfd:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvstfs:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvstfcd:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfcs:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(1);
Info.offset = -VT.getStoreSize()+1;
Info.size = 2*VT.getStoreSize()-1;
Info.align = Align(1);
Info.flags = MachineMemOperand::MOStore;
return true;
}
case Intrinsic::ppc_qpx_qvstfda:
case Intrinsic::ppc_qpx_qvstfsa:
case Intrinsic::ppc_qpx_qvstfcda:
case Intrinsic::ppc_qpx_qvstfcsa:
case Intrinsic::ppc_qpx_qvstfiwa: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_qpx_qvstfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvstfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvstfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfcsa:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.size = VT.getStoreSize();
Info.align = Align(1);
Info.flags = MachineMemOperand::MOStore;
return true;
}
default:
break;
}
return false;
}
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT PPCTargetLowering::getOptimalMemOpType(
const MemOp &Op, const AttributeList &FuncAttributes) const {
if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
// When expanding a memset, require at least two QPX instructions to cover
// the cost of loading the value to be stored from the constant pool.
if (Subtarget.hasQPX() && Op.size() >= 32 &&
(Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
return MVT::v4f64;
}
// We should use Altivec/VSX loads and stores when available. For unaligned
// addresses, unaligned VSX loads are only fast starting with the P8.
if (Subtarget.hasAltivec() && Op.size() >= 16 &&
(Op.isAligned(Align(16)) ||
((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
return MVT::v4i32;
}
if (Subtarget.isPPC64()) {
return MVT::i64;
}
return MVT::i32;
}
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
return !(BitSize == 0 || BitSize > 64);
}
bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 == 64 && NumBits2 == 32;
}
bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 == 64 && NumBits2 == 32;
}
bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
// Generally speaking, zexts are not free, but they are free when they can be
// folded with other operations.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
EVT MemVT = LD->getMemoryVT();
if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
(Subtarget.isPPC64() && MemVT == MVT::i32)) &&
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
LD->getExtensionType() == ISD::ZEXTLOAD))
return true;
}
// FIXME: Add other cases...
// - 32-bit shifts with a zext to i64
// - zext after ctlz, bswap, etc.
// - zext after and by a constant mask
return TargetLowering::isZExtFree(Val, VT2);
}
bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
"invalid fpext types");
// Extending to float128 is not free.
if (DestVT == MVT::f128)
return false;
return true;
}
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<16>(Imm) || isUInt<16>(Imm);
}
bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
return isInt<16>(Imm) || isUInt<16>(Imm);
}
bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
MachineMemOperand::Flags,
bool *Fast) const {
if (DisablePPCUnaligned)
return false;
// PowerPC supports unaligned memory access for simple non-vector types.
// Although accessing unaligned addresses is not as efficient as accessing
// aligned addresses, it is generally more efficient than manual expansion,
// and generally only traps for software emulation when crossing page
// boundaries.
if (!VT.isSimple())
return false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!Subtarget.allowsUnalignedFPAccess())
return false;
if (VT.getSimpleVT().isVector()) {
if (Subtarget.hasVSX()) {
if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
VT != MVT::v4f32 && VT != MVT::v4i32)
return false;
} else {
return false;
}
}
if (VT == MVT::ppcf128)
return false;
if (Fast)
*Fast = true;
return true;
}
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const {
return isFMAFasterThanFMulAndFAdd(
MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
}
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
Type *Ty) const {
switch (Ty->getScalarType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
return true;
case Type::FP128TyID:
return Subtarget.hasP9Vector();
default:
return false;
}
}
// Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
// FIXME: add more patterns which are profitable to hoist.
bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
if (I->getOpcode() != Instruction::FMul)
return true;
if (!I->hasOneUse())
return true;
Instruction *User = I->user_back();
assert(User && "A single use instruction with no uses.");
if (User->getOpcode() != Instruction::FSub &&
User->getOpcode() != Instruction::FAdd)
return true;
const TargetOptions &Options = getTargetMachine().Options;
const Function *F = I->getFunction();
const DataLayout &DL = F->getParent()->getDataLayout();
Type *Ty = User->getOperand(0)->getType();
return !(
isFMAFasterThanFMulAndFAdd(*F, Ty) &&
isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
}
const MCPhysReg *
PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
// LR is a callee-save register, but we must treat it as clobbered by any call
// site. Hence we include LR in the scratch registers, which are in turn added
// as implicit-defs for stackmaps and patchpoints. The same reasoning applies
// to CTR, which is used by any indirect call.
