MipsLegalizerInfo.cpp 21.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
//===- MipsLegalizerInfo.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for Mips.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "MipsLegalizerInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/IR/IntrinsicsMips.h"

using namespace llvm;

struct TypesAndMemOps {
  LLT ValTy;
  LLT PtrTy;
  unsigned MemSize;
  bool SystemSupportsUnalignedAccess;
};

// Assumes power of 2 memory size. Subtargets that have only naturally-aligned
// memory access need to perform additional legalization here.
static bool isUnalignedMemmoryAccess(uint64_t MemSize, uint64_t AlignInBits) {
  assert(isPowerOf2_64(MemSize) && "Expected power of 2 memory size");
  assert(isPowerOf2_64(AlignInBits) && "Expected power of 2 align");
  if (MemSize > AlignInBits)
    return true;
  return false;
}

static bool
CheckTy0Ty1MemSizeAlign(const LegalityQuery &Query,
                        std::initializer_list<TypesAndMemOps> SupportedValues) {
  unsigned QueryMemSize = Query.MMODescrs[0].SizeInBits;

  // Non power of two memory access is never legal.
  if (!isPowerOf2_64(QueryMemSize))
    return false;

  for (auto &Val : SupportedValues) {
    if (Val.ValTy != Query.Types[0])
      continue;
    if (Val.PtrTy != Query.Types[1])
      continue;
    if (Val.MemSize != QueryMemSize)
      continue;
    if (!Val.SystemSupportsUnalignedAccess &&
        isUnalignedMemmoryAccess(QueryMemSize, Query.MMODescrs[0].AlignInBits))
      return false;
    return true;
  }
  return false;
}

static bool CheckTyN(unsigned N, const LegalityQuery &Query,
                     std::initializer_list<LLT> SupportedValues) {
  for (auto &Val : SupportedValues)
    if (Val == Query.Types[N])
      return true;
  return false;
}

MipsLegalizerInfo::MipsLegalizerInfo(const MipsSubtarget &ST) {
  using namespace TargetOpcode;

  const LLT s1 = LLT::scalar(1);
  const LLT s32 = LLT::scalar(32);
  const LLT s64 = LLT::scalar(64);
  const LLT v16s8 = LLT::vector(16, 8);
  const LLT v8s16 = LLT::vector(8, 16);
  const LLT v4s32 = LLT::vector(4, 32);
  const LLT v2s64 = LLT::vector(2, 64);
  const LLT p0 = LLT::pointer(0, 32);

  getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
      .legalIf([=, &ST](const LegalityQuery &Query) {
        if (CheckTyN(0, Query, {s32}))
          return true;
        if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
          return true;
        return false;
      })
      .clampScalar(0, s32, s32);

  getActionDefinitionsBuilder({G_UADDO, G_UADDE, G_USUBO, G_USUBE, G_UMULO})
      .lowerFor({{s32, s1}});

  getActionDefinitionsBuilder(G_UMULH)
      .legalFor({s32})
      .maxScalar(0, s32);

  // MIPS32r6 does not have alignment restrictions for memory access.
  // For MIPS32r5 and older memory access must be naturally-aligned i.e. aligned
  // to at least a multiple of its own size. There is however a two instruction
  // combination that performs 4 byte unaligned access (lwr/lwl and swl/swr)
  // therefore 4 byte load and store are legal and will use NoAlignRequirements.
  bool NoAlignRequirements = true;

  getActionDefinitionsBuilder({G_LOAD, G_STORE})
      .legalIf([=, &ST](const LegalityQuery &Query) {
        if (CheckTy0Ty1MemSizeAlign(
                Query, {{s32, p0, 8, NoAlignRequirements},
                        {s32, p0, 16, ST.systemSupportsUnalignedAccess()},
                        {s32, p0, 32, NoAlignRequirements},
                        {p0, p0, 32, NoAlignRequirements},
                        {s64, p0, 64, ST.systemSupportsUnalignedAccess()}}))
          return true;
        if (ST.hasMSA() && CheckTy0Ty1MemSizeAlign(
                               Query, {{v16s8, p0, 128, NoAlignRequirements},
                                       {v8s16, p0, 128, NoAlignRequirements},
                                       {v4s32, p0, 128, NoAlignRequirements},
                                       {v2s64, p0, 128, NoAlignRequirements}}))
          return true;
        return false;
      })
      // Custom lower scalar memory access, up to 8 bytes, for:
      // - non-power-of-2 MemSizes
      // - unaligned 2 or 8 byte MemSizes for MIPS32r5 and older
      .customIf([=, &ST](const LegalityQuery &Query) {
        if (!Query.Types[0].isScalar() || Query.Types[1] != p0 ||
            Query.Types[0] == s1)
          return false;

