MipsISelLowering.cpp 192 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "MipsISelLowering.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsInstPrinter.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsCCState.h"
#include "MipsInstrInfo.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <deque>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mips-lower"

STATISTIC(NumTailCalls, "Number of tail calls");

static cl::opt<bool>
NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
               cl::desc("MIPS: Don't trap on integer division by zero."),
               cl::init(false));

extern cl::opt<bool> EmitJalrReloc;

static const MCPhysReg Mips64DPRegs[8] = {
  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
};

// If I is a shifted mask, set the size (Size) and the first bit of the
// mask (Pos), and return true.
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
  if (!isShiftedMask_64(I))
    return false;

  Size = countPopulation(I);
  Pos = countTrailingZeros(I);
  return true;
}

// The MIPS MSA ABI passes vector arguments in the integer register set.
// The number of integer registers used is dependant on the ABI used.
MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
                                                      CallingConv::ID CC,
                                                      EVT VT) const {
  if (!VT.isVector())
    return getRegisterType(Context, VT);

  return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32
                                                           : MVT::i64;
}

unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
                                                           CallingConv::ID CC,
                                                           EVT VT) const {
  if (VT.isVector())
    return std::max(((unsigned)VT.getSizeInBits() /
                     (Subtarget.isABI_O32() ? 32 : 64)),
                    1U);
  return MipsTargetLowering::getNumRegisters(Context, VT);
}

unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
    LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
    unsigned &NumIntermediates, MVT &RegisterVT) const {
  // Break down vector types to either 2 i64s or 4 i32s.
  RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
  IntermediateVT = RegisterVT;
  NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
                         ? VT.getVectorNumElements()
                         : VT.getSizeInBits() / RegisterVT.getSizeInBits();

  return NumIntermediates;
}

SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *FI = MF.getInfo<MipsFunctionInfo>();
  return DAG.getRegister(FI->getGlobalBaseReg(MF), Ty);
}

SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
}

SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
}

SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}

SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}

SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
                                   N->getOffset(), Flag);
}

const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((MipsISD::NodeType)Opcode) {
  case MipsISD::FIRST_NUMBER:      break;
  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
  case MipsISD::TailCall:          return "MipsISD::TailCall";
  case MipsISD::Highest:           return "MipsISD::Highest";
  case MipsISD::Higher:            return "MipsISD::Higher";
  case MipsISD::Hi:                return "MipsISD::Hi";
  case MipsISD::Lo:                return "MipsISD::Lo";
  case MipsISD::GotHi:             return "MipsISD::GotHi";
  case MipsISD::TlsHi:             return "MipsISD::TlsHi";
  case MipsISD::GPRel:             return "MipsISD::GPRel";
  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
  case MipsISD::Ret:               return "MipsISD::Ret";
  case MipsISD::ERet:              return "MipsISD::ERet";
  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
  case MipsISD::FMS:               return "MipsISD::FMS";
  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
  case MipsISD::FSELECT:           return "MipsISD::FSELECT";
  case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64";
  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
  case MipsISD::MFHI:              return "MipsISD::MFHI";
  case MipsISD::MFLO:              return "MipsISD::MFLO";
  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
  case MipsISD::Mult:              return "MipsISD::Mult";
  case MipsISD::Multu:             return "MipsISD::Multu";
  case MipsISD::MAdd:              return "MipsISD::MAdd";
  case MipsISD::MAddu:             return "MipsISD::MAddu";
  case MipsISD::MSub:              return "MipsISD::MSub";
  case MipsISD::MSubu:             return "MipsISD::MSubu";
  case MipsISD::DivRem:            return "MipsISD::DivRem";
  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
  case MipsISD::Sync:              return "MipsISD::Sync";
  case MipsISD::Ext:               return "MipsISD::Ext";
  case MipsISD::Ins:               return "MipsISD::Ins";
  case MipsISD::CIns:              return "MipsISD::CIns";
  case MipsISD::LWL:               return "MipsISD::LWL";
  case MipsISD::LWR:               return "MipsISD::LWR";
  case MipsISD::SWL:               return "MipsISD::SWL";
  case MipsISD::SWR:               return "MipsISD::SWR";
  case MipsISD::LDL:               return "MipsISD::LDL";
  case MipsISD::LDR:               return "MipsISD::LDR";
  case MipsISD::SDL:               return "MipsISD::SDL";
  case MipsISD::SDR:               return "MipsISD::SDR";
  case MipsISD::EXTP:              return "MipsISD::EXTP";
  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
  case MipsISD::SHILO:             return "MipsISD::SHILO";
  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
  case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
  case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
  case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
  case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
  case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
  case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
  case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
  case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
  case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
  case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
  case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
  case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
  case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
  case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
  case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
  case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
  case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
  case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
  case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
  case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
  case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
  case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
  case MipsISD::MULT:              return "MipsISD::MULT";
  case MipsISD::MULTU:             return "MipsISD::MULTU";
  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
  case MipsISD::VNOR:              return "MipsISD::VNOR";
  case MipsISD::VSHF:              return "MipsISD::VSHF";
  case MipsISD::SHF:               return "MipsISD::SHF";
  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
  case MipsISD::ILVL:              return "MipsISD::ILVL";
  case MipsISD::ILVR:              return "MipsISD::ILVR";
  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
  case MipsISD::INSVE:             return "MipsISD::INSVE";
  }
  return nullptr;
}

MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
                                       const MipsSubtarget &STI)
    : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
  // Mips does not have i1 type, so use i32 for
  // setcc operations results (slt, sgt, ...).
  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
  // does. Integer booleans still use 0 and 1.
  if (Subtarget.hasMips32r6())
    setBooleanContents(ZeroOrOneBooleanContent,
                       ZeroOrNegativeOneBooleanContent);

  // Load extented operations for i1 types must be promoted
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
  }

  // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
  // for f32, f16
  for (MVT VT : MVT::fp_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
  }

  // Set LoadExtAction for f16 vectors to Expand
  for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
    MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
    if (F16VT.isValid())
      setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
  }

  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);

  setTruncStoreAction(MVT::f64, MVT::f32, Expand);

  // Used by legalize types to correctly generate the setcc result.
  // Without this, every float setcc comes with a AND/OR with the result,
  // we don't want this, since the fpcmp result goes to a flag register,
  // which is used implicitly by brcond and select operations.
  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);

  // Mips Custom Operations
  setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);

  if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
    setOperationAction(ISD::FABS, MVT::f32, Custom);
    setOperationAction(ISD::FABS, MVT::f64, Custom);
  }

  if (Subtarget.isGP64bit()) {
    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
    setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
    setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
    setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
  }

  if (!Subtarget.isGP64bit()) {
    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
  }

  setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom);
  if (Subtarget.isGP64bit())
    setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom);

  setOperationAction(ISD::SDIV, MVT::i32, Expand);
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIV, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);
  setOperationAction(ISD::SDIV, MVT::i64, Expand);
  setOperationAction(ISD::SREM, MVT::i64, Expand);
  setOperationAction(ISD::UDIV, MVT::i64, Expand);
  setOperationAction(ISD::UREM, MVT::i64, Expand);

  // Operations not directly supported by Mips.
  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
  if (Subtarget.hasCnMips()) {
    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
  } else {
    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
  }
  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);

  if (!Subtarget.hasMips32r2())
    setOperationAction(ISD::ROTR, MVT::i32,   Expand);

  if (!Subtarget.hasMips64r2())
    setOperationAction(ISD::ROTR, MVT::i64,   Expand);

  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
  setOperationAction(ISD::FREM,              MVT::f64,   Expand);

  // Lower f16 conversion operations into library calls
  setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
  setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
  setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
  setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);

  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);

  setOperationAction(ISD::VASTART,           MVT::Other, Custom);
  setOperationAction(ISD::VAARG,             MVT::Other, Custom);
  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
  setOperationAction(ISD::VAEND,             MVT::Other, Expand);

  // Use the default for now
  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);

  if (!Subtarget.isGP64bit()) {
    setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
    setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
  }

  if (!Subtarget.hasMips32r2()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  }

  // MIPS16 lacks MIPS32's clz and clo instructions.
  if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
  if (!Subtarget.hasMips64())
    setOperationAction(ISD::CTLZ, MVT::i64, Expand);

  if (!Subtarget.hasMips32r2())
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
  if (!Subtarget.hasMips64r2())
    setOperationAction(ISD::BSWAP, MVT::i64, Expand);

  if (Subtarget.isGP64bit()) {
    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
    setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
  }

  setOperationAction(ISD::TRAP, MVT::Other, Legal);

  setTargetDAGCombine(ISD::SDIVREM);
  setTargetDAGCombine(ISD::UDIVREM);
  setTargetDAGCombine(ISD::SELECT);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::OR);
  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::SUB);
  setTargetDAGCombine(ISD::AssertZext);
  setTargetDAGCombine(ISD::SHL);

  if (ABI.IsO32()) {
    // These libcalls are not available in 32-bit.
    setLibcallName(RTLIB::SHL_I128, nullptr);
    setLibcallName(RTLIB::SRL_I128, nullptr);
    setLibcallName(RTLIB::SRA_I128, nullptr);
  }

  setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4));

  // The arguments on the stack are defined in terms of 4-byte slots on O32
  // and 8-byte slots on N32/N64.
  setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8)
                                                            : Align(4));

  setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);

  MaxStoresPerMemcpy = 16;

  isMicroMips = Subtarget.inMicroMipsMode();
}

const MipsTargetLowering *
MipsTargetLowering::create(const MipsTargetMachine &TM,
                           const MipsSubtarget &STI) {
  if (STI.inMips16Mode())
    return createMips16TargetLowering(TM, STI);

  return createMipsSETargetLowering(TM, STI);
}

// Create a fast isel object.
FastISel *
MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
                                  const TargetLibraryInfo *libInfo) const {
  const MipsTargetMachine &TM =
      static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());

  // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
  bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
                     !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
                     !Subtarget.inMicroMipsMode();

  // Disable if either of the following is true:
  // We do not generate PIC, the ABI is not O32, XGOT is being used.
  if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
      Subtarget.useXGOT())
    UseFastISel = false;

  return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
}

EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                           EVT VT) const {
  if (!VT.isVector())
    return MVT::i32;
  return VT.changeVectorElementTypeToInteger();
}

static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  EVT Ty = N->getValueType(0);
  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
                                                  MipsISD::DivRemU16;
  SDLoc DL(N);

  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
                               N->getOperand(0), N->getOperand(1));
  SDValue InChain = DAG.getEntryNode();
  SDValue InGlue = DivRem;

  // insert MFLO
  if (N->hasAnyUseOfValue(0)) {
    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
                                            InGlue);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
    InChain = CopyFromLo.getValue(1);
    InGlue = CopyFromLo.getValue(2);
  }

  // insert MFHI
  if (N->hasAnyUseOfValue(1)) {
    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
                                            HI, Ty, InGlue);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
  }

  return SDValue();
}

static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
  switch (CC) {
  default: llvm_unreachable("Unknown fp condition code!");
  case ISD::SETEQ:
  case ISD::SETOEQ: return Mips::FCOND_OEQ;
  case ISD::SETUNE: return Mips::FCOND_UNE;
  case ISD::SETLT:
  case ISD::SETOLT: return Mips::FCOND_OLT;
  case ISD::SETGT:
  case ISD::SETOGT: return Mips::FCOND_OGT;
  case ISD::SETLE:
  case ISD::SETOLE: return Mips::FCOND_OLE;
  case ISD::SETGE:
  case ISD::SETOGE: return Mips::FCOND_OGE;
  case ISD::SETULT: return Mips::FCOND_ULT;
  case ISD::SETULE: return Mips::FCOND_ULE;
  case ISD::SETUGT: return Mips::FCOND_UGT;
  case ISD::SETUGE: return Mips::FCOND_UGE;
  case ISD::SETUO:  return Mips::FCOND_UN;
  case ISD::SETO:   return Mips::FCOND_OR;
  case ISD::SETNE:
  case ISD::SETONE: return Mips::FCOND_ONE;
  case ISD::SETUEQ: return Mips::FCOND_UEQ;
  }
}

/// This function returns true if the floating point conditional branches and
/// conditional moves which use condition code CC should be inverted.
static bool invertFPCondCodeUser(Mips::CondCode CC) {
  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    return false;

  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
         "Illegal Condition Code");

  return true;
}

// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
  // must be a SETCC node
  if (Op.getOpcode() != ISD::SETCC)
    return Op;

  SDValue LHS = Op.getOperand(0);

  if (!LHS.getValueType().isFloatingPoint())
    return Op;

  SDValue RHS = Op.getOperand(1);
  SDLoc DL(Op);

  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
  // node if necessary.
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();

  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
                     DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
}

// Creates and returns a CMovFPT/F node.
static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
                            SDValue False, const SDLoc &DL) {
  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);

  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
                     True.getValueType(), True, FCC0, False, Cond);
}

static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue SetCC = N->getOperand(0);

  if ((SetCC.getOpcode() != ISD::SETCC) ||
      !SetCC.getOperand(0).getValueType().isInteger())
    return SDValue();

  SDValue False = N->getOperand(2);
  EVT FalseTy = False.getValueType();

  if (!FalseTy.isInteger())
    return SDValue();

  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);

  // If the RHS (False) is 0, we swap the order of the operands
  // of ISD::SELECT (obviously also inverting the condition) so that we can
  // take advantage of conditional moves using the $0 register.
  // Example:
  //   return (a != 0) ? x : 0;
  //     load $reg, x
  //     movz $reg, $0, a
  if (!FalseC)
    return SDValue();

  const SDLoc DL(N);

  if (!FalseC->getZExtValue()) {
    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    SDValue True = N->getOperand(1);