static const MCPhysReg ScratchRegs[] = {
PPC::X12, PPC::LR8, PPC::CTR8, 0
};
return ScratchRegs;
}
Register PPCTargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
}
Register PPCTargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
}
bool
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
EVT VT , unsigned DefinedValues) const {
if (VT == MVT::v2i64)
return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
if (Subtarget.hasVSX() || Subtarget.hasQPX())
return true;
return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
}
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
if (DisableILPPref || Subtarget.enableMachineScheduler())
return TargetLowering::getSchedulingPreference(N);
return Sched::ILP;
}
// Create a fast isel object.
FastISel *
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) const {
return PPC::createFastISel(FuncInfo, LibInfo);
}
// 'Inverted' means the FMA opcode after negating one multiplicand.
// For example, (fma -a b c) = (fnmsub a b c)
static unsigned invertFMAOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Invalid FMA opcode for PowerPC!");
case ISD::FMA:
return PPCISD::FNMSUB;
case PPCISD::FNMSUB:
return ISD::FMA;
}
}
SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOps, bool OptForSize,
NegatibleCost &Cost,
unsigned Depth) const {
if (Depth > SelectionDAG::MaxRecursionDepth)
return SDValue();
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
SDNodeFlags Flags = Op.getNode()->getFlags();
switch (Opc) {
case PPCISD::FNMSUB:
// TODO: QPX subtarget is deprecated. No transformation here.
if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX())
break;
const TargetOptions &Options = getTargetMachine().Options;
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
SDLoc Loc(Op);
NegatibleCost N2Cost = NegatibleCost::Expensive;
SDValue NegN2 =
getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
if (!NegN2)
return SDValue();
// (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
// (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
// These transformations may change sign of zeroes. For example,
// -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
// Try and choose the cheaper one to negate.
NegatibleCost N0Cost = NegatibleCost::Expensive;
SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
N0Cost, Depth + 1);
NegatibleCost N1Cost = NegatibleCost::Expensive;
SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
N1Cost, Depth + 1);
if (NegN0 && N0Cost <= N1Cost) {
Cost = std::min(N0Cost, N2Cost);
return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
} else if (NegN1) {
Cost = std::min(N1Cost, N2Cost);
return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
}
}
// (fneg (fnmsub a b c)) => (fma a b (fneg c))
if (isOperationLegal(ISD::FMA, VT)) {
Cost = N2Cost;
return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
}
break;
}
return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
Cost, Depth);
}
// Override to enable LOAD_STACK_GUARD lowering on Linux.
bool PPCTargetLowering::useLoadStackGuardNode() const {
if (!Subtarget.isTargetLinux())
return TargetLowering::useLoadStackGuardNode();
return true;
}
// Override to disable global variable loading on Linux.
void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
if (!Subtarget.isTargetLinux())
return TargetLowering::insertSSPDeclarations(M);
}
bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
if (!VT.isSimple() || !Subtarget.hasVSX())
return false;
switch(VT.getSimpleVT().SimpleTy) {
default:
// For FP types that are currently not supported by PPC backend, return
// false. Examples: f16, f80.
return false;
case MVT::f32:
case MVT::f64:
if (Subtarget.hasPrefixInstrs()) {
// With prefixed instructions, we can materialize anything that can be
// represented with a 32-bit immediate, not just positive zero.
APFloat APFloatOfImm = Imm;
return convertToNonDenormSingle(APFloatOfImm);
}
LLVM_FALLTHROUGH;
case MVT::ppcf128:
return Imm.isPosZero();
}
}
// For vector shift operation op, fold
// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
unsigned Opcode = N->getOpcode();
unsigned TargetOpcode;
switch (Opcode) {
default:
llvm_unreachable("Unexpected shift operation");
case ISD::SHL:
TargetOpcode = PPCISD::SHL;
break;
case ISD::SRL:
TargetOpcode = PPCISD::SRL;
break;
case ISD::SRA:
TargetOpcode = PPCISD::SRA;
break;
}
if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
N1->getOpcode() == ISD::AND)
if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
if (Mask->getZExtValue() == OpSizeInBits - 1)
return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
return SDValue();
}
SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
return Value;
SDValue N0 = N->getOperand(0);
ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Subtarget.isISA3_0() ||
N0.getOpcode() != ISD::SIGN_EXTEND ||
N0.getOperand(0).getValueType() != MVT::i32 ||
CN1 == nullptr || N->getValueType(0) != MVT::i64)
return SDValue();
// We can't save an operation here if the value is already extended, and
// the existing shift is easier to combine.