        unsigned Size = Query.Types[0].getSizeInBits();
        unsigned QueryMemSize = Query.MMODescrs[0].SizeInBits;
        assert(QueryMemSize <= Size && "Scalar can't hold MemSize");

        if (Size > 64 || QueryMemSize > 64)
          return false;

        if (!isPowerOf2_64(Query.MMODescrs[0].SizeInBits))
          return true;

        if (!ST.systemSupportsUnalignedAccess() &&
            isUnalignedMemmoryAccess(QueryMemSize,
                                     Query.MMODescrs[0].AlignInBits)) {
          assert(QueryMemSize != 32 && "4 byte load and store are legal");
          return true;
        }

        return false;
      })
      .minScalar(0, s32);

  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
      .legalFor({s32, s64});

  getActionDefinitionsBuilder(G_UNMERGE_VALUES)
     .legalFor({{s32, s64}});

  getActionDefinitionsBuilder(G_MERGE_VALUES)
     .legalFor({{s64, s32}});

  getActionDefinitionsBuilder({G_ZEXTLOAD, G_SEXTLOAD})
      .legalForTypesWithMemDesc({{s32, p0, 8, 8},
                                 {s32, p0, 16, 8}})
      .clampScalar(0, s32, s32);

  getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
      .legalIf([](const LegalityQuery &Query) { return false; })
      .maxScalar(0, s32);

  getActionDefinitionsBuilder(G_TRUNC)
      .legalIf([](const LegalityQuery &Query) { return false; })
      .maxScalar(1, s32);

  getActionDefinitionsBuilder(G_SELECT)
      .legalForCartesianProduct({p0, s32, s64}, {s32})
      .minScalar(0, s32)
      .minScalar(1, s32);

  getActionDefinitionsBuilder(G_BRCOND)
      .legalFor({s32})
      .minScalar(0, s32);

  getActionDefinitionsBuilder(G_BRJT)
      .legalFor({{p0, s32}});

  getActionDefinitionsBuilder(G_BRINDIRECT)
      .legalFor({p0});

  getActionDefinitionsBuilder(G_PHI)
      .legalFor({p0, s32, s64})
      .minScalar(0, s32);

  getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
      .legalFor({s32})
      .clampScalar(0, s32, s32);

  getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
      .legalIf([=, &ST](const LegalityQuery &Query) {
        if (CheckTyN(0, Query, {s32}))
          return true;
        if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
          return true;
        return false;
      })
      .minScalar(0, s32)
      .libcallFor({s64});

  getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
      .legalFor({{s32, s32}})
      .clampScalar(1, s32, s32)
      .clampScalar(0, s32, s32);

  getActionDefinitionsBuilder(G_ICMP)
      .legalForCartesianProduct({s32}, {s32, p0})
      .clampScalar(1, s32, s32)
      .minScalar(0, s32);

  getActionDefinitionsBuilder(G_CONSTANT)
      .legalFor({s32})
      .clampScalar(0, s32, s32);

  getActionDefinitionsBuilder({G_PTR_ADD, G_INTTOPTR})
      .legalFor({{p0, s32}});

  getActionDefinitionsBuilder(G_PTRTOINT)
      .legalFor({{s32, p0}});

  getActionDefinitionsBuilder(G_FRAME_INDEX)
      .legalFor({p0});

  getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE})
      .legalFor({p0});

  getActionDefinitionsBuilder(G_DYN_STACKALLOC)
      .lowerFor({{p0, s32}});

  getActionDefinitionsBuilder(G_VASTART)
     .legalFor({p0});

  getActionDefinitionsBuilder(G_BSWAP)
      .legalIf([=, &ST](const LegalityQuery &Query) {
        if (ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
          return true;
        return false;
      })
      .lowerIf([=, &ST](const LegalityQuery &Query) {
        if (!ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
          return true;
        return false;
      })
      .maxScalar(0, s32);

  getActionDefinitionsBuilder(G_BITREVERSE)
      .lowerFor({s32})
      .maxScalar(0, s32);

  getActionDefinitionsBuilder(G_CTLZ)
      .legalFor({{s32, s32}})
      .maxScalar(0, s32)
      .maxScalar(1, s32);
  getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
      .lowerFor({{s32, s32}});

  getActionDefinitionsBuilder(G_CTTZ)
      .lowerFor({{s32, s32}})
      .maxScalar(0, s32)
      .maxScalar(1, s32);
  getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF)
      .lowerFor({{s32, s32}, {s64, s64}});

  getActionDefinitionsBuilder(G_CTPOP)
      .lowerFor({{s32, s32}})
      .clampScalar(0, s32, s32)
      .clampScalar(1, s32, s32);