    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
                         SetCC.getOperand(1),
                         ISD::getSetCCInverse(CC, SetCC.getValueType()));

    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
  }

  // If both operands are integer constants there's a possibility that we
  // can do some interesting optimizations.
  SDValue True = N->getOperand(1);
  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);

  if (!TrueC || !True.getValueType().isInteger())
    return SDValue();

  // We'll also ignore MVT::i64 operands as this optimizations proves
  // to be ineffective because of the required sign extensions as the result
  // of a SETCC operator is always MVT::i32 for non-vector types.
  if (True.getValueType() == MVT::i64)
    return SDValue();

  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();

  // 1)  (a < x) ? y : y-1
  //  slti $reg1, a, x
  //  addiu $reg2, $reg1, y-1
  if (Diff == 1)
    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);

  // 2)  (a < x) ? y-1 : y
  //  slti $reg1, a, x
  //  xor $reg1, $reg1, 1
  //  addiu $reg2, $reg1, y-1
  if (Diff == -1) {
    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
                         SetCC.getOperand(1),
                         ISD::getSetCCInverse(CC, SetCC.getValueType()));
    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
  }

  // Could not optimize.
  return SDValue();
}

static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);

  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
  if (!FalseC || FalseC->getZExtValue())
    return SDValue();

  // Since RHS (False) is 0, we swap the order of the True/False operands
  // (obviously also inverting the condition) so that we can
  // take advantage of conditional moves using the $0 register.
  // Example:
  //   return (a != 0) ? x : 0;
  //     load $reg, x
  //     movz $reg, $0, a
  unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
                                                         MipsISD::CMovFP_T;

  SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
  return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
                     ValueIfFalse, FCC, ValueIfTrue, Glue);
}

static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
    return SDValue();

  SDValue FirstOperand = N->getOperand(0);
  unsigned FirstOperandOpc = FirstOperand.getOpcode();
  SDValue Mask = N->getOperand(1);
  EVT ValTy = N->getValueType(0);
  SDLoc DL(N);

  uint64_t Pos = 0, SMPos, SMSize;
  ConstantSDNode *CN;
  SDValue NewOperand;
  unsigned Opc;

  // Op's second operand must be a shifted mask.
  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    return SDValue();

  if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
    // Pattern match EXT.
    //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
    //  => ext $dst, $src, pos, size

    // The second operand of the shift must be an immediate.
    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
      return SDValue();

    Pos = CN->getZExtValue();

    // Return if the shifted mask does not start at bit 0 or the sum of its size
    // and Pos exceeds the word's size.
    if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
      return SDValue();

    Opc = MipsISD::Ext;
    NewOperand = FirstOperand.getOperand(0);
  } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
    // Pattern match CINS.
    //  $dst = and (shl $src , pos), mask
    //  => cins $dst, $src, pos, size
    // mask is a shifted mask with consecutive 1's, pos = shift amount,
    // size = population count.

    // The second operand of the shift must be an immediate.
    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
      return SDValue();

    Pos = CN->getZExtValue();

    if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
        Pos + SMSize > ValTy.getSizeInBits())
      return SDValue();

    NewOperand = FirstOperand.getOperand(0);
    // SMSize is 'location' (position) in this case, not size.
    SMSize--;
    Opc = MipsISD::CIns;
  } else {
    // Pattern match EXT.
    //  $dst = and $src, (2**size - 1) , if size > 16
    //  => ext $dst, $src, pos, size , pos = 0

    // If the mask is <= 0xffff, andi can be used instead.
    if (CN->getZExtValue() <= 0xffff)
      return SDValue();

    // Return if the mask doesn't start at position 0.
    if (SMPos)
      return SDValue();

    Opc = MipsISD::Ext;
    NewOperand = FirstOperand;
  }
  return DAG.getNode(Opc, DL, ValTy, NewOperand,
                     DAG.getConstant(Pos, DL, MVT::i32),
                     DAG.getConstant(SMSize, DL, MVT::i32));
}

static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
                                TargetLowering::DAGCombinerInfo &DCI,
                                const MipsSubtarget &Subtarget) {
  // Pattern match INS.
  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
  //  => ins $dst, $src, size, pos, $src1
  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
    return SDValue();

  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
  ConstantSDNode *CN, *CN1;

  // See if Op's first operand matches (and $src1 , mask0).
  if (And0.getOpcode() != ISD::AND)
    return SDValue();

  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
    return SDValue();

  // See if Op's second operand matches (and (shl $src, pos), mask1).
  if (And1.getOpcode() == ISD::AND &&
      And1.getOperand(0).getOpcode() == ISD::SHL) {

    if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
        !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
      return SDValue();

    // The shift masks must have the same position and size.
    if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
      return SDValue();

    SDValue Shl = And1.getOperand(0);

    if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
      return SDValue();

    unsigned Shamt = CN->getZExtValue();

    // Return if the shift amount and the first bit position of mask are not the
    // same.
    EVT ValTy = N->getValueType(0);
    if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
      return SDValue();

    SDLoc DL(N);
    return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
                       DAG.getConstant(SMPos0, DL, MVT::i32),
                       DAG.getConstant(SMSize0, DL, MVT::i32),
                       And0.getOperand(0));
  } else {
    // Pattern match DINS.
    //  $dst = or (and $src, mask0), mask1
    //  where mask0 = ((1 << SMSize0) -1) << SMPos0
    //  => dins $dst, $src, pos, size
    if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
        ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
         (SMSize0 + SMPos0 <= 32))) {
      // Check if AND instruction has constant as argument
      bool isConstCase = And1.getOpcode() != ISD::AND;
      if (And1.getOpcode() == ISD::AND) {
        if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
          return SDValue();
      } else {
        if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
          return SDValue();
      }
      // Don't generate INS if constant OR operand doesn't fit into bits
      // cleared by constant AND operand.
      if (CN->getSExtValue() & CN1->getSExtValue())
        return SDValue();

      SDLoc DL(N);
      EVT ValTy = N->getOperand(0)->getValueType(0);
      SDValue Const1;
      SDValue SrlX;
      if (!isConstCase) {
        Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
        SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
      }
      return DAG.getNode(
          MipsISD::Ins, DL, N->getValueType(0),
          isConstCase
              ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
              : SrlX,
          DAG.getConstant(SMPos0, DL, MVT::i32),
          DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
                                                        : SMSize0,
                          DL, MVT::i32),
          And0->getOperand(0));

    }
    return SDValue();
  }
}

static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
                                       const MipsSubtarget &Subtarget) {
  // ROOTNode must have a multiplication as an operand for the match to be
  // successful.
  if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
      ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
    return SDValue();

  // We don't handle vector types here.
  if (ROOTNode->getValueType(0).isVector())
    return SDValue();

  // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
  // arithmetic. E.g.
  // (add (mul a b) c) =>
  //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
  //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
  //   or
  //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
  //
  // The overhead of setting up the Hi/Lo registers and reassembling the
  // result makes this a dubious optimzation for MIPS64. The core of the
  // problem is that Hi/Lo contain the upper and lower 32 bits of the
  // operand and result.
  //
  // It requires a chain of 4 add/mul for MIPS64R2 to get better code
  // density than doing it naively, 5 for MIPS64. Additionally, using
  // madd/msub on MIPS64 requires the operands actually be 32 bit sign
  // extended operands, not true 64 bit values.
  //
  // FIXME: For the moment, disable this completely for MIPS64.
  if (Subtarget.hasMips64())
    return SDValue();

  SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
                     ? ROOTNode->getOperand(0)
                     : ROOTNode->getOperand(1);

  SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
                     ? ROOTNode->getOperand(1)
                     : ROOTNode->getOperand(0);

  // Transform this to a MADD only if the user of this node is the add.
  // If there are other users of the mul, this function returns here.
  if (!Mult.hasOneUse())
    return SDValue();

  // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
  // must be in canonical form, i.e. sign extended. For MIPS32, the operands
  // of the multiply must have 32 or more sign bits, otherwise we cannot
  // perform this optimization. We have to check this here as we're performing
  // this optimization pre-legalization.
  SDValue MultLHS = Mult->getOperand(0);
  SDValue MultRHS = Mult->getOperand(1);

  bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
                  MultRHS->getOpcode() == ISD::SIGN_EXTEND;
  bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
                    MultRHS->getOpcode() == ISD::ZERO_EXTEND;

  if (!IsSigned && !IsUnsigned)
    return SDValue();

  // Initialize accumulator.
  SDLoc DL(ROOTNode);
  SDValue TopHalf;
  SDValue BottomHalf;
  BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
                              CurDAG.getIntPtrConstant(0, DL));

  TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
                           CurDAG.getIntPtrConstant(1, DL));
  SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
                                  BottomHalf,
                                  TopHalf);

  // Create MipsMAdd(u) / MipsMSub(u) node.
  bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
  unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
                          : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
  SDValue MAddOps[3] = {
      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
  EVT VTs[2] = {MVT::i32, MVT::i32};
  SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);

  SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
  SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
  SDValue Combined =
      CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
  return Combined;
}

static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
  if (DCI.isBeforeLegalizeOps()) {
    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
      return performMADD_MSUBCombine(N, DAG, Subtarget);

    return SDValue();
  }

  return SDValue();
}

static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
  if (DCI.isBeforeLegalizeOps()) {
    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
      return performMADD_MSUBCombine(N, DAG, Subtarget);

    return SDValue();
  }

  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
  SDValue Add = N->getOperand(1);

  if (Add.getOpcode() != ISD::ADD)
    return SDValue();

  SDValue Lo = Add.getOperand(1);

  if ((Lo.getOpcode() != MipsISD::Lo) ||
      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
    return SDValue();

  EVT ValTy = N->getValueType(0);
  SDLoc DL(N);

  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
                             Add.getOperand(0));
  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
}

static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  // Pattern match CINS.
  //  $dst = shl (and $src , imm), pos
  //  => cins $dst, $src, pos, size

  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
    return SDValue();

  SDValue FirstOperand = N->getOperand(0);
  unsigned FirstOperandOpc = FirstOperand.getOpcode();
  SDValue SecondOperand = N->getOperand(1);
  EVT ValTy = N->getValueType(0);
  SDLoc DL(N);

  uint64_t Pos = 0, SMPos, SMSize;
  ConstantSDNode *CN;
  SDValue NewOperand;

  // The second operand of the shift must be an immediate.
  if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
    return SDValue();

  Pos = CN->getZExtValue();

  if (Pos >= ValTy.getSizeInBits())
    return SDValue();

  if (FirstOperandOpc != ISD::AND)
    return SDValue();

  // AND's second operand must be a shifted mask.
  if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    return SDValue();

  // Return if the shifted mask does not start at bit 0 or the sum of its size
  // and Pos exceeds the word's size.
  if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
    return SDValue();

  NewOperand = FirstOperand.getOperand(0);
  // SMSize is 'location' (position) in this case, not size.
  SMSize--;

  return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
                     DAG.getConstant(Pos, DL, MVT::i32),
                     DAG.getConstant(SMSize, DL, MVT::i32));
}

SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
  const {
  SelectionDAG &DAG = DCI.DAG;
  unsigned Opc = N->getOpcode();

  switch (Opc) {
  default: break;
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    return performDivRemCombine(N, DAG, DCI, Subtarget);
  case ISD::SELECT:
    return performSELECTCombine(N, DAG, DCI, Subtarget);
  case MipsISD::CMovFP_F:
  case MipsISD::CMovFP_T:
    return performCMovFPCombine(N, DAG, DCI, Subtarget);
  case ISD::AND:
    return performANDCombine(N, DAG, DCI, Subtarget);
  case ISD::OR:
    return performORCombine(N, DAG, DCI, Subtarget);
  case ISD::ADD:
    return performADDCombine(N, DAG, DCI, Subtarget);
  case ISD::SHL:
    return performSHLCombine(N, DAG, DCI, Subtarget);
  case ISD::SUB:
    return performSUBCombine(N, DAG, DCI, Subtarget);
  }

  return SDValue();
}

bool MipsTargetLowering::isCheapToSpeculateCttz() const {
  return Subtarget.hasMips32();
}

bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
  return Subtarget.hasMips32();
}

bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
    const SDNode *N, CombineLevel Level) const {
  if (N->getOperand(0).getValueType().isVector())
    return false;
  return true;
}

void
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
                                          SmallVectorImpl<SDValue> &Results,
                                          SelectionDAG &DAG) const {
  SDValue Res = LowerOperation(SDValue(N, 0), DAG);

  if (Res)
    for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
      Results.push_back(Res.getValue(I));
}

void
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
                                       SmallVectorImpl<SDValue> &Results,
                                       SelectionDAG &DAG) const {
  return LowerOperationWrapper(N, Results, DAG);
}

SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
  switch (Op.getOpcode())
  {
  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
  case ISD::SELECT:             return lowerSELECT(Op, DAG);
  case ISD::SETCC:              return lowerSETCC(Op, DAG);
  case ISD::VASTART:            return lowerVASTART(Op, DAG);
  case ISD::VAARG:              return lowerVAARG(Op, DAG);
  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
  case ISD::FABS:               return lowerFABS(Op, DAG);
  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
  case ISD::LOAD:               return lowerLOAD(Op, DAG);
  case ISD::STORE:              return lowerSTORE(Op, DAG);
  case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG);
  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
  }
  return SDValue();
}

//===----------------------------------------------------------------------===//
//  Lower helper functions
//===----------------------------------------------------------------------===//

// addLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value.  It also creates a corresponding
// virtual register for it.
static unsigned
addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
{
  Register VReg = MF.getRegInfo().createVirtualRegister(RC);
  MF.getRegInfo().addLiveIn(PReg, VReg);
  return VReg;
}

static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
                                              MachineBasicBlock &MBB,
                                              const TargetInstrInfo &TII,
                                              bool Is64Bit, bool IsMicroMips) {
  if (NoZeroDivCheck)
    return &MBB;