SDValue ExtsSrc = N0.getOperand(0);
if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
return SDValue();
SDLoc DL(N0);
SDValue ShiftBy = SDValue(CN1, 0);
// We want the shift amount to be i32 on the extswli, but the shift could
// have an i64.
if (ShiftBy.getValueType() == MVT::i64)
ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
ShiftBy);
}
SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
return Value;
return SDValue();
}
SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
return Value;
return SDValue();
}
// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
// Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
// When C is zero, the equation (addi Z, -C) can be simplified to Z
// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) {
if (!Subtarget.isPPC64())
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
auto isZextOfCompareWithConstant = [](SDValue Op) {
if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
Op.getValueType() != MVT::i64)
return false;
SDValue Cmp = Op.getOperand(0);
if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
Cmp.getOperand(0).getValueType() != MVT::i64)
return false;
if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
int64_t NegConstant = 0 - Constant->getSExtValue();
// Due to the limitations of the addi instruction,
// -C is required to be [-32768, 32767].
return isInt<16>(NegConstant);
}
return false;
};
bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
// If there is a pattern, canonicalize a zext operand to the RHS.
if (LHSHasPattern && !RHSHasPattern)
std::swap(LHS, RHS);
else if (!LHSHasPattern && !RHSHasPattern)
return SDValue();
SDLoc DL(N);
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
SDValue Cmp = RHS.getOperand(0);
SDValue Z = Cmp.getOperand(0);
auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
assert(Constant && "Constant Should not be a null pointer.");
int64_t NegConstant = 0 - Constant->getSExtValue();
switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
default: break;
case ISD::SETNE: {
// when C == 0
// --> addze X, (addic Z, -1).carry
// /
// add X, (zext(setne Z, C))--
// \ when -32768 <= -C <= 32767 && C != 0
// --> addze X, (addic (addi Z, -C), -1).carry
SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
DAG.getConstant(NegConstant, DL, MVT::i64));
SDValue AddOrZ = NegConstant != 0 ? Add : Z;
SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
SDValue(Addc.getNode(), 1));
}
case ISD::SETEQ: {
// when C == 0
// --> addze X, (subfic Z, 0).carry
// /
// add X, (zext(sete Z, C))--
// \ when -32768 <= -C <= 32767 && C != 0
// --> addze X, (subfic (addi Z, -C), 0).carry
SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
DAG.getConstant(NegConstant, DL, MVT::i64));
SDValue AddOrZ = NegConstant != 0 ? Add : Z;
SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
DAG.getConstant(0, DL, MVT::i64), AddOrZ);
return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
SDValue(Subc.getNode(), 1));
}
}
return SDValue();
}
// Transform
// (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
// (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
// In this case both C1 and C2 must be known constants.
// C1+C2 must fit into a 34 bit signed integer.
static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) {
if (!Subtarget.isUsingPCRelativeCalls())
return SDValue();
// Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
// If we find that node try to cast the Global Address and the Constant.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
std::swap(LHS, RHS);
if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
return SDValue();
// Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
// Check that both casts succeeded.
if (!GSDN || !ConstNode)
return SDValue();
int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
SDLoc DL(GSDN);
// The signed int offset needs to fit in 34 bits.
if (!isInt<34>(NewOffset))
return SDValue();
// The new global address is a copy of the old global address except
// that it has the updated Offset.
SDValue GA =
DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
NewOffset, GSDN->getTargetFlags());
SDValue MatPCRel =
DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
return MatPCRel;
}
SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
return Value;
if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
return Value;
return SDValue();
}
// Detect TRUNCATE operations on bitcasts of float128 values.
// What we are looking for here is the situtation where we extract a subset
// of bits from a 128 bit float.