  // FP instructions
  getActionDefinitionsBuilder(G_FCONSTANT)
      .legalFor({s32, s64});

  getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FABS, G_FSQRT})
      .legalIf([=, &ST](const LegalityQuery &Query) {
        if (CheckTyN(0, Query, {s32, s64}))
          return true;
        if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
          return true;
        return false;
      });

  getActionDefinitionsBuilder(G_FCMP)
      .legalFor({{s32, s32}, {s32, s64}})
      .minScalar(0, s32);

  getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR})
      .libcallFor({s32, s64});

  getActionDefinitionsBuilder(G_FPEXT)
      .legalFor({{s64, s32}});

  getActionDefinitionsBuilder(G_FPTRUNC)
      .legalFor({{s32, s64}});

  // FP to int conversion instructions
  getActionDefinitionsBuilder(G_FPTOSI)
      .legalForCartesianProduct({s32}, {s64, s32})
      .libcallForCartesianProduct({s64}, {s64, s32})
      .minScalar(0, s32);

  getActionDefinitionsBuilder(G_FPTOUI)
      .libcallForCartesianProduct({s64}, {s64, s32})
      .lowerForCartesianProduct({s32}, {s64, s32})
      .minScalar(0, s32);

  // Int to FP conversion instructions
  getActionDefinitionsBuilder(G_SITOFP)
      .legalForCartesianProduct({s64, s32}, {s32})
      .libcallForCartesianProduct({s64, s32}, {s64})
      .minScalar(1, s32);

  getActionDefinitionsBuilder(G_UITOFP)
      .libcallForCartesianProduct({s64, s32}, {s64})
      .customForCartesianProduct({s64, s32}, {s32})
      .minScalar(1, s32);

  getActionDefinitionsBuilder(G_SEXT_INREG).lower();

  computeTables();
  verify(*ST.getInstrInfo());
}

bool MipsLegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
                                       MachineInstr &MI) const {
  using namespace TargetOpcode;

  MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI();

  const LLT s32 = LLT::scalar(32);
  const LLT s64 = LLT::scalar(64);

  switch (MI.getOpcode()) {
  case G_LOAD:
  case G_STORE: {
    unsigned MemSize = (**MI.memoperands_begin()).getSize();
    Register Val = MI.getOperand(0).getReg();
    unsigned Size = MRI.getType(Val).getSizeInBits();

    MachineMemOperand *MMOBase = *MI.memoperands_begin();

    assert(MemSize <= 8 && "MemSize is too large");
    assert(Size <= 64 && "Scalar size is too large");

    // Split MemSize into two, P2HalfMemSize is largest power of two smaller
    // then MemSize. e.g. 8 = 4 + 4 , 6 = 4 + 2, 3 = 2 + 1.
    unsigned P2HalfMemSize, RemMemSize;
    if (isPowerOf2_64(MemSize)) {
      P2HalfMemSize = RemMemSize = MemSize / 2;
    } else {
      P2HalfMemSize = 1 << Log2_32(MemSize);
      RemMemSize = MemSize - P2HalfMemSize;
    }

    Register BaseAddr = MI.getOperand(1).getReg();
    LLT PtrTy = MRI.getType(BaseAddr);
    MachineFunction &MF = MIRBuilder.getMF();

    auto P2HalfMemOp = MF.getMachineMemOperand(MMOBase, 0, P2HalfMemSize);
    auto RemMemOp = MF.getMachineMemOperand(MMOBase, P2HalfMemSize, RemMemSize);

    if (MI.getOpcode() == G_STORE) {
      // Widen Val to s32 or s64 in order to create legal G_LSHR or G_UNMERGE.
      if (Size < 32)
        Val = MIRBuilder.buildAnyExt(s32, Val).getReg(0);
      if (Size > 32 && Size < 64)
        Val = MIRBuilder.buildAnyExt(s64, Val).getReg(0);

      auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
      auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);

      if (MI.getOpcode() == G_STORE && MemSize <= 4) {
        MIRBuilder.buildStore(Val, BaseAddr, *P2HalfMemOp);
        auto C_P2Half_InBits = MIRBuilder.buildConstant(s32, P2HalfMemSize * 8);
        auto Shift = MIRBuilder.buildLShr(s32, Val, C_P2Half_InBits);
        MIRBuilder.buildStore(Shift, Addr, *RemMemOp);
      } else {
        auto Unmerge = MIRBuilder.buildUnmerge(s32, Val);
        MIRBuilder.buildStore(Unmerge.getReg(0), BaseAddr, *P2HalfMemOp);
        MIRBuilder.buildStore(Unmerge.getReg(1), Addr, *RemMemOp);
      }
    }