  // Insert instruction "teq $divisor_reg, $zero, 7".
  MachineBasicBlock::iterator I(MI);
  MachineInstrBuilder MIB;
  MachineOperand &Divisor = MI.getOperand(2);
  MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
                TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
            .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
            .addReg(Mips::ZERO)
            .addImm(7);

  // Use the 32-bit sub-register if this is a 64-bit division.
  if (Is64Bit)
    MIB->getOperand(0).setSubReg(Mips::sub_32);

  // Clear Divisor's kill flag.
  Divisor.setIsKill(false);

  // We would normally delete the original instruction here but in this case
  // we only needed to inject an additional instruction rather than replace it.

  return &MBB;
}

MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                                MachineBasicBlock *BB) const {
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("Unexpected instr type to insert");
  case Mips::ATOMIC_LOAD_ADD_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_ADD_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_ADD_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_ADD_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_AND_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_AND_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_AND_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_AND_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_OR_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_OR_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_OR_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_OR_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_XOR_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_XOR_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_XOR_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_XOR_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_NAND_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_NAND_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_NAND_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_NAND_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_SUB_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_SUB_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_SUB_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_SUB_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_SWAP_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_SWAP_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_SWAP_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_SWAP_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_CMP_SWAP_I8:
    return emitAtomicCmpSwapPartword(MI, BB, 1);
  case Mips::ATOMIC_CMP_SWAP_I16:
    return emitAtomicCmpSwapPartword(MI, BB, 2);
  case Mips::ATOMIC_CMP_SWAP_I32:
    return emitAtomicCmpSwap(MI, BB);
  case Mips::ATOMIC_CMP_SWAP_I64:
    return emitAtomicCmpSwap(MI, BB);

  case Mips::ATOMIC_LOAD_MIN_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_MIN_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_MIN_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_MIN_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_MAX_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_MAX_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_MAX_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_MAX_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_UMIN_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_UMIN_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_UMIN_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_UMIN_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_UMAX_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_UMAX_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_UMAX_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_UMAX_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::PseudoSDIV:
  case Mips::PseudoUDIV:
  case Mips::DIV:
  case Mips::DIVU:
  case Mips::MOD:
  case Mips::MODU:
    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
                               false);
  case Mips::SDIV_MM_Pseudo:
  case Mips::UDIV_MM_Pseudo:
  case Mips::SDIV_MM:
  case Mips::UDIV_MM:
  case Mips::DIV_MMR6:
  case Mips::DIVU_MMR6:
  case Mips::MOD_MMR6:
  case Mips::MODU_MMR6:
    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
  case Mips::PseudoDSDIV:
  case Mips::PseudoDUDIV:
  case Mips::DDIV:
  case Mips::DDIVU:
  case Mips::DMOD:
  case Mips::DMODU:
    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);

  case Mips::PseudoSELECT_I:
  case Mips::PseudoSELECT_I64:
  case Mips::PseudoSELECT_S:
  case Mips::PseudoSELECT_D32:
  case Mips::PseudoSELECT_D64:
    return emitPseudoSELECT(MI, BB, false, Mips::BNE);
  case Mips::PseudoSELECTFP_F_I:
  case Mips::PseudoSELECTFP_F_I64:
  case Mips::PseudoSELECTFP_F_S:
  case Mips::PseudoSELECTFP_F_D32:
  case Mips::PseudoSELECTFP_F_D64:
    return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
  case Mips::PseudoSELECTFP_T_I:
  case Mips::PseudoSELECTFP_T_I64:
  case Mips::PseudoSELECTFP_T_S:
  case Mips::PseudoSELECTFP_T_D32:
  case Mips::PseudoSELECTFP_T_D64:
    return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
  case Mips::PseudoD_SELECT_I:
  case Mips::PseudoD_SELECT_I64:
    return emitPseudoD_SELECT(MI, BB);
  case Mips::LDR_W:
    return emitLDR_W(MI, BB);
  case Mips::LDR_D:
    return emitLDR_D(MI, BB);
  case Mips::STR_W:
    return emitSTR_W(MI, BB);
  case Mips::STR_D:
    return emitSTR_D(MI, BB);
  }
}

// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
                                     MachineBasicBlock *BB) const {

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  unsigned AtomicOp;
  bool NeedsAdditionalReg = false;
  switch (MI.getOpcode()) {
  case Mips::ATOMIC_LOAD_ADD_I32:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I32:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I32:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I32:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I32:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_NAND_I32:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I32:
    AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_ADD_I64:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I64:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I64:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I64:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I64:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_NAND_I64:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I64:
    AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_MIN_I32:
    AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_MAX_I32:
    AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMIN_I32:
    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMAX_I32:
    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_MIN_I64:
    AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_MAX_I64:
    AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMIN_I64:
    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMAX_I64:
    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA;
    NeedsAdditionalReg = true;
    break;
  default:
    llvm_unreachable("Unknown pseudo atomic for replacement!");
  }

  Register OldVal = MI.getOperand(0).getReg();
  Register Ptr = MI.getOperand(1).getReg();
  Register Incr = MI.getOperand(2).getReg();
  Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));

  MachineBasicBlock::iterator II(MI);

  // The scratch registers here with the EarlyClobber | Define | Implicit
  // flags is used to persuade the register allocator and the machine
  // verifier to accept the usage of this register. This has to be a real
  // register which has an UNDEF value but is dead after the instruction which
  // is unique among the registers chosen for the instruction.

  // The EarlyClobber flag has the semantic properties that the operand it is
  // attached to is clobbered before the rest of the inputs are read. Hence it
  // must be unique among the operands to the instruction.
  // The Define flag is needed to coerce the machine verifier that an Undef
  // value isn't a problem.
  // The Dead flag is needed as the value in scratch isn't used by any other
  // instruction. Kill isn't used as Dead is more precise.
  // The implicit flag is here due to the interaction between the other flags
  // and the machine verifier.

  // For correctness purpose, a new pseudo is introduced here. We need this
  // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
  // that is spread over >1 basic blocks. A register allocator which
  // introduces (or any codegen infact) a store, can violate the expectations
  // of the hardware.
  //
  // An atomic read-modify-write sequence starts with a linked load
  // instruction and ends with a store conditional instruction. The atomic
  // read-modify-write sequence fails if any of the following conditions
  // occur between the execution of ll and sc:
  //   * A coherent store is completed by another process or coherent I/O
  //     module into the block of synchronizable physical memory containing
  //     the word. The size and alignment of the block is
  //     implementation-dependent.
  //   * A coherent store is executed between an LL and SC sequence on the
  //     same processor to the block of synchornizable physical memory
  //     containing the word.
  //

  Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
  Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));

  BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);

  MachineInstrBuilder MIB =
      BuildMI(*BB, II, DL, TII->get(AtomicOp))
          .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
          .addReg(PtrCopy)
          .addReg(IncrCopy)
          .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
                               RegState::Implicit | RegState::Dead);
  if (NeedsAdditionalReg) {
    Register Scratch2 =
        RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
    MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber |
                             RegState::Implicit | RegState::Dead);
  }

  MI.eraseFromParent();

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
    unsigned SrcReg) const {
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const DebugLoc &DL = MI.getDebugLoc();

  if (Subtarget.hasMips32r2() && Size == 1) {
    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
    return BB;
  }

  if (Subtarget.hasMips32r2() && Size == 2) {
    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
    return BB;
  }

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  Register ScrReg = RegInfo.createVirtualRegister(RC);

  assert(Size < 32);
  int64_t ShiftImm = 32 - (Size * 8);

  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
  assert((Size == 1 || Size == 2) &&
         "Unsupported size for EmitAtomicBinaryPartial.");

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  const bool ArePtrs64bit = ABI.ArePtrs64bit();
  const TargetRegisterClass *RCp =
    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  Register Dest = MI.getOperand(0).getReg();
  Register Ptr = MI.getOperand(1).getReg();
  Register Incr = MI.getOperand(2).getReg();

  Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
  Register ShiftAmt = RegInfo.createVirtualRegister(RC);
  Register Mask = RegInfo.createVirtualRegister(RC);
  Register Mask2 = RegInfo.createVirtualRegister(RC);
  Register Incr2 = RegInfo.createVirtualRegister(RC);
  Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
  Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
  Register MaskUpper = RegInfo.createVirtualRegister(RC);
  Register Scratch = RegInfo.createVirtualRegister(RC);
  Register Scratch2 = RegInfo.createVirtualRegister(RC);
  Register Scratch3 = RegInfo.createVirtualRegister(RC);

  unsigned AtomicOp = 0;
  bool NeedsAdditionalReg = false;
  switch (MI.getOpcode()) {
  case Mips::ATOMIC_LOAD_NAND_I8:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_NAND_I16:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I8:
    AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I16:
    AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_ADD_I8:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_ADD_I16:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I8:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I16:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I8:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I16:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I8:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I16:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I8:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I16:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_MIN_I8:
    AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_MIN_I16:
    AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_MAX_I8:
    AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_MAX_I16:
    AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMIN_I8:
    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMIN_I16:
    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMAX_I8:
    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA;
    NeedsAdditionalReg = true;
    break;
  case Mips::ATOMIC_LOAD_UMAX_I16:
    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA;
    NeedsAdditionalReg = true;
    break;
  default:
    llvm_unreachable("Unknown subword atomic pseudo for expansion!");
  }

  // insert new blocks after the current block
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = ++BB->getIterator();
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  BB->addSuccessor(exitMBB, BranchProbability::getOne());

  //  thisMBB:
  //    addiu   masklsb2,$0,-4                # 0xfffffffc
  //    and     alignedaddr,ptr,masklsb2
  //    andi    ptrlsb2,ptr,3
  //    sll     shiftamt,ptrlsb2,3
  //    ori     maskupper,$0,255               # 0xff
  //    sll     mask,maskupper,shiftamt
  //    nor     mask2,$0,mask
  //    sll     incr2,incr,shiftamt

  int64_t MaskImm = (Size == 1) ? 255 : 65535;
  BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
    .addReg(ABI.GetNullPtr()).addImm(-4);
  BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
    .addReg(Ptr).addReg(MaskLSB2);
  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
  if (Subtarget.isLittle()) {
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
  } else {
    Register Off = RegInfo.createVirtualRegister(RC);
    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
  }
  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
    .addReg(Mips::ZERO).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
    .addReg(MaskUpper).addReg(ShiftAmt);
  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);


  // The purposes of the flags on the scratch registers is explained in
  // emitAtomicBinary. In summary, we need a scratch register which is going to
  // be undef, that is unique among registers chosen for the instruction.

  MachineInstrBuilder MIB =
      BuildMI(BB, DL, TII->get(AtomicOp))
          .addReg(Dest, RegState::Define | RegState::EarlyClobber)
          .addReg(AlignedAddr)
          .addReg(Incr2)
          .addReg(Mask)
          .addReg(Mask2)
          .addReg(ShiftAmt)
          .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
                               RegState::Dead | RegState::Implicit)
          .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
                                RegState::Dead | RegState::Implicit)
          .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
                                RegState::Dead | RegState::Implicit);
  if (NeedsAdditionalReg) {
    Register Scratch4 = RegInfo.createVirtualRegister(RC);
    MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define |
                             RegState::Dead | RegState::Implicit);
  }

  MI.eraseFromParent(); // The instruction is gone now.

  return exitMBB;
}

// Lower atomic compare and swap to a pseudo instruction, taking care to
// define a scratch register for the pseudo instruction's expansion. The
// instruction is expanded after the register allocator as to prevent
// the insertion of stores between the linked load and the store conditional.

MachineBasicBlock *
MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
                                      MachineBasicBlock *BB) const {

  assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
          MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
         "Unsupported atomic pseudo for EmitAtomicCmpSwap.");

  const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
                          ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
                          : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
  Register Dest = MI.getOperand(0).getReg();
  Register Ptr = MI.getOperand(1).getReg();
  Register OldVal = MI.getOperand(2).getReg();
  Register NewVal = MI.getOperand(3).getReg();

  Register Scratch = MRI.createVirtualRegister(RC);
  MachineBasicBlock::iterator II(MI);

  // We need to create copies of the various registers and kill them at the
  // atomic pseudo. If the copies are not made, when the atomic is expanded
  // after fast register allocation, the spills will end up outside of the
  // blocks that their values are defined in, causing livein errors.

  Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
  Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
  Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));

  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);

  // The purposes of the flags on the scratch registers is explained in
  // emitAtomicBinary. In summary, we need a scratch register which is going to
  // be undef, that is unique among registers chosen for the instruction.

  BuildMI(*BB, II, DL, TII->get(AtomicOp))
      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
      .addReg(PtrCopy, RegState::Kill)
      .addReg(OldValCopy, RegState::Kill)
      .addReg(NewValCopy, RegState::Kill)
      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
                           RegState::Dead | RegState::Implicit);

  MI.eraseFromParent(); // The instruction is gone now.