// This can be of two forms:
// 1) BITCAST of f128 feeding TRUNCATE
// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
// The reason this is required is because we do not have a legal i128 type
// and so we want to prevent having to store the f128 and then reload part
// of it.
SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
DAGCombinerInfo &DCI) const {
// If we are using CRBits then try that first.
if (Subtarget.useCRBits()) {
// Check if CRBits did anything and return that if it did.
if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
return CRTruncValue;
}
SDLoc dl(N);
SDValue Op0 = N->getOperand(0);
// fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
EVT VT = N->getValueType(0);
if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
return SDValue();
SDValue Sub = Op0.getOperand(0);
if (Sub.getOpcode() == ISD::SUB) {
SDValue SubOp0 = Sub.getOperand(0);
SDValue SubOp1 = Sub.getOperand(1);
if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
(SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
SubOp1.getOperand(0),
DCI.DAG.getTargetConstant(0, dl, MVT::i32));
}
}
}
// Looking for a truncate of i128 to i64.
if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
return SDValue();
int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
// SRL feeding TRUNCATE.
if (Op0.getOpcode() == ISD::SRL) {
ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
// The right shift has to be by 64 bits.
if (!ConstNode || ConstNode->getZExtValue() != 64)
return SDValue();
// Switch the element number to extract.
EltToExtract = EltToExtract ? 0 : 1;
// Update Op0 past the SRL.
Op0 = Op0.getOperand(0);
}
// BITCAST feeding a TRUNCATE possibly via SRL.
if (Op0.getOpcode() == ISD::BITCAST &&
Op0.getValueType() == MVT::i128 &&
Op0.getOperand(0).getValueType() == MVT::f128) {
SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
return DCI.DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
}
return SDValue();
}
SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
if (!ConstOpOrElement)
return SDValue();
// An imul is usually smaller than the alternative sequence for legal type.
if (DAG.getMachineFunction().getFunction().hasMinSize() &&
isOperationLegal(ISD::MUL, N->getValueType(0)))
return SDValue();
auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
switch (this->Subtarget.getCPUDirective()) {
default:
// TODO: enhance the condition for subtarget before pwr8
return false;
case PPC::DIR_PWR8:
// type mul add shl
// scalar 4 1 1
// vector 7 2 2
return true;
case PPC::DIR_PWR9:
case PPC::DIR_PWR10:
case PPC::DIR_PWR_FUTURE:
// type mul add shl
// scalar 5 2 2
// vector 7 2 2
// The cycle RATIO of related operations are showed as a table above.
// Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
// scalar and vector type. For 2 instrs patterns, add/sub + shl
// are 4, it is always profitable; but for 3 instrs patterns
// (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
// So we should only do it for vector type.
return IsAddOne && IsNeg ? VT.isVector() : true;
}
};
EVT VT = N->getValueType(0);
SDLoc DL(N);
const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
bool IsNeg = MulAmt.isNegative();
APInt MulAmtAbs = MulAmt.abs();
if ((MulAmtAbs - 1).isPowerOf2()) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
// (mul x, -(2^N + 1)) => -(add (shl x, N), x)
if (!IsProfitable(IsNeg, true, VT))
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 =
DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
if (!IsNeg)
return Res;
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
} else if ((MulAmtAbs + 1).isPowerOf2()) {
// (mul x, 2^N - 1) => (sub (shl x, N), x)
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
if (!IsProfitable(IsNeg, false, VT))
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 =
DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
if (!IsNeg)
return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
else
return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
} else {
return SDValue();
}
}
// Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
// in combiner since we need to check SD flags and other subtarget features.
SDValue PPCTargetLowering::combineFMALike(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDNodeFlags Flags = N->getFlags();
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
const TargetOptions &Options = getTargetMachine().Options;
unsigned Opc = N->getOpcode();
bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
bool LegalOps = !DCI.isBeforeLegalizeOps();
SDLoc Loc(N);
// TODO: QPX subtarget is deprecated. No transformation here.
if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT))
return SDValue();
// Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
// since (fnmsub a b c)=-0 while c-ab=+0.
if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
return SDValue();
// (fma (fneg a) b c) => (fnmsub a b c)
// (fnmsub (fneg a) b c) => (fma a b c)
if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
// (fma a (fneg b) c) => (fnmsub a b c)
// (fnmsub a (fneg b) c) => (fma a b c)
if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
return SDValue();
}
bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
// Only duplicate to increase tail-calls for the 64bit SysV ABIs.