    if (MI.getOpcode() == G_LOAD) {

      if (MemSize <= 4) {
        // This is anyextending load, use 4 byte lwr/lwl.
        auto *Load4MMO = MF.getMachineMemOperand(MMOBase, 0, 4);

        if (Size == 32)
          MIRBuilder.buildLoad(Val, BaseAddr, *Load4MMO);
        else {
          auto Load = MIRBuilder.buildLoad(s32, BaseAddr, *Load4MMO);
          MIRBuilder.buildTrunc(Val, Load.getReg(0));
        }

      } else {
        auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
        auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);

        auto Load_P2Half = MIRBuilder.buildLoad(s32, BaseAddr, *P2HalfMemOp);
        auto Load_Rem = MIRBuilder.buildLoad(s32, Addr, *RemMemOp);

        if (Size == 64)
          MIRBuilder.buildMerge(Val, {Load_P2Half, Load_Rem});
        else {
          auto Merge = MIRBuilder.buildMerge(s64, {Load_P2Half, Load_Rem});
          MIRBuilder.buildTrunc(Val, Merge);
        }
      }
    }
    MI.eraseFromParent();
    break;
  }
  case G_UITOFP: {
    Register Dst = MI.getOperand(0).getReg();
    Register Src = MI.getOperand(1).getReg();
    LLT DstTy = MRI.getType(Dst);
    LLT SrcTy = MRI.getType(Src);

    if (SrcTy != s32)
      return false;
    if (DstTy != s32 && DstTy != s64)
      return false;

    // Let 0xABCDEFGH be given unsigned in MI.getOperand(1). First let's convert
    // unsigned to double. Mantissa has 52 bits so we use following trick:
    // First make floating point bit mask 0x43300000ABCDEFGH.
    // Mask represents 2^52 * 0x1.00000ABCDEFGH i.e. 0x100000ABCDEFGH.0 .
    // Next, subtract  2^52 * 0x1.0000000000000 i.e. 0x10000000000000.0 from it.
    // Done. Trunc double to float if needed.

    auto C_HiMask = MIRBuilder.buildConstant(s32, UINT32_C(0x43300000));
    auto Bitcast = MIRBuilder.buildMerge(s64, {Src, C_HiMask.getReg(0)});

    MachineInstrBuilder TwoP52FP = MIRBuilder.buildFConstant(
        s64, BitsToDouble(UINT64_C(0x4330000000000000)));

    if (DstTy == s64)
      MIRBuilder.buildFSub(Dst, Bitcast, TwoP52FP);
    else {
      MachineInstrBuilder ResF64 = MIRBuilder.buildFSub(s64, Bitcast, TwoP52FP);
      MIRBuilder.buildFPTrunc(Dst, ResF64);
    }

    MI.eraseFromParent();
    break;
  }
  default:
    return false;
  }

  return true;
}

static bool SelectMSA3OpIntrinsic(MachineInstr &MI, unsigned Opcode,
                                  MachineIRBuilder &MIRBuilder,
                                  const MipsSubtarget &ST) {
  assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
  if (!MIRBuilder.buildInstr(Opcode)
           .add(MI.getOperand(0))
           .add(MI.getOperand(2))
           .add(MI.getOperand(3))
           .constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(),
                             *ST.getRegBankInfo()))
    return false;
  MI.eraseFromParent();
  return true;
}

static bool MSA3OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
                                     MachineIRBuilder &MIRBuilder,
                                     const MipsSubtarget &ST) {
  assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
  MIRBuilder.buildInstr(Opcode)
      .add(MI.getOperand(0))
      .add(MI.getOperand(2))
      .add(MI.getOperand(3));
  MI.eraseFromParent();
  return true;
}

static bool MSA2OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
                                     MachineIRBuilder &MIRBuilder,
                                     const MipsSubtarget &ST) {
  assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
  MIRBuilder.buildInstr(Opcode)
      .add(MI.getOperand(0))
      .add(MI.getOperand(2));
  MI.eraseFromParent();
  return true;
}

bool MipsLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
                                          MachineInstr &MI) const {
  MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
  MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
  const MipsSubtarget &ST =
      static_cast<const MipsSubtarget &>(MI.getMF()->getSubtarget());
  const MipsInstrInfo &TII = *ST.getInstrInfo();
  const MipsRegisterInfo &TRI = *ST.getRegisterInfo();
  const RegisterBankInfo &RBI = *ST.getRegBankInfo();