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
  assert((Size == 1 || Size == 2) &&
      "Unsupported size for EmitAtomicCmpSwapPartial.");

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  const bool ArePtrs64bit = ABI.ArePtrs64bit();
  const TargetRegisterClass *RCp =
    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  Register Dest = MI.getOperand(0).getReg();
  Register Ptr = MI.getOperand(1).getReg();
  Register CmpVal = MI.getOperand(2).getReg();
  Register NewVal = MI.getOperand(3).getReg();

  Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
  Register ShiftAmt = RegInfo.createVirtualRegister(RC);
  Register Mask = RegInfo.createVirtualRegister(RC);
  Register Mask2 = RegInfo.createVirtualRegister(RC);
  Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
  Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
  Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
  Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
  Register MaskUpper = RegInfo.createVirtualRegister(RC);
  Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
  Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
                          ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
                          : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;

  // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
  // flags are used to coerce the register allocator and the machine verifier to
  // accept the usage of these registers.
  // The EarlyClobber flag has the semantic properties that the operand it is
  // attached to is clobbered before the rest of the inputs are read. Hence it
  // must be unique among the operands to the instruction.
  // The Define flag is needed to coerce the machine verifier that an Undef
  // value isn't a problem.
  // The Dead flag is needed as the value in scratch isn't used by any other
  // instruction. Kill isn't used as Dead is more precise.
  Register Scratch = RegInfo.createVirtualRegister(RC);
  Register Scratch2 = RegInfo.createVirtualRegister(RC);

  // insert new blocks after the current block
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = ++BB->getIterator();
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  BB->addSuccessor(exitMBB, BranchProbability::getOne());

  //  thisMBB:
  //    addiu   masklsb2,$0,-4                # 0xfffffffc
  //    and     alignedaddr,ptr,masklsb2
  //    andi    ptrlsb2,ptr,3
  //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
  //    sll     shiftamt,ptrlsb2,3
  //    ori     maskupper,$0,255               # 0xff
  //    sll     mask,maskupper,shiftamt
  //    nor     mask2,$0,mask
  //    andi    maskedcmpval,cmpval,255
  //    sll     shiftedcmpval,maskedcmpval,shiftamt
  //    andi    maskednewval,newval,255
  //    sll     shiftednewval,maskednewval,shiftamt
  int64_t MaskImm = (Size == 1) ? 255 : 65535;
  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
    .addReg(ABI.GetNullPtr()).addImm(-4);
  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
    .addReg(Ptr).addReg(MaskLSB2);
  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
  if (Subtarget.isLittle()) {
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
  } else {
    Register Off = RegInfo.createVirtualRegister(RC);
    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
  }
  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
    .addReg(Mips::ZERO).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
    .addReg(MaskUpper).addReg(ShiftAmt);
  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
    .addReg(CmpVal).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
    .addReg(MaskedCmpVal).addReg(ShiftAmt);
  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
    .addReg(NewVal).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
    .addReg(MaskedNewVal).addReg(ShiftAmt);

  // The purposes of the flags on the scratch registers are explained in
  // emitAtomicBinary. In summary, we need a scratch register which is going to
  // be undef, that is unique among the register chosen for the instruction.

  BuildMI(BB, DL, TII->get(AtomicOp))
      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
      .addReg(AlignedAddr)
      .addReg(Mask)
      .addReg(ShiftedCmpVal)
      .addReg(Mask2)
      .addReg(ShiftedNewVal)
      .addReg(ShiftAmt)
      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
                           RegState::Dead | RegState::Implicit)
      .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
                            RegState::Dead | RegState::Implicit);

  MI.eraseFromParent(); // The instruction is gone now.

  return exitMBB;
}

SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
  // The first operand is the chain, the second is the condition, the third is
  // the block to branch to if the condition is true.
  SDValue Chain = Op.getOperand(0);
  SDValue Dest = Op.getOperand(2);
  SDLoc DL(Op);

  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));

  // Return if flag is not set by a floating point comparison.
  if (CondRes.getOpcode() != MipsISD::FPCmp)
    return Op;

  SDValue CCNode  = CondRes.getOperand(2);
  Mips::CondCode CC =
    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
  SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
                     FCC0, Dest, CondRes);
}

SDValue MipsTargetLowering::
lowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));

  // Return if flag is not set by a floating point comparison.
  if (Cond.getOpcode() != MipsISD::FPCmp)
    return Op;

  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
                      SDLoc(Op));
}

SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
  SDValue Cond = createFPCmp(DAG, Op);

  assert(Cond.getOpcode() == MipsISD::FPCmp &&
         "Floating point operand expected.");

  SDLoc DL(Op);
  SDValue True  = DAG.getConstant(1, DL, MVT::i32);
  SDValue False = DAG.getConstant(0, DL, MVT::i32);

  return createCMovFP(DAG, Cond, True, False, DL);
}

SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
                                               SelectionDAG &DAG) const {
  EVT Ty = Op.getValueType();
  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = N->getGlobal();

  if (!isPositionIndependent()) {
    const MipsTargetObjectFile *TLOF =
        static_cast<const MipsTargetObjectFile *>(
            getTargetMachine().getObjFileLowering());
    const GlobalObject *GO = GV->getBaseObject();
    if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
      // %gp_rel relocation
      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());

                                // %hi/%lo relocation
    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                // %highest/%higher/%hi/%lo relocation
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
  }

  // Every other architecture would use shouldAssumeDSOLocal in here, but
  // mips is special.
  // * In PIC code mips requires got loads even for local statics!
  // * To save on got entries, for local statics the got entry contains the
  //   page and an additional add instruction takes care of the low bits.
  // * It is legal to access a hidden symbol with a non hidden undefined,
  //   so one cannot guarantee that all access to a hidden symbol will know
  //   it is hidden.
  // * Mips linkers don't support creating a page and a full got entry for
  //   the same symbol.
  // * Given all that, we have to use a full got entry for hidden symbols :-(
  if (GV->hasLocalLinkage())
    return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());

  if (Subtarget.useXGOT())
    return getAddrGlobalLargeGOT(
        N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
        DAG.getEntryNode(),
        MachinePointerInfo::getGOT(DAG.getMachineFunction()));

  return getAddrGlobal(
      N, SDLoc(N), Ty, DAG,
      (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
      DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}

SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
  EVT Ty = Op.getValueType();

  if (!isPositionIndependent())
    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);

  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}

SDValue MipsTargetLowering::
lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
  // If the relocation model is PIC, use the General Dynamic TLS Model or
  // Local Dynamic TLS model, otherwise use the Initial Exec or
  // Local Exec TLS Model.

  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  if (DAG.getTarget().useEmulatedTLS())
    return LowerToTLSEmulatedModel(GA, DAG);

  SDLoc DL(GA);
  const GlobalValue *GV = GA->getGlobal();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  TLSModel::Model model = getTargetMachine().getTLSModel(GV);

  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
    // General Dynamic and Local Dynamic TLS Model.
    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
                                                      : MipsII::MO_TLSGD;

    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
                                   getGlobalReg(DAG, PtrVT), TGA);
    unsigned PtrSize = PtrVT.getSizeInBits();
    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);

    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);

    ArgListTy Args;
    ArgListEntry Entry;
    Entry.Node = Argument;
    Entry.Ty = PtrTy;
    Args.push_back(Entry);

    TargetLowering::CallLoweringInfo CLI(DAG);
    CLI.setDebugLoc(DL)
        .setChain(DAG.getEntryNode())
        .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);

    SDValue Ret = CallResult.first;

    if (model != TLSModel::LocalDynamic)
      return Ret;

    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_DTPREL_HI);
    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_DTPREL_LO);
    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
  }

  SDValue Offset;
  if (model == TLSModel::InitialExec) {
    // Initial Exec TLS Model
    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                             MipsII::MO_GOTTPREL);
    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
                      TGA);
    Offset =
        DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
  } else {
    // Local Exec TLS Model
    assert(model == TLSModel::LocalExec);
    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_TPREL_HI);
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_TPREL_LO);
    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
  }

  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
}

SDValue MipsTargetLowering::
lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
  EVT Ty = Op.getValueType();

  if (!isPositionIndependent())
    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);

  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}

SDValue MipsTargetLowering::
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
  EVT Ty = Op.getValueType();

  if (!isPositionIndependent()) {
    const MipsTargetObjectFile *TLOF =
        static_cast<const MipsTargetObjectFile *>(
            getTargetMachine().getObjFileLowering());

    if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
                                       getTargetMachine()))
      // %gp_rel relocation
      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());

    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
  }

 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}

SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();

  SDLoc DL(Op);
  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
                                 getPointerTy(MF.getDataLayout()));

  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  EVT VT = Node->getValueType(0);
  SDValue Chain = Node->getOperand(0);
  SDValue VAListPtr = Node->getOperand(1);
  const Align Align =
      llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
  SDLoc DL(Node);
  unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;

  SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
                                   VAListPtr, MachinePointerInfo(SV));
  SDValue VAList = VAListLoad;

  // Re-align the pointer if necessary.
  // It should only ever be necessary for 64-bit types on O32 since the minimum
  // argument alignment is the same as the maximum type alignment for N32/N64.
  //
  // FIXME: We currently align too often. The code generator doesn't notice
  //        when the pointer is still aligned from the last va_arg (or pair of
  //        va_args for the i64 on O32 case).
  if (Align > getMinStackArgumentAlignment()) {
    VAList = DAG.getNode(
        ISD::ADD, DL, VAList.getValueType(), VAList,
        DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));

    VAList = DAG.getNode(
        ISD::AND, DL, VAList.getValueType(), VAList,
        DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
  }

  // Increment the pointer, VAList, to the next vaarg.
  auto &TD = DAG.getDataLayout();
  unsigned ArgSizeInBytes =
      TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
  SDValue Tmp3 =
      DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
                  DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
                                  DL, VAList.getValueType()));
  // Store the incremented VAList to the legalized pointer
  Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
                       MachinePointerInfo(SV));

  // In big-endian mode we must adjust the pointer when the load size is smaller
  // than the argument slot size. We must also reduce the known alignment to
  // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
  // the correct half of the slot, and reduce the alignment from 8 (slot
  // alignment) down to 4 (type alignment).
  if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
    unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
    VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
                         DAG.getIntPtrConstant(Adjustment, DL));
  }
  // Load the actual argument out of the pointer VAList
  return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
}

static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
                                bool HasExtractInsert) {
  EVT TyX = Op.getOperand(0).getValueType();
  EVT TyY = Op.getOperand(1).getValueType();
  SDLoc DL(Op);
  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
  SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
  SDValue Res;

  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
  // to i32.
  SDValue X = (TyX == MVT::f32) ?
    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
                Const1);
  SDValue Y = (TyY == MVT::f32) ?
    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
                Const1);

  if (HasExtractInsert) {
    // ext  E, Y, 31, 1  ; extract bit31 of Y
    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
  } else {
    // sll SllX, X, 1
    // srl SrlX, SllX, 1
    // srl SrlY, Y, 31
    // sll SllY, SrlX, 31
    // or  Or, SrlX, SllY
    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
  }

  if (TyX == MVT::f32)
    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);

  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                             Op.getOperand(0),
                             DAG.getConstant(0, DL, MVT::i32));
  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}

static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
                                bool HasExtractInsert) {
  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
  SDLoc DL(Op);
  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);

  // Bitcast to integer nodes.
  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));

  if (HasExtractInsert) {
    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
                            DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);

    if (WidthX > WidthY)
      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
    else if (WidthY > WidthX)
      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);

    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
                            DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
                            X);
    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
  }

  // (d)sll SllX, X, 1
  // (d)srl SrlX, SllX, 1
  // (d)srl SrlY, Y, width(Y)-1
  // (d)sll SllY, SrlX, width(Y)-1
  // or     Or, SrlX, SllY
  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
                             DAG.getConstant(WidthY - 1, DL, MVT::i32));

  if (WidthX > WidthY)
    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
  else if (WidthY > WidthX)
    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);

  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
                             DAG.getConstant(WidthX - 1, DL, MVT::i32));
  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
}

SDValue
MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
  if (Subtarget.isGP64bit())
    return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());

  return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
}

static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
                           bool HasExtractInsert) {
  SDLoc DL(Op);
  SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);

  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
  // to i32.
  SDValue X = (Op.getValueType() == MVT::f32)
                  ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
                  : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                                Op.getOperand(0), Const1);

  // Clear MSB.
  if (HasExtractInsert)
    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
                      DAG.getRegister(Mips::ZERO, MVT::i32),
                      DAG.getConstant(31, DL, MVT::i32), Const1, X);
  else {
    // TODO: Provide DAG patterns which transform (and x, cst)
    // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
  }

  if (Op.getValueType() == MVT::f32)
    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);

  // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
  // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
  // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
  // place.
  SDValue LowX =
      DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
                  DAG.getConstant(0, DL, MVT::i32));
  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}

static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
                           bool HasExtractInsert) {
  SDLoc DL(Op);
  SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);

  // Bitcast to integer node.
  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));

  // Clear MSB.
  if (HasExtractInsert)
    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
                      DAG.getConstant(63, DL, MVT::i32), Const1, X);
  else {
    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
  }

  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
}

SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
  if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
    return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());

  return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
}

SDValue MipsTargetLowering::
lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  // check the depth
  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
    DAG.getContext()->emitError(
        "return address can be determined only for current frame");
    return SDValue();
  }

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  SDValue FrameAddr = DAG.getCopyFromReg(
      DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
  return FrameAddr;
}

SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
                                            SelectionDAG &DAG) const {
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  // check the depth
  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
    DAG.getContext()->emitError(
        "return address can be determined only for current frame");
    return SDValue();
  }

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MVT VT = Op.getSimpleValueType();
  unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
  MFI.setReturnAddressIsTaken(true);

  // Return RA, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
}

// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
// generated from __builtin_eh_return (offset, handler)
// The effect of this is to adjust the stack pointer by "offset"
// and then branch to "handler".
SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
                                                                     const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  MipsFI->setCallsEhReturn();
  SDValue Chain     = Op.getOperand(0);
  SDValue Offset    = Op.getOperand(1);
  SDValue Handler   = Op.getOperand(2);
  SDLoc DL(Op);
  EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;

  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
  // EH_RETURN nodes, so that instructions are emitted back-to-back.
  unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
  unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
                     DAG.getRegister(OffsetReg, Ty),
                     DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
                     Chain.getValue(1));
}

SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
                                              SelectionDAG &DAG) const {
  // FIXME: Need pseudo-fence for 'singlethread' fences
  // FIXME: Set SType for weaker fences where supported/appropriate.
  unsigned SType = 0;
  SDLoc DL(Op);
  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
                     DAG.getConstant(SType, DL, MVT::i32));
}

SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);
  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;

  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
  SDValue Shamt = Op.getOperand(2);
  // if shamt < (VT.bits):
  //  lo = (shl lo, shamt)
  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
  // else:
  //  lo = 0
  //  hi = (shl lo, shamt[4:0])
  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
                            DAG.getConstant(-1, DL, MVT::i32));
  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
                                      DAG.getConstant(1, DL, VT));
  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
                   DAG.getConstant(0, DL, VT), ShiftLeftLo);
  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);

  SDValue Ops[2] = {Lo, Hi};
  return DAG.getMergeValues(Ops, DL);
}

SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
                                                 bool IsSRA) const {
  SDLoc DL(Op);
  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
  SDValue Shamt = Op.getOperand(2);
  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;

  // if shamt < (VT.bits):
  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
  //  if isSRA:
  //    hi = (sra hi, shamt)
  //  else:
  //    hi = (srl hi, shamt)
  // else:
  //  if isSRA:
  //   lo = (sra hi, shamt[4:0])
  //   hi = (sra hi, 31)
  //  else:
  //   lo = (srl hi, shamt[4:0])
  //   hi = 0
  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
                            DAG.getConstant(-1, DL, MVT::i32));
  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
                                     DAG.getConstant(1, DL, VT));
  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
                                     DL, VT, Hi, Shamt);
  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
  SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
                            DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));

  if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
    SDVTList VTList = DAG.getVTList(VT, VT);
    return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
                                             : Mips::PseudoD_SELECT_I,
                       DL, VTList, Cond, ShiftRightHi,
                       IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
                       ShiftRightHi);
  }

  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
                   IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);

  SDValue Ops[2] = {Lo, Hi};
  return DAG.getMergeValues(Ops, DL);
}

static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
                            SDValue Chain, SDValue Src, unsigned Offset) {
  SDValue Ptr = LD->getBasePtr();
  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
  EVT BasePtrVT = Ptr.getValueType();
  SDLoc DL(LD);
  SDVTList VTList = DAG.getVTList(VT, MVT::Other);

  if (Offset)
    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
                      DAG.getConstant(Offset, DL, BasePtrVT));

  SDValue Ops[] = { Chain, Ptr, Src };
  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
                                 LD->getMemOperand());
}

// Expand an unaligned 32 or 64-bit integer load node.
SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  LoadSDNode *LD = cast<LoadSDNode>(Op);
  EVT MemVT = LD->getMemoryVT();

  if (Subtarget.systemSupportsUnalignedAccess())
    return Op;

  // Return if load is aligned or if MemVT is neither i32 nor i64.
  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
    return SDValue();

  bool IsLittle = Subtarget.isLittle();
  EVT VT = Op.getValueType();
  ISD::LoadExtType ExtType = LD->getExtensionType();
  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);

  assert((VT == MVT::i32) || (VT == MVT::i64));

  // Expand
  //  (set dst, (i64 (load baseptr)))
  // to
  //  (set tmp, (ldl (add baseptr, 7), undef))
  //  (set dst, (ldr baseptr, tmp))
  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
                               IsLittle ? 7 : 0);
    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
                        IsLittle ? 0 : 7);
  }

  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
                             IsLittle ? 3 : 0);
  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
                             IsLittle ? 0 : 3);

  // Expand
  //  (set dst, (i32 (load baseptr))) or
  //  (set dst, (i64 (sextload baseptr))) or
  //  (set dst, (i64 (extload baseptr)))
  // to
  //  (set tmp, (lwl (add baseptr, 3), undef))
  //  (set dst, (lwr baseptr, tmp))
  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
      (ExtType == ISD::EXTLOAD))
    return LWR;

  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));

  // Expand
  //  (set dst, (i64 (zextload baseptr)))
  // to
  //  (set tmp0, (lwl (add baseptr, 3), undef))
  //  (set tmp1, (lwr baseptr, tmp0))
  //  (set tmp2, (shl tmp1, 32))
  //  (set dst, (srl tmp2, 32))
  SDLoc DL(LD);
  SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
  SDValue Ops[] = { SRL, LWR.getValue(1) };
  return DAG.getMergeValues(Ops, DL);
}

static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
                             SDValue Chain, unsigned Offset) {
  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
  SDLoc DL(SD);
  SDVTList VTList = DAG.getVTList(MVT::Other);

  if (Offset)
    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
                      DAG.getConstant(Offset, DL, BasePtrVT));

  SDValue Ops[] = { Chain, Value, Ptr };
  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
                                 SD->getMemOperand());
}

// Expand an unaligned 32 or 64-bit integer store node.
static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
                                      bool IsLittle) {
  SDValue Value = SD->getValue(), Chain = SD->getChain();
  EVT VT = Value.getValueType();

  // Expand
  //  (store val, baseptr) or
  //  (truncstore val, baseptr)
  // to
  //  (swl val, (add baseptr, 3))
  //  (swr val, baseptr)
  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
                                IsLittle ? 3 : 0);
    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
  }

  assert(VT == MVT::i64);

  // Expand
  //  (store val, baseptr)
  // to
  //  (sdl val, (add baseptr, 7))
  //  (sdr val, baseptr)
  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
}

// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
                                     bool SingleFloat) {
  SDValue Val = SD->getValue();

  if (Val.getOpcode() != ISD::FP_TO_SINT ||
      (Val.getValueSizeInBits() > 32 && SingleFloat))
    return SDValue();

  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
                           Val.getOperand(0));
  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
                      SD->getPointerInfo(), SD->getAlignment(),
                      SD->getMemOperand()->getFlags());
}

SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  StoreSDNode *SD = cast<StoreSDNode>(Op);
  EVT MemVT = SD->getMemoryVT();

  // Lower unaligned integer stores.
  if (!Subtarget.systemSupportsUnalignedAccess() &&
      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
    return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());

  return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
}

SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
                                              SelectionDAG &DAG) const {

  // Return a fixed StackObject with offset 0 which points to the old stack
  // pointer.
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  EVT ValTy = Op->getValueType(0);
  int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
  return DAG.getFrameIndex(FI, ValTy);
}

SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
                                            SelectionDAG &DAG) const {
  if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
    return SDValue();

  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
                              Op.getOperand(0));
  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
}

//===----------------------------------------------------------------------===//
//                      Calling Convention Implementation
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
//       an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
//       not used, it must be shadowed. If only A3 is available, shadow it and
//       go to stack.
// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
//         with the remainder spilled to the stack.
// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
//         spilling the remainder to the stack.
//
//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
//===----------------------------------------------------------------------===//

static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
                       CCState &State, ArrayRef<MCPhysReg> F64Regs) {
  const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
      State.getMachineFunction().getSubtarget());

  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };

  const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);

  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };

  static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };

  // Do not process byval args here.
  if (ArgFlags.isByVal())
    return true;

  // Promote i8 and i16
  if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
    if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
      LocVT = MVT::i32;
      if (ArgFlags.isSExt())
        LocInfo = CCValAssign::SExtUpper;
      else if (ArgFlags.isZExt())
        LocInfo = CCValAssign::ZExtUpper;
      else
        LocInfo = CCValAssign::AExtUpper;
    }
  }

  // Promote i8 and i16
  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
    LocVT = MVT::i32;
    if (ArgFlags.isSExt())
      LocInfo = CCValAssign::SExt;
    else if (ArgFlags.isZExt())
      LocInfo = CCValAssign::ZExt;
    else
      LocInfo = CCValAssign::AExt;
  }

  unsigned Reg;

  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
  // is true: function is vararg, argument is 3rd or higher, there is previous
  // argument which is not f32 or f64.
  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
                                State.getFirstUnallocated(F32Regs) != ValNo;
  Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
  bool isI64 = (ValVT == MVT::i32 && OrigAlign == Align(8));
  bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);

  // The MIPS vector ABI for floats passes them in a pair of registers
  if (ValVT == MVT::i32 && isVectorFloat) {
    // This is the start of an vector that was scalarized into an unknown number
    // of components. It doesn't matter how many there are. Allocate one of the
    // notional 8 byte aligned registers which map onto the argument stack, and
    // shadow the register lost to alignment requirements.
    if (ArgFlags.isSplit()) {
      Reg = State.AllocateReg(FloatVectorIntRegs);
      if (Reg == Mips::A2)
        State.AllocateReg(Mips::A1);
      else if (Reg == 0)
        State.AllocateReg(Mips::A3);
    } else {
      // If we're an intermediate component of the split, we can just attempt to
      // allocate a register directly.
      Reg = State.AllocateReg(IntRegs);
    }
  } else if (ValVT == MVT::i32 ||
             (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
    Reg = State.AllocateReg(IntRegs);
    // If this is the first part of an i64 arg,
    // the allocated register must be either A0 or A2.
    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
      Reg = State.AllocateReg(IntRegs);
    LocVT = MVT::i32;
  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
    // Allocate int register and shadow next int register. If first
    // available register is Mips::A1 or Mips::A3, shadow it too.
    Reg = State.AllocateReg(IntRegs);
    if (Reg == Mips::A1 || Reg == Mips::A3)
      Reg = State.AllocateReg(IntRegs);
    State.AllocateReg(IntRegs);
    LocVT = MVT::i32;
  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
    // we are guaranteed to find an available float register
    if (ValVT == MVT::f32) {
      Reg = State.AllocateReg(F32Regs);
      // Shadow int register
      State.AllocateReg(IntRegs);
    } else {
      Reg = State.AllocateReg(F64Regs);
      // Shadow int registers
      unsigned Reg2 = State.AllocateReg(IntRegs);
      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
        State.AllocateReg(IntRegs);
      State.AllocateReg(IntRegs);
    }
  } else
    llvm_unreachable("Cannot handle this ValVT.");

  if (!Reg) {
    unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  } else
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));

  return false;
}

static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };

  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}

static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };

  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}

static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
                       CCState &State) LLVM_ATTRIBUTE_UNUSED;

#include "MipsGenCallingConv.inc"

 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
   return CC_Mips_FixedArg;
 }

 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
   return RetCC_Mips;
 }
//===----------------------------------------------------------------------===//
//                  Call Calling Convention Implementation
//===----------------------------------------------------------------------===//

// Return next O32 integer argument register.
static unsigned getNextIntArgReg(unsigned Reg) {
  assert((Reg == Mips::A0) || (Reg == Mips::A2));
  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
}

SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
                                           SDValue Chain, SDValue Arg,
                                           const SDLoc &DL, bool IsTailCall,
                                           SelectionDAG &DAG) const {
  if (!IsTailCall) {
    SDValue PtrOff =
        DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
                    DAG.getIntPtrConstant(Offset, DL));
    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
  }

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
                      /* Alignment = */ 0, MachineMemOperand::MOVolatile);
}

void MipsTargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
            std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
            SDValue Chain) const {
  // Insert node "GP copy globalreg" before call to function.
  //
  // R_MIPS_CALL* operators (emitted when non-internal functions are called
  // in PIC mode) allow symbols to be resolved via lazy binding.
  // The lazy binding stub requires GP to point to the GOT.
  // Note that we don't need GP to point to the GOT for indirect calls
  // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
  // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
  // used for the function (that is, Mips linker doesn't generate lazy binding
  // stub for a function whose address is taken in the program).
  if (IsPICCall && !InternalLinkage && IsCallReloc) {
    unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
    EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
  }

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The InFlag in necessary since all emitted instructions must be
  // stuck together.
  SDValue InFlag;

  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
                                 RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
                                      RegsToPass[i].second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const uint32_t *Mask =
      TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  if (Subtarget.inMips16HardFloat()) {
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
      StringRef Sym = G->getGlobal()->getName();
      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
        Mask = MipsRegisterInfo::getMips16RetHelperMask();
      }
    }
  }
  Ops.push_back(CLI.DAG.getRegisterMask(Mask));

  if (InFlag.getNode())
    Ops.push_back(InFlag);
}

void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
                                                       SDNode *Node) const {
  switch (MI.getOpcode()) {
    default:
      return;
    case Mips::JALR:
    case Mips::JALRPseudo:
    case Mips::JALR64:
    case Mips::JALR64Pseudo:
    case Mips::JALR16_MM:
    case Mips::JALRC16_MMR6:
    case Mips::TAILCALLREG:
    case Mips::TAILCALLREG64:
    case Mips::TAILCALLR6REG:
    case Mips::TAILCALL64R6REG:
    case Mips::TAILCALLREG_MM:
    case Mips::TAILCALLREG_MMR6: {
      if (!EmitJalrReloc ||
          Subtarget.inMips16Mode() ||
          !isPositionIndependent() ||
          Node->getNumOperands() < 1 ||
          Node->getOperand(0).getNumOperands() < 2) {
        return;
      }
      // We are after the callee address, set by LowerCall().
      // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
      // symbol.
      const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
      StringRef Sym;
      if (const GlobalAddressSDNode *G =
              dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
        // We must not emit the R_MIPS_JALR relocation against data symbols
        // since this will cause run-time crashes if the linker replaces the
        // call instruction with a relative branch to the data symbol.
        if (!isa<Function>(G->getGlobal())) {
          LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
                            << G->getGlobal()->getName() << "\n");
          return;
        }
        Sym = G->getGlobal()->getName();
      }
      else if (const ExternalSymbolSDNode *ES =
                   dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
        Sym = ES->getSymbol();
      }

      if (Sym.empty())
        return;

      MachineFunction *MF = MI.getParent()->getParent();
      MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
      LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n");
      MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
    }
  }
}

/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                              SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc DL                              = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  bool &IsTailCall                      = CLI.IsTailCall;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool IsVarArg                         = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
  bool IsPIC = isPositionIndependent();

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  MipsCCState CCInfo(
      CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
      MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));

  const ExternalSymbolSDNode *ES =
      dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());

  // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
  // is during the lowering of a call with a byval argument which produces
  // a call to memcpy. For the O32 case, this causes the caller to allocate
  // stack space for the reserved argument area for the callee, then recursively
  // again for the memcpy call. In the NEWABI case, this doesn't occur as those
  // ABIs mandate that the callee allocates the reserved argument area. We do
  // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
  //
  // If the callee has a byval argument and memcpy is used, we are mandated
  // to already have produced a reserved argument area for the callee for O32.
  // Therefore, the reserved argument area can be reused for both calls.
  //
  // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
  // present, as we have yet to hook that node onto the chain.
  //
  // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
  // case. GCC does a similar trick, in that wherever possible, it calculates
  // the maximum out going argument area (including the reserved area), and
  // preallocates the stack space on entrance to the caller.
  //
  // FIXME: We should do the same for efficiency and space.