if (!Subtarget.is64BitELFABI())
return false;
// If not a tail call then no need to proceed.
if (!CI->isTailCall())
return false;
// If sibling calls have been disabled and tail-calls aren't guaranteed
// there is no reason to duplicate.
auto &TM = getTargetMachine();
if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
return false;
// Can't tail call a function called indirectly, or if it has variadic args.
const Function *Callee = CI->getCalledFunction();
if (!Callee || Callee->isVarArg())
return false;
// Make sure the callee and caller calling conventions are eligible for tco.
const Function *Caller = CI->getParent()->getParent();
if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
CI->getCallingConv()))
return false;
// If the function is local then we have a good chance at tail-calling it
return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
}
bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
if (!Subtarget.hasVSX())
return false;
if (Subtarget.hasP9Vector() && VT == MVT::f128)
return true;
return VT == MVT::f32 || VT == MVT::f64 ||
VT == MVT::v4f32 || VT == MVT::v2f64;
}
bool PPCTargetLowering::
isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
const Value *Mask = AndI.getOperand(1);
// If the mask is suitable for andi. or andis. we should sink the and.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
// Can't handle constants wider than 64-bits.
if (CI->getBitWidth() > 64)
return false;
int64_t ConstVal = CI->getZExtValue();
return isUInt<16>(ConstVal) ||
(isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
}
// For non-constant masks, we can always use the record-form and.
return true;
}
// Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
// Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
// Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
// Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
// Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
assert(Subtarget.hasP9Altivec() &&
"Only combine this when P9 altivec supported!");
EVT VT = N->getValueType(0);
if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
if (N->getOperand(0).getOpcode() == ISD::SUB) {
// Even for signed integers, if it's known to be positive (as signed
// integer) due to zero-extended inputs.
unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
if ((SubOpcd0 == ISD::ZERO_EXTEND ||
SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
(SubOpcd1 == ISD::ZERO_EXTEND ||
SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
N->getOperand(0)->getOperand(0),
N->getOperand(0)->getOperand(1),
DAG.getTargetConstant(0, dl, MVT::i32));
}
// For type v4i32, it can be optimized with xvnegsp + vabsduw
if (N->getOperand(0).getValueType() == MVT::v4i32 &&
N->getOperand(0).hasOneUse()) {
return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
N->getOperand(0)->getOperand(0),
N->getOperand(0)->getOperand(1),
DAG.getTargetConstant(1, dl, MVT::i32));
}
}
return SDValue();
}
// For type v4i32/v8ii16/v16i8, transform
// from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
// from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
// from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
// from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
SDValue PPCTargetLowering::combineVSelect(SDNode *N,
DAGCombinerInfo &DCI) const {
assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
assert(Subtarget.hasP9Altivec() &&
"Only combine this when P9 altivec supported!");
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Cond = N->getOperand(0);
SDValue TrueOpnd = N->getOperand(1);
SDValue FalseOpnd = N->getOperand(2);
EVT VT = N->getOperand(1).getValueType();
if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
FalseOpnd.getOpcode() != ISD::SUB)
return SDValue();
// ABSD only available for type v4i32/v8i16/v16i8
if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
return SDValue();
// At least to save one more dependent computation
if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
return SDValue();
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
// Can only handle unsigned comparison here
switch (CC) {
default:
return SDValue();
case ISD::SETUGT:
case ISD::SETUGE:
break;
case ISD::SETULT:
case ISD::SETULE:
std::swap(TrueOpnd, FalseOpnd);
break;
}
SDValue CmpOpnd1 = Cond.getOperand(0);
SDValue CmpOpnd2 = Cond.getOperand(1);
// SETCC CmpOpnd1 CmpOpnd2 cond
// TrueOpnd = CmpOpnd1 - CmpOpnd2
// FalseOpnd = CmpOpnd2 - CmpOpnd1
if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
TrueOpnd.getOperand(1) == CmpOpnd2 &&
FalseOpnd.getOperand(0) == CmpOpnd2 &&
FalseOpnd.getOperand(1) == CmpOpnd1) {
return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
CmpOpnd1, CmpOpnd2,
DAG.getTargetConstant(0, dl, MVT::i32));
}
return SDValue();
}