  switch (MI.getIntrinsicID()) {
  case Intrinsic::memcpy:
  case Intrinsic::memset:
  case Intrinsic::memmove:
    if (createMemLibcall(MIRBuilder, MRI, MI) ==
        LegalizerHelper::UnableToLegalize)
      return false;
    MI.eraseFromParent();
    return true;
  case Intrinsic::trap: {
    MachineInstr *Trap = MIRBuilder.buildInstr(Mips::TRAP);
    MI.eraseFromParent();
    return constrainSelectedInstRegOperands(*Trap, TII, TRI, RBI);
  }
  case Intrinsic::vacopy: {
    MachinePointerInfo MPO;
    auto Tmp =
        MIRBuilder.buildLoad(LLT::pointer(0, 32), MI.getOperand(2),
                             *MI.getMF()->getMachineMemOperand(
                                 MPO, MachineMemOperand::MOLoad, 4, Align(4)));
    MIRBuilder.buildStore(Tmp, MI.getOperand(1),
                          *MI.getMF()->getMachineMemOperand(
                              MPO, MachineMemOperand::MOStore, 4, Align(4)));
    MI.eraseFromParent();
    return true;
  }
  case Intrinsic::mips_addv_b:
  case Intrinsic::mips_addv_h:
  case Intrinsic::mips_addv_w:
  case Intrinsic::mips_addv_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_ADD, MIRBuilder, ST);
  case Intrinsic::mips_addvi_b:
    return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_B, MIRBuilder, ST);
  case Intrinsic::mips_addvi_h:
    return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_H, MIRBuilder, ST);
  case Intrinsic::mips_addvi_w:
    return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_W, MIRBuilder, ST);
  case Intrinsic::mips_addvi_d:
    return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_D, MIRBuilder, ST);
  case Intrinsic::mips_subv_b:
  case Intrinsic::mips_subv_h:
  case Intrinsic::mips_subv_w:
  case Intrinsic::mips_subv_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SUB, MIRBuilder, ST);
  case Intrinsic::mips_subvi_b:
    return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_B, MIRBuilder, ST);
  case Intrinsic::mips_subvi_h:
    return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_H, MIRBuilder, ST);
  case Intrinsic::mips_subvi_w:
    return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_W, MIRBuilder, ST);
  case Intrinsic::mips_subvi_d:
    return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_D, MIRBuilder, ST);
  case Intrinsic::mips_mulv_b:
  case Intrinsic::mips_mulv_h:
  case Intrinsic::mips_mulv_w:
  case Intrinsic::mips_mulv_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_MUL, MIRBuilder, ST);
  case Intrinsic::mips_div_s_b:
  case Intrinsic::mips_div_s_h:
  case Intrinsic::mips_div_s_w:
  case Intrinsic::mips_div_s_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SDIV, MIRBuilder, ST);
  case Intrinsic::mips_mod_s_b:
  case Intrinsic::mips_mod_s_h:
  case Intrinsic::mips_mod_s_w:
  case Intrinsic::mips_mod_s_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SREM, MIRBuilder, ST);
  case Intrinsic::mips_div_u_b:
  case Intrinsic::mips_div_u_h:
  case Intrinsic::mips_div_u_w:
  case Intrinsic::mips_div_u_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UDIV, MIRBuilder, ST);
  case Intrinsic::mips_mod_u_b:
  case Intrinsic::mips_mod_u_h:
  case Intrinsic::mips_mod_u_w:
  case Intrinsic::mips_mod_u_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UREM, MIRBuilder, ST);
  case Intrinsic::mips_fadd_w:
  case Intrinsic::mips_fadd_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FADD, MIRBuilder, ST);
  case Intrinsic::mips_fsub_w:
  case Intrinsic::mips_fsub_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FSUB, MIRBuilder, ST);
  case Intrinsic::mips_fmul_w:
  case Intrinsic::mips_fmul_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FMUL, MIRBuilder, ST);
  case Intrinsic::mips_fdiv_w:
  case Intrinsic::mips_fdiv_d:
    return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FDIV, MIRBuilder, ST);
  case Intrinsic::mips_fmax_a_w:
    return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_W, MIRBuilder, ST);
  case Intrinsic::mips_fmax_a_d:
    return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_D, MIRBuilder, ST);
  case Intrinsic::mips_fsqrt_w:
    return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
  case Intrinsic::mips_fsqrt_d:
    return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
  default:
    break;
  }
  return true;
}