  // Note: The check on the calling convention below must match
  //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
  bool MemcpyInByVal = ES &&
                       StringRef(ES->getSymbol()) == StringRef("memcpy") &&
                       CallConv != CallingConv::Fast &&
                       Chain.getOpcode() == ISD::CALLSEQ_START;

  // Allocate the reserved argument area. It seems strange to do this from the
  // caller side but removing it breaks the frame size calculation.
  unsigned ReservedArgArea =
      MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
  CCInfo.AllocateStack(ReservedArgArea, Align(1));

  CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
                             ES ? ES->getSymbol() : nullptr);

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NextStackOffset = CCInfo.getNextStackOffset();

  // Call site info for function parameters tracking.
  MachineFunction::CallSiteInfo CSInfo;

  // Check if it's really possible to do a tail call. Restrict it to functions
  // that are part of this compilation unit.
  bool InternalLinkage = false;
  if (IsTailCall) {
    IsTailCall = isEligibleForTailCallOptimization(
        CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
      InternalLinkage = G->getGlobal()->hasInternalLinkage();
      IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
                     G->getGlobal()->hasPrivateLinkage() ||
                     G->getGlobal()->hasHiddenVisibility() ||
                     G->getGlobal()->hasProtectedVisibility());
     }
  }
  if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
    report_fatal_error("failed to perform tail call elimination on a call "
                       "site marked musttail");

  if (IsTailCall)
    ++NumTailCalls;

  // Chain is the output chain of the last Load/Store or CopyToReg node.
  // ByValChain is the output chain of the last Memcpy node created for copying
  // byval arguments to the stack.
  unsigned StackAlignment = TFL->getStackAlignment();
  NextStackOffset = alignTo(NextStackOffset, StackAlignment);
  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);

  if (!(IsTailCall || MemcpyInByVal))
    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);

  SDValue StackPtr =
      DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
                         getPointerTy(DAG.getDataLayout()));

  std::deque<std::pair<unsigned, SDValue>> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  CCInfo.rewindByValRegsInfo();

  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    SDValue Arg = OutVals[i];
    CCValAssign &VA = ArgLocs[i];
    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    bool UseUpperBits = false;

    // ByVal Arg.
    if (Flags.isByVal()) {
      unsigned FirstByValReg, LastByValReg;
      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);

      assert(Flags.getByValSize() &&
             "ByVal args of size 0 should have been ignored by front-end.");
      assert(ByValIdx < CCInfo.getInRegsParamsCount());
      assert(!IsTailCall &&
             "Do not tail-call optimize if there is a byval argument.");
      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
                   FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
                   VA);
      CCInfo.nextInRegsParam();
      continue;
    }

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      if (VA.isRegLoc()) {
        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
            (ValVT == MVT::i64 && LocVT == MVT::f64))
          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                                   Arg, DAG.getConstant(0, DL, MVT::i32));
          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                                   Arg, DAG.getConstant(1, DL, MVT::i32));
          if (!Subtarget.isLittle())
            std::swap(Lo, Hi);
          Register LocRegLo = VA.getLocReg();
          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
          continue;
        }
      }
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
      break;
    case CCValAssign::SExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
      break;
    case CCValAssign::ZExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
      break;
    case CCValAssign::AExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
      break;
    }

    if (UseUpperBits) {
      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
      Arg = DAG.getNode(
          ISD::SHL, DL, VA.getLocVT(), Arg,
          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    }

    // Arguments that can be passed on register must be kept at
    // RegsToPass vector
    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));

      // If the parameter is passed through reg $D, which splits into
      // two physical registers, avoid creating call site info.
      if (Mips::AFGR64RegClass.contains(VA.getLocReg()))
        continue;

      // Collect CSInfo about which register passes which parameter.
      const TargetOptions &Options = DAG.getTarget().Options;
      if (Options.SupportsDebugEntryValues)
        CSInfo.emplace_back(VA.getLocReg(), i);

      continue;
    }

    // Register can't get to this point...
    assert(VA.isMemLoc());

    // emit ISD::STORE whichs stores the
    // parameter value to a stack Location
    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
                                         Chain, Arg, DL, IsTailCall, DAG));
  }

  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.

  EVT Ty = Callee.getValueType();
  bool GlobalOrExternal = false, IsCallReloc = false;

  // The long-calls feature is ignored in case of PIC.
  // While we do not support -mshared / -mno-shared properly,
  // ignore long-calls in case of -mabicalls too.
  if (!Subtarget.isABICalls() && !IsPIC) {
    // If the function should be called using "long call",
    // get its address into a register to prevent using
    // of the `jal` instruction for the direct call.
    if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
      if (Subtarget.useLongCalls())
        Callee = Subtarget.hasSym32()
                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
    } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
      bool UseLongCalls = Subtarget.useLongCalls();
      // If the function has long-call/far/near attribute
      // it overrides command line switch pased to the backend.
      if (auto *F = dyn_cast<Function>(N->getGlobal())) {
        if (F->hasFnAttribute("long-call"))
          UseLongCalls = true;
        else if (F->hasFnAttribute("short-call"))
          UseLongCalls = false;
      }
      if (UseLongCalls)
        Callee = Subtarget.hasSym32()
                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
    }
  }

  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    if (IsPIC) {
      const GlobalValue *Val = G->getGlobal();
      InternalLinkage = Val->hasInternalLinkage();

      if (InternalLinkage)
        Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
      else if (Subtarget.useXGOT()) {
        Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
                                       MipsII::MO_CALL_LO16, Chain,
                                       FuncInfo->callPtrInfo(MF, Val));
        IsCallReloc = true;
      } else {
        Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
                               FuncInfo->callPtrInfo(MF, Val));
        IsCallReloc = true;
      }
    } else
      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
                                          getPointerTy(DAG.getDataLayout()), 0,
                                          MipsII::MO_NO_FLAG);
    GlobalOrExternal = true;
  }
  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    const char *Sym = S->getSymbol();

    if (!IsPIC) // static
      Callee = DAG.getTargetExternalSymbol(
          Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
    else if (Subtarget.useXGOT()) {
      Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
                                     MipsII::MO_CALL_LO16, Chain,
                                     FuncInfo->callPtrInfo(MF, Sym));
      IsCallReloc = true;
    } else { // PIC
      Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
                             FuncInfo->callPtrInfo(MF, Sym));
      IsCallReloc = true;
    }

    GlobalOrExternal = true;
  }

  SmallVector<SDValue, 8> Ops(1, Chain);
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
              IsCallReloc, CLI, Callee, Chain);

  if (IsTailCall) {
    MF.getFrameInfo().setHasTailCall();
    SDValue Ret = DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
    return Ret;
  }

  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
  SDValue InFlag = Chain.getValue(1);

  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));

  // Create the CALLSEQ_END node in the case of where it is not a call to
  // memcpy.
  if (!(MemcpyInByVal)) {
    Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
    InFlag = Chain.getValue(1);
  }

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
                         InVals, CLI);
}

/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue MipsTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    TargetLowering::CallLoweringInfo &CLI) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                     *DAG.getContext());

  const ExternalSymbolSDNode *ES =
      dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
                           ES ? ES->getSymbol() : nullptr);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
                                     RVLocs[i].getLocVT(), InFlag);
    Chain = Val.getValue(1);
    InFlag = Val.getValue(2);

    if (VA.isUpperBitsInLoc()) {
      unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
      unsigned Shift =
          VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
      Val = DAG.getNode(
          Shift, DL, VA.getLocVT(), Val,
          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    }

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::AExt:
    case CCValAssign::AExtUpper:
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::ZExt:
    case CCValAssign::ZExtUpper:
      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::SExt:
    case CCValAssign::SExtUpper:
      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
                                      EVT ArgVT, const SDLoc &DL,
                                      SelectionDAG &DAG) {
  MVT LocVT = VA.getLocVT();
  EVT ValVT = VA.getValVT();

  // Shift into the upper bits if necessary.
  switch (VA.getLocInfo()) {
  default:
    break;
  case CCValAssign::AExtUpper:
  case CCValAssign::SExtUpper:
  case CCValAssign::ZExtUpper: {
    unsigned ValSizeInBits = ArgVT.getSizeInBits();
    unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
    unsigned Opcode =
        VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
    Val = DAG.getNode(
        Opcode, DL, VA.getLocVT(), Val,
        DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    break;
  }
  }

  // If this is an value smaller than the argument slot size (32-bit for O32,
  // 64-bit for N32/N64), it has been promoted in some way to the argument slot
  // size. Extract the value and insert any appropriate assertions regarding
  // sign/zero extension.
  switch (VA.getLocInfo()) {
  default:
    llvm_unreachable("Unknown loc info!");
  case CCValAssign::Full:
    break;
  case CCValAssign::AExtUpper:
  case CCValAssign::AExt:
    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
    break;
  case CCValAssign::SExtUpper:
  case CCValAssign::SExt:
    Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
    break;
  case CCValAssign::ZExtUpper:
  case CCValAssign::ZExt:
    Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
    break;
  case CCValAssign::BCvt:
    Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
    break;
  }

  return Val;
}

//===----------------------------------------------------------------------===//
//             Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue MipsTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  MipsFI->setVarArgsFrameIndex(0);

  // Used with vargs to acumulate store chains.
  std::vector<SDValue> OutChains;

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
                     *DAG.getContext());
  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), Align(1));
  const Function &Func = DAG.getMachineFunction().getFunction();
  Function::const_arg_iterator FuncArg = Func.arg_begin();

  if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
    report_fatal_error(
        "Functions with the interrupt attribute cannot have arguments!");

  CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
                           CCInfo.getInRegsParamsCount() > 0);

  unsigned CurArgIdx = 0;
  CCInfo.rewindByValRegsInfo();

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    if (Ins[i].isOrigArg()) {
      std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[i].getOrigArgIndex();
    }
    EVT ValVT = VA.getValVT();
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
    bool IsRegLoc = VA.isRegLoc();

    if (Flags.isByVal()) {
      assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
      unsigned FirstByValReg, LastByValReg;
      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);

      assert(Flags.getByValSize() &&
             "ByVal args of size 0 should have been ignored by front-end.");
      assert(ByValIdx < CCInfo.getInRegsParamsCount());
      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
                    FirstByValReg, LastByValReg, VA, CCInfo);
      CCInfo.nextInRegsParam();
      continue;
    }

    // Arguments stored on registers
    if (IsRegLoc) {
      MVT RegVT = VA.getLocVT();
      Register ArgReg = VA.getLocReg();
      const TargetRegisterClass *RC = getRegClassFor(RegVT);

      // Transform the arguments stored on
      // physical registers into virtual ones
      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);

      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);

      // Handle floating point arguments passed in integer registers and
      // long double arguments passed in floating point registers.
      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
          (RegVT == MVT::f64 && ValVT == MVT::i64))
        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
      else if (ABI.IsO32() && RegVT == MVT::i32 &&
               ValVT == MVT::f64) {
        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
                                  getNextIntArgReg(ArgReg), RC);
        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
        if (!Subtarget.isLittle())
          std::swap(ArgValue, ArgValue2);
        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
                               ArgValue, ArgValue2);
      }

      InVals.push_back(ArgValue);
    } else { // VA.isRegLoc()
      MVT LocVT = VA.getLocVT();

      if (ABI.IsO32()) {
        // We ought to be able to use LocVT directly but O32 sets it to i32
        // when allocating floating point values to integer registers.
        // This shouldn't influence how we load the value into registers unless
        // we are targeting softfloat.
        if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
          LocVT = VA.getValVT();
      }

      // sanity check
      assert(VA.isMemLoc());

      // The stack pointer offset is relative to the caller stack frame.
      int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
                                     VA.getLocMemOffset(), true);

      // Create load nodes to retrieve arguments from the stack
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
      SDValue ArgValue = DAG.getLoad(
          LocVT, DL, Chain, FIN,
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
      OutChains.push_back(ArgValue.getValue(1));

      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);

      InVals.push_back(ArgValue);
    }
  }

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    // The mips ABIs for returning structs by value requires that we copy
    // the sret argument into $v0 for the return. Save the argument into
    // a virtual register so that we can access it from the return points.
    if (Ins[i].Flags.isSRet()) {
      unsigned Reg = MipsFI->getSRetReturnReg();
      if (!Reg) {
        Reg = MF.getRegInfo().createVirtualRegister(
            getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
        MipsFI->setSRetReturnReg(Reg);
      }
      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
      break;
    }
  }

  if (IsVarArg)
    writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);

  // All stores are grouped in one node to allow the matching between
  // the size of Ins and InVals. This only happens when on varg functions
  if (!OutChains.empty()) {
    OutChains.push_back(Chain);
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//               Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//

bool
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
                                   MachineFunction &MF, bool IsVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC_Mips);
}

bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type,
                                                       bool IsSigned) const {
  if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
      return true;

  return IsSigned;
}

SDValue
MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
                                         const SDLoc &DL,
                                         SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  MipsFI->setISR();

  return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
}

SDValue
MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                bool IsVarArg,
                                const SmallVectorImpl<ISD::OutputArg> &Outs,
                                const SmallVectorImpl<SDValue> &OutVals,
                                const SDLoc &DL, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of
  // the return value to a location
  SmallVector<CCValAssign, 16> RVLocs;
  MachineFunction &MF = DAG.getMachineFunction();

  // CCState - Info about the registers and stack slot.
  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());

  // Analyze return values.
  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    SDValue Val = OutVals[i];
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    bool UseUpperBits = false;

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
      break;
    case CCValAssign::AExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::AExt:
      Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
      break;
    case CCValAssign::ZExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::ZExt:
      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
      break;
    case CCValAssign::SExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::SExt:
      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
      break;
    }

    if (UseUpperBits) {
      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
      Val = DAG.getNode(
          ISD::SHL, DL, VA.getLocVT(), Val,
          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    }

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  // The mips ABIs for returning structs by value requires that we copy
  // the sret argument into $v0 for the return. We saved the argument into
  // a virtual register in the entry block, so now we copy the value out
  // and into $v0.
  if (MF.getFunction().hasStructRetAttr()) {
    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
    unsigned Reg = MipsFI->getSRetReturnReg();

    if (!Reg)
      llvm_unreachable("sret virtual register not created in the entry block");
    SDValue Val =
        DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
    unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;

    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  // ISRs must use "eret".
  if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
    return LowerInterruptReturn(RetOps, DL, DAG);

  // Standard return on Mips is a "jr $ra"
  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
}

//===----------------------------------------------------------------------===//
//                           Mips Inline Assembly Support
//===----------------------------------------------------------------------===//

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType
MipsTargetLowering::getConstraintType(StringRef Constraint) const {
  // Mips specific constraints
  // GCC config/mips/constraints.md
  //
  // 'd' : An address register. Equivalent to r
  //       unless generating MIPS16 code.
  // 'y' : Equivalent to r; retained for
  //       backwards compatibility.
  // 'c' : A register suitable for use in an indirect
  //       jump. This will always be $25 for -mabicalls.
  // 'l' : The lo register. 1 word storage.
  // 'x' : The hilo register pair. Double word storage.
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
      default : break;
      case 'd':
      case 'y':
      case 'f':
      case 'c':
      case 'l':
      case 'x':
        return C_RegisterClass;
      case 'R':
        return C_Memory;
    }
  }

  if (Constraint == "ZC")
    return C_Memory;

  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
    // If we don't have a value, we can't do a match,
    // but allow it at the lowest weight.
  if (!CallOperandVal)
    return CW_Default;
  Type *type = CallOperandVal->getType();
  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'd':
  case 'y':
    if (type->isIntegerTy())
      weight = CW_Register;
    break;
  case 'f': // FPU or MSA register
    if (Subtarget.hasMSA() && type->isVectorTy() &&
        type->getPrimitiveSizeInBits().getFixedSize() == 128)
      weight = CW_Register;
    else if (type->isFloatTy())
      weight = CW_Register;
    break;
  case 'c': // $25 for indirect jumps
  case 'l': // lo register
  case 'x': // hilo register pair
    if (type->isIntegerTy())
      weight = CW_SpecificReg;
    break;
  case 'I': // signed 16 bit immediate
  case 'J': // integer zero
  case 'K': // unsigned 16 bit immediate
  case 'L': // signed 32 bit immediate where lower 16 bits are 0
  case 'N': // immediate in the range of -65535 to -1 (inclusive)
  case 'O': // signed 15 bit immediate (+- 16383)
  case 'P': // immediate in the range of 65535 to 1 (inclusive)
    if (isa<ConstantInt>(CallOperandVal))
      weight = CW_Constant;
    break;
  case 'R':
    weight = CW_Memory;
    break;
  }
  return weight;
}

/// This is a helper function to parse a physical register string and split it
/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
/// that is returned indicates whether parsing was successful. The second flag
/// is true if the numeric part exists.
static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
                                              unsigned long long &Reg) {
  if (C.front() != '{' || C.back() != '}')
    return std::make_pair(false, false);

  // Search for the first numeric character.
  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
  I = std::find_if(B, E, isdigit);

  Prefix = StringRef(B, I - B);

  // The second flag is set to false if no numeric characters were found.
  if (I == E)
    return std::make_pair(true, false);

  // Parse the numeric characters.
  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
                        true);
}

EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
                                            ISD::NodeType) const {
  bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
  EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
  return VT.bitsLT(MinVT) ? MinVT : VT;
}

std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
  const TargetRegisterInfo *TRI =
      Subtarget.getRegisterInfo();
  const TargetRegisterClass *RC;
  StringRef Prefix;
  unsigned long long Reg;

  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);

  if (!R.first)
    return std::make_pair(0U, nullptr);

  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
    // No numeric characters follow "hi" or "lo".
    if (R.second)
      return std::make_pair(0U, nullptr);

    RC = TRI->getRegClass(Prefix == "hi" ?
                          Mips::HI32RegClassID : Mips::LO32RegClassID);
    return std::make_pair(*(RC->begin()), RC);
  } else if (Prefix.startswith("$msa")) {
    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)

    // No numeric characters follow the name.
    if (R.second)
      return std::make_pair(0U, nullptr);

    Reg = StringSwitch<unsigned long long>(Prefix)
              .Case("$msair", Mips::MSAIR)
              .Case("$msacsr", Mips::MSACSR)
              .Case("$msaaccess", Mips::MSAAccess)
              .Case("$msasave", Mips::MSASave)
              .Case("$msamodify", Mips::MSAModify)
              .Case("$msarequest", Mips::MSARequest)
              .Case("$msamap", Mips::MSAMap)
              .Case("$msaunmap", Mips::MSAUnmap)
              .Default(0);

    if (!Reg)
      return std::make_pair(0U, nullptr);

    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
    return std::make_pair(Reg, RC);
  }

  if (!R.second)
    return std::make_pair(0U, nullptr);

  if (Prefix == "$f") { // Parse $f0-$f31.
    // If the size of FP registers is 64-bit or Reg is an even number, select
    // the 64-bit register class. Otherwise, select the 32-bit register class.
    if (VT == MVT::Other)
      VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;

    RC = getRegClassFor(VT);

    if (RC == &Mips::AFGR64RegClass) {
      assert(Reg % 2 == 0);
      Reg >>= 1;
    }
  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
    RC = TRI->getRegClass(Mips::FCCRegClassID);
  else if (Prefix == "$w") { // Parse $w0-$w31.
    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
  } else { // Parse $0-$31.
    assert(Prefix == "$");
    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
  }

  assert(Reg < RC->getNumRegs());
  return std::make_pair(*(RC->begin() + Reg), RC);
}

/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::pair<unsigned, const TargetRegisterClass *>
MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                 StringRef Constraint,
                                                 MVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
    case 'y': // Same as 'r'. Exists for compatibility.
    case 'r':
      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
        if (Subtarget.inMips16Mode())
          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
        return std::make_pair(0U, &Mips::GPR32RegClass);
      }
      if (VT == MVT::i64 && !Subtarget.isGP64bit())
        return std::make_pair(0U, &Mips::GPR32RegClass);
      if (VT == MVT::i64 && Subtarget.isGP64bit())
        return std::make_pair(0U, &Mips::GPR64RegClass);
      // This will generate an error message
      return std::make_pair(0U, nullptr);
    case 'f': // FPU or MSA register
      if (VT == MVT::v16i8)
        return std::make_pair(0U, &Mips::MSA128BRegClass);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return std::make_pair(0U, &Mips::MSA128HRegClass);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return std::make_pair(0U, &Mips::MSA128WRegClass);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return std::make_pair(0U, &Mips::MSA128DRegClass);
      else if (VT == MVT::f32)
        return std::make_pair(0U, &Mips::FGR32RegClass);
      else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
        if (Subtarget.isFP64bit())
          return std::make_pair(0U, &Mips::FGR64RegClass);
        return std::make_pair(0U, &Mips::AFGR64RegClass);
      }
      break;
    case 'c': // register suitable for indirect jump
      if (VT == MVT::i32)
        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
      if (VT == MVT::i64)
        return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
      // This will generate an error message
      return std::make_pair(0U, nullptr);
    case 'l': // use the `lo` register to store values
              // that are no bigger than a word
      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
    case 'x': // use the concatenated `hi` and `lo` registers
              // to store doubleword values
      // Fixme: Not triggering the use of both hi and low
      // This will generate an error message
      return std::make_pair(0U, nullptr);
    }
  }

  if (!Constraint.empty()) {
    std::pair<unsigned, const TargetRegisterClass *> R;
    R = parseRegForInlineAsmConstraint(Constraint, VT);

    if (R.second)
      return R;
  }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                     std::string &Constraint,
                                                     std::vector<SDValue>&Ops,
                                                     SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Result;

  // Only support length 1 constraints for now.
  if (Constraint.length() > 1) return;

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default: break; // This will fall through to the generic implementation
  case 'I': // Signed 16 bit constant
    // If this fails, the parent routine will give an error
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if (isInt<16>(Val)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'J': // integer zero
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getZExtValue();
      if (Val == 0) {
        Result = DAG.getTargetConstant(0, DL, Type);
        break;
      }
    }
    return;
  case 'K': // unsigned 16 bit immediate
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      uint64_t Val = (uint64_t)C->getZExtValue();
      if (isUInt<16>(Val)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'L': // signed 32 bit immediate where lower 16 bits are 0
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'N': // immediate in the range of -65535 to -1 (inclusive)
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((Val >= -65535) && (Val <= -1)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'O': // signed 15 bit immediate
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((isInt<15>(Val))) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'P': // immediate in the range of 1 to 65535 (inclusive)
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((Val <= 65535) && (Val >= 1)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                               const AddrMode &AM, Type *Ty,
                                               unsigned AS,
                                               Instruction *I) const {
  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  switch (AM.Scale) {
  case 0: // "r+i" or just "i", depending on HasBaseReg.
    break;
  case 1:
    if (!AM.HasBaseReg) // allow "r+i".
      break;
    return false; // disallow "r+r" or "r+r+i".
  default:
    return false;
  }

  return true;
}

bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  // The Mips target isn't yet aware of offsets.
  return false;
}

EVT MipsTargetLowering::getOptimalMemOpType(
    const MemOp &Op, const AttributeList &FuncAttributes) const {
  if (Subtarget.hasMips64())
    return MVT::i64;

  return MVT::i32;
}

bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
                                      bool ForCodeSize) const {
  if (VT != MVT::f32 && VT != MVT::f64)
    return false;
  if (Imm.isNegZero())
    return false;
  return Imm.isZero();
}

unsigned MipsTargetLowering::getJumpTableEncoding() const {

  // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
  if (ABI.IsN64() && isPositionIndependent())
    return MachineJumpTableInfo::EK_GPRel64BlockAddress;

  return TargetLowering::getJumpTableEncoding();
}

bool MipsTargetLowering::useSoftFloat() const {
  return Subtarget.useSoftFloat();
}

void MipsTargetLowering::copyByValRegs(
    SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
    SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
    SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
    unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
    MipsCCState &State) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
  unsigned NumRegs = LastReg - FirstReg;
  unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
  int FrameObjOffset;
  ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();

  if (RegAreaSize)
    FrameObjOffset =
        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
        (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
  else
    FrameObjOffset = VA.getLocMemOffset();

  // Create frame object.
  EVT PtrTy = getPointerTy(DAG.getDataLayout());
  // Make the fixed object stored to mutable so that the load instructions
  // referencing it have their memory dependencies added.
  // Set the frame object as isAliased which clears the underlying objects
  // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
  // stores as dependencies for loads referencing this fixed object.
  int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
  InVals.push_back(FIN);

  if (!NumRegs)
    return;

  // Copy arg registers.
  MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
  const TargetRegisterClass *RC = getRegClassFor(RegTy);

  for (unsigned I = 0; I < NumRegs; ++I) {
    unsigned ArgReg = ByValArgRegs[FirstReg + I];
    unsigned VReg = addLiveIn(MF, ArgReg, RC);
    unsigned Offset = I * GPRSizeInBytes;
    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
                                   DAG.getConstant(Offset, DL, PtrTy));
    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
                                 StorePtr, MachinePointerInfo(FuncArg, Offset));
    OutChains.push_back(Store);
  }
}

// Copy byVal arg to registers and stack.
void MipsTargetLowering::passByValArg(
    SDValue Chain, const SDLoc &DL,
    std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
    SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
    MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
    unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
    const CCValAssign &VA) const {
  unsigned ByValSizeInBytes = Flags.getByValSize();
  unsigned OffsetInBytes = 0; // From beginning of struct
  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
  Align Alignment =
      std::min(Flags.getNonZeroByValAlign(), Align(RegSizeInBytes));
  EVT PtrTy = getPointerTy(DAG.getDataLayout()),
      RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
  unsigned NumRegs = LastReg - FirstReg;

  if (NumRegs) {
    ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
    bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
    unsigned I = 0;

    // Copy words to registers.
    for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
                                    DAG.getConstant(OffsetInBytes, DL, PtrTy));
      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
                                    MachinePointerInfo(), Alignment.value());
      MemOpChains.push_back(LoadVal.getValue(1));
      unsigned ArgReg = ArgRegs[FirstReg + I];
      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
    }

    // Return if the struct has been fully copied.
    if (ByValSizeInBytes == OffsetInBytes)
      return;

    // Copy the remainder of the byval argument with sub-word loads and shifts.
    if (LeftoverBytes) {
      SDValue Val;

      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;

        if (RemainingSizeInBytes < LoadSizeInBytes)
          continue;

        // Load subword.
        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
                                      DAG.getConstant(OffsetInBytes, DL,
                                                      PtrTy));
        SDValue LoadVal = DAG.getExtLoad(
            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
            MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment.value());
        MemOpChains.push_back(LoadVal.getValue(1));

        // Shift the loaded value.
        unsigned Shamt;

        if (isLittle)
          Shamt = TotalBytesLoaded * 8;
        else
          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;

        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
                                    DAG.getConstant(Shamt, DL, MVT::i32));

        if (Val.getNode())
          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
        else
          Val = Shift;

        OffsetInBytes += LoadSizeInBytes;
        TotalBytesLoaded += LoadSizeInBytes;
        Alignment = std::min(Alignment, Align(LoadSizeInBytes));
      }

      unsigned ArgReg = ArgRegs[FirstReg + I];
      RegsToPass.push_back(std::make_pair(ArgReg, Val));
      return;
    }
  }

  // Copy remainder of byval arg to it with memcpy.
  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
                            DAG.getConstant(OffsetInBytes, DL, PtrTy));
  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
                            DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
  Chain = DAG.getMemcpy(
      Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, DL, PtrTy),
      Align(Alignment), /*isVolatile=*/false, /*AlwaysInline=*/false,
      /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
  MemOpChains.push_back(Chain);
}

void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
                                         SDValue Chain, const SDLoc &DL,
                                         SelectionDAG &DAG,
                                         CCState &State) const {
  ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
  unsigned Idx = State.getFirstUnallocated(ArgRegs);
  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
  MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
  const TargetRegisterClass *RC = getRegClassFor(RegTy);
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  // Offset of the first variable argument from stack pointer.
  int VaArgOffset;

  if (ArgRegs.size() == Idx)
    VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
  else {
    VaArgOffset =
        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
        (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
  }

  // Record the frame index of the first variable argument
  // which is a value necessary to VASTART.
  int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
  MipsFI->setVarArgsFrameIndex(FI);

  // Copy the integer registers that have not been used for argument passing
  // to the argument register save area. For O32, the save area is allocated
  // in the caller's stack frame, while for N32/64, it is allocated in the
  // callee's stack frame.
  for (unsigned I = Idx; I < ArgRegs.size();
       ++I, VaArgOffset += RegSizeInBytes) {
    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
    FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    SDValue Store =
        DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
        (Value *)nullptr);
    OutChains.push_back(Store);
  }
}

void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
                                     Align Alignment) const {
  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();

  assert(Size && "Byval argument's size shouldn't be 0.");

  Alignment = std::min(Alignment, TFL->getStackAlign());

  unsigned FirstReg = 0;
  unsigned NumRegs = 0;

  if (State->getCallingConv() != CallingConv::Fast) {
    unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
    ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
    // FIXME: The O32 case actually describes no shadow registers.
    const MCPhysReg *ShadowRegs =
        ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;

    // We used to check the size as well but we can't do that anymore since
    // CCState::HandleByVal() rounds up the size after calling this function.
    assert(
        Alignment >= Align(RegSizeInBytes) &&
        "Byval argument's alignment should be a multiple of RegSizeInBytes.");

    FirstReg = State->getFirstUnallocated(IntArgRegs);

    // If Alignment > RegSizeInBytes, the first arg register must be even.
    // FIXME: This condition happens to do the right thing but it's not the
    //        right way to test it. We want to check that the stack frame offset
    //        of the register is aligned.
    if ((Alignment > RegSizeInBytes) && (FirstReg % 2)) {
      State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
      ++FirstReg;
    }

    // Mark the registers allocated.
    Size = alignTo(Size, RegSizeInBytes);
    for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
         Size -= RegSizeInBytes, ++I, ++NumRegs)
      State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
  }

  State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
}

MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
                                                        MachineBasicBlock *BB,
                                                        bool isFPCmp,
                                                        unsigned Opc) const {
  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
         "Subtarget already supports SELECT nodes with the use of"
         "conditional-move instructions.");

  const TargetInstrInfo *TII =
      Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  // To "insert" a SELECT instruction, we actually have to insert the
  // diamond control-flow pattern.  The incoming instruction knows the
  // destination vreg to set, the condition code register to branch on, the
  // true/false values to select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = ++BB->getIterator();

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB  = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  if (isFPCmp) {
    // bc1[tf] cc, sinkMBB
    BuildMI(BB, DL, TII->get(Opc))
        .addReg(MI.getOperand(1).getReg())
        .addMBB(sinkMBB);
  } else {
    // bne rs, $0, sinkMBB
    BuildMI(BB, DL, TII->get(Opc))
        .addReg(MI.getOperand(1).getReg())
        .addReg(Mips::ZERO)
        .addMBB(sinkMBB);
  }

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
      .addReg(MI.getOperand(2).getReg())
      .addMBB(thisMBB)
      .addReg(MI.getOperand(3).getReg())
      .addMBB(copy0MBB);

  MI.eraseFromParent(); // The pseudo instruction is gone now.

  return BB;
}

MachineBasicBlock *
MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
                                       MachineBasicBlock *BB) const {
  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
         "Subtarget already supports SELECT nodes with the use of"
         "conditional-move instructions.");

  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  // D_SELECT substitutes two SELECT nodes that goes one after another and
  // have the same condition operand. On machines which don't have
  // conditional-move instruction, it reduces unnecessary branch instructions
  // which are result of using two diamond patterns that are result of two
  // SELECT pseudo instructions.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = ++BB->getIterator();

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  // bne rs, $0, sinkMBB
  BuildMI(BB, DL, TII->get(Mips::BNE))
      .addReg(MI.getOperand(2).getReg())
      .addReg(Mips::ZERO)
      .addMBB(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  // Use two PHI nodes to select two reults
  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
      .addReg(MI.getOperand(3).getReg())
      .addMBB(thisMBB)
      .addReg(MI.getOperand(5).getReg())
      .addMBB(copy0MBB);
  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
      .addReg(MI.getOperand(4).getReg())
      .addMBB(thisMBB)
      .addReg(MI.getOperand(6).getReg())
      .addMBB(copy0MBB);

  MI.eraseFromParent(); // The pseudo instruction is gone now.

  return BB;
}

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register
MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT,
                                      const MachineFunction &MF) const {
  // Named registers is expected to be fairly rare. For now, just support $28
  // since the linux kernel uses it.
  if (Subtarget.isGP64bit()) {
    Register Reg = StringSwitch<Register>(RegName)
                         .Case("$28", Mips::GP_64)
                         .Default(Register());
    if (Reg)
      return Reg;
  } else {
    Register Reg = StringSwitch<Register>(RegName)
                         .Case("$28", Mips::GP)
                         .Default(Register());
    if (Reg)
      return Reg;
  }
  report_fatal_error("Invalid register name global variable");
}

MachineBasicBlock *MipsTargetLowering::emitLDR_W(MachineInstr &MI,
                                                 MachineBasicBlock *BB) const {
  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const bool IsLittle = Subtarget.isLittle();
  DebugLoc DL = MI.getDebugLoc();

  Register Dest = MI.getOperand(0).getReg();
  Register Address = MI.getOperand(1).getReg();
  unsigned Imm = MI.getOperand(2).getImm();

  MachineBasicBlock::iterator I(MI);

  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
    // Mips release 6 can load from adress that is not naturally-aligned.
    Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    BuildMI(*BB, I, DL, TII->get(Mips::LW))
        .addDef(Temp)
        .addUse(Address)
        .addImm(Imm);
    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(Temp);
  } else {
    // Mips release 5 needs to use instructions that can load from an unaligned
    // memory address.
    Register LoadHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register LoadFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register Undef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(Undef);
    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
        .addDef(LoadHalf)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 0 : 3))
        .addUse(Undef);
    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
        .addDef(LoadFull)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 3 : 0))
        .addUse(LoadHalf);
    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(LoadFull);
  }

  MI.eraseFromParent();
  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitLDR_D(MachineInstr &MI,
                                                 MachineBasicBlock *BB) const {
  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const bool IsLittle = Subtarget.isLittle();
  DebugLoc DL = MI.getDebugLoc();

  Register Dest = MI.getOperand(0).getReg();
  Register Address = MI.getOperand(1).getReg();
  unsigned Imm = MI.getOperand(2).getImm();

  MachineBasicBlock::iterator I(MI);

  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
    // Mips release 6 can load from adress that is not naturally-aligned.
    if (Subtarget.isGP64bit()) {
      Register Temp = MRI.createVirtualRegister(&Mips::GPR64RegClass);
      BuildMI(*BB, I, DL, TII->get(Mips::LD))
          .addDef(Temp)
          .addUse(Address)
          .addImm(Imm);
      BuildMI(*BB, I, DL, TII->get(Mips::FILL_D)).addDef(Dest).addUse(Temp);
    } else {
      Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
      Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      BuildMI(*BB, I, DL, TII->get(Mips::LW))
          .addDef(Lo)
          .addUse(Address)
          .addImm(Imm + (IsLittle ? 0 : 4));
      BuildMI(*BB, I, DL, TII->get(Mips::LW))
          .addDef(Hi)
          .addUse(Address)
          .addImm(Imm + (IsLittle ? 4 : 0));
      BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(Lo);
      BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
          .addUse(Wtemp)
          .addUse(Hi)
          .addImm(1);
    }
  } else {
    // Mips release 5 needs to use instructions that can load from an unaligned
    // memory address.
    Register LoHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register LoFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register LoUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register HiHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register HiFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register HiUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(LoUndef);
    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
        .addDef(LoHalf)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 0 : 7))
        .addUse(LoUndef);
    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
        .addDef(LoFull)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 3 : 4))
        .addUse(LoHalf);
    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(HiUndef);
    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
        .addDef(HiHalf)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 4 : 3))
        .addUse(HiUndef);
    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
        .addDef(HiFull)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 7 : 0))
        .addUse(HiHalf);
    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(LoFull);
    BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
        .addUse(Wtemp)
        .addUse(HiFull)
        .addImm(1);
  }

  MI.eraseFromParent();
  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitSTR_W(MachineInstr &MI,
                                                 MachineBasicBlock *BB) const {
  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const bool IsLittle = Subtarget.isLittle();
  DebugLoc DL = MI.getDebugLoc();

  Register StoreVal = MI.getOperand(0).getReg();
  Register Address = MI.getOperand(1).getReg();
  unsigned Imm = MI.getOperand(2).getImm();

  MachineBasicBlock::iterator I(MI);

  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
    // Mips release 6 can store to adress that is not naturally-aligned.
    Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
    Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(BitcastW).addUse(StoreVal);
    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
        .addDef(Tmp)
        .addUse(BitcastW)
        .addImm(0);
    BuildMI(*BB, I, DL, TII->get(Mips::SW))
        .addUse(Tmp)
        .addUse(Address)
        .addImm(Imm);
  } else {
    // Mips release 5 needs to use instructions that can store to an unaligned
    // memory address.
    Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
        .addDef(Tmp)
        .addUse(StoreVal)
        .addImm(0);
    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
        .addUse(Tmp)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 0 : 3));
    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
        .addUse(Tmp)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 3 : 0));
  }

  MI.eraseFromParent();

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitSTR_D(MachineInstr &MI,
                                                 MachineBasicBlock *BB) const {
  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const bool IsLittle = Subtarget.isLittle();
  DebugLoc DL = MI.getDebugLoc();

  Register StoreVal = MI.getOperand(0).getReg();
  Register Address = MI.getOperand(1).getReg();
  unsigned Imm = MI.getOperand(2).getImm();

  MachineBasicBlock::iterator I(MI);

  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
    // Mips release 6 can store to adress that is not naturally-aligned.
    if (Subtarget.isGP64bit()) {
      Register BitcastD = MRI.createVirtualRegister(&Mips::MSA128DRegClass);
      Register Lo = MRI.createVirtualRegister(&Mips::GPR64RegClass);
      BuildMI(*BB, I, DL, TII->get(Mips::COPY))
          .addDef(BitcastD)
          .addUse(StoreVal);
      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_D))
          .addDef(Lo)
          .addUse(BitcastD)
          .addImm(0);
      BuildMI(*BB, I, DL, TII->get(Mips::SD))
          .addUse(Lo)
          .addUse(Address)
          .addImm(Imm);
    } else {
      Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
      Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
      BuildMI(*BB, I, DL, TII->get(Mips::COPY))
          .addDef(BitcastW)
          .addUse(StoreVal);
      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
          .addDef(Lo)
          .addUse(BitcastW)
          .addImm(0);
      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
          .addDef(Hi)
          .addUse(BitcastW)
          .addImm(1);
      BuildMI(*BB, I, DL, TII->get(Mips::SW))
          .addUse(Lo)
          .addUse(Address)
          .addImm(Imm + (IsLittle ? 0 : 4));
      BuildMI(*BB, I, DL, TII->get(Mips::SW))
          .addUse(Hi)
          .addUse(Address)
          .addImm(Imm + (IsLittle ? 4 : 0));
    }
  } else {
    // Mips release 5 needs to use instructions that can store to an unaligned
    // memory address.
    Register Bitcast = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
    Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
    BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(Bitcast).addUse(StoreVal);
    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
        .addDef(Lo)
        .addUse(Bitcast)
        .addImm(0);
    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
        .addDef(Hi)
        .addUse(Bitcast)
        .addImm(1);
    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
        .addUse(Lo)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 0 : 3));
    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
        .addUse(Lo)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 3 : 0));
    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
        .addUse(Hi)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 4 : 7));
    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
        .addUse(Hi)
        .addUse(Address)
        .addImm(Imm + (IsLittle ? 7 : 4));
  }

  MI.eraseFromParent();
  return BB;